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We consider a nonlinear Dirichlet problem with a Carathéodory reaction which has 
arbitrary growth from below. We show that the problem has at least three nontrivial 
smooth solutions, two of constant sign and the third nodal. In the semilinear case 
(i.e., p = 2), with the reaction f(z, .) being C1 and with subcritical growth, we show 
that there is a second nodal solution, for a total of four nontrivial smooth solutions. 
Finally, when the reaction has concave terms and is subcritical and for the nonlinear 
problem (i.e., 1 < p < ∞) we show that again we can have the existence of three 
nontrivial smooth solutions, two of constant sign and a third nodal.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊆ R
N be a bounded domain with a C2 boundary ∂Ω. We study the following nonlinear Dirichlet 

problem

−Δpu(z) = f
(
z, u(z)

)
in Ω, u|∂Ω = 0, (1.1)

where Δp denotes the p-Laplace differential operator defined by

Δpu(z) = div
(∥∥Du(z)

∥∥p−2
Du(z)

)
for all u ∈ W 1,p

0 (Ω),

1 < p < ∞ and f : Ω×R → R is a Carathéodory function (i.e. for all x ∈ R, z → f(z, x) is measurable and 
for a.a. z ∈ Ω, x → f(z, x) is continuous).
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Our aim is to prove multiplicity theorems for problem (1.1), providing precise sign information for all the 
solutions. The interesting feature of our analysis is that f(z, ·) can have unrestricted growth from below.

Our work extends the semilinear (i.e. p = 2) ones by Ambrosetti and Lupo [3], Ambrosetti and Mancini
[4] and Struwe [19,20] and the nonlinear work of Papageorgiou and Papageorgiou [18].

In fact, in all the aforementioned works (with the exception of Papageorgiou and Papageorgiou [18]) the 
problem is semilinear and parametric and the authors produce three nontrivial solutions for certain values 
of the parameter. The hypotheses on the reaction are more restrictive and they do not prove the existence 
of nodal solutions.

Here the equation is nonlinear driven by the p-Laplacian and our multiplicity theorem provides sign 
information for all the solutions.

The parametric equation of the works mentioned earlier is a particular case of our problem here. Moreover, 
in the semilinear case (p = 2), using Morse theory, we generate a second nodal solution, for a total of four 
nontrivial solutions. In addition, other cases are also studied.

We should also mention the more recent work of Bonanno and Molica Bisci [6] and Marano, Molica Bisci 
and Motreanu [15], which prove three solutions theorems for semilinear problems using different methods. 
Note that in Marano, Molica Bisci and Motreanu [15], the potential is nonsmooth.

Our approach is variational, based on the critical point theory. The variational methods are coupled with 
suitable truncation and comparison techniques. For the semilinear problem (i.e. p = 2), we also use tools 
from Morse theory (critical groups). In the next section, for the convenience of the reader, we recall the 
main mathematical definitions and facts which we will need in the sequel.

2. Mathematical background

We start with the critical point theory. So let X be a Banach space and X∗ its topological dual. By 〈·,·〉
we denote the duality brackets for the pair (X∗, X). Also, by w−→ we will designate the weak convergence 
in X.

Definition. A map A : X → X∗ is said to be of type (S)+, if for every sequence {un}n≥1 ⊆ X such that 
un

w−→ u in X and

lim sup
n→∞

〈
A(un), un − u

〉
≤ 0,

one has un → u in X as n → ∞.

Let ϕ ∈ C1(X). A number c ∈ R is said to be a critical value of ϕ if there exists x∗ ∈ X such that 
ϕ′(x∗) = 0 and ϕ(x∗) = c. We say that ϕ satisfies the Palais–Smale condition (the PS-condition for short), 
if the following holds:

“Every sequence {xn}n≥1 ⊆ X such that {ϕ(xn)}n≥1 ⊆ R is bounded and ϕ′(xn) → 0 in W 1,p
0 (Ω)∗ =

W−1,p′(Ω) ( 1
p + 1

p′ = 1), admits a strongly convergent subsequence.”

Using this compactness-type condition, we can have the following minimax theorem known in the liter-
ature as the mountain pass theorem.

Theorem 1. If ϕ ∈ C1(X) satisfies the PS-condition, x0, x1 ∈ X, r > 0, ‖x1−x0‖ > r, max{ϕ(x0), ϕ(x1)} <
inf{ϕ(x) : ‖x − x0‖ = r} = ηr and c = infγ∈Γ maxt∈[0,1] ϕ(γ(t)) with Γ = {γ ∈ C1([0, 1], X) : γ(0) = 0,
γ(1) = x1}, then c ≥ ηr and c is a critical value of ϕ.
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For ϕ ∈ C1(X) we introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) ≤ c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ =

{
x ∈ Kϕ : ϕ(x) = c

}
.

The next result is known in the literature as the second deformation theorem (see, for example, Gasinski 
and Papageorgiou [12, p. 628]).

Theorem 2. If ϕ ∈ C1(X), a ∈ R, a < b ≤ +∞, ϕ satisfies the PS-condition, Kϕ ∩ (a, b) = ∅ and ϕ−1(a)
contains at most a finite number of critical points of ϕ, then there exists a deformation h : [0, 1] ×(ϕb\Kb

ϕ) →
ϕb such that

(a) h(1, ϕb\Kb
ϕ) ⊆ ϕa;

(b) h(t, x) = x for all (t, x) ∈ [0, 1] × ϕa;
(c) ϕ(h(t, x)) ≤ ϕ(h(s, x)) for all t, s ∈ [0, 1], s ≤ t, all x ∈ ϕb\Kb

ϕ.

