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Abstract: We present an analytic and numerical analysis of several proper-
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1 Introduction

This work is concerned with the analysis of composite material properties
within certain 2D structures. Here, the theory of analytical and harmonic
functions plays a fundamental role in the mathematical understanding of
the problems. In particular, in most cases, by using such theories, it is al-
ready possible to describe in explicit form some characteristics of those 2D
structures for different configurations (see [1, 2, 3, 4, 5], etc.). Typically, the
obtained formulas depend on several basic parameters of the models. One of
the most significant advantages of such approach is that it allows a natural
analysis of the behavior of the models when the parameters change. In ad-
dition, in agreement with homogenization theory (cf. [6]), fibrous composite
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materials with a large number of cylindrical parallel inclusions can be geo-
metrically represented as a 2D doubly periodic model with disjoint inclusions.
Moreover, their properties can be studied on the basis of one representative
cell which contains all material features.

From the mathematical point of view, a 2D model with disjoint inclusions
is just a multiply connected domain. From the physical perspective, the
fields in the composite components (the matrix and inclusions) are supposed
to be potentials. This means that they satisfy the Laplace equation in each
inner point of the considered domain. In addition, it is well-known that for
determining the properties of composite bodies the interfaces between solids
play a significant role. This is considered in the form of boundary conditions
to be defined upon the mechanical assumptions. In the existing literature,
the most usual interfaces are treated as ideal contact interface, or as soft
imperfect interface (see [1, 2, 3, 4, 5, 7, 8, 9, 10, 11], and the references
therein).

In the case of stiff imperfect interfaces, some properties of composites
with randomly distributed components were studied by means of asymptotic
and numeric procedures by several authors (cf. [6, 12, 13, 14], etc.). An ac-
curate asymptotic technique to the investigation of an elastic field near the
tip of the interface crack lying at soft and stiff imperfect interfaces is ap-
plied in [15]. An asymptotic analysis and also FEM-evaluation of imperfect
transmission conditions has been performed for a modelling problem of an
elastic structure with a thin intermediate interface by [16]. Classification of
imperfect soft and stiff interfaces in two-dimensional elasticity was done in
[14]. There, it was shown that, depending on the stiffness of a thin curved
isotropic layer with respect to the neighboring media, there exist four dis-
tinct regimes of stiff imperfect interface conditions. The effective behavior of
piezoelectric and piezomagnetic circular fibrous composites with stiff imper-
fect interfaces under longitudinal shear with in-plane electromagnetic fields
was recently studied in [17], generalizing the classic work of Rayleigh in a
periodic conductive perfect composite.

In this paper, a steady-state heat conduction problem in 2D unbounded
doubly periodic composite materials with stiff imperfect interface conditions
is considered. By introducing complex potentials, the corresponding bound-
ary value problem for the Laplace equation is transformed into a special R-
linear boundary value problem for doubly periodic analytic functions. The
method of functional equations is used for obtaining an analytic solution. It
allows to compute the average property and reconstruct the temperature and
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the flux at an arbitrary point of such composite model.

2 Formulation of the problem

We now turn to the precise formulation of the problem under study. We
consider a lattice defined by the two fundamental translation vectors “1”
and “ı” (where ı2 = −1) in the complex plane C ∼= R

2 (with the standard
notation z = x + ıy). The representative cell is the unit square

Q(0,0) :=

{
z = t1 + ıt2 ∈ C : −

1

2
< tp <

1

2
, p = 1, 2

}
.

Let E :=
⋃

m1,m2

{m1 + ım2} be the set of the lattice points, where m1, m2 ∈ Z.

The cells corresponding to the points of the lattice E will be denoted by

Q(m1,m2) = Q(0,0) +m1 + ım2 :=
{
z ∈ C : z −m1 − ım2 ∈ Q(0,0)

}
.

It is considered the situation when mutually disjoint disks (inclusions) of
different radii Dk := {z ∈ C : |z − ak| < rk} with the boundaries ∂Dk :=
{z ∈ C : |z− ak| = rk} (k = 1, 2, . . . , N) are located inside the cell Q(0,0) and
periodically repeated in all cells Q(m1,m2). Let us denote by

D0 := Q(0,0) \

(
N⋃

k=1

Dk ∪ ∂Dk

)

the connected domain obtained by removing of the inclusions from the cell
Q(0,0).

