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Abstract In this paper, we study control by interconnection of a given linear dif-
ferential system (the plant behavior) with a suitable controller. The problem for-
mulations and their solutions are completely representation free, and specified only
in terms of the system dynamics. A controller is a system that constrains the plant
behavior through a certain set of variables. In this context, there are two main situ-
ations to be considered: either all the system variables are available for control, i.e.,
are control variables (full control) or only some of the variables are control vari-
ables (partial control). For systems evolving over a time domain (1D) the problems
of implementability by partial (regular) interconnection are well-understood. In this
paper we study why similar results are not valid in the multidimensional (nD) case.
Finally, we study two important classes of controllers, namely, canonical controllers
and regular controllers.

1 Introduction

It is a pleasure to contribute an article in honor of Harry L. Trentelman on the occa-
sion of his 60-th birthday. The first author had the privilege of being one of his PhD
students and of developing a fruitful research collaboration with him over the last
decade. Although she never directly collaborated with Harry, the second author has
always appreciated his work, by which she was inspired in several occasions.
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As the topic of our article, we have chosen an issue which is at the core of systems
and control theory, namely control and, in particular, the implementation of systems
in the behavioral framework. This topic goes back to the seminal contribution of J.
C. Willems in [17] where the fundamental ideas of the problem were established.
However, it was Harry who thoroughly investigated this issue and provided many
fundamental results in this area. It is our intention to make this article an appropriate
tribute to his wide ranging scientific interests and to the influence that his work had
in the field of behavioral approach to systems and control theory. For this purpose,
we have gathered in this paper our results that are more connected with Harry’s own
research, together with some new results and insights. In order to keep the paper
self-contained and to give a better idea of the kind of reasoning involved, we have
included the proofs of most of those results.

A behavior, denoted by B, is a set of trajectories that obey certain laws described
by a mathematical model. In this context, control is viewed as the ability to impose
adequate additional restrictions to the variables of the behavior in order to obtain a
desired overall functioning pattern. Hence, the behavioral approach proposes a new
perspective to control which is based on interconnection of systems, and where no
a priori input/output partition is considered [17]. The act of controlling a system
is simply viewed as intersecting its behavior with a controller behavior in order to
achieve a desired behavior. Thus, a general control (implementation) problem can
be stated as follows: Given a plant behavior B and a control objective correspond-
ing to a desired behavior that we want to implement K, find a controller behavior
Bc, within a certain controller class, such that the behavior resulting from the inter-
connection of B and Bc, B∩Bc, coincides with K.

Most of the literature on behavioral control is concerned with the situation in
which all variables of B are available for control, i.e., it is allowed to impose extra
restrictions on all the variables of B. We refer to this situation as full control or full
interconnection [10, 11, 17]. Another important case considered in the literature is
when the system variables are divided into two sets: the variables that we are inter-
ested to control (called to-be-controlled variables) and the variables on which we
are allowed to enforce restrictions (called control variables). This situation is known
as partial control or partial interconnection [1, 4, 12, 15, 18]. In this more involved
situation, although we can not act directly upon the to-be-controlled variables, we
can nevertheless influence their dynamics by imposing restrictions on the control
variables.

Of particular interest is the kind of interconnection that is called regular inter-
connection. In such interconnection, the restrictions imposed on the plant by the
controller are independent of the restrictions already present in the plant. These
type of interconnections are closely related to the notion of feedback control in the
classical state-space systems since only system inputs are restricted, as in a feedback
loop [14, 17].

The first results on implementability of full control problems were obtained in
[18, 20] for linear systems evolving over a time domain (1D behaviors) and in [16]
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for a very general class of systems. Later, results for 1D behaviors were general-
ized to regular partial interconnections in [1] (see also [2, 12, 19]). In the context of
multidimensional systems (nD behaviors) full regular interconnections were first in-
vestigated in [14, 24] and results on the partial interconnection counterpart were first
presetned in [13, 15]. The case of nD behaviors constituted by compactly supported
functions was investigated in [8].

The problem of implementability by regular interconnections is well understood
and fully characterized for 1D behaviors in both contexts of full and partial con-
trol, see for instance [1, 10, 11, 18]. In fact, K ⊂ B is implementable by regu-
lar full interconnection if and only if B = Bc +K where Bc is the controllable
part of B. Moreover, in [1] the solvability of a 1D partial control problem was re-
lated to the solvability of a suitable associated full control problem involving only
the to-be-controlled variables and also in terms of the controllable and autonomous
parts of the behavior. The situation in the nD case is somewhat more involved, and
a direct characterization in terms of implementation of the to-be-controlled vari-
ables seems to be impossible. In this paper our aim is to reinvestigate the problem
of implementability by full and partial regular interconnections of nD behaviors.
More concretely, we study the role of the so-called hidden behavior and also of the
controllable-autonomous decomposition.

This paper is organized as follows: we begin by introducing some necessary
background from the field of nD behaviors, centering around concepts such as con-
trollability, autonomy, orthogonal module, etc. We conclude this section with a sub-
section on behaviors with two types of variables. Section 3 is devoted to the study
of the problem of implementation by regular interconnection. We first analyze the
implementation by full control to conclude the paper by treating the more general
case of implementation by partial interconnections.