Remark. Theorem 2 implies that ϕa is a strong deformation retract of ϕb\Kb
ϕ.

Throughout this work by ‖ · ‖ we denote the norm for the Sobolev space W 1,p
0 (Ω), i.e., ‖u‖ = ‖Du‖p for 

all u ∈ W 1,p
0 (Ω) (by the Poincaré inequality). By ‖ · ‖ we will also denote the RN -norm. No confusion is 

possible, since it will always be clear from the context which norm is used. For 1 < p < ∞ we define

p∗ =
{

pN
N−p if p < N,

+∞ if p ≥ N.

The study of problem (1.1) relies on some basic facts about the spectrum of the negative Dirichlet 
p-Laplacian, hereafter denoted by −ΔD

p . So, let m ∈ L∞(Ω)+, m �= 0 and consider the following nonlinear 
weighted eigenvalue problem:

−Δpu(z) = λ̂m(z)
∣∣u(z)

∣∣p−2
u(z) in Ω, u|∂Ω = 0. (2.1)

By an eigenvalue of −ΔD
p we mean a number λ̂(m) ∈ R such that (2.1) has a nontrivial solution û. The 

nonlinear regularity theory (see Gasinski and Papageorgiou [12, pp. 737–738]) implies that û ∈ C1
0 (Ω).

The least number λ̂ ∈ R for which (2.1) has a nontrivial solution is the first eigenvalue of −ΔD
p and it 

is denoted by λ̂1(m). We recall the following well-known properties of λ̂1(m):

• λ̂1(m) > 0;
• λ̂1(m) is isolated, i.e., we can find ε > 0 such that (λ̂1(m), ̂λ1(m) + ε) contains no eigenvalues;
• λ̂1(m) is simple, i.e., if û, v̂ are eigenfunctions for λ̂1(m), then û = ξv̂ for some ξ ∈ R\{0}.

The first eigenvalue λ̂1(m) > 0 has the following variational characterization:

λ̂1(m) = inf
{ ‖Du‖pp∫

Ω
m|u|pdz : u ∈ W 1,p

0 (Ω), u �= 0
}
. (2.2)

The infimum in (2.2) is realized on the one-dimensional eigenspace corresponding to λ̂1(m).
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Recall that C1
0 (Ω) is an ordered Banach space with order cone

C+ =
{
u ∈ C1

0 (Ω) : u(z) ≥ 0 for all z ∈ Ω
}
.

This cone has a nonempty interior given by

int C+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
(z) < 0 for all z ∈ ∂Ω

}
.

Here by n(·) we denote the outward unit normal on ∂Ω.
It is clear from (2.2) that any eigenfunction û corresponding to λ̂1(m) does not change sign. So û ∈ C+\{0}

and by virtue of the nonlinear strong maximum principle of Vasquez [21], we have û ∈ int C+.
An eigenfunction corresponding to an eigenvalue λ̂ �= λ̂1(m) is nodal. If m ≡ 1, then we set λ̂1 := λ̂1(1)

and by û1 we denote the Lp-normalized (i.e., ‖û1‖p = 1) positive eigenfunction corresponding to λ̂1. We 
have just seen that

û1 ∈ int C+.

Since the set of eigenvalues of (2.1) is closed and λ̂1(m) > 0 is isolated, the second eigenvalue

λ̂∗
2(m) = inf

{
λ̂ : λ̂ is an eigenvalue of (2.1), λ̂ > λ̂1(m)

}
is also well-defined.

If N = 1 (ordinary differential equations), then the set of eigenvalues of (2.1) is a sequence

{
λ̂k(m)

}
k≥1 ⊆ (0,+∞)

of simple eigenvalues such that λ̂k(m) → +∞ as k → +∞ and the corresponding eigenfunction {ûk(m)}k≥1
has exactly k − 1 zeros (see, for example, Gasinski and Papageorgiou [12, p. 761]).

If N ≥ 2 (partial differential equations), then using the Ljusternik–Schnirelmann minimax scheme, we 
obtain an increasing sequence {λ̂k(m)}k≥1 of eigenvalues such that λ̂k(m) → +∞ as k → +∞.

If p = 2 (linear eigenvalue problem), then these are all the eigenvalues of −ΔD
p . If p �= 2, then we do 

not know if this is the case. However we know that λ̂∗
2(m) = λ̂2(m) and so the second eigenvalue admits a 

minimax characterization provided by the Ljusternik–Schnirelmann theory.
However, for our purpose, this characterization is not convenient. Instead we will use an alternative one 

due to Cuesta, de Figueiredo and Gossez [8]. So, let

∂BLp

1 =
{
u ∈ Lp(Ω) : ‖u‖p = 1

}
, M = W 1,p

0 (Ω) ∩ ∂BLp

1

and

Γ̂ =
{
γ̂ ∈ C

(
[−1, 1],M

)
: γ̂(−1) = −û1(m), γ̂(1) = û1(m)

}
(recall û1(m) ∈ M ∩ int C+ is the Lp-normalized eigenfunction corresponding to λ̂1(m) > 0).

Proposition 1. λ̂2(m) = inf γ̂∈Γ̂ max−1≤t≤1 ‖Dγ̂(t)‖pp.

