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Rodŕıguezc

aCenter for Research and Development in Mathematics and Applications, Department of
Mathematics, University of Aveiro, Aveiro, Portugal

b Departamento de Ciências Exatas e Naturais, Escola Superior de Educação de Viseu,
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Abstract

The Laplacian spread of a graph G is defined as the difference between the
largest and the second smallest eigenvalue of the Laplacian matrix of G. In
this work, an upper bound for this graph invariant, that depends on first
Zagreb index, is given. Moreover, another upper bound is obtained and ex-
pressed as a function of the nonzero coefficients of the Laplacian characteristic
polynomial of a graph.
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1. Notation and Preliminares

By an (n,m)-graph G = (V (G) , E (G)), for short G = (V , E), we mean
an undirected simple graph on |V| = n vertices and m = |E| edges. If e ∈ E
is the edge connecting vertices u and v we say that u and v are adjacent and
the edge is denoted by {u, v}. The notation u ∼ v means that {u, v} ∈ E .
For u ∈ V the set of neighbors of u, NG(u), is the set of vertices adjacent
to u. The cardinality of NG(u), du, is called the vertex degree of u. The
smallest and largest vertex degree of G are denoted by δ and ∆, respectively.
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A graph in which all vertex degrees are equal to p is regular of degree p
(or p-regular). The path and the star with n vertices are denoted by Pn
and Sn, respectively. A caterpillar graph is a tree of order n ≥ 5 such that
by removing all the pendant vertices one obtains a path with at least two
vertices. In this context the caterpillar, T (q1, . . . , qk) is obtained from a path
Pk, with k ≥ 2, by associating the central vertex of the star Sqi (1 ≤ i ≤ k)
to the i-th vertex of the path Pk. The adjacency matrix A (G) of a graph G
with V = {v1, v2, . . . , vn} is the square matrix of order n, whose (i, i)-entry is
equal to 1 if vi and vj are adjacent, and 0 otherwise. The Laplacian matrix of
G is given by L(G) = D(G)−A(G) where D(G) is the diagonal matrix whose
(i, i)-entry is equal to the degree of vi ∈ V . This matrix is positive semidefinite
and 0 is always a Laplacian eigenvalue whose multiplicity corresponds to the
number of connected components of G with e, the all ones vector, as an
associated eigenvector. For spectral results on this matrix see, for instance,
[6, 8]. There are numerous results in the literature concerning upper and
lower bounds on the largest eigenvalue of L (G), see [15, 19].

If B is a real symmetric matrix, βi(B) (or simply βi) and σB denote the
i -th largest eigenvalue of B and the set of eigenvalues of B, respectively.
The set of eigenvalues of L(G) is denoted by σL(G) and called the Laplacian
spectrum of G. If β is an eigenvalue of B and x one of its eigenvectors the
pair (β,x) is an eigenpair of B. From now on we represent the Laplacian
eigenvalues of G by µ1 ≥ µ2 ≥ · · · ≥ µn = 0. An important result in graph
theory, see [19], states that if G has at least one edge, ∆ + 1 ≤ µ1, and if G
is connected the equality is attained if and only if ∆ = n − 1. Considering
G, an upper bound on Laplacian eigenvalues can be easily obtained, µ1 ≤ n,
see [2]. Among the most important Laplacian eigenvalues is the algebraic
connectivity of G, defined as the second smallest Laplacian eigenvalue µn−1,
[10]. Recently, the algebraic connectivity has received much attention, see
[1, 19, 22, 23] and the references cited therein. A graph is connected if and
only if µn−1 > 0, [10].