Let us consider the problem of determination of the effective conductivity
of an unbounded doubly periodic composite material with matrix

Dmatrix =
⋃

m1,m2

((D0 ∪ ∂Q(0,0)) +m1 + ım2)

and inclusions

Dinc =
⋃

m1,m2

N⋃

k=1

(Dk +m1 + ım2)
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occupied by materials of conductivities λm > 0 and λk > 0, respectively.
This problem is equivalent to the determination of the potential of the cor-
responding fields, i.e., a function T satisfying the Laplace equation in each
component of the composite material,

∆T (z) = 0, z ∈ Dmatrix ∪Dinc, (2.1)

which have to satisfy the following boundary conditions on all ∂Dk, k =
1, 2, . . . , N :

Tm(t) = Tk(t), (2.2)

λm
∂Tm
∂n

(t) − λk
∂Tk
∂n

(t) = γ
∂2Tk
∂s2

(t), t ∈
⋃

m1,m2

∂Dk, (2.3)

where γ < 0 is a given parameter, the vector n = (n1, n2) is the outward unit
normal vector to ∂Dk,

∂

∂n
= n1

∂

∂x
+ n2

∂

∂y
(2.4)

is the normal derivative, while

∂

∂s
= −n2

∂

∂x
+ n1

∂

∂y
(2.5)

is the tangent derivative, and

Tm(t) := lim
z→t,z∈D0

T (z), Tk(t) := lim
z→t,z∈Dk

T (z).

The conditions (2.2)–(2.3) form the so-called stiff imperfect contact condi-
tions.

In addition, we assume that the heat flux is periodic on y. Thus,

λm
∂Tm
∂y

(
x,

1

2

)
= λm

∂Tm
∂y

(
x,−

1

2

)
= −A sin θ + q1(x), (2.6)

where A is the intensity of an external flux. The heat flux is also periodic on
x, and, consequently,

λm
∂Tm
∂x

(
−

1

2
, y
)

= λm
∂Tm
∂x

(1

2
, y
)

= −A cos θ + q2(y). (2.7)
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To complement the average flux conditions at infinity, the latter immediately
proves that the equalities

1/2∫

−1/2

qj(ξ)dξ = 0 (2.8)

are valid for the unknown functions qj (j = 1, 2). As a result of (2.6) and
(2.7), the heat flux has a zero mean value along the boundary of the cell

∫

∂ Q(m1,m2)

∂Tm(s)

∂n
ds = 0,

∫

∂Dk+m1+ım2

∂Tm(s)

∂n
ds = 0. (2.9)

The condition (2.9) is a consequence of the fact that no source (sink) exists
in the cells.

3 Solvability result and effective properties

We introduce complex potentials ϕ(z) and ϕk(z) which are analytic in D0 and
Dk, and continuously differentiable in the closures of D0 and Dk, respectively,
by using the following relations

T (z) =





Re (ϕ(z) +Bz), z ∈ Dmatrix,

2λm

λm+λk
Reϕk(z), z ∈ Dinc,

(3.1)

where B is an unknown constant belonging to C. Besides, we assume that
the real part of ϕ is doubly periodic in D0, i.e.,

Reϕ(z + 1) − Reϕ(z) = 0, Reϕ(z + ı) − Reϕ(z) = 0.

Note that in general the imaginary part of ϕ is not doubly periodic in D0.
It is shown in [4] that ϕ is a single-valued function in Dmatrix. The

harmonic conjugate to T is a function v which has the following form:

v(z) =





Im (ϕ(z) +Bz), z ∈ Dmatrix,

2λm

λm+λk
Imϕk(z), z ∈ Dinc,

(3.2)

with the same unknown constant B.
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For the determination of the flux ∇u(x, y), we introduce the derivatives
of the complex potentials:

ψ(z) := ∂ϕ
∂z

= ∂Tm

∂x
− ı∂Tm

∂y
− B, z ∈ D0,

ψk(z) := ∂ϕk

∂z
= λm+λk

2λm

(
∂Tk

∂x
− ı∂Tk

∂y

)
, z ∈ Dk.

