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Abstract

The spread of an n × n complex matrix B with eigenvalues β1, β2, . . . , βn is
defined by

s (B) = max
i,j
|βi − βj| ,

where the maximum is taken over all pairs of eigenvalues of B. Let G be a
graph on n vertices. The concept of Laplacian spread of G is defined by the
difference between the largest and the second smallest Laplacian eigenvalue
of G. In this work, by combining old techniques of interlacing eigenvalues and
rank 1 perturbation matrices new lower bounds on the Laplacian spread of
graphs are deduced, some of them involving invariant parameters of graphs,
as it is the case of the bandwidth, independence number and vertex connec-
tivity.
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1. Introduction

By an (n,m)-graph G we mean an undirected simple graph with a vertex
set V (G) of cardinality n (the order of the graph) and an edge set E (G) of
cardinality m (the size of the graph). If e ∈ E(G) has end vertices u and v we
say that u and v are adjacent and we denote this edge by uv. For u ∈ V(G),
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the number of vertices adjacent to u is denoted by du and is called the vertex
degree of u. The smallest and largest vertex degree of G are denoted by
δ(G) and ∆(G), respectively. A k-regular graph G is a graph where every
vertex has degree k. The complement of a graph G is denoted by G. A set of
vertices that induces a subgraph with no edges is called an independent set
and a maximum independent set of a graph G is an independent set of largest
cardinality α (G) which is called the independence number of G. A maximal
independent set is an independent set not included in an independent set of
larger cardinality.

The adjacency matrix of graph G is A (G) and its vertex degree matrix is
the diagonal matrix of the vertex degrees D(G). The Laplacian matrix of G
is the positive semidefinite matrix given by L(G) = D(G)−A(G). Note that
0 is always a Laplacian eigenvalue with e, the all one vector, as an associated
eigenvector and whose multiplicity corresponds to the number of connected
components of G.

A symmetric matrix M = (mij) is said to have bandwidth ω if mij = 0
for all (i, j) satisfying |i− j| > ω. The bandwidth ω(G) of the graph G is the
smallest possible bandwidth for its adjacency matrix (or Laplacian matrix).

The spread of an n × n complex hermitian matrix M with eigenvalues
β1, β2, . . . , βn is defined by

s (M) = max
i,j
|βi − βj| ,

where the maximum is taken over all pairs of eigenvalues of M . There are
several papers devoted to this parameter, see for instance [8, 9, 13, 15].

For the remaining basic terminology and notation used throughout the
paper we refer the book [4].

2. Some preliminary results

Among the results obtained for the spread of symmetric matrices M =
(mij) we outline the following lower bound obtained in [2],

s (M) ≥ max
i,j

(
(mjj −mii)

2 + 2
∑
s 6=j

|mjs|2 + 2
∑
s6=i

|mis|2
)1/2

. (1)

In [11], this lower bound was presented as the best lower bound for symmetric
matrices.
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On the other hand, the Laplacian spread of a graph G, sL(G), is the
difference among the largest and the second smallest Laplacian eigenvalue
of G. In [17] it was proven that among the trees of order n, the star, Sn,
is the unique tree with maximal Laplacian spread, and the path, Pn is the
unique tree with minimal Laplacian spread. In this work, using some known
results on the Laplacian spectrum and a known theorem concerning a rank
one perturbation of matrices [3], new lower bounds on the Laplacian spread
of G are deduced.

For a real symmetric matrix M , denote by βi (M) and σM the i-th
largest eigenvalue of M and the multiset of eigenvalues of M , respectively.
If M = L(G), then its multiset of eigenvalues, σL(G), is called the Laplacian
spectrum of G.

