
Chapter 11
Burst Erasure Correction of 2D convolutional
codes∗

Joan-Josep Climent, Diego Napp, Raquel Pinto, and Rita Simões

Abstract In this paper we address the problem of decoding 2D convolutional codes
over the erasure channel. In particular, we present a procedure to recover bursts of
erasures that are distributed in a diagonal line. To this end we introduce the notion of
balls around a burst of erasures which can be considered an analogue of the notion
of sliding window in the context of 1D convolutional codes. The main result reduces
the decoding problem of 2D convolutional codes to a problem of decoding a set of
associated 1D convolutional codes.
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1 Introduction

When transmitting over an erasure channel the symbol sent either arrive correctly
or they are erased. Internet is an important instance of such a channel. One of the
problems that arises in this channel is that some packets get lost and the receiver
experience it as a delay on the received information. The solutions proposed to deal
with this problem are commonly based on the use of block codes. However, in re-
cent years, there has been an increased interest in the study of one-dimensional (1D)
convolutional codes over the erasure channel [2, 8–10] as a possible alternative for
the widely use of block codes. Due to their rich structure 1D convolutional codes
have an interesting property called sliding window property that allows adaptation
to the correction process to the distribution of the erasure pattern. In the recent pa-
per [10] it has been shown how it is possible to exploit this property in order to
easily recover erasures which are uncorrectable by any other kind of (block) codes.
The codes proposed in this paper are codes with strong distance properties, called
Maximal Distance Profile (MDP), reverse-MDP and complete-MDP, and simula-
tions results have shown that they can decode extremely efficiently when compared
to MDS block codes.

In the 1D case, if the received codeword is viewed as a finite sequence v =
(v0,v1, . . . ,v`), then the sliding windows is given by selecting a subsequence of v,
(vi, . . . ,vi+N), where i,N ∈ N depend on the erasure burst pattern. However, when
considering two-dimensional (2D) convolutional codes [4–7, 11] the information is
distributed in two dimensions and therefore there is not an obvious way to extend
the idea of sliding window to the 2D case. In this work we propose several solutions
for dealing with this problem by introducing the notion of balls around an erasure.
We show that when considering these particular balls one reduces the problem of
decoding 2D convolutional codes over the erasure channel to a problem related to
decoding of 1D convolutional codes.

2 2D convolutional codes

In this section we recall the basic background on 2D finite support convolutional
codes. Denote by F[z1,z2] the ring of polynomials in the two variables, z1 and z2,
with coefficients in the finite field F.

Definition 1. A 2D finite support convolutional code C of rate k/n is a free F[z1,z2]-
submodule of F[z1,z2]

n with rank k.
A full column rank polynomial matrix Ĝ(z1,z2) ∈ F[z1,z2]

n×k whose columns
constitute a basis for C , i.e., such that

C = imF[z1,z2] Ĝ(z1,z2)

=
{

v̂(z1,z2) ∈ F[z1,z2]
n | v̂(z1,z2) = Ĝ(z1,z2)û(z1,z2) with û(z1,z2) ∈ F[z1,z2]

k
}
,

is called an encoder of C . The elements of C are called codewords.
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If the code C admits a right factor prime encoder [3], then it can be equivalently
described using an (n− k)×n full rank polynomial matrix Ĥ(z1,z2), called parity-
check matrix of C , as

C = kerF[z1,z2] Ĥ(z1,z2) =
{

v̂(z1,z2) ∈ F[z1,z2]
n | Ĥ(z1,z2)v̂(z1,z2) = 0

}
.

We denote by N0 the set of nonnegative integers, and define an ordering in N2
0 as

(a,b)≺ (c,d) if and only if a+b < c+d, or a+b = c+d and b < d. (1)

For a polynomial vector v̂(z1,z2) ∈ F[z1,z2]
n, we write

v̂(z1,z2) = v(0,0)+ v(1,0)z1 + v(0,1)z2 + · · ·+ v(0,γ)zγ

2 = ∑
0≤a+b≤γ

v(a,b)za
1zb

2,

(with γ ≥ 0) and we define its support as the set

supp(v̂(z1,z2)) = {(a,b) ∈ N2
0 | v(a,b) 6= 0}.

Moreover, we represent a polynomial matrix Ĥ(z1,z2) as

Ĥ(z1,z2) = H(0,0)+H(1,0)z1 +H(0,1)z2 + · · ·+H(0,δ )zδ
2 = ∑

0≤i+ j≤δ

H(i, j)zi
1z j

2, (2)

where H(i, j) 6= 0 for some (i, j) with i+ j = δ . We call δ the degree of Ĥ(z1,z2).
The weight of v̂(z1,z2) is defined as

wt(v̂(z1,z2)) = ∑
(a,b)∈N2

0

wt(v(a,b))

where wt(v(a,b)) is the number of nonzero entries of v(a,b) and the distance of a
code is

dist(C ) = min{wt(v̂(z1,z2)) | v̂(z1,z2) ∈ C , with v̂(z1,z2) 6= 0} .