Viewed as functions of the weight m ∈ L∞(Ω)+, the eigenvalues λ̂1(m) and λ̂2(m) exhibit certain 
monotonicity properties.
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(a) If m, m′ ∈ L∞(Ω)+, m(z) ≤ m′(z) a.e. in Ω, m �= m′, then λ̂1(m′) < λ̂1(m).
(b) If m, m′ ∈ L∞(Ω)+, m(z) < m′(z) a.e. in Ω, then λ̂2(m′) < λ̂2(m).

Another spectrum of −ΔD
p that we will use is the so-called Fucik spectrum. This is the set σF (p) of all 

(λ, μ) ∈ R
2 such that

−Δpu(z) = λu+(z)p−1 − μu−(z)p−1 in Ω, u|∂Ω = 0

admits a nontrivial solution.
Evidently σF (p) contains the two lines {λ̂1} × R and R×{λ̂1} and the pairs {(λ̂k, ̂λk)}k≥1. The first

nontrivial curve C1 ⊆ σF (p) through (λ̂2, ̂λ2), which is asymptotic to the lines {λ̂1} × R and R×{λ̂1}, was 
constructed and characterized variationally by Cuesta, de Figueiredo and Gossez [8].

Next we recall some basic definitions and facts from Morse theory. Let (Y1, Y2) be a topological pair with 
Y2 ⊆ Y1 ⊆ X. For every integer k ≥ 0, by Hk(Y1, Y2) we denote the kth-relative singular homology group 
with integer coefficients for the pair (Y1, Y2).

Let ϕ ∈ C1(X). The critical groups of ϕ, at an isolated critical point x ∈ X with ϕ(x) = c, are defined 
by

Ck(ϕ, x) = Hk

(
ϕc ∩ U , ϕc ∩ U\{x}

)
for all k ≥ 0, where U is a neighborhood of x, such that Kϕ ∩ U = {x}. The excision property of singular 
homology implies that the above definition of critical groups is independent of the neighborhood U .

Suppose that ϕ ∈ C1(X) satisfies the PS-condition and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ). The critical 
groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk

(
X,ϕc

)
, for all k ≥ 0.

Remark. The second deformation theorem implies that this definition is independent of the choice of the 
level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We set

M(t, x) =
∑
k≥0

rank Ck(ϕ, x)tk for all t ∈ R, all x ∈ Kϕ

and

P (t,∞) =
∑
k≥0

rank Ck(ϕ,∞)tk for all t ∈ R.

The Morse relation says that

∑
x∈Kϕ

M(t, x) = P (t,∞) + (1 + t)Q(t), (2.3)

where Q(t) =
∑

k≥0 βkt
k is a formal series in t ∈ R with nonnegative integer coefficients.

Let H be a Hilbert space, x ∈ H, let U be a neighborhood of x and ϕ ∈ C2(U). For x ∈ Kϕ, the Morse 
index of x is defined to be the maximum of the dimensions of the vector subspaces of H on which ϕ′′(x) is 
negative definite.
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We say that x ∈ Kϕ is nondegenerate if ϕ′′(x) is invertible. The critical groups of ϕ ∈ C2(U), at a 
nondegenerate critical point x ∈ H with Morse index m, are given by

Ck(ϕ, x) = δk,mZ for all k ≥ 0. (2.4)

Let A : W 1,p
0 (Ω) → W−1,p′(Ω) ( 1

p + 1
p′ = 1) be the nonlinear map defined by

〈
A(u), y

〉
=

∫
Ω

‖Du‖p−2(Du,Dy)RN dz for all u, y ∈ W 1,p
0 (Ω). (2.5)

The following result concerning the map A is well-known (see, for example, Gasinski and Papageor-
giou [12]).

Proposition 2. If A : W 1,p
0 (Ω) → W−1,p′(Ω) is the nonlinear map defined by (2.5), then A is continuous, 

bounded, strictly monotone (strongly monotone if p ≥ 2), hence maximal monotone too and of type (S)+.

For x ∈ R, we set x± = max{±x, 0} and for u ∈ W 1,p
0 (Ω), we set u±(·) = u(·)±. We know that 

u± ∈ W 1,p
0 (Ω) and |u| = u+ + u−, u = u+ − u−. By | · |N we denote the Lebesgue measure on RN .

Finally, if h : Ω × R → R is a measurable function (for example a Carathéodory function), then we set 
Nh(u)(·) = h(·, u(·)) for all u ∈ W 1,p

0 (Ω).

3. Three solutions theorem

In this section, we prove a three solutions theorem for problem (1.1), providing precise sign information 
for all of them. First we produce two constant sign smooth solutions. To this end we introduce the following 
hypotheses on the reaction f(z, x):

H1: f : Ω × R → R is a Carathéodory function, such that f(z, 0) = 0 a.e. in Ω and
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
(ii) limx→±∞

f(z,x)
|x|p−2x = −∞ uniformly for a.a. z ∈ Ω;

(iii) if F (z, x) =
∫ x

0 f(z, s)ds, then there exists η ∈ L∞(Ω)+, η(z) ≥ λ̂1 a.e. in Ω, η �= λ̂1 such that 
lim infx→0

pF (z,x)
|x|p ≥ η(z) uniformly for a.a. z ∈ Ω;

(iv) for every ρ > 0, there exists ξρ > 0 such that f(z, x)x + ξρ|x|p ≥ 0 a.e. in Ω, for all |x| ≤ ρ.

Remark. The above hypotheses allow for arbitrary growth of f(z, ·) from below.

Proposition 3. If hypotheses H1 hold, then problem (1.1) has at least two constant sign smooth solutions 
u0 ∈ int C+ and v0 ∈ − int C+.