(3.3)

According to (2.4) and (3.3), the boundary value of the normal derivative
can be written in the form

∂Tk(t)

∂n
= Re

(
(n1 + ın2)

(
∂Tk
∂x

− ı
∂Tk
∂y

))

=
2λm

rk(λm + λi)
Re [(t− ak)(ϕk)

′(t)], (3.4)

where the normal vector n to the disk |t − ak| = rk is written as n = t−ak
rk

.

Using (2.5) and (3.3), the boundary value of the tangent derivative can be
found as

∂Tk(t)

∂s
= Im

(
−(n1 + ın2)

(
∂Tk
∂x

− ı
∂Tk
∂y

))

= −
2λm

rk(λm + λi)
Im [(t− ak)(ϕk)

′(t)]. (3.5)

Applying the Cauchy-Riemann equations

∂Tm
∂n

=
∂vm
∂s

,
∂Tk
∂n

=
∂vk
∂s

, (3.6)

the equality (2.3) can be written as

λm
∂vm
∂s

(t) − λk
∂vk
∂s

(t) = γ
∂2Tk
∂s2

, |t− ak| = rk. (3.7)

Integrating the last equality on s, we arrive at the relation

λmvm(t) − λkvk(t) = γ
∂Tk
∂s

+ c, (3.8)

where c is an arbitrary constant. We put c = 0 since the imaginary part
of the function ϕ is determined up to an additive constant which does not
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impact on the form of T . Using (3.2) and (3.5), we have

Imϕ(t) = −ImBt+
2λk

λm + λk
Imϕk(t) −

2γ

rk(λm + λk)
Im [(t− ak)(ϕk)

′(t)].

(3.9)
Using (3.1), we are able to write the equality (2.2) in the following form:

Reϕ(t) = −ReBt+
2λm

λm + λm
Reϕk. (3.10)

Adding the relation (3.10) and (3.9) multiplied by ı, and using Reϕk = ϕk+ϕk

2
,

Imϕk = ϕk−ϕk

2ı
, t − ak =

r2
k

t−ak
, we rewrite the conditions (2.2) and (2.3) in

terms of the complex potentials ϕ(z) and ϕk(z):

ϕ(t) = ϕk(t)−ρkϕk(t)+µk(t−ak)(ϕk)
′(t)−µk

r2k
t− ak

(ϕk)′(t)−Bt, |t−ak| = rk,

(3.11)
where ρk = λk−λm

λm+λk
and

µk = −
γ

rk(λm + λk)
. (3.12)

Representing the function ϕ in the form ϕ(z) =
∞∑
l=0

αk(z−ak)l, |z−ak| ≤ rk,

and by using the relation t =
r2
k

t−ak
+ ak on the boundary |t − ak| = rk, one

can get

[ϕ(t)]′ = −

(
rk

t− ak

)2

ϕ′(t), [ϕ′(t)]′ = −

(
rk

t− ak

)2

ψ′(t), |t− ak| = rk.

(3.13)
Thus, after differentiating (3.11), we arrive at the following R-linear boundary
value problem on each contour |t− ak| = rk, k = 1, 2, . . . , N ,

ψ(t) = (1 + µk)ψk(t) + (ρk + µk)

(
rk

t− ak

)2

ψk(t) + µk(t− ak)ψ′
k(t)

+µk
r4k

(t− ak)3
ψ′
k(t) − B (3.14)

with the unknown constant B.
In order to find the functions ψ and ψk inside the matrix and inclusions,

respectively, we need results from [5].
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Let the functions ϕ̃(1) and ϕ̃
(1)
k be solutions of an auxiliary problem (2.1)-

(2.3) with a constant jump corresponding to the external field applied in the
x-direction

T (z + 1) = T (z) + 1, T (z + ı) = T (z)

(instead of conditions (2.6), (2.7)) and functions ϕ̃⊥ and ϕ̃⊥
k be solutions of

an auxiliary problem (2.1)-(2.3) with a constant jump corresponding to the
external field applied in the y-direction