The Laplacian eigenvalues, µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0, µ1(G) ≥
µ2(G) ≥ · · · ≥ µn(G) = 0 of G and G, respectively, are related by µj(G) =
n − µn−j(G), for j = 1, 2, . . . , n − 1. As immediate consequence, we may
conclude that for an arbitrary graph G, µ1(G) ≤ n and this upper bound is
attained if and only if the complement of G is disconnected [1]. Moreover,
both Laplacian spread coincide. A classical result in spectral graph theory,
see [12], states that if G has at least one edge then ∆ (G) + 1 ≤ µ1(G).
Furthermore, assuming that G is connected with n vertices, this inequality
holds as equality if and only if ∆ (G) = n− 1.

The algebraic connectivity of a graph G, introduced in [5], is defined as
the second smallest Laplacian eigenvalue µn−1(G). From the properties of
this eigenvalue we may say that it measures the connectivity of the graph.
In fact, a graph G is connected if and only if µn−1(G) > 0, see [5].

It is known, see [5], that if G is a non-complete graph, then µn−1(G) ≤
υ(G), where υ(G) denotes the vertex connectivity of G (that is, the mini-
mum number of vertices whose removal yields a disconnected graph). The
graphs for which the algebraic connectivity attains the vertex connectivity
are characterized in [10] by the following result.

Theorem 2.1. [10] Let G be a non-complete connected graph on n ≥ 3
vertices. Then µn−1(G) = υ(G) if and only if G is isomorphic to the join
operation of the graphs G1 and G2, G1∨G2, where G1 is a disconnected graph
on n − υ(G) vertices and G2 is a graph on υ(G) vertices, with µn−1(G2) ≥
2υ(G)− n.
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Since, υ(G) ≤ δ(G), it follows that µn−1(G) ≤ δ(G) and then

sL(G) ≥ ∆(G) + 1− δ(G). (2)

Regarding lower bounds on the Laplacian spread of a graph it is also
worth to recall the following results.

Theorem 2.2. [16] For a connected (n,m)-graph G, with n ≥ 3, sL(G) ≥
(n−1)µ1(G)−2m

n−2
. Equality holds if and only if G ∼= K1,n−1 or G ∼= Kn/2,n/2,

where Kr,s denotes a complete bipartite graph.

As immediate consequence, assuming the hypothesis of Theorem 2.2 and
taking into account that µ1(G) ≥ ∆(G) + 1, we may conclude that

sL(G) ≥ (n− 1)(∆(G) + 1)− 2m

n− 2
. (3)

Theorem 2.3. [16] Let G be a connected non-complete graph with n ≥ 3
vertices. Then sL(G) ≥ ∆(G) + 1− δ(G) and the inequality holds as equality

if and only if µ1(G)
µn−1(G)

= ∆(G)+1
δ(G)

.

Remark 2.4. From Theorem 2.3, a graph G of order n for which the equal-
ity sL(G) = ∆(G) + 1− δ(G) holds is such that µn−1(G) = υ(G) = δ(G) and

µ1(G) = ∆(G) + 1 (notice that δ(G) ≥ υ(G) ≥ µn−1(G) = δ(G)
∆(G)+1

µ1(G) ≥
δ(G)) and then ∆(G) = n − 1. Therefore, according to Theorem 2.1, this
graph is isomorphic to the graph G = G1 ∨ G2, where G1 is a discon-
nected graph on n − δ(G) vertices and G2 is a graph on δ(G) vertices, with
µn−1(G2) ≥ 2δ(G)− n.

Concerning connected regular graphs, in [6] the following lower bound
was obtained.

Theorem 2.5. [6] Let G be a connected k-regular graph with n ≥ 3 vertices.

Then sL(G) ≥ 2
√

k(n−k−1)
n

.

Before we proceed to the next section, it is worth recalling the following
lemma proved in [7].

Lemma 2.6. [7] Let X and Y be vertex disjoint sets of a graph G of order
n such that there is no edge between X and Y . Then

|X||Y |
(n− |X|)(n− |Y |)

≤
(
µ1(G)− µn−1(G)

µ1(G) + µn−1(G)

)2

.
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3. Lower bounds obtained by interlacing and relations with the
bandwidth

In what follows, based on Lemma 2.6, a few lower bounds on the Laplacian
spread of a graph are obtained.