2. The Laplacian spread of an arbitrary graph and some motivation

Let B be an n × n complex matrix with eigenvalues β1, β2, . . . , βn. The
spread of B (or matricial spread) is defined by

s (B) = max
i,j
|βi − βj| ,
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where the maximum is taken over all pairs of eigenvalues of B. There is
a considerable literature on this parameter, see for instance [13, 18, 21].
Suppose that B ∈ Cn×n is a Hermitian complex matrix. For x,y ∈ Cn, we
denote by 〈x,y〉 = x∗y, the inner product in Cn and by ‖x‖ =

√
〈x,x〉 the

norm of x. Here, |B| =
√
trace(B∗B) is the Frobenius matrix norm of B,

where B∗ represents the transconjugate of B. Since the Frobenius matrix
norm is a unitarily invariant matrix norm,

|B| =
√
|β1|2 + |β2|2 + · · ·+ |βn|2, (1)

the following upper bound for the spread of a square matrix B was given in
[18]

s2 (B) ≤ 2 |B|2 − 2

n
(trace (B))2 . (2)

The Laplacian spread of G, [26], is defined as

sprL (G) = max {|µi − µj| : µi, µj ∈ σL (G) \{0}} . (3)

Note that in this definition we avoid the eigenvalue 0, so the spread becomes
equal to the largest minus the second smallest eigenvalue. There are several
results in literature related to this graph invariant. For instance, Fan et al.
[26] showed that the star Sn and the path Pn are, respectively, the trees with
the maximal Laplacian spread and the minimal Laplacian spread among all
trees of order n. Recently the unicyclic graphs with maximum and minimum
value of the Laplacian spread were studied in [5, 16] and [24], respectively.
The maximum Laplacian spread of bicyclic graphs and tricyclic graphs of a
given order were presented in [9, 17] and [7], respectively. In [27] bounds for
the Laplacian spread of graphs were obtained. In particular, for an (n,m)-
graph with minimum and maximum degree δ and ∆, the authors presented
an upper bound that depends on the clique number of the graph and its
complement and of the previous parameters (see [27, Theorem 4.3]). By
definition of Laplacian spread the next upper bound was also presented in
[27].

Proposition 2.1. [27, Proposition 1.1] Let G be a simple undirected graph
having Laplacian eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µn = 0. Then sprL (G) < n.

Here, for a non-trivial upper bound on sprL (G) we mean any upper
bound l ≥ 0, such that l < n. On the contrary case we call trivial upper
bound.
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In this paper we present two upper bounds for the Laplacian spread of
connected graphs. In the next section, using a theorem due to Brauer we
obtain a new matrix whose matricial spread coincides with the Laplacian
spread of G. Regarding this fact, we obtain an upper bound for the Laplacian
spread that depends on the first Zagreb index. Also, we present in Section
4 an upper bound in function of the nonzero coefficients of the Laplacian
characteristic polynomial of a graph. In Section 5 some computational ex-
periments to verify the behavior of the obtained upper bounds (compared
with the published ones) are presented.

3. An upper bound for the Laplacian spread using a rank one per-
turbation on the Laplacian matrix

We start this section recalling a well known theorem due to Brauer, (see
[4]) that relates the eigenvalues of an arbitrary matrix and the matrix re-
sulting from it by a rank one additive perturbation. This theorem plays an
important role in the study of the nonnegative eigenvalue problem.

Theorem 3.1. [4] Let B be an arbitrary n×n matrix with eigenvalues β1, β2,
. . . , βn. Let xk be an eigenvector of B associated with the eigenvalue βk, and
let q be any n-dimensional vector. Then the matrix B+xkq

t has eigenvalues
β1, . . . , βk−1, βk + xtkq, βk+1, . . . , βn.

Using this theorem, a new matrix whose matricial spread coincides with
the Laplacian spread of G can be obtained.

Remark 3.2. Let
M = L(G) + ξeet. (4)

If ξ = α
n

, for any given value α such that

µn−1 ≤ α ≤ µ1, (5)

using Theorem 3.1, we can conclude

sprL (G) = s (M) . (6)

Using a rank one perturbation on the Laplacian matrix we present an
upper bound for the Laplacian spread that depends on first Zagreb index.
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Let us recall the number

Zg (G) =
n∑
i=1

d2i ,

also known as the first Zagreb index of G, [11].
If M = (mij) is the matrix defined in (4), then

mij =


−1 + ξ if i ∼ j
ξ if i � j

di + ξ if i = j.
(7)

Using inequality in (2) we get the following result.