2 Preliminaries

In order to state more precisely the questions to be considered we introduce in this
section the necessary material and notation on behavioral theory for nD systems.
The last subsection is concerned with the theory of behaviors with two different
types of variables (the to-be-controlled variables and the control variables).

2.1 nD (kernel) behaviors

In the behavioral approach to nD systems, a system or behavior is defined by a triple
(U,q,B), where U is the signal space or trajectory universe, q ∈ Z+ is the number
of components of the system variable vector, and B ⊂ Uq is the behavior. In this
paper, we assume U= (C)Zn

.
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Since the theory of continuous linear time-invariant systems as discussed in [21]
is completely analogous to that of the present paper, the same tools and conclusions
will apply in the continuous case, where U is the space of all infinitely often differ-
entiable functions from Rn to R, or all R-valued distributions on Rn. For the sake of
simplicity we will however focus on the discrete case.

We call B a linear difference nD behavior or simply nD behavior if it is the
solution set of a system of linear, constant-coefficient partial difference equations,
more precisely, if B is the subset of Uq given by:

B= ker R(σ ,σ−1) := {w ∈ Uq | R(σ ,σ−1)w ≡ 0}, (1)

σ = (σ1, . . . ,σn), σ−1 = (σ−1
1 , . . . ,σ−1

n ), the σi’s are the elementary nD shift oper-
ators (defined by σiw(k) = w(k+ ei), for k ∈ Zn, where ei is the ith element of the
canonical basis of Cn) and R(s,s−1) ∈ Rp×q[s,s−1] is an nD Laurent-polynomial
matrix known as representation of B. If no confusion arises, given an nD Laurent-
polynomial matrix A(σ ,σ−1), we sometimes write A instead of A(σ ,σ−1) and
A(s,s−1).

Instead of characterizing B by means of a representation matrix R, it is also
possible to characterize it by means of its orthogonal module Mod(B), which
consists of all the nD Laurent-polynomial rows r(s,s−1) ∈ Cq[s,s−1] such that
B⊂ ker r(σ ,σ−1), and can be shown to coincide with the C[s,s−1]-module RM(R)
generated by the rows of R, i.e., Mod(B) = RM(R(s,s−1)) [21]. Note that this cor-
responds to the set of all (linear constant coefficient difference) equations that are
satisfied by all the elements (trajectories) of B.

It turns out that sums, intersections and inclusions of behaviors can be formulated
in terms of the corresponding modules.

Theorem 1. [24, p.1074] Let B1 and B2 be two behaviors. Then, B1 +B2 and
B1 ∩B2 are also behaviors and

1. Mod(B1 +B2) = Mod(B1)∩Mod(B2).
2. Mod(B1 ∩B2) = Mod(B1)+Mod(B2).
3. B1 ⊂B2 ⇔ Mod(B2)⊂ Mod(B1).

Note that part 3 in Theorem 1 implies that if B1 = ker R1 ⊂B2 = ker R2, then there
exists an L-polynomial matrix S such that R2 = SR1.

For a full column rank L-polynomial matrix R ∈ Rp×q[s,s−1] define its Laurent
variety (or zeros) as

V(R) = {(λ1,λ2) ∈ C2 | rank(R(λ1,λ2))< rank(R), λ1λ2 ̸= 0},

where the first rank is taken over C and the second one over R[s,s−1]. Note that
V(R) is equal to the set of common zeros of the q×q minors of R.

Definition 1. A full column rank L-polynomial matrix R ∈ Rp×q[s,s−1] is said to
be right minor prime (rMP) if V(R) is finite and right zero prime (rZP) if V(R)
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is empty. A full row rank L-polynomial matrix R ∈ Rp×q[s,s−1] is said to be left
minor/zero prime (ℓMP/ℓZP) if RT is right minor/zero prime, respectively. An L-
polynomial matrix L is called a minimal left annihilator (MLA) of R if LR = 0, and
for any other L-polynomial matrix S such that SR = 0 we have that S = AL for some
L-polynomial matrix A. We define minimal right annihilators in a similar way, with
the obvious adaptations.

We next review the notions of controllability and autonomy in the context of the
behavioral approach.

Definition 2. A behavior B⊂ (Rq)Z
n

is said to be controllable if for all z1, z2 ∈B
there exists δ > 0 such that for all subsets U1, U2 ⊂ Zn with d(U1,U2) > δ , there
exists a z ∈B such that z |U1 = z1 |U1 and z |U2 = z2 |U2 .

In the above definition, d(·, ·) denotes the Euclidean metric on Zn and z |U , for some
U ⊂ Zn, denotes the trajectory z restricted to the domain U .

In contrast with the one dimensional case, nD behaviors admit a stronger notion
of controllability called rectifiability (also known in the literature as strong control-
lability). Whereas controllable behaviors are the ones that can be represented by an
MLA of some L-polynomial matrix or in others words Cq[s,s−1]/Mod(B) is tor-
sion free, rectifiable behaviors are the ones that can be represented by ℓZP matrices,
i.e., the R[s,s−1]-module Cq[s,s−1]/Mod(Bc) is free.