Proof. We do the proof for the positive solution, since the proof for the negative solution is similar.
By virtue of the hypotheses H1(i), (ii), we can find c1 > 0 such that

f(z, x) ≤ −xp + c1 for a.a. z ∈ Ω, all x ≥ 0. (3.1)

Since A is maximal monotone (see Proposition 2) and it is clearly coercive, it is surjective (see, for 
example, Gasinski and Papageorgiou [12, p. 320]). So, we can find e ∈ W 1,p

0 (Ω) such that A(e) = 1.
Acting with −e− ∈ W 1,p

0 (Ω), we show that e ≥ 0. Nonlinear regularity theory (see, for example, Gasinski 
and Papageorgiou [12, pp. 737–738]) and the nonlinear strong maximum principle of Vasquez [21] imply 
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that e ∈ int C+. We have

−Δpe(z) = 1 a.e. in Ω, e|∂Ω = 0. (3.2)

Let ξp−1 > c1 (see (3.1)) and set u = ξe ∈ int C+. Then

−Δpu(z) − f
(
z, u(z)

)
= ξp−1(−Δpe(z)

)
− f

(
z, ξe(z)

)
≥ ξp−1 + ξp−1e(z) − c1 > 0 for a.a. z ∈ Ω (3.3)

(see (3.1), (3.2) and recall ξp−1 − c1 > 0 and e ∈ int C+).
We consider the following truncation of the reaction f(z, ·)

f̂+(z, x) =

⎧⎨
⎩

0 if x < 0
f(z, x) if 0 ≤ x ≤ u(z)
f(z, u(z)) if x > u(z).

(3.4)

This is a Carathéodory function. We set F̂+(z, x) =
∫ x

0 f̂+(z, s)ds and consider the C1-functional ϕ̂+ :
W 1,p

0 (Ω) → R defined by

ϕ̂+(u) = 1
p
‖Du‖pp −

∫
Ω

F̂+
(
z, u(z)

)
dz for all u ∈ W 1,p

0 (Ω).

It is clear from (3.4) that ϕ̂+ is coercive. Also, using the Sobolev embedding theorem, we can easily 
show that ϕ̂+ is sequentially weakly lower semicontinuous. Thus by the Weierstrass theorem, we can find 
u0 ∈ W 1,p

0 (Ω) such that

ϕ̂+(u0) = inf
{
ϕ̂+(u) : u ∈ W 1,p

0 (Ω)
}

= m̂+. (3.5)

By virtue of hypothesis H1(iii), given ε > 0, we can find δ = δ(ε) > 0 such that

F (z, x) ≥ 1
p

(
η(z) − ε

)
|x|p for a.a. z ∈ Ω, all |x| ≤ δ. (3.6)

Let t ∈ (0, 1) be small such that tû1 ≤ u (recall u ∈ int C+ and see Kyritsi and Papageorgiou [14, 
Lemma 2.1]) and 0 ≤ tû1(z) ≤ δ for all z ∈ Ω. Then

ϕ̂+(tû1) = tp

p
‖Dû1‖pp −

∫
Ω

F (z, tû1)dz

≤ tp

p
λ̂1 −

tp

p

∫
Ω

ηûp
1dz + ε

tp

p

(
see (3.6), recall that ‖û1‖p = 1

)

= tp

p

[
ε−

∫
Ω

(
η(z) − λ̂1

)
û1(z)pdz

]
. (3.7)

Since û1(z) > 0 for all z ∈ Ω and η(z) ≥ λ̂1 a.e. in Ω, η �= λ̂1, we have

ξ =
∫ (

η(z) − λ̂1
)
û1(z)pdz > 0.
Ω
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So, if we choose ε ∈ (0, ξ), then from (3.7) it follows that ϕ̂+(tû1) < 0, which implies that

ϕ̂+(u0) = m̂+ < 0 = ϕ̂+(0)
(
see (3.5)

)
hence

u0 �= 0.

From (3.5) we have ϕ̂′
+(u0) = 0, hence

A(u0) = Nf̂+
(u0). (3.8)

On (3.8) we act with −u−
0 ∈ W 1,p

0 (Ω). Then ‖Du−
0 ‖pp = 0 (see (3.4)), hence u0 ≥ 0, u0 �= 0.

Also, on (3.8) we act with (u0 − u)+ ∈ W 1,p
0 (Ω) and obtain

〈
A(u0), (u0 − u)+

〉
=

∫
Ω

f̂+(z, u0)(u0 − u)+dz

=
∫
Ω

f(z, u)(u0 − u)+dz
(
see (3.4)

)

≤
〈
A(u), (u0 − u)+

〉 (
see (3.3)

)
,

which implies that
∫

{u0>u}

(
‖Du0‖p−2Du0 − ‖Du‖p−2Du,Du0 −Du

)
RNdz ≤ 0,

hence

∣∣{u0 > u}
∣∣
N

= 0, i.e. u0 ≤ u.