Theorem 3.3. Let G be a graph on n vertices with m edges and M the
matrix defined in (4). Then

s (M) ≤
√

2Zg (G) + 4m (1− 2ξ) + 2ξ2n (n− 1)− 8m2

n
. (8)

If ξ = α
n

, with µn−1 ≤ α ≤ µ1, we have

s (M) ≤
√

2Zg (G) +
4m

n
(n− 2α− 2m) +

2α

n

2

(n− 1). (9)

Proof. We shall use the upper bound (2) for the matrix M in (4). Taking
into account the entries mij in (7), and that |M |2 = trace(M∗M) we obtain

|M |2 = |L (G)|2 + ξ2n2 = Zg (G) + 2m+ ξ2n2

and by a direct computation we have

trace (M) = 2m+ ξn.

Applying the lower bound (2) for M we have

s2 (M) ≤ 2Zg (G) + 4m+ 2ξ2n2 − 2

n
(2m+ ξn)2 . (10)

By elementary algebra, the term on the right hand side of the previous
inequality can be written as the upper bound in (8).
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If ξ = α
n
, the next equality

2Zg (G) + 4m+ 2ξ2n2 − 2

n
(2m+ ξn)2 =

2Zg (G) +
4m

n
(n− 2α− 2m) +

2α

n

2

(n− 1) ,

is obtained from (10). Thus the result follows.

Remark 3.4. In [25] it was conjectured that for a graph G with n vertices,
sprL (G) ≤ n − 1 with equality if and only if G or G are isomorphic to the
join of an isolated vertex and a disconnected graph with n− 1 vertices. If G
is a p-regular graph with n ≥ 2 vertices then µn−1 ≤ p ≤ µ1, see e.g. [3].
Considering α = p and m = np

2
in (9) one obtains

sprL (G) ≤
√

2pn− 2p2 − 2p2

n
< n− 1.

The last inequality is a direct consequence of replacing x = p
n

as an argument
into the function f (x) = −2

(
1 + 1

n

)
x2 + 2x+ 2

n
−
(
1 + 1

n2

)
and f(p/n) < 0.

Remark 3.5. Using (6) and α = µ1 the upper bound in (9) becomes

sprL (G) ≤
√

2Zg (G) +
4m

n
(n− 2µ1 − 2m) +

2µ1

n

2

(n− 1). (11)

For α = µn−1 the upper bound in (9) becomes

sprL (G) ≤
√

2Zg (G) +
4m

n
(n− 2µn−1 − 2m) +

2µn−1
n

2

(n− 1). (12)

Remark 3.6. For the graph G with 7 vertices G = (K2UK2UK2)vK1, that
is, the join with K2UK2UK2 and K1, σL (G) = {7, 3, 3, 3, 1, 1, 0}, so sprL (G) =
7−1 = 6. However, the upper bounds in (11) and (12) are 8. 685 and 7.4066,
respectively. Therefore one can see that the upper bound obtained in Theorem
3.3 is tighter in some cases (as in the cases of regular graphs) and in other
cases it appears as a trivial bound. Then it make sense to continue searching
for non-trivial bounds.
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4. An upper bound as a function of the nonzero coefficients of
characteristic polynomial of Laplacian matrix

The next upper bound for the Laplacian spread uses the coefficients of
the Laplacian characteristic polynomial of a graph. We present here some
remarks based on the existing literature, see, for instance, [8].

Remark 4.1. It is helpful to express the characteristic polynomial of any
square matrix in terms of its principal minors. Recall that an r× r principal
submatrix of an n × n matrix B is a submatrix of B that lies on the same
set of r rows and columns, and an r × r principal minor is the determinant
of an r × r principal submatrix. There are

(
n
r

)
= n!

(n−r)!r! such minors. If

det (B − βI) = βn + b1β
n−1 + b2β

n−2 + · · ·+ bn−1β + bn,

then
bk = (−1)k

∑
(all k× k principal minors), 1 ≤ k ≤ n.

Remark 4.2. One of the earliest uses of the matrix L (G) is the Matrix-
Tree Theorem, due to Kirchhoff (see [8]). It states that any (n− 1)× (n− 1)
cofactor (minor with corresponding signs) of L (G) gives the number of span-
ning trees of the graph. For notation, let L[i,j] be the submatrix of L (G) with
the ith row and jth column removed. Denote the number of spanning trees of
G by t (G). Then the next lemma can be established.