On the other hand, we shall say that a behavior is autonomous if it has no free
variables, i.e., no “inputs”. It can be shown that B = ker R is autonomous if and
only if R has full column rank. In the 1D case, all autonomous behaviors are finite
dimensional vector spaces but in the nD case this is no longer true. Whereas for
1D systems initial conditions are given in a finite number of points, nD autonomous
systems are generally infinite dimensional. But even in this case the amount of infor-
mation (initial conditions) necessary to generate the trajectories of an autonomous
nD system may vary. Hence, given an autonomous behavior, a natural question to
ask is how much information is necessary in order to fully determine the system tra-
jectories, i.e., how large is the initial condition set. This question has been analyzed
in [5, 22] by introducing the notion of autonomy degrees for behaviors.

Definition 3. Let B be a non-zero autonomous behavior and R ∈ Rp×q[s,s−1] be
an nD Laurent-polynomial matrix with full column rank such that B = ker R. We
define autodeg(B) = n−dimV(R) to be the autonomy degree of B. The autonomy
degree of the zero behavior is defined to be ∞.

It turns out that the larger the autonomy degree, the smaller is the freedom to
assign initial conditions, see [5].

Every nD behavior B can be decomposed into the sum B = Bc +Ba, where
Bc is the controllable part of B (defined as the largest controllable sub-behavior
of B) and Ba is a (non-unique) autonomous sub-behavior. This sum can be chosen
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to be direct for 1D behaviors, but this is not always possible for multidimensional
behaviors, see [23].

2.2 Behaviors with two types of variables

Since in this paper we are interested in considering different types of variables in a
behavior (the to-be-controlled variables and the control variables), we introduce the
notation B(w,c) for a behavior whose variable z is partitioned into two sub-variables
w and c. Partitioning the corresponding representation matrix as [R M], we can write

B(w,c) = {(w,c) ∈ Uw+c | R(σ ,σ−1)w+M(σ ,σ−1)c = 0}= ker [R M].

In the case one is only interested in analyzing the evolution of one of the sub-
variables, say, w, it is useful to eliminate the other one (c) and consider the projection
of the behavior B(w,c) into Uw, defined as

πw(B(w,c)) = {w | ∃ c such that (w,c) ∈B(w,c)}.

The elimination theorem [9] guarantees that πw(B(w,c)) is also a (kernel) behavior,
for which a representation can be constructed as follows: take a minimal left anni-
hilator (MLA) E of M. Then πw(B(w,c)) = ker (ER), see [9, Cor. 2.38].

On the other hand given a behavior B = ker R ⊂ Uw we define the lifting of B
into Uw+c as

B∗
(w,c) := {(w,c) ∈ Uw+c | c is free and w ∈B}. (2)

Obviously B∗
(w,c) = ker [R 0]. Analogous definitions can be given if the roles of w

and c are interchanged. For the sake of brevity, if no confusion arises, we identify
B and B∗

(w,c) and denote Bw := πw(B(w,c)) and Bc := πc(B(w,c)).

Definition 4. Given a behavior B(w,c) ⊂Uw+c we say that c is observable from w if
(w,c1),(w,c2) ∈B(w,c) implies c1 = c2.

Usually, in control problems involving behaviors with two types of variables it is
important to consider the set of variables that are not observable or hidden from the
remaining set of variables, see [15, 16, 17]. Hence, given a behavior B(w,c) we shall
define

B(0,c) := {c ∈ Uc | (0,c) ∈B(w,c)},

as the behavior of the variables c that are not observable or hidden from w. Clearly,
if B(w,c) = ker [R M] then B(0,c) = ker M. Similarly we define B(w,0) as the set of
w variables that are hidden from the variables c. Taking into account that we are
dealing with linear behaviors, it is not difficult to verify that c is observable from w
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if and only if B(0,c) is the zero behavior. Similarly, w is observable from c if and
only if B(w,0) is the zero behavior.

3 Implementation

The behavioral approach to control rests on the basic idea that to control a system
is to impose appropriate additional restrictions to its variables in order to obtain a
new desired behavior. These additional restrictions are achieved by interconnecting
the given system with another system called the controller. From the mathematical
point of view, system interconnection corresponds to the intersection of the behavior
to be controlled with the controller behavior.

Two situations have been considered in the literature. The first one is known as
full interconnection and corresponds to the case where the controller is allowed to
impose restrictions on all the system variables. The second,called partial intercon-
nection, considers interconnections where one is only allowed to use some of the
system variables for the purpose of interconnection.

3.1 Control by regular full interconnection

The full interconnection of a behavior to be controlled, B ⊂ Uw, with a controller
behavior, C⊂ Uw, yields a controlled behavior given by

K=B∩C, (3)

or alternatively, in module terms, by Mod(K) = Mod(B)+Mod(C). If (3) holds,
we say that K is implementable by full interconnection from B.

A particular interesting type of interconnection corresponds to the case where the
restrictions imposed by the controller do not overlap with the restrictions already
active for the behavior to be controlled. Recalling that the elements of the modules
associated with a behavior represent the corresponding equations (or restrictions),
this means, in terms of the corresponding modules that

Mod(B)∩Mod(C) = {0},

(or, equivalently, that B+C= Uw) and therefore

Mod(K) = Mod(B)⊕Mod(C).