Therefore we have proved that

u0 ∈ [0, u] =
{
u ∈ W 1,p

0 (Ω) : 0 ≤ u(z) ≤ u(z) a.e. in Ω
}

and so from (3.4) and (3.8), we have A(u0) = Nf (u0), then −Δpu0(z) = f(z, u0(z)) a.e. in Ω, u0|∂Ω = 0.
Nonlinear regularity (see [12]) implies u0 ∈ C+\{0}. Let ρ = ‖u0‖∞ and let ξρ > 0 be as postulated by 

hypothesis H1(iv). Then

−Δpu0(z) + ξρu0(z)p−1 = f
(
z, u0(z)

)
+ ξρu0(z)p−1 ≥ 0 a.e. in Ω,

hence

Δpu0(z) ≤ ξρu0(z)p−1 a.e. in Ω,

therefore

u0 ∈ int C+
(
see Vasquez [21]

)
.
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Similarly, using hypothesis H1(ii), we can find v ∈ int C+ such that

−Δpv(z) = f
(
z, v(z)

)
a.e. in Ω.

Then truncating f(z, ·) at {v(z), 0} and reasoning as above, we generate a second constant sign smooth 
solution v0 ∈ − int C+. �

To produce a third nontrivial smooth solution with sign information, we need to strengthen the hypotheses 
on f(z, ·) near zero. More precisely, the new hypotheses on the reaction f(z, x) are the following:

H2: f : Ω × R → R is a Carathéodory function, such that f(z, 0) = 0 a.e. in Ω and hypotheses H2(i), (ii), 
(iv) are the same as the corresponding hypotheses H1(i), (ii), (iv) and
(iii) there exists β1 > β0 > λ̂2 such that

β0 ≤ lim inf
x→0

f(z, x)
|x|p−2x

≤ lim sup
x→0

f(z, x)
|x|p−2x

≤ β1 uniformly for a.a. z ∈ Ω.

Remark. Hypothesis H2(iii) restricts the growth of f(z, ·) to be (p − 1)-linear near zero.

With this stronger condition on f(z, ·) near zero, we show that problem (1.1) admits extremal constant 
sign solutions, i.e., there is a smallest nontrivial positive solution u∗ ∈ int C+ and a biggest nontrivial 
negative solution v∗ ∈ − int C+.

Proposition 4. If hypotheses H2 hold, then problem (1.1) admits extremal constant sign solutions u∗ ∈ int C+
and v∗ ∈ − int C+.

Proof. Let S+ be the set of nontrivial positive solutions of (1.1) in the order interval [0, u]. From Proposi-
tion 4 and its proof, we know that S+ �= ∅ and S+ ⊆ int C+.

Let C ⊆ S+ be a chain (i.e. a totally ordered subset of S+). From Dunford and Schwartz [9, p. 336], we 
know that we can find {un}n≥1 ⊆ C such that

inf C = inf
n≥1

un.

We have

A(un) = Nf (un) for all n ≥ 1, (3.9)

hence {un}n≥1 ⊆ W 1,p
0 (Ω) is bounded (recall un ≤ u for all n ≥ 1 and see H2(i)).

So, we may assume that

un
w−→ u in W 1,p

0 (Ω) and un → u in Lp(Ω). (3.10)

On (3.9) we act with un − u, pass to the limit as n → ∞ and use (3.10). Then

lim
n→∞

〈
A(un), un − u

〉
= 0,

therefore

un → u in W 1,p
0 (Ω) (see Proposition 2). (3.11)
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Passing to the limit as n → ∞ in (3.9) and using (3.11), we obtain A(u) = Nf (u), hence

u ∈ C+ is a solution of (1.1).

We show that u �= 0. Arguing by contradiction, suppose that u = 0. Then un → 0 in W 1,p
0 (Ω). Let

yn = un

‖un‖
, n ≥ 1.

Since ‖yn‖ = 1 for all n ≥ 1, we may assume that

yn
w−→ y in W 1,p

0 (Ω) and yn → y in Lp(Ω) as n → ∞.

Hypotheses H2(i), (iii) imply that
∣∣f(z, x)

∣∣ ≤ c2|x|p−1 for a.a. z ∈ Ω, all |x| ≤ ρ := ‖u‖∞.

So, it follows that { Nf (un)
‖un‖p−1 }n≥1 ⊆ Lp′(Ω) is bounded (recall un ∈ [0, u] for all n ≥ 1).

Therefore we may assume that

Nf (un)
‖un‖p−1

w−→ h in Lp′
(Ω). (3.12)

As in Aizicovici, Papageorgiou and Staicu [1] (see the proof of Proposition 31), we show that

h = ηyp−1 with β0 ≤ η(z) ≤ β1 a.e. in Ω. (3.13)

From (3.9) we have

A(yn) = Nf (un)
‖un‖p−1 , n ≥ 1 (3.14)

hence

〈
A(yn), yn − y

〉
=

∫
Ω

f(z, un)
‖un‖p−1 (yn − y)dz,

therefore

lim
n→∞

〈
A(yn), yn − y

〉
= 0

and by Proposition 2 we conclude

yn → y in W 1,p
0 (Ω), hence ‖y‖ = 1, y ≥ 0. (3.15)

Then passing to the limit as n → ∞ in (3.14) and using (3.12), (3.13) and (3.15), we obtain

A(y) = ηyp−1,

hence

−Δpy(z) = η(z)y(z)p−1 a.e. in Ω, y|∂Ω = 0.
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By virtue of Proposition 2 and (3.13), we have

λ̂1(η) ≤ λ̂1(β0) < λ̂1(λ̂1) = 1

and so, from (3.15), we have a contradiction (recall that only the principal eigenfunctions are of constant 
sign). Therefore u �= 0 and so u ∈ S+, u = inf C.