T (z + 1) = T (z), T (z + ı) = T (z) − 1

(instead of conditions (2.6), (2.7)). Then the following results hold:

Theorem 3.1 Let Tm = Tm(x, y) and Tk = Tk(x, y) be the solution of the
problem (2.2)-(2.3), (2.6) and (2.7). The temperature distribution can be
found up to an arbitrary constant and is defined in the form (3.1), where

B =
−A cos θ

λm(I + 1)
−

A sin θ

λm(I⊥ − 1)
ı,

ϕ(z) =
−A cos θ

λm(I + 1)
ϕ̃(1)(z) −

A sin θ

λm(I⊥ − 1)
ϕ̃⊥(−ız),

ϕk(z) =
−A cos θ

λm(I + 1)
ϕ̃
(1)
k (z) −

A sin θ

λm(I⊥ − 1)
ϕ̃⊥
k (−ız).

Theorem 3.2 Let Tm = Tm(x, y) and Tk = Tk(x, y) be the solution of the
problem (2.2)-(2.3), (2.6) and (2.7). The temperature flux is defined in the
following form:

∂T (x, y)

∂x
− ı

∂T (x, y)

∂y
=






ψ(z) +B, z = x+ ıy ∈ Dmatrix,

2λm

λm+λk
ψk(z), z = x + ıy ∈ Dinc,

(3.15)

with

B =
−A cos θ

λm(I + 1)
−

A sin θ

λm(I⊥ − 1)
ı,

and

ψ(z) :=
−A cos θ

λm(I + 1)
ψ̃(1)(z) + ı

A sin θ

λm(I⊥ − 1)
ψ̃⊥(−ız), z ∈ Dmatrix,

ψk(z) :=
−A cos θ

λm(I + 1)
ψ̃

(1)
k (z) + ı

A sin θ

λm(I⊥ − 1)
ψ̃⊥
k (−ız), z ∈ Dinc,
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where the functions ψ̃(1), ψ̃⊥, ψ̃
(1)
k and ψ̃⊥

k are derivatives of the functions

ϕ̃(1), ϕ̃⊥, ϕ̃
(1)
k and ϕ̃⊥

k , respectively.

The proofs of these theorems are direct consequences of the results ob-
tained in [5], where an analogous to (3.11), (3.14) problems are analytically
solved using the method of functional equations.

Finding the functions ψ̃(1) and ψ̃
(1)
k , k = 1, . . . , N, is reduced to the

solution of a system of functional equations (cf. [5])

ψ̃k(z) = −
µk

1 + µk

(z − ak)ψ̃′
k(z)

+
1

1 + µk

N∑

m6=k

∞∑

l=0

(ρm + µm)ψ̃lm r
2(l+1)
m El+2(z − am)

+
ρk + µk

1 + µk

∞∑

l=0

ψ̃lk r
2(l+1)
k σl+2(z − ak)

+
1

1 + µk

N∑

m6=k

∞∑

l=1

µmψ̃lm l r
2(l+1)
m El+2(z − am)

+
µk

1 + µk

∞∑

l=1

ψ̃lk l r
2(l+1)
k σl+2(z − ak) +

1

1 + µk

, (3.16)

ψ̃(z) =

N∑

m=1

∞∑

l=0

(ρm + µm)ψ̃lm r
2(l+1)
m El+2(z − am)

+
N∑

m=1

∞∑

l=1

µmψ̃lm l r
2(l+1)
m El+2(z − am). (3.17)

Theorem 3.3 For the parameters µk > 0, k = 1, . . . , N , the equation (3.16)
has a unique solution in H2.

Here, H2(Dk) is the generalized Hardy space spaces of analytic functions on
Dk satisfying the condition

sup
0<r<rk

2π∫

0

|ψk(reıθ + ak)|2 dθ <∞
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and correspondingly endowed with the norm

‖ψk‖
2
H2(Dk)

:= sup
0<r<rk

2π∫

0

|ψk(reıθ + ak)|2 dθ.

The proof of this theorem completely repeats the proof of an analogous the-
orem in [8] for the case of soft imperfect conditions on the boundaries of
components.