Lemma 4.3. [8] t (G) = (−1)i+j detL[i,j].

Remark 4.4. Let q (λ) = det (L (G)− λI) be the characteristic polynomial
of L (G) and suppose that

q (λ) = λn + f1λ
n−1 + f2λ

n−2 + · · ·+ fn−1λ. (13)

By using Remarks 4.1 and 4.2 together with Lemma 4.3 it can be concluded
(see [8]) that

(−1)n−1fn−1 = nt (G) = µ1µ2 · · ·µn−1,
In particular when G is a tree we obtain t (G) = 1 which implies (−1)n−1fn−1 =
n.

In [8, 12] there is a more general result concerning the coefficients of the
characteristic polynomial of L (G).
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Proposition 4.5. [8] Let q (λ) = λn + f1λ
n−1 + f2λ

n−2 + · · ·+ fn−1λ be the
characteristic polynomial of L (G). Then, for k = 1, 2, . . . , n− 1,

fk = (−1)k
∑

J⊂V (G), |J |=n−k

t (GJ) ,

where t (GJ) stands for the number of spanning trees of a graph GJ obtained
from G.

We now present a lower bound for the algebraic connectivity of G in order
to establish an upper bound on the Laplacian spread of a graph.

Proposition 4.6. Let B be an n×n positive definite matrix with eigenvalues
β1 (B) ≥ β2 (B) ≥ · · · ≥ βn (B) > 0. Then

1

trace (B−1)
< βn (B) .

Proof. The proof is an immediate consequence of

trace
(
B−1

)
=

1

β1 (B)
+ · · ·+ 1

βn (B)
>

1

βn (B)
.

From now on we let G be a connected graph.

Remark 4.7. Let ξ be equal to α
n
, where α satisfies the condition in Remark

3.2. If M is the matrix defined in (4), then it is an n× n symmetric matrix
with (only) positive eigenvalues λ1 (M) ≥ λ2 (M) ≥ · · · ≥ λn (M) > 0, where
λ1 (M) = µ1 and λn (M) = µn−1. By Proposition 4.6 we conclude that

1

trace (M−1)
< λn (M) = µn−1. (14)

Remark 4.8. To compute the left hand term in (14) we use the coefficients
in the characteristic equation of M . Therefore, in the characteristic polyno-
mial of M

p (λ) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn, (15)
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we consider χk (M) , the kth symmetric function of the eigenvalues λ1 (M),
λ2 (M) , . . . , λn (M) of M , that is

χk (M) =
∑

1≤i1<i2<···<ik≤n

λi1 (M)λi2 (M) · · ·λik (M) . (16)

Then
ck = (−1)k χk (M) , 1 ≤ k ≤ n. (17)

Since the eigenvalues λ1 (M) , λ2 (M) , . . . , λn (M) are positive we check that
the signs of c1, c2, . . . , cn alternate.

Remark 4.9. Similarly, replacing M by L (G) in the previous considerations
and taking into account the polynomial in (13) we have

fk = (−1)k
∑

1≤i1<i2<···<ik≤n

µi1 · · ·µik , 1 ≤ k ≤ n. (18)

From both relations (17), (18) and defining f0 ≡ 1, fn ≡ 0 one can see that,

ck = fk − (nξ) fk−1 = fk − αfk−1, 1 ≤ k ≤ n. (19)

Proposition 4.10. Let µn−1 be the algebraic connectivity of G. Let ξ be as
in Remark 3.2. If M is as in (4), with characteristic polynomial p (λ) as in
(15), then

− cn
cn−1

≤ µn−1.

Proof. Using Eqs. (16) and (17) we obtain

1

λn (M)
≤ 1

λ1 (M)
+ · · ·+ 1

λn (M)
= −cn−1

cn
.

From Remark 4.7 the result follows.
From Proposition 4.10 and (19) the next result follows.