In this case we say that the interconnection of B and C is a regular interconnection
and denote it by B∩reg C. For a 1D behaviors, we know from the work of Willems
[18] that controllability is equivalent to implementation of any sub-behavior by
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means of regular interconnection. Again the situation for nD behaviors is more in-
volved. The following necessary (and not necessarily sufficient) condition for im-
plementation of nD behaviors by regular interconnection has been derived in [14,
Th. 4.5, p. 124].

Theorem 2. Let B and K be two nD behaviors and Bc the controllable part of B.
Then if K is implementable by regular interconnection from B then B=Bc +K.

This result can be intuitively explained by the fact that an autonomous part of a
behavior may be somehow considered as obstructions to the (regular) control of that
behavior, as happens for instance with the non-controllable modes in the context of
pole-placement for classical state-space systems. Using this result it is possible to
show the next useful Lemma.

Lemma 1. [4, Lemma 6] Let B and C be two nD behaviors. If the interconnection
of B and C is regular then so is the interconnection between Bc and C.

Proof. Let B∩ C = K with regular interconnection, i.e., Mod(B)⊕ Mod (C) =
Mod(K). Using Theorem 2 we have that B =Bc +K or equivalently Mod(B) =
Mod(Bc)∩Mod(K) = Mod(Bc)∩ (Mod(B)⊕Mod(C)). Using that Mod(B) ⊂
Mod(Bc) one easily show that Mod(Bc)∩ (Mod(B)⊕Mod(C)) = (Mod(Bc)∩
Mod(C))⊕ Mod(B). Since Mod(B)∩ Mod(C) = {0} we have that Mod(Bc)∩
Mod(C) = {0}.

Lemma 1 shows that the controllable part of a behavior plays an important role
in the context of regular interconnections. Indeed, a controller which does not inter-
connect with Bc in a regular way, can not interconnect with B regularly.

Next we present a more surprising result, proven in [5, Theorem 18], that shows
that the possibility of implementing autonomous sub-behaviors of B by regular
interconnection may also impose conditions in the controllable part of B, depending
on the autonomy degree of such sub-behaviors. We shall include its short proof for
the sake of completeness.

Theorem 3. Let B be a behavior. If K ⊂ B is regularly implementable from B
and has autonomy degree larger than 1 then Bc (the controllable part of B) is
rectifiable.

Proof. In order to prove the result we will make use of the duality between B and
Mod(B). Obviously, B∩reg C = K if and only if Mod(B)⊕Mod(C) = Mod(K).
The assumption that K has autonomy degree ≥ 2 amounts to saying that the height
of the annihilator of Cq[s,s−1]/(Mod(B)⊕Mod(C)) is ≥ 2, see [22, Lemma 4.7,
p. 54]. Equivalently, the annihilator of Cq[s,s−1]/(Mod(B)⊕Mod(C)) contains at
least two coprime elements, see [22, Lemma 3.6].

Further, the interconnection B∩C is regular if and only if Bc ∩Cc is regular,
where Bc and Cc denote the corresponding controllable parts, see [6, Lemma 12].
Obviously Bc ∩Cc ⊂B∩C and therefore autodeg(Bc ∩Cc)≥ autodeg(B∩C).
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Thus we have, by assumption, that the annihilator of Cq[s,s−1]/(Mod(Bc)⊕
Mod(Cc)) contains at least two coprime elements, say d1,d2. Note that since Bc

and Cc are controllable, Cq[s,s−1]/Mod(Bc) and Cq[s,s−1]/Mod(Cc) are torsion
free.

We prove that Bc is rectifiable by showing that Cq[s,s−1]/Mod(Bc) is free as a
R[s,s−1]-module.

Consider an element ξ ∈ Cq[s,s−1]. There are coprime elements d1,d2 with
d1ξ = a1 + b1, d2ξ = a2 + b2 with a1,a2 ∈ Mod(Bc), b1,b2 ∈ Mod(Cc). The el-
ement τ1 = a1

d1
= a2

d2
∈ Cq(s,s−1) has the property d1τ1, d2τ1 ∈ Cq[s,s−1], where

Cq(s,s−1) stands for the field of rational Laurent polynomials. Since d1,d2 are co-
prime, this implies that τ1 ∈ Cq[s,s−1]. Since Cq[s,s−1]/Mod(Bc) has no torsion,
one obtains τ1 ∈ Mod(Bc).

The same argument shows that τ2 =
b1
d1

= b2
d2

belongs to Mod(Cc). Hence ξ = τ1+

τ2 ∈ Mod(Bc)⊕Mod(Cc) and Cq[s,s−1] = Mod(Bc)⊕Mod(Cc). Then Mod(Bc)
and Mod(Cc) are projective modules and therefore free. Finally, since Mod(Cc) ≈
Cq[s,s−1]/Mod(Bc) one obtains that Cq[s,s−1]/Mod(Bc) is free. This concludes
the proof.