Remark 3.4 It directly follows from Theorem 3.3 and (3.12) that the system
(3.16), (3.17) always has a unique solution as since γ < 0 according to the
statement of the problem.

All arguments for the functions ψ̃(1) and ψ̃
(1)
k are valid for the functions

ψ̃⊥ and ψ̃⊥
k .

Now the components of the effective conductivity tensor

Λe =

(
λxe λxye

λxye λye

)
.

can be found from the well-known equation

〈q〉 = −Λe · 〈∇T 〉, (3.18)

where 〈q〉 = (q1, q2) is the average flux, and 〈∇T 〉 = (T1, T2) is the average
temperature gradient with

q1 = λm

∫∫

D0

∂Tm
∂x

dxdy +

N∑

k=1

λk

∫∫

Dk

∂Tk
∂x

dxdy, (3.19)

q2 = λm

∫∫

D0

∂Tm
∂y

dxdy +
N∑

k=1

λk

∫∫

Dk

∂Tk
∂y

dxdy, (3.20)

and

T1 =

∫∫

D0

∂Tm
∂x

dxdy +
N∑

k=1

∫∫

Dk

∂Tk
∂x

dxdy, (3.21)
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T2 =

∫∫

D0

∂Tm
∂y

dxdy +
N∑

k=1

∫∫

Dk

∂Tk
∂y

dxdy. (3.22)

In order to optimize the forthcoming numerical calculations, we transform
the integrals above in a more convenient form, by using the first Green’s
formula, ∫∫

U

(ψ∆ϕ+ ∇ϕ · ∇ψ) dV =

∮

∂U

ψ (∇ϕ · n) dS, (3.23)

with ψ = x or ψ = y and ϕ(x, y) = Tm in D0 (or ϕ(x, y) = Tk in the
respective domain Dk):

∫∫

D0

∂T

∂x
dxdy =

∮

∂D0

x
∂T

∂n
ds =

∮

∂Q(0,0)

x
∂T

∂n
ds−

N∑

k=1

∮

∂Dk

x
∂Tk
∂n

ds, (3.24)

where the curves ∂Q(0,0) and ∂Dk are oriented in the counterclockwise direc-
tion. The first integral can be directly computed with use of (2.6), (2.7) and
(2.8)

∮

∂Q(0,0)

x
∂T

∂n
ds =

1

λm

(∫ 1/2

−1/2

x(−A sin θ)dx−

∫ 1/2

−1/2

x(−A sin θ)dx+

1

2

∫ 1/2

−1/2

(−A cos θ)dy +
1

2

∫ 1/2

−1/2

(−A cos θ)dy
)

= −
A

λm
cos θ.

Repeating the same line of the reasoning with ψ = y and ϕ(x, y) = Tm in
D0 (or ϕ(x, y) = Tk in the respective domain Dk) with first Green’s formula
(3.23), we have ∮

∂Q(0,0)

y
∂T

∂n
ds = −

A

λm
sin θ. (3.25)

Thus using the Green formula (3.23) and (2.3), we have

q1 = λm



∮

∂Q(0,0)

x
∂T

∂n
ds−

N∑

k=1

∮

∂Dk

x
∂Tk
∂n

ds


+

N∑

k=1

λk

∮

∂Dk

x
∂Tk
∂n

ds

= −A cos θ − γ

N∑

k=1

∮

∂Dk

x
∂2Tk
∂s2

ds.
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q2 = −A sin θ − γ
N∑

k=1

∮

∂Dk

y
∂2Tk
∂s2

ds.

According to the same arguments as above, we have

T1 = −
A cos θ

λm
+

N∑

k=1

(
1 −

λk
λm

)∫∫

Dk

∂Tk
∂x

dxdy −
γ

λm

N∑

k=1

∮

∂Dk

x
∂2Tk
∂s2

ds,

T2 = −
A sin θ

λm
+

N∑

k=1

(
1 −

λk
λm

)∫∫

Dk

∂Tk
∂y

dxdy −
γ

λm

N∑

k=1

∮

∂Dk

y
∂2Tk
∂s2

ds.