Corollary 4.11. Let µn−1 be the algebraic connectivity of G. Let µn−1 ≤ α ≤
µ1. Let q (λ) = det (L (G)− λI) be the characteristic polynomial of L (G) and
suppose that

q (λ) = λn + f1λ
n−1 + f2λ

n−2 + · · ·+ fn−1λ. (20)

Then
αfn−1

fn−1 − αfn−2
≤ µn−1. (21)
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Let G be a graph with vertices v1, . . . , vn and d1, d2, . . . , dn the corre-
sponding degrees. Let m1,m2, . . . ,mn be define as

mk = 1
dk

∑
vj∼vk

dj, 1 ≤ k ≤ n.

Let C = max {dk +mk : vk ∈ V (G)} .

The following result is due to R. Merris and gives an upper bound for µ1.

Lemma 4.12. [20] Let G be a graph with vertices v1, . . . , vn. Let d1, d2, . . . , dn
be the corresponding degrees of the vertices. Let C be as above. Then

µ1 ≤ C. (22)

The equality holds if and only if G is bipartite regular or semiregular.

Theorem 4.13. Let G be a connected graph with Laplacian eigenvalues µ1 ≥
µ2 ≥ · · · ≥ µn−1 > µn = 0. Then

sprL (G) ≤ µ1 −
µ1fn−1

fn−1 − µ1fn−2
= µ1 −

(−1)n−1 µ1nt(G)

(−1)n−1 nt(G)− µ1fn−2
< n, (23)

where f1, f2, . . . , fn−1 are the nonzero coefficients of the Laplacian character-
istic polynomial.

Proof. By a direct consequence of Proposition 4.10 we have

sprL (G) = µ1 − µn−1 ≤ µ1 +
cn
cn−1

.

Taking into account (19), and setting α = µ1, (23) holds.

Corollary 4.14. Let G be a connected graph with Laplacian eigenvalues
µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0. Consider µn−1 ≤ α ≤ µ1. Then

sprL (G) ≤ min

{
n+

αfn−1
αfn−2 − fn−1

, C +
αfn−1

αfn−2 − fn−1

}
,

where the sequence f1, f2, . . . , fn is defined as in Remark 4.8. Moreover,

sprL (G) ≤ min

{
n+

µ1fn−1
µ1fn−2 − fn−1

, C +
µ1fn−1

µ1fn−2 − fn−1

}
. (24)

10



Proof. Note that the upper bound to be obtained is nontrivial. By a direct
consequence of Proposition 4.10 and Lemma 4.12 we have

sprL (G) = µ1 − µn−1 ≤ C +
cn
cn−1

.

On the other hand, µ1 ≤ n implies that

sprL (G) = µ1 − µn−1 ≤ n+
cn
cn−1

.

Taking into account (19), and setting α = µ1, (24) holds.

Remark 4.15. In Corollary 4.14 the parameter α can be equal to µn−1

however, the function ϕ (x) =
xfn−1

xfn−2 − fn−1
is non-increasing, as ϕ′ (x) =

− (fn−1)
2

(xfn−2 − fn−1)2
. Thus, by considering the largest known α in [µn−1, µ1]

(for example α = ∆ + 1 or α = µ1) it is possible to get a tight upper bound
for the Laplacian spread.

5. Comparing bounds and final remarks

In this section we present some computational experiments to compare
our new upper bounds to previously published upper bounds for certain
connected graphs. We compare the estimates obtained by Theorem 3.3 (Th.
3.3), Theorem 4.13 (Th. 4.13), Corollary 4.14 (Cor. 4.14), Proposition 1
in [27] (Prop. 1 [27]), Theorem 4.3 in [27] (Th. 4.3 [27]), Theorem 4.7 in
[27] (Th. 4.7 [27]) and Theorem 2.5 in [25] (Th. 2.5 [25]), with the actual
Laplacian spread.