We can expand the kernel representation

Ĥ(z1,z2)v̂(z1,z2) = ∑
0≤a+b≤γ

[
∑

0≤i+ j≤δ

H(i, j)v(a− i,b− j)

]
za

1zb
2 = 0

as
Hv = 0 (3)

where H, for δ = 3, and v are given in Figure 1, where O denotes the (n− k)× n
zero matrix. To understand the structure of matrix H, note that for t = 0,1,2, . . .
in the columns corresponding to the block indices t(t+1)

2 +1, t(t+1)
2 +2, . . . , t(t+1)

2 +

t +1 appear all the coefficient matrices of Ĥ(z1,z2) ordered according to≺ with the
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(a) Matrix H
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(b) Vector v

Fig. 1 Parity check matrix H, for δ = 3, and code word v

particularity that the matrices H(i, j), with i+ j = d, for d = 0,1,2, . . . ,δ − 1, are
separated from the matrices H(i, j), with i+ j = d +1, by t zero blocks.

Suppose now that the vector v̂(z1,z2) is transmitted through an erasure channel.
Each one of the components of v is either received correctly or is considered era-
sure. Denote by E (v̂(z1,z2)) and Ē (v̂(z1,z2)) the sets of indices in which there are
erasures and there are not erasures, respectively, i.e.,

E (v̂(z1,z2)) = {(a,b) ∈ supp(v̂(z1,z2)) | there is an erasure in v(a,b)} ,
Ē (v̂(z1,z2)) = supp(v̂(z1,z2))\E (v̂(z1,z2)).

One can select the columns of the matrix in (3) that correspond to the coefficient
of the erased elements to be the indeterminates of a new system. The rest of the
columns in (3) will help us to compute the independent terms. The terms erasure
and indeterminate are often used interchangeably. Hence, we denote by HE and HĒ
the submatrices of H whose block columns are indexed by E and Ē , respectively.
Analogously, we denote vE and vĒ to obtain HE vE +HĒ vĒ = 0. Note that as the
channel is an erasure channel, vĒ , and therefore HĒ vĒ , is known. Hence, we obtain
a system of linear nonhomogeneous equations

HE vE =−HĒ vĒ , (4)
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were the components of the vector vE that are considered to the indeterminates to
be determined. Thus, in order to decode vE we need to solve system (4).

The next lemma shows the importance of the distance of a code when transmit-
ting over the erasure channel.

Lemma 2. Let C = kerF[z1,z2] Ĥ(z1,z2) be given. The following are equivalent:

1. dist(C )≥ d.
2. Any d−1 erasures can be recovered.
3. Any d−1 columns of HE are linearly independent.

In the context of 1D convolutional codes the analogous set of homogeneous equa-
tions of (3) is 

H0
...

. . .
Hα · · · H0

. . .
...

. . .
Hα · · · H0

. . .
...

Hα




v0
v1
...

vγ

= 0, (5)

where C = ker Ĥ(z) with Ĥ(z) = H0 +H1z+ · · ·+Hα zα .
In this case every component of the received codeword v = (v0,v2, . . . ,vγ) de-

pends on the previous α components. In order to find the values of a burst of era-
sures occurring in v, we can use the so-called sliding window, that is, we can select
a suitable interval of consecutive components of v, say (vi, . . . ,vi+N), and solve the
corresponding system of equations (see [10]).

In the 2D case each component of v, say v(a,b), depends on components which
support lie in the triangle {(a− i,b− j) | 0 ≤ i+ j ≤ δ}, where δ is the degree of
Ĥ(z1,z2) of the given 2D code C = kerF[z1,z2] Ĥ(z1,z2). It is not straightforward to
extend the notion of the sliding window in this context in order to correct burst of
2D erasures. A particular case is treated in the following section.