Combining these values together with use of (3.3) and the mean value theo-
rem for harmonic functions, we have

T1 − ıT2 =
−Ae−ıθ

λm
+ 2

N∑

k=1

λm − λk
λm + λk

∫∫

Dk

ψk(z) dxdy

−
γ

λm

N∑

k=1

∮

∂Dk

(x− ıy)
∂2Tk
∂s2

ds

=
−Ae−ıθ

λm
− 2π

N∑

k=1

ρkr
2
k ψk(ak) −

γ

λm

N∑

k=1

∮

∂Dk

(x− ıy)
∂2Tk
∂s2

ds.

4 Numerical results and discussions

In this section, we present numerical calculations of the material characteris-
tics such as temperature, flux and the effective conductivity using the Maple
14 software.

First, we discuss an accuracy of calculations and choose a non-symmetrical
configuration of non-overlapping inclusions with the centers

a1 = −0.18+0.2ı, a2 = 0.33−0.34ı, a3 = 0.33+0.35ı, a4 = −0.18−0.2ı (4.1)

and the same radius rk = R of value 0.145. In this case some of the inclusions
are situated very close to inclusions of the adjoin cells. For symmetrical con-
figurations of the inclusions or smaller radius, the accuracy is higher. There-
fore, we choose that configuration to check the accuracy of the calculations
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Table 1: Temperature in two points of the model for different numbers of M ,
while other problem parameters are: θ = 0, γ = −0.1, R = 0.145, λm = 1,
λk = 0.01 and the configuration of the inclusions being defined by (4.1).

M T (0) T (a1)
0 0.01027845 −0.19751811
1 0.01005208 −0.19752105
2 0.01003072 −0.19749178
3 0.01003070 −0.19748953
4 0.01003221 −0.19749164
5 0.01003308 −0.19749199
6 0.01003318 −0.19749186
7 0.01003320 −0.19749178

Table 2: The flux components for different numbers of M , while other prob-
lem parameters are: θ = 0, γ = −0.1, R = 0.145, λm = 1, λk = 0.01 and the
configuration of the inclusions being defined by (4.1).

M Q
(m)
x (0) Q

(m)
y (0) Q

(1)
x (a1) Q

(1)
y (a1)

0 1.06384804 0.00074222 0.01247853 0.00001216
1 1.06432063 0.00074695 0.01247441 0.00001194
2 1.06512488 0.00075325 0.01247367 0.00001206
3 1.06515122 0.00075132 0.01247388 0.00001206
4 1.06517143 0.00075267 0.01247383 0.00001205
5 1.06516444 0.00075249 0.01247381 0.00001205
6 1.06516139 0.00075247 0.01247381 0.00001205
7 1.06516090 0.00075247 0.01247381 0.00001205

in the worst situation. We suppose that a heat flux of fixed intensity A = −1
flows in different directions with respect to the main axis depending on the
angle θ. The conductivity of the matrix is λm = 1, and the conductivity
of the inclusions λk take different values. Values of the parameter γ will be
chosen in accordance with Remark 3.4.

Second, we calculate the temperature and flux components in the matrix
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point z = 0 when the flux components in any point of the matrix can be
found as (cf. (3.15))

Q(m)
x (z) = λm · Re (ψ(z) +B), Q(m)

y (z) = −λm · Im (ψ(z) +B),

and in the center ak of the k-inclusion

Q(k)
x (ak) ≡ λk

∂Tk(ak)

∂x
=

2λkλm
λm + λk

· Reψk(ak),

Q(k)
y (ak) ≡ λk

∂Tk(ak)

∂y
= −

2λkλm
λm + λk

· Imψk(ak).

A solution ψ and ψk is found in terms of the Taylor series (cf. [5]).
Computations are given for the first eight consecutive values of the num-

ber M (M = 0, 1, ..., 7) showing how many terms are selected for computa-
tions in the Taylor series. The results are presented in the Table 1-2.

Computations show that taking M = 7 the accuracy is between five or
six valid units depending on where the flux is computed.

Note that for the same configuration and parameters we get the same
accuracy in case of soft imperfect contact conditions on the boundaries of
material components (see [5]).