In the following tables, ee is the relative error, defined as usual:

ee =
bound− sprL (G)

sprL (G)
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G sprL (G) Th. 3.3 ee Th. 4.13 ee Cor. 4.14 ee
P6 3.4642 4.5826 0.3228 3.8960 0.1246 3.8361 0.1074
P7 3.6038 5.0563 0.4030 3.6809 0.0214 3.8790 0.0764
P8 3.6956 5.4750 0.4815 3.9407 0.0663 3.9071 0.0572
P13 3.8838 7.1388 0.8381 3.9065 0.0058 3.9646 0.0208
P18 3.9392 8.4456 1.1440 3.9881 0.0124 3.9815 0.0107
P19 3.9454 8.6818 1.2005 3.9561 0.0027 3.9834 0.0096
P20 3.9508 8.9115 1.2556 3.9904 0.0100 3.9850 0.0087
S9 8 10.6667 0.3333 8.8615 0.1077 8.8615 0.1077
S12 11 14.8941 0.3540 12.0984 0.0999 11.9016 0.0820
S15 14 19.1276 0.3663 14.9239 0.0660 14.9239 0.0660
S16 15 20.5396 0.3693 16.0708 0.0714 15.9292 0.0619
S17 16 21.9518 0.3720 16.9339 0.0584 16.9339 0.0584

T (0, 0, 2) 3.6513 4.4170 0.2097 3.9097 0.0708 4.0729 0.1155
T (0, 0, 0, 2) 3.8894 4.9676 0.2772 4.3938 0.1297 4.3205 0.1108
T (1, 1, 1) 3.9208 4.9359 0.2589 4.4880 0.1447 4.4814 0.1430
T (1, 1, 2) 4.3070 5.7296 0.3303 4.4814 0.0405 4.8527 0.1267
T (2, 2, 2) 5.1816 7.3030 0.4094 5.3444 0.0314 5.8949 0.1377

G sprL (G) Prop.1 [27] ee Th.4.3 [27] ee Th.4.7 [27] ee Th.2.5 [25] ee
P6 3.4642 6 0.7320 5.9161 0.7078 5.7321 0.6547 3.8667 0.1162
P7 3.6038 7 0.9424 7.2457 1.0106 7.8019 1.1649 3.9048 0.0835
P8 3.6956 8 1.1647 8.3666 1.2639 7.8478 1.1235 3.9286 0.0630
P13 3.8838 13 2.3472 14.5504 2.7464 13.9419 2.5898 3.9744 0.0233
P18 3.9392 18 3.5695 20.6155 4.2334 17.9696 3.5617 3.9869 0.0121
P19 3.9454 19 3.8157 21.8815 4.5461 19.9727 4.0623 3.9883 0.0109
P20 3.9508 20 4.0623 23.0651 4.8381 19.9754 4.0560 3.9895 0.0098
S9 8 9 0.1250 15.9499 0.9937 15.8794 0.9849 −− –
S12 11 12 0.0909 22.6382 1.0580 21.9319 0.9938 −− –
S15 14 15 0.0714 29.3205 1.0943 27.9563 0.9969 −− –
S16 15 16 0.0667 31.5472 1.1031 29.9616 0.9974 −− –
S17 16 17 0.0625 33.7737 1.1109 31.9659 0.9979 −− –

T (0, 0, 2) 3.6513 5 0.3694 5.8305 0.5968 5.6180 0.5386 −− –
T (0, 0, 0, 2) 3.8894 6 0.5427 7.1237 0.8316 7.7321 0.9880 4.8333 0.2427
T (1, 1, 1) 3.9208 6 0.5303 6.9161 0.7639 5.7321 0.4620 4.8333 0.2327
T (1, 1, 2) 4.3070 7 0.6253 8.2457 0.9145 7.8019 0.8115 5.8571 0.3599
T (2, 2, 2) 5.1816 9 0.7369 11.7980 1.2769 11.8794 1.2926 7.8889 0.5225

Analyzing the above examples, we observe the following:

• The upper bound in [27, Theorem 4.3] depends on the computation
the clique number of the graph (and of its complement) which is an
NP- hard problem. Therefore these are theoretical bounds, but for the
graphs in the DIMACS collection, [14], these clique numbers have been
computed.

• In all our test cases our bounds were better than existing bounds in
the second table.

• For paths, the upper bound given by Corollary 4.14, is the best when
n is even and for n odd, the upper bound given by Theorem 4.13 is the
best.

• For stars, the best results are obtained by Corollary 4.14.

• For caterpillars, the best results are obtained by Theorem 4.13 and by
Corollary 4.14.
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