Theorem 3.1. Let G be a graph of order n, maximum degree ∆ and diame-
ter d. If X and Y are disjoint vertex sets such that there is no edge between
X and Y , then

sL(G) ≥
(

∆ + 1 +
4

nd

)√
|X| |Y |

(n− |X|) (n− |Y |)
.

Proof. From Lemma 2.6, it follows that

µ1(G)− µn−1(G)

µ1(G) + µn−1(G)
≥

√
|X||Y |

(n− |X|)(n− |Y |)
m

sL(G) ≥ (µ1(G) + µn−1(G))

√
|X||Y |

(n− |X|)(n− |Y |)
. (4)

Since µ1(G) ≥ ∆ + 1 and taking into account the inequality µn−1(G) ≥ 4
nd

obtained in [14], the result follows.
By noticing that in G each vertex in X is connected to each vertex in Y ,

we obtain the following corollary.

Corollary 3.2. Let X and Y be disjoint sets of vertices of a graph G, such
that each vertex in X is connected to each one in Y . Then

sL(G) ≥ (n− δ(G))

√
|X| |Y |

(n− |X|) (n− |Y |)
.

Proof. Since µj(G) = n − µn−j(G) for 1 ≤ j ≤ n − 1, sL(G) = sL(G).
Moreover, applying inequality (4) to G it follows that

sL(G) ≥ (µ1(G) + µn−1(G))

√
|X||Y |

(n− |X|)(n− |Y |)

= (n− µn−1(G) + n− µ1(G))

√
|X||Y |

(n− |X|)(n− |Y |)
.
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Therefore, taking into account that µn−1(G) ≤ δ(G) and µ1(G) ≤ n, the
result follows.

As an application of the previous results, some relations between the
Laplacian spread and the bandwidth of a graph are obtained.

Theorem 3.3. Let ω = ω(G) be the bandwidth of a graph G of order n,
maximum degree ∆ and diameter d, then

sL(G) ≥



(
∆ + 1 + 4

nd

)
(n− ω)

n+ ω
, if n− ω is even;

(
∆ + 1 + 4

nd

)
(n− ω − 1)

n+ ω + 1
, if n− ω is odd.

Proof. If n− ω is even, then none of the first n−ω
2

vertices are linked by an
edge to the last n−ω

2
vertices. Applying Theorem 3.1, with |X| = |Y | = n−ω

2
,

we get (
∆ + 1 + 4

nd

)
n−ω

2
n+ω

2

≤ sL(G)

and the first inequality holds. On the other hand, if n− ω is odd, then none
of the first n−ω−1

2
vertices are linked by an edge to the last n−ω−1

2
vertices.

Applying Theorem 3.1, with |X| = |Y | = n−ω−1
2

, we get(
∆ + 1 + 4

nd

)
n−ω−1

2
n+ω+1

2

≤ sL(G),

and the second inequality holds.
When n− ω is odd, the lower bound of Theorem 3.3 can be improved by

applying Theorem 3.1 with |X| = n−ω+1
2

and |Y | = n−ω−1
2

. Thus, we have

sL(G) ≥
(

∆ + 1 +
4

nd

)√
(n− ω)2 − 1

(n+ ω)2 − 1
.

Regarding G it is immediate to obtain the following corollary.

Corollary 3.4. Let G be a graph with minimum degree δ and such that ω =
ω(G) is the bandwidth of the graph G. Then

sL(G) ≥


(n− δ) (n− ω)

n+ ω
, if n− ω is even;

(n− δ) (n− ω − 1)

n+ ω + 1
, if n− ω is odd.
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4. Lower bounds obtained by rank one perturbations and relations
with the independence number and vertex connectivity

The next theorem, due to Brauer [3], relates the eigenvalues of an arbi-
trary matrix with the eigenvalues of a matrix resulting from it after a rank
one additive perturbation.