Since C is an arbitrary chain, by the Kuratowski–Zorn lemma, we can find u∗ ∈ S+ ⊆ int C+ a minimal 
element. From Filippakis, Kristaly and Papageorgiou [10, Lemma 4.3], we have that S+ is downward directed 
(i.e. if u, y ∈ S+, then there exists v ∈ S+ such that v ≤ u, v ≤ y). So, it follows that u∗ ∈ int C+ is the 
smallest nontrivial positive solution of (1.1).

Similarly, let S− be the set of nontrivial negative solutions of (1.1) in the order interval [v, 0]. Reasoning 
as above and using the fact that S− is upward directed (i.e. if v, y ∈ S−, then we can find u ∈ S− such that 
v ≤ u, y ≤ u) we can produce v∗ ∈ − int C+ the biggest nontrivial negative solution of (1.1). �

Using these two extremal constant sign solutions, we can produce a third nontrivial smooth solution of 
(1.1) which is nodal (sign changing).

Proposition 5. If hypotheses H2 hold, then problem (1.1) admits a nodal solution y0 ∈ C1
0 (Ω) such that 

v∗(z) ≤ y0(z) ≤ u∗(z) for all z ∈ Ω.

Proof. Let u∗ ∈ int C+ and v∗ ∈ − int C+ be the two extremal nontrivial constant sign solutions of (1.1)
produced in Proposition 4. Using them, we introduce the following truncation of the reaction f(z, ·):

g(z, x) =

⎧⎨
⎩

f(z, v∗(z)) if x < v∗(z),
f(z, x) if v∗(z) ≤ x ≤ u∗(z),
f(z, u∗(z)) if x > u∗(z).

(3.16)

This is a Carathéodory function. Let G(z, x) =
∫ x

0 g(z, s)ds and consider the C1-functional ϕ̂ : W 1,p
0 (Ω) →

R defined by

ϕ̂(u) = 1
p
‖Du‖pp −

∫
Ω

G
(
z, u(z)

)
dz for all u ∈ W 1,p

0 (Ω).

Also let g±(z, x) = g(z, ±x±), G±(z, x) =
∫ x

0 g±(z, s)ds and consider the C1-functionals ϕ̂± : W 1,p
0 (Ω) →

R defined by

ϕ̂±(u) = 1
p
‖Du‖pp −

∫
Ω

G±
(
z, u(z)

)
dz for all u ∈ W 1,p

0 (Ω).

As in the proof of Proposition 3, we show that

Kϕ̂ ⊆ [v∗, u∗], Kϕ̂+ ⊆ [0, u∗] and Kϕ̂− ⊆ [v∗, 0].

The extremality of the solutions u∗ ∈ int C+ and v∗ ∈ − int C+ implies that

Kϕ̂ ⊆ [v∗, u∗], Kϕ̂+ ⊆ {0, u∗} and Kϕ̂− ⊆ {v∗, 0}. (3.17)

Claim. u∗ and v∗ are local minimizers of the functional ϕ̂.
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Clearly ϕ̂+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we can find ũ ∈ W 1,p
0 (Ω)

such that

ϕ̂+(ũ) = inf
{
ϕ̂+(u) : u ∈ W 1,p

0 (Ω)
}

= m̂∗
+.

As in the proof of Proposition 3, using hypothesis H2(iii), we show that ϕ̂+(ũ) = m̂∗
+ < 0 = ϕ̂+(0), i.e.

ũ �= 0, hence ũ = u∗ (see (3.17)).
Since u∗ ∈ int C+ and ϕ̂|C+ = ϕ̂+|C+ , it follows that u∗ is a local C1

0 (Ω)-minimizer of ϕ̂. Hence, 
by virtue of Theorem 2 of Garcia Azorero, Manfredi and Peral Alonso [11], we have that u∗ is a local 
W 1,p

0 (Ω)-minimizer of ϕ̂. Similarly for v∗ ∈ − int C+. This proves the Claim.
Without any loss of generality, we may assume that ϕ̂(v∗) ≤ ϕ̂(u∗). Because of the Claim and reasoning 

as in Aizicovici, Papageorgiou and Staicu [1] (see the proof of Proposition 29), we can find ρ ∈ (0, 1) small 
such that

ϕ̂(v∗) ≤ ϕ̂(u∗) < inf
{
ϕ̂(u) : ‖u− u∗‖ = ρ

}
= η̂ρ. (3.18)

Since ϕ̂ is coercive (see (3.16)) it satisfies the PS-condition. This fact and (3.18) permit the use of 
Theorem 1 (the mountain pass theorem). So, we can find y0 ∈ W 1,p

0 (Ω) such that

η̂ρ ≤ ϕ̂(y0) = inf
γ∈Γ

max
0≤t≤1

ϕ̂
(
γ(t)

)
(3.19)

where Γ = {γ ∈ C([0, 1], W 1,p
0 (Ω)) : γ(0) = v∗, γ(1) = u∗} and

ϕ̂′(y0) = 0. (3.20)

From (3.19) we have that y0 /∈ {v∗, u∗}, while from (3.20), we have that y0 ∈ C1
0 (Ω) and y0 ∈ [v∗, u∗]

(see (3.17)), hence y0 is a solution of (1.1) (see (3.16)).
We need to show that y0 �= 0. According to the minimax characterization of ϕ̂(y0) in (3.19), to show the 

nontriviality of y0, it suffices to produce γ∗ ∈ Γ such that

ϕ̂|γ∗ < 0.

By virtue of hypothesis H2(iii), we can find β2 > λ̂2 and δ > 0 such that

β2

p
|x|p ≤ F (z, x) for a.a. z ∈ Ω, all |x| ≤ δ. (3.21)

Recall that

∂BLp

1 =
{
u ∈ Lp(Ω) : ‖u‖p = 1

}
, M = W 1,p

0 (Ω) ∩ ∂BLp

1 .