One can conclude from Theorem 3 that, in contrast to the 1D case, regular im-
plementability is a very restrictive property in the context of nD behaviors (with
n ≥ 2).

When the controllable part of B is rectifiable, it is possible to further exploit the
simplified form of the rectified behavior in order to derive the following result on
the autonomous-controllable decomposition of B.

Theorem 4. [5, Prop. 4] Let B be a behavior with rectifiable controllable part.
Then, there always exists an autonomous sub-behavior Ba of B such that B =
Bc ⊕Ba.

3.2 Control by regular partial interconnection

In the case of partial interconnection, one starts from a full behavior B(w,c), where
w is the variable to be controlled and c is the control variable. The goal is to find
a control variable behavior C whose interconnection with B(w,c) yields a desired
behavior, K for the variable w. This can be formulated as finding C such that:

K= πw(B(w,c)∩C∗
(w,c)).

For simplicity of notation we shall write Cc or instead of C∗
(w,c); moreover we

shall skip the subscript with the indication of the variable (and write, for instance, C
and B instead of Cc and Bw, respectively) if no confusion arises.
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Also in this context regularity plays an important role. Given two behaviors
B(w,c) ⊂Uw+c and C⊂Uc, we say that the interconnection B(w,c)∩C∗

(w,c) is regular
if

Mod(B(w,c))∩Mod(C∗
(w,c)) = {0},

or equivalently if B(w,c)+C∗
(w,c) = Uw+c. In this case, we denote the interconnec-

tion by B(w,c) ∩reg C
∗
(w,c) or (in simplified notation) by B(w,c) ∩reg C. Obviously,

if C = ker C, Mod(C∗
(w,c)) = RM([0 C]) and when no confusion arises we write

Mod(C∗
(w,c)) = Mod(C).

The following lemma presents some interesting results about partial interconnec-
tions and hidden behaviors that can be found in [7, Lemma 9] or in [15, Corollary
14].

Lemma 2. Let B(w,c) ⊂ Uw+c and C ⊂ Uc be two behaviors. Then, the following
hold true.

1. πw(B(w,c)∩C) = πw(B(w,c)∩ (C+B(0,c))).
2. B(w,c)∩reg C if and only if B(w,c)∩reg (C+B(0,c)).
3. B(w,c)∩reg C if and only if Bc ∩reg C.

Proof. Let B(w,c) = ker[R M] and C = ker C. Note that B(0,c) = ker M ⊂ Uc and
since B(0,c) ⊂ C+B(0,c), then C+B(0,c) = ker KM for some L-polynomial matrix
K.

1. It is enough to show that πw(B(w,c)∩ (C+B(0,c)))⊂ πw(B(w,c)∩C) since the
other inclusion is trivial. Let w ∈ πw(B(w,c) ∩ (C+B(0,c))). Then, by definition of

πw there exists a c such that (w,c) ∈B(w,c)∩ (C+B(0,c)) = ker
[

R M
0 KM

]
. Clearly,

c must satisfy KMc = 0, i.e., c ∈ C+B(0,c) = ker KM and therefore c = c∗+ c∗∗,
where c∗ ∈ C and c∗∗ ∈ B(0,c) = ker M. Hence, as (w,c) ∈ ker [R M], (w,c∗) ∈

ker [R M] which implies that (w,c∗) ∈ ker
[

R M
0 C

]
=B(w,c)∩C, and therefore w ∈

πw(B(w,c)∩C).
2.By Theorem 1, the proof of 3 amounts to showing that

RM([R M])∩RM([0 C]) = {0} if and only if RM([R M])∩RM([0 KM]) = {0}.

As ker C = C ⊂ C+B(0,c) = ker KM, RM(KM) ⊂ RM(C) and the “only if”
part is obvious. For the converse, let (0,0) ̸= (r,m) ∈ RM([R M])∩RM([0 C]).
Clearly r must be zero and then there exists an L-polynomial row s such that
s[R M] = (0,m) ̸= (0,0), which implies sM = m ∈ RM(C)∩RM(M) = RM(KM).
Thus, (0,m) ∈ RM([R M])∩RM([0 KM]).

3. In terms of the corresponding modules we need to show that

RM([R M])∩RM([0 C]) = {0} if and only if RM(LM)∩RM(C) = {0},

where L is an MLA of R. In order to prove the “if” part, let (0,0) ̸= (r,m) ∈
RM([R M])∩RM([0 C]). It is easy to see that r must be zero and therefore there
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exists s ∈ L such that s[R M] = (0,m). Thus, 0 ̸= sM = m ∈ RM(LM)∩RM(C).
To prove the converse implication suppose that 0 ̸= m ∈ RM(LM)∩RM(C). Then,
m = αLM = βC for some L-polynomial rows α and β . This implies that (0,m) =
αL[R M] = β [0 C] and therefore (0,0) ̸= (0,m) ∈ RM([R M])∩RM([0 C]).

A behavior K⊂Uw is trivially implementable from a given behavior B⊂Uw by
full (not necessarily regular) interconnection if and only if K⊂B. This condition is
however not enough in the partial interconnection case. Indeed, it was proven in [1,
15, 16] that K is implementable by partial (not necessarily regular) interconnection
from B(w,c) if and only if

B(w,0) ⊂K⊂Bw = πw(B(w,c)).