We represent the temperature distribution T (x, y) in Figs. 1–4 for fixed
parameters λm = 1, R = 0.145 and different θ = 0; π

4
, λk = 100; 0.01,

γ = −0.1;−100.

Table 3: The components of the effective conductivity tensor Λe for the
configuration of the inclusions given in (4.1) for the material constants λm =
1, λk = 100, γk = −0.1, M = 7.

R λxe λxye λyxe λye
0.01 1.002243 3.3 · 10−10 3.3 · 10−10 1.002245
0.05 1.061632 2.4 · 10−7 2.4 · 10−7 1.063012
0.11 1.328690 8.0 · 10−6 8.0 · 10−6 1.371994
0.135 1.530238 2.5 · 10−5 2.7 · 10−5 1.658053
0.145 1.633773 4.2 · 10−5 4.7 · 10−5 1.837122

We also show the flux distribution inside the cell Q(0,0) for different γ,
angles and conductivities of inclusions in Figs. 5–8.
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Table 4: The components of the effective conductivity tensor Λe for the
configuration of the inclusions given in (4.1) for the material constants λm =
1, λk = 100, γk = −100, M = 7.

R λxe λxye λyxe λye
0.01 1.000025 3.7 · 10−12 3.7 · 10−12 1.000025
0.05 1.003023 1.2 · 10−8 1.2 · 10−8 1.003092
0.11 1.033231 6.7 · 10−7 8.3 · 10−7 1.037712
0.135 1.064321 1.6 · 10−6 3.4 · 10−6 1.080272
0.145 1.081874 1.9 · 10−6 6.3 · 10−6 1.109053

Table 5: The components of the effective conductivity tensor Λe for the
configuration of the inclusions given in (4.1) for the material constants λm =
1, λk = 0.01, γk = −0.1, M = 7.

R λxe λxye λyxe λye
0.01 0.999774 −2.8 · 10−11 −2.8 · 10−11 0.999774
0.05 0.979191 4.4 · 10−8 −2.7 · 10−8 0.979036
0.11 0.843782 −1.1 · 10−5 1.2 · 10−7 0.844471
0.135 0.746494 −2.4 · 10−4 9.6 · 10−7 0.751962
0.145 0.701535 −5.5 · 10−4 1.6 · 10−6 0.710591

Table 6: The components of the effective conductivity tensor Λe for the
configuration of the inclusions given in (4.1) for the material constants λm =
1, λk = 0.01, γk = −100, M = 7.

R λxe λxye λyxe λye
0.01 0.9999998 −3.8 · 10−14 −3.8 · 10−14 0.9999998
0.05 0.999968 −1.2 · 10−10 −1.3 · 10−10 0.999968
0.11 0.999631 −7.2 · 10−9 −9.6 · 10−9 0.999581
0.135 0.999270 −1.6 · 10−8 −3.9 · 10−8 0.999089
0.145 0.999063 −1.4 · 10−8 −7.2 · 10−8 0.998752
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Figure 1: The temperature distribution inside Q(0,0) for λk = 100, γ = −0.1,
θ = 0; π/4.

,

Figure 2: The temperature distribution inside Q(0,0) for λk = 100, γ = −100,
θ = 0; π/4.
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Figure 3: The temperature distribution inside Q(0,0) for λk = 0.01, γ = −0.1,
θ = 0; π/4.

,

Figure 4: The temperature distribution inside Q(0,0) for λk = 0.01, γ = −100,
θ = 0; π/4.

One can see that in most cases for fixed λm = 1 the flux in the matrix is
more intensive in comparison with the flux in the inclusions except the cases
when values of inclusion conductivities are much more then absolute values
of the parameter γ as it occurs for λk = 100 and γ = −0.1.
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Figure 5: The flux distribution inside Q(0,0) for λk = 100, γ = −0.1, θ =
0; π/4.

The values of all components of the tensor Λe as a function on the radius
R are presented in Tables 3-6 for different parameters λk and γ. The cal-
culations were performed with the found accuracy between five or six valid
units.
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Figure 6: The flux distribution inside Q(0,0) for λk = 100, γ = −100, θ =
0; π/4.
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