Also we set Mc = M ∩ C1
0 (Ω). We endow M with the relative W 1,p

0 (Ω)-topology and Mc with the relative 
C1

0 (Ω)-topology. Evidently Mc is dense in M .
Recall that

Γ̂ =
{
γ̂ ∈ C

(
[−1, 1],M

)
: γ̂(−1) = −û1, γ̂(1) = û1

}
and define

Γ̂c =
{
γ̂ ∈ C

(
[−1, 1],Mc

)
: γ̂(−1) = −û1, γ̂(1) = û1

}
.
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Clearly Γ̂c is dense in Γ̂ . So, by virtue of Proposition 1, we can find γ̂ ∈ Γ̂c such that

max
−1≤t≤1

∥∥Dγ̂(t)
∥∥p
p
≤ β3 with β3 ∈ (λ̂2, β2)

(
see (3.21)

)
. (3.22)

Because γ̂ ∈ Γ̂c, u∗ ∈ int C+ and v∗ ∈ − int C+, we can find θ ∈ (0, 1) small such that

θγ̂(t) ∈ [v∗, u∗] and θ
∣∣γ̂(t)(z)

∣∣ ≤ δ for all z ∈ Ω, all t ∈ [−1, 1]. (3.23)

Then, for all t ∈ [−1, 1], we have

ϕ̂
(
θγ̂(t)

)
= θp

p

∥∥Dγ̂(t)
∥∥p
p
−
∫
Ω

F
(
z, θγ̂(t)(z)

)
dz

≤ θp

p
(β3 − β2)

(
see (3.21), (3.22) and (3.23)

)
< 0

(
recall β3 ∈ (0, β2)

)
. (3.24)

So, if we set γ0 = θγ̂, then from (3.24) it follows that

ϕ̂|γ0 < 0. (3.25)

Next we produce a continuous path in W 1,p
0 (Ω) which connects θû1 and u∗ and along which ϕ̂ is negative. 

To this end, let

a = ϕ̂+(y0) = m̂∗
+ < 0 = ϕ̂+(0).

Applying Theorem 2 (the second deformation theorem), we can find a deformation

h : [0, 1] ×
(
ϕ̂0

+\K0
ϕ̂+

)
→ ϕ̂0

+ such that h(t, ·)|K0
ϕ̂+

= id|K0
ϕ̂+

∀t ∈ [0, 1],

h
(
1, ϕ̂0

+\K0
ϕ̂+

)
⊆ ϕ̂a

+ (3.26)

and

ϕ
(
h(t, u)

)
≤ ϕ

(
h(s, u)

)
for all s, t ∈ [0, 1], s ≤ t, all u ∈ ϕ̂0

+\K0
ϕ̂+

. (3.27)

Note that ϕ̂a
+ = {u∗} (see (3.17) and recall a < 0). We set

γ+(t) = h(t, θû1)+ for all t ∈ [0, 1].

This is a continuous path in W 1,p
0 (Ω) and

γ+(0) = h(0, θû1)+ = θû1, γ+(1) = h(1, θû1)+ = u∗

(see (3.26)). Moreover, we have

ϕ̂+(θû1) = ϕ̂(θû1) = ϕ̂
(
γ+(0)

)
< 0

(
see (3.25)

)
,

hence

ϕ̂+|γ+ < 0
(
see (3.27)

)
.
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Since γ+(t) ≥ 0 for all t ∈ [0, 1], we also have

ϕ̂|γ+ < 0. (3.28)

In a similar fashion, we produce another continuous path γ− in W 1,p
0 (Ω) which connects −θû1 and v∗

such that

ϕ̂|γ− < 0. (3.29)

We concatenate γ−, γ0 and γ+ and produce a path γ∗ ∈ Γ such that

ϕ̂|γ∗ < 0

(see (3.25), (3.28) and (3.29)), which implies that y0 �= 0 and y0 ∈ C1
0 (Ω) is a nodal smooth solution of 

(1.1). �
So, we can state the following multiplicity theorem for problem (1.1).

Theorem 3. If hypotheses H2 hold, then problem (1.1) has at least three nontrivial smooth solutions u0 ∈
int C+, v0 ∈ − int C+ and y0 ∈ C1

0 (Ω) nodal. Moreover, problem (1.1) has extremal constant sign smooth 
solutions.

As an application of this theorem, we consider the following parametric Dirichlet problem

−Δpu(z) = λu+(z)p−1 − μu−(z)p−1 − g
(
z, u(z)

)
in Ω, u|∂Ω = 0. (3.30)

On the perturbation g(z, x), we impose the following hypotheses:

H3: g : Ω × R → R is a Carathéodory function, such that
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |g(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
(ii) limx→±∞

g(z,x)
|x|p−2x = +∞ uniformly for a.a. z ∈ Ω;

(iii) limx→0
g(z,x)
|x|p−2x = 0 uniformly for a.a. z ∈ Ω.

Recall that C1 denotes the first Fucik curve of −ΔD
p . As a direct consequence of Theorem 3, we have the 

following result.

Corollary 1. If hypotheses H3 hold and (λ, μ) is above C1, then problem (3.30) has at least three nontrivial 
smooth solutions u0 ∈ int C+, v0 ∈ − int C+ and y0 ∈ C1

0 (Ω) nodal.