For regular partial interconnections the implementation problem was fully ad-
dressed and solved in the 1D context in [1]. In effect, the following necessary and
sufficient conditions for the regular implementation of a behavior K were given:

1. K is implementable by partial interconnection, i.e., B(w,0) ⊂K⊂Bw,
2. K+Bc

w =Bw, where Bc
w stands for the controllable part of Bw .

Note that the second condition is equivalent (in the 1D case) to K being regularly
implementable by full interconnection from Bw. It was shown in [15, 13] that these
two conditions were neither necessary nor sufficient in the nD case. Next we inves-
tigate when similar conditions hold in terms of the associated hidden behaviors. We
say that a behavior is regular if admits a full row rank representation.

Theorem 5. Let K ⊂ Uw and B(w,c) ⊂ Uw+c be given. Assume that K is imple-
mentable by partial interconnection and that the hidden behavior B(w,0) is regular.
If K is regularly implementable by full interconnection (from Bw) then it is regularly
implementable by partial interconnection.

Proof. Let [R̄ M] be such that B(w,c) = ker [R̄ M]. Since B(w,0) = ker R̄ is regu-

lar we can assume without loss of generality that R̄ =

[
R
0

]
with R full row rank

and therefore B(w,c) = ker
[

R M1
0 M2

]
, for a suitable partition of M. Then, Bw =

πw(B(w,c)) = ker XR, where [X Y ] is an MLA of
[

M1
M2

]
. Let C̄ = ker C ⊂ Uw be

the controller that implements K by full interconnection. As K is implementable
by partial interconnection, B(w,0) ⊂ K ⊂ C̄ it follows that there exists a matrix L
such that C = LR. Take C = ker LM1 ⊂ Uc. Next we show that C regularly im-
plements K by partial interconnection. It is easy to check that C implements K.
To show that the interconnection is regular suppose that the row vector m belongs

to RM([0 LM1])∩ RM(

[
R M1
0 M2

]
). This means that there exist row vectors s, and

t = [t1 t2] such that m = s
[
0 LM1

]
= [t1 t2]

[
R M1
0 M2

]
. As R is full row rank t1 = 0.
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This implies that [sL − t2]
[

M1
M2

]
= 0, and hence [sL − t2] = v[X Y ] for some row

vector v. In turn, this implies that sLR = vXR. As, by assumption, the interconnec-
tion of Bw = ker XR and C̄= ker LR is regular, sLR = (vXR =) 0, and, since R has
full row rank, sL = 0. Therefore m = s[0 LM1] = 0, which concludes the proof.

Using part 3 of Lemma 2, and applying the same type of reasoning as in the proof
of Theorem 5, one can derive the following corollary.

Corollary 1. Let K ⊂ Uw and B(w,c) ⊂ Uw+c be given. Assume that K is imple-
mentable by partial interconnection and that the hidden behavior B(0,c) is regular.
If K is regularly implementable by partial interconnection then it is regularly im-
plementable by full interconnection (from Bw).

Remark 1. Note that rectifiable behaviors admit a full row rank representation, i.e.,
are regular, and therefore Theorem 5 and Corollary 1 are still valid if we assume
that B(w,0) and B(0,c) respectively are rectifiable. Moreover, in the 2D case one can
assume controllability instead of rectifiability as controllable behaviors always have
a full row rank representation.

3.3 Controllers

In this section we look at a special behavior that has also been introduced in
[2, 16, 19] under the name of canonical controller. In particular, we study its ef-
fectiveness in solving partial control problems - a question which has also been
considered in [3, 19] for the 1D case - and generalize the corresponding 1D results
to the nD case. We conclude the section by analyzing the performance of regular
controllers in this context. The results of this section (except for Theorem 10) were
first presented in [13] although some can also be found in [15] in a more module-
theoretical framework.

It is immediately apparent that the study of partial control problems requires
additional tools with respect to full control problems. For this reason, it is desir-
able to translate partial control problems into full control ones. In the 1D case, it
is possible to make this translation in terms of full control problems for behaviors
involving only the to-be-controlled variable w. Unfortunately this is no longer true
in the higher dimensional (nD) case. Therefore we shall try to characterize regular
implementation (by partial control) in terms of conditions on the control variable
behavior, rather than by means of conditions on the behavior of the variables to be
controlled. To this end we introduce the notion of canonical controller associated
to a given control problem. For a given control objective K ⊂ Uw, the canonical
controller associate with K is defined as follows:

Ccan(K) := {c | ∃ w such that (w,c) ∈B(w,c) and w ∈K}.
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For simplicity we use Ccan for Ccan(K). Thus, the canonical controller consists of
all the control variable trajectories compatible with the desired behavior for the
variables to be controlled.

We start by relating the implementation of K from B(w,c) (by partial control)
with the implementation of the corresponding canonical controller from Bc. First
we treat the implementation problem and then the regular implementation.

Theorem 6. Given a plant behavior B(w,c) and an implementable control objective
K, the following holds.