3 Decoding burst of erasures on lines

It is well-known that a phenomena observed in many channels modeled via the
erasure channel is that errors tend to occur in bursts. This point is important to keep
in mind when designing codes which are capable of correcting many errors over
the erasure channel. In this preliminary work we aim at decoding burst of erasures
that are distributed in a diagonal. We present a notion that can be considered as the
analogue of the notion of sliding window, called ball around a burst of erasures,
that will reduce the problem of decoding a 2D convolutional code to the problem of
decoding a set of associated 1D convolutional codes.
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Let us first suppose that the set of erasures of v̂(z1,z2) contains a burst of erasures
which support lie in a diagonal, i.e., given by

E ′(v̂(z1,z2)) = {(r+ t,s),(r+ t−1,s+1), . . . ,(r,s+ t)} ⊂ E (v̂(z1,z2)). (6)

Hence, equation (3) can be divided as

HE ′vE ′ =−HĒ ′vĒ ′ (7)

where HE ′ and HĒ ′ are submatrices of H whose block columns are indexed by
E ′(v̂(z1,z2)) and Ē ′(v̂(z1,z2)) = supp(v̂(z1,z2)) \ E ′(v̂(z1,z2)), respectively, and
vE ′ and vĒ ′ are defined accordingly. If no confusion arises we use E and E ′ for
E (v̂(z1,z2)) and E ′(v̂(z1,z2)), respectively.

Definition 3. Let E ′ be given with (r f ,s f ) = (r+ t,s) and (r`,s`) = (r,s+ t) being
the first and last position (ordered by ≺) in this set. We define δ +1 different balls
around E ′ as

Ω j,δ (E
′) =

{
(a,b) | a≤ r f + j, b≤ s`+ j, r f + s f + j−δ ≤ a+b≤ r f + s f + j

}
for j = 0,1,2, . . . ,δ .

Example 4. Consider the burst of erasures given by

E ′ = {(8,5),(7,6),(6,7),(5,8),(4,9)},

then, (r f ,s f ) = (8,5) and (r`,s`) = (4,9) and for δ = 3. Figure 2 shows the set
Ω0,3(E

′) and Ω1,3(E
′).
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(b) Ω1,3(E
′)

Fig. 2 Balls around the erasure given by E ′ = {(8,5),(7,6),(6,7),(5,8),(4,9)}

By definition, the vector vE ′ contains a burst of erasures in a diagonal and vĒ ′

may contain erasures as well. Depending on the structure of HE ′ and HĒ ′ these
errors may appear together in some of the equations of (7).
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The following result gives a criterion to determine some sets of equations that
involve only erasures in vE ′ . The solution of such system would produce the desired
decoding of vE ′ .

Theorem 5. Let C = kerF[z1,z2] Ĥ(z1,z2), δ the degree of Ĥ(z1,z2) and let E be the
support of the erasures and E ′ be the support of a burst of erasures distributed on a
diagonal line of a codeword v̂(z1,z2). If E ′ are the only erasures in Ω j,δ (E

′), i.e., if

E ∩Ω j,δ (E
′) = E ′,

then, there exists a subsystem of (7) such that

H j
E ′vE ′ = a j (8)

where a j is a subvector of HĒ ′vĒ ′ that does not contain any erasures, and

H j
E ′ =



H( j,0)
H( j−1,1) H( j,0)
H( j−2,2) H( j−1,1) H( j,0)

...
...

...
. . .

H(0, j) H(1, j−1) H(2, j−2)
H(0, j) H(1, j−1) · · · H( j,0)

. . .
. . .

. . .
H(0, j) H(1, j−1)

H(0, j)


, for j = 0,1, . . . ,δ

is a (n− k)(t +1)×n(t +1) submatrix of HE ′ .

The structure of the matrices H j
E ′ have the same structure as the matrices in (5)

which appear in the decoding problem of 1D convolutional codes, see [1, 8] for
more details, and therefore the solution of (8) is analogous to the decoding problem
of 1D convolutional codes.

It was shown in [10] that there exist a type of 1D convolutional codes, called
(reverse or complete) MDP, that perform particularly well over the erasure chan-
nel. This together with Theorem 5 suggest that in order to construct a 2D con-
volutional code C = kerF[z1,z2] Ĥ(z1,z2) with good decoding properties one can
construct a parity-check matrix Ĥ(z1,z2) = ∑

0≤a+b≤δ

H(a,b)za
1zb

2 such that the as-

sociated 1D convolutional codes are given by C ( j) = kerF[z] Ĥ( j)(z) with Ĥ( j)(z) =

H( j)
0 +H( j)

1 z+ · · ·+H( j)
ν zν and H( j)

k = H( j− k,k), for k = 0,1, . . . , j are MDP.

4 Conclusions

In this paper we have proposed a method to recover erasures E ′ in a 2D (finite
support) convolutional code that are distributed in a diagonal line in the 2D plane.
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We have shown that if E ′ does not have more erasures close (meaning in a ball
centered around E ′) then it is possible to consider E ′ as a burst of erasures of a set of
1D convolutional codes. Decoding these 1D convolutional codes would immediately
imply the recovery of the E ′.

This procedure is far from solving all the possible erasure patterns but it repre-
sents the first step toward the development of an effective approach to solve more
general patterns of erasures.
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