Theorem 4.1. [3] Let M be an arbitrary n × n matrix with eigenvalues
β1, β2, . . . , βn. Let uk be an eigenvector of M associated with the eigenvalue
βk, and let q be an arbitrary n-dimensional vector. Then the matrixM+ukq

t

has eigenvalues β1, . . . , βk−1, βk + utkq, βk+1, . . . , βn.

Using Theorem 4.1 and the inequality (1) we obtain the following results:

Theorem 4.2. Let G be a graph of order n ≥ 3 with at least one edge, such
that δ = δ(G) and ∆ = ∆(G). Then

sL (G) ≥

√
(∆− δ)2 + 2(∆ + δ)−

(
2

∆ + 1

n

)2(
δ − 1

∆ + 1
n+ 1

)
. (5)

In particular, if G is k-regular, then

sL (G) ≥

√
4k −

(
2
k + 1

n

)2(
k − 1

k + 1
n+ 1

)
. (6)

Proof. Recall that (0, e) is an eigenpair of L (G). By Theorem 4.1 it should
be noted that for any scalar α such that µn−1 ≤ α ≤ µ1, setting ξ = α

n
,

sL (G) = s (Mξ) , where Mξ = L(G)+ξeet. From the definition of Mξ = (mij)
it follows that

mij =


−1 + ξ, if vivj ∈ E(G);
ξ, if vivj /∈ E(G);

di + ξ, if i = j.
(7)

By using the inequality (1), we obtain

s (Mξ) ≥ max
i<j

{√
(di − dj)2 + 4 (n− 1) ξ2 + 2 (1− 2ξ) (di + dj)

}
. (8)
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Thus, considering ξ = α
n
, with µn−1(G) ≤ α ≤ µ1(G)

sL (G) = s
(
Mα

n

)
≥ max

i<j

{√
(di − dj)2 + 4(n− 1)

α2

n2
+ 2(1− 2

α

n
)(di + dj)

}
. (9)

Now, let us define the function

fij : [0, n] → R

α 7→ fij(α) = 4(n− 1)
α2

n2
+ 2(1− 2

n
α)(di + dj). (10)

Then the inequality (9) can be written as

sL (G) ≥ max
i<j

√
(di − dj)2 + fij(α).

Since the second derivative of fij(α) is positive, this function is convex
and thus, considering a closed interval I ⊂ [0, n] its maximum in I is
attained in one its extremes. If we consider I = [δ,∆ + 1] (notice that
I ⊆ [µn−1(G), µ1(G)]), it is immediate that fij(∆ + 1) ≥ fij(δ). Then

sL (G)2 ≥ max
i<j
{(di − dj)2 + fij(∆ + 1)}

≥ (∆− δ)2 + (n− 1)

(
2

∆ + 1

n

)2

+ 2(1− 2

n
(∆ + 1))(∆ + δ)

= (∆− δ)2 + 2(∆ + δ)−
(

2
∆ + 1

n

)2(
1 +

δ − 1

∆ + 1
n

)
.

Remark 4.3. When G is a graph of order n > 1 with at least one edge, such
that δ = δ(G) and ∆ = ∆(G), we may conclude the following inequalities.

(i) If ∆ ≤ 3
4
n− 1, then√

(∆− δ)2 + 2(∆ + δ)−
(

2
∆ + 1

n

)2(
δ − 1

∆ + 1
n+ 1

)
> ∆− δ + 1.

8



(ii) If G is k-regular, then√
4k −

(
2
k + 1

n

)2(
k − 1

k + 1
n+ 1

)
≥ 2

√
k(n− k − 1)

n
.

Therefore, the lower bound (5) for arbitrary graphs G of order n ≥ 3 is better
than the one obtained in [16] (see Theorem 2.3) when ∆(G) + 1 ≤ 3

4
n, and

the lower bound (6) obtained for k-regular graphs of order n ≥ 3 is better
than the one obtained in [6] (see Theorem 2.5).

Proof. The above inequalities can be proven as follows.