1. If the controller C implements Ccan from Bc by full control, then it implements K
from B(w,c).

2. If the controller C̃ implements K from B(w,c), then the controller C̃+B(0,c) im-
plements Ccan from Bc by full control.

Proof. Let Rw = Mc be a representation of B(w,c). Then, Bc = ker NM, where N
be an nD polynomial matrix which is an minimal left annihilator (MLA) of R. To
prove the first statement assume that the controller C= ker K implements Ccan and
apply this controller to the plant. This yields the (w,c)-behavior described by the
equations: {

Rw = Mc
0 = Kc. (4)

We next show that the corresponding w-behavior coincides with K, which clearly
implies that C implements K from B(w,c).

Suppose then that w∗ belongs to the w-behavior induced by equations (4), i.e.,
that there exists c∗ such that the pair (w∗,c∗) satisfies these equations. This implies
that c∗ ∈ Bc ∩C = Ccan and hence, by the definition of the canonical controller,
there exists w̄ ∈K such that (w̄,c) ∈B(w,c). Thus, by linearity, (w∗− w̄,0) ∈B(w,c),
meaning that w∗−w̄∈B(w,0). Since K is by assumption implementable, B(w,0) ⊂K

and w∗− w̄ ∈ K. Consequently also w∗ ∈ K and therefore the w-behavior induced
by equations (4) is contained in K.

Conversely, suppose that w∗ ∈K. Then obviously w∗ ∈Bw and hence there exists
c∗ such that (w∗,c∗) ∈B(w,c), i.e., such that

Rw∗ = Mc∗.

By the definition of the canonical controller, this means that c∗ ∈ Ccan. Since Ccan is
assumed to be implementable by C, Ccan ⊂ C and therefore c∗ ∈ C, i.e.,

Kc∗ = 0.

Thus, the pair (w∗,c∗) satisfies equations (4), which means that w∗ is in the w-
behavior induced by these equations. So, K is contained in that behavior. As men-
tioned before, this shows that C implements K from B(w,c).

As for the second statement assume now that the controller C̃= ker K implements K
from B(w,c). Let c∗ ∈Ccan. This means that there exists w∗ such that (w∗,c∗)∈B(w,c)
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and w∗ ∈ K. This last condition implies that there exists c̄ ∈ C̃ such that (w∗, c̄) ∈
B(w,c). Note that by the linearity of B(w,c), (0,c∗− c̄)∈B(w,c); hence c∗− c̄ ∈B(0,c)

and therefore (taking into account that c̄ ∈ C̃) we have that c∗ ∈ B(0,c)+ C̃. Thus,
Ccan ⊂B(0,c)+ C̃ and, since also Ccan ⊂Bc, Ccan ⊂ (B(0,c)+ C̃)∩Bc.

Conversely, assume that c∗ ∈ (B(0,c)+ C̃)∩Bc. Then, there exist w∗ and c̄ ∈ C̃

such that (w∗,c∗) ∈ B(w,c), c̄ ∈ C̃ and c∗ − c̄ ∈ B(0,c). This implies that (w∗, c̄) ∈
B(w,c) and, since C̃ implements K from B(w,c), w∗ ∈K. Together with the fact that
(w∗,c∗) ∈B(w,c), taking the definition of Ccan into account, this allows to conclude
that c∗ ∈ Ccan. Therefore (B(0,c)+ C̃)∩Bc ⊂ Ccan. This finally proves that Ccan =

(B(0,c)+ C̃)∩Bc, which amounts to say that B(0,c)+ C̃ implements Ccan from Bc
by full control.

Note that, as a consequence of this theorem, if the hidden behavior B(0,c) = {0},
then C implements K from B(w,c) if and only if it implements Ccan from Bc by full
control.

Next we extend Theorem 6 for regular interconnections.

Theorem 7. Given a plant behavior B(w,c) and an implementable control objective
K, the following holds.

1. If the controller C implements Ccan from Bc by regular full control, then C im-
plements K regularly from B(w,c).

2. If the controller C̃ implements K regularly from B(w,c), then the controller C̃+
B(0,c) implements Ccan from Bc by regular full control.

Proof. Since the statements about implementation have already been proven in The-
orem 6 it now suffices to prove the statements concerning regularity.

To show the first statement let r = [0 r̄]∈Mod(B(w,c))∩Mod(C∗
(w,c)) (note that since

w is free in C∗
(w,c), the first components of r must be zero). Then, clearly, r̄ ∈Mod(C).

Moreover, Bc ⊂ ker r̄, and hence r̄ ∈ Mod(Bc). Therefore r̄ ∈ Mod(Bc)∩Mod(C).
In this way, if Mod(B(w,c))∩Mod(C∗

(w,c)) has a nonzero element r = [0 r̄] with
r̄ ̸= 0 then also Mod(Bc)∩Mod(C) has a nonzero element r̄, proving the desired
implication. Statement 2. can be proved using similar arguments.

Again we remark that Theorem 7 implies that, in case B(0,c) = {0}, C regularly
implements K from B(w,c) if and only if it implements Ccan from Bc by regular full
control.

Theorem 7 yields necessary and sufficient conditions for the problem of regular
implementation by partial interconnections.