(i) Taking into account that ∆ ≤ 3
4
n− 1,(

2
∆ + 1

n

)2(
δ − 1

∆ + 1
n+ 1

)
= 4

∆ + 1

n

(
δ − 1 +

∆ + 1

n

)
< 4δ − 4

(
1− ∆ + 1

n

)
≤ 4δ − 1.

Therefore, (∆ − δ)2 + 2(∆ + δ) −
(
2∆+1

n

)2 ( δ−1
∆+1

n+ 1
)
> (∆ − δ)2 +

2(∆ + δ)− 4δ + 1 = (∆− δ)2 + 2(∆− δ) + 1 = ((∆− δ) + 1)2 .

(ii) Since k − (1− k+1
n

) ≤ k ⇔ k+1
n

(
k − (1− k+1

n
)
)
≤ k+1

n
k, we have(

k + 1

n

)2(
k − 1

k + 1
n+ 1

)
≤ k + 1

n
k

m

k −
(
k + 1

n

)2(
k − 1

k + 1
n+ 1

)
≥ k − k + 1

n
k,

and (4.3) follows.

By combining the techniques used in the proofs of Theorems 3.1, 3.3 and
4.2, we obtain the following lower bound for sL(G).

9



Theorem 4.4. Let G be an (n,m)-graph with at least one edge and vertex
connectivity υ = υ(G). Assume that T = {v1, v2, . . . , vα} is a maximal inde-
pendent set of G and the subgraph of G induced by the vertex subset V (G)�T
has m′ edges. Then

sL (G) ≥
∣∣∣∣n (m−m′)
α (n− α)

− υ
∣∣∣∣ .

The equality holds for G = Sn, the star of order n.

Proof. Denoting by �α×α the all zero square matrix of order α, the adja-
cency matrix of G is

A (G) =

(
�α×α A12

A21 A22

)
,

where A22 is the adjacency matrix of the subgraph induced by the vertex
subset V (G) \T . Let us denote by Ip and Jp×q the identity matrix of order p
and the all one p× q matrix, respectively. Considering the perturbed matrix
Mξ (G) = L(G) + ξeet = L (G) + ξJn×n, with ξ = υ

n
, it is immediate that

sL (G) = s (Mξ (G)). Notice that

Mξ (G) =

(
Dα + ξJα×α −A12 + ξJα×(n−α)

−A21 + ξJ(n−α)×α D(n−α) − A22 + ξJ(n−α)×(n−α)

)
,

where D =

(
Dα �α×(n−α)

�(n−α)×α Dn−α

)
is the diagonal matrix of the vertex de-

grees of G. Then, the quotient matrix of Mξ (G) is

B =

m− ḿ
α

+ αξ (n− α) ξ − m−m′

α

αξ − m−m′

n− α
(n− α) ξ +

m−m′

n− α

 .

From nξ ∈ σ (B) we conclude that s (B) =
∣∣∣nξ − n(m−m′)

α(n−α)

∣∣∣ =
∣∣∣n(m−m′)
α(n−α)

− υ
∣∣∣.

Therefore, since by the Interlacing Theorem s (B) ≤ s (Mξ (G)), the result
follows. The second part is immediate, taking into account the Laplacian
spectrum of a star.

Considering a maximum independent set T of the graph G in the hypoth-
esis of Theorem 4.4, we may conclude that

sL (G) ≥ n (m−m′)
α(G) (n− α(G))

− υ(G). (11)
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In fact, since m− α(G)∆(G) ≤ m′ ≤ m− α(G)δ(G), it follows that

n

n− α(G)
δ(G) ≤ n(m−m′)

α(G)(n− α(G))
≤ n

n− α(G)
∆(G),

and therefore 0 ≤ n
n−α(G)

δ(G) − υ(G) ≤ n(m−m′)
α(G)(n−α(G))

− υ(G). Furthermore,

from the inequality (11), we also have

sL (G) ≥ n

n− α(G)
δ(G)− υ(G) (12)

and, as immediate consequence, α(G) ≤ n sL(G)
sL(G)+δ(G)

. Notice that this upper
bound on the independence number is attained when G is a star.
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