Corollary 2. Let B(w,c) be a given plant behavior and K a control objective. Assume
further that K is implementable from B(w,c). Then K is regularly implementable
from B(w,c) if and only if Ccan is regularly implementable from Bc by full control.
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In the previous considerations, the canonical controller associated to a given control
problem has been considered as a control objective itself, whose ability to be im-
plemented provides information on the possibility of implementing the true control
objective. We now take a different perspective and consider the canonical controller
in its most natural role, i.e., as being itself a controller. In this context, two questions
obviously arise: Does the canonical controller implement the control objective? If
so, is this implementation regular? The answers to these questions are given below.

Theorem 8. Given a plant behavior B(w,c), a control objective K, let Ccan be the
associated canonical controller. Then, Ccan implements K if and only of K is imple-
mentable.

Proof. The ”only if” part of the statement is trivial. As for the ”if” part, suppose
that K is implementable, and let C̃ = ker K be a controller that implements this
behavior. Then, by Theorem 6, the controller C̃+B(0,c) implements Ccan from Bc.
If Rw = Mc is a representation of B(w,c) and N is a MLA of R, B(0,c) = ker M and
Bc = ker NM. Therefore, the fact that C̃+B(0,c) implements Ccan from Bc means
that Ccan is the c-behavior induced by the following equations:

NMc = 0
c = c1 + c2
Kc1 = 0
Mc2 = 0.

(5)

Consequently, applying the canonical controller to the plant B(w,c) yields the re-
strictions: 

Rw = Mc
NMc = 0
c = c1 + c2
Kc1 = 0
Mc2 = 0,

(6)

that can easily be shown to have the same w-behavior as{
Rw = Mc1
Kc1 = 0. (7)

But this w-behavior is precisely K, which proves that Ccan indeed implements K.

Our last results concerns regular implementation by means of the canonical con-
troller.

Theorem 9. Given a plant behavior B(w,c), a control objective K, let Ccan be the
associated canonical controller. Then, Ccan regularly implements K if and only of
Bc coincides with the whole c-trajectory universe, i.e., if and only if Mod(Bc) =
{0}.

Proof. Assume that Ccan regularly implements K. Then, by Corollary 2, Ccan +
B(0,c) regularly implements Ccan from Bc. This implies that Mod(Ccan +B(0,c))∩
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Mod(Bc)= {0}. But, as shown before, Mod(Ccan+B(0,c))∩Mod(Bc)=Mod(Ccan)∩
Mod(Bc). As Mod(Bc)⊂Mod(Ccan) (because Ccan ⊂Bc), we obtain that Mod(Bc)=
{0}.

Conversely, if Mod(Bc) = {0} then the canonical controller regularly imple-
ments itself from Bc. By Corollary 2 this implies that Ccan also implements K reg-
ularly.

Corollary 3. The canonical controller is regular if and only if every controller is
regular.

Proof. The if part is obvious. As for the only if part, we start by noting that,
given a controller C, Mod(B(w,c))∩Mod(C∗

(w,c)) = {r | r = [0 r̄], r̄ ∈ mod (C)∩
Mod(Bc)}. Assume now that the canonical controller is regular. Then, by the previ-
ous theorem, Mod(Bc) = {0} and consequently also Mod(B(w,c))∩Mod(C∗

(w,c)) =

{0} for any given controller C, which precisely means that the controller C is regular.
This proves the desired result.

Theorems 8, 9 and Corollary 3 generalize the corresponding 1D results obtained in
[19, 3] to the nD case.

Finally, we study another class of controllers that are of interest in the context
of regular partial interconnections, namely, controllers that admit full row rank rep-
resentations, called regular controllers. The regular implementation by means of a
regular controller implies the regular implementation by full interconnection (from
Bw).

Theorem 10. [4, Theorem 10] Let B(w,c) = ker [R M] be a behavior. If a desired
behavior K is implementable by regular partial interconnection with a regular con-
troller C= ker [0 LM] then K=Bw∩reg ker (LR), i.e., K can also be implementable
by regular (full) interconnection from Bw.

Proof. Without loss of generality we supposed that the matrix LM is full row

rank since C is a regular behavior. Further,
[

I 0
L −I

]
·
[

R M
0 LM

]
=

[
R M

LR 0

]
. Let

X be the MLA of M. Hence Πw(B(w,c) ∩ C) = Πw(ker
[

R M
LR 0

]
) = ker

[
XR
LR

]
= B(w,c) ∩ ker LR. To see that the interconnection between B(w,c) and ker LR is
regular we prove that the interconnection between ker [R M]∩ker [LR 0] is regular,
i.e., v[R M] = z[LR 0] for some row vectors v and z, implies v[R M] = 0 = z[LR 0].
Suppose that v[R M] = z[LR 0]. Note that z[LR 0] = z[0 −LM]+[LR LM] and then
v[R M]−z[LR LM] = (v−zL)[R M] = z[0 −LM]. By assumption that the intercon-
nection of B(w,c) and C is regular one has that (v− zL)[R M] = z[0 −LM] = 0 and
since LM is full row rank one obtains that z = 0 and therefore v[R M] = z[LR 0] = 0
which proves that the interconnection is regular.
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