Remarks. If λ = μ > λ̂2, Corollary 1 improves the multiplicity theorem of Papageorgiou–Papageorgiou [18]. 
In [18] no sign information is provided for the third solution. Also, in [18] it is assumed that f(z, x) ≥ 0
for a.a. z ∈ Ω, all x ∈ R (sign condition) and f(z, ·) has subcritical growth both from above and below. 
Therefore the function

g(z, x) = g(x) = |x|r−2x− |x|s−2x for all x ∈ R with p < s < r < ∞

satisfies hypotheses H3 but not those of [18]. When p = 2 (semilinear case), Corollary 1 generalizes signifi-
cantly the works of [3,4,19,20], where g(z, x) = g(x) with g ∈ C1(R) (see [3,4,19]) or g Lipschitz (see [20]) 
and no sign information is given for the third solution.
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In fact, for the semilinear problem (i.e. p = 2), by strengthening the regularity of f(z, ·), we can have 
a stronger multiplicity theorem, producing four nontrivial smooth solutions, two of constant sign and two 
nodal. This is done using a combination of variational methods and Morse theory.

4. Semilinear problem

In this section we deal with the semilinear version (i.e. p = 2) of problem (1.1). So, the boundary value 
problem under consideration is the following:

−Δu(z) = f
(
z, u(z)

)
in Ω, u|∂Ω = 0. (4.1)

The hypotheses on the reaction f(z, x) are the following:

H4: f : Ω × R → R is a measurable function, such that for a.a. z ∈ Ω, f(z, 0) = 0, f(z, ·) ∈ C1(R) and
(i) |f ′

x(z, x)| ≤ a(z) + c|x|r−2 for a.a. z ∈ Ω, all x ∈ R, with a ∈ L∞(Ω)+, c > 0, 2 ≤ r ≤ 2∗;
(ii) limx→±∞

f(z,x)
x = −∞ uniformly for a.a. z ∈ Ω;

(iii) there exists an integer m ≥ 1 such that:

f ′
x(z, 0) ∈ [λ̂m, λ̂m+1] for a.a. z ∈ Ω,

f ′
x(z, ·) �= λ̂m, f ′

x(z, ·) �= λ̂m+1, and

f ′
x(z, 0) = lim

x→0

f(z, x)
x

uniformly for a.a. z ∈ Ω

(recall that {λ̂m}m≥1 are all distinct eigenvalues of −ΔD).

Remark. Evidently, the hypotheses on the reaction f(z, ·) are stronger. Now, we require that f(z, ·) is C1, 
it cannot have arbitrary growth from below but instead it is subcritical and at zero in contrast to H2(iii),
we do not allow for an asymmetric behavior as we approach zero from the left and the right respectively. 
These stronger conditions lead to the existence of a second nodal solution.

Theorem 4. If hypotheses H4 hold, then problem (4.1) has at least four nontrivial smooth solutions u0 ∈
int C+, v0 ∈ − int C+ and y0, ̂y ∈ C1

0 (Ω) nodal.

Proof. From Theorem 3, we already have three nontrivial smooth solutions u0 ∈ int C+, v0 ∈ − int C+
and y0 ∈ C1

0 (Ω) nodal. We may assume that u0, v0 are the extremal constant sign solutions. Recall that 
y0 ∈ [v0, u0] (see the proof of Proposition 6).

Let ρ = max{‖v0‖∞, ‖u0‖∞}. Since f(z, ·) ∈ C1(R) and using H4(i) via the mean value theorem, we see 
that we can find ξ̂ρ > 0 such that for a.a. z ∈ Ω, x → f(z, x) + ξ̂ρx is increasing on [−ρ, ρ]. Then

−Δ(u0 − y0)(z) + ξ̂ρ(u0 − y0)(z)

= f
(
z, u0(z)

)
+ ξ̂ρu0(z) − f

(
z, y0(z)

)
+ ξ̂ρy0(z) ≥ 0 a.e. in Ω,

hence

−Δ(u0 − y0)(z) ≤ ξ̂ρ(u0 − y0)(z) a.e. in Ω,

therefore

u0 − y0 ∈ int C+
(
see Vasquez [21]

)
.
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In a similar fashion, we show that y0 − v0 ∈ int C+. Therefore

y0 ∈ intC1
0 (Ω) [v0, u0]. (4.2)

From the proof of Proposition 5 (see the Claim), we show that u0, v0 are both local minimizers of the 
functional ϕ̂ defined there by truncating f(z, ·) at {v0(z), u0(z)}. So, we have

Ck(ϕ̂, u0) = Ck(ϕ̂, v0) = δk,0Z for all k ≥ 0. (4.3)

Let ϕ : H1
0 (Ω) → R be the energy functional for problem (4.1) defined by

ϕ(u) = 1
2‖Du‖2

2 −
∫
Ω

F
(
z, u(z)

)
dz for all u ∈ H1

0 (Ω).

Hypotheses H4 imply that ϕ ∈ C2(H1
0 (Ω)). Hypothesis H4(iii) and the unique continuation property of 

the eigenspaces imply that u = 0 is a nondegenerate critical point of ϕ with Morse index

dm = dim
m⊕
i=1

E(λ̂i)

(E(λ̂i) being the eigenspace corresponding to the eigenvalue λ̂i, i ≥ 1). Hence

Ck(ϕ, 0) = δk,dm
Z for all k ≥ 0

(
see (2.4)

)
. (4.4)

Note that ϕ|[v0,u0] = ϕ̂|[v0,u0] and v0 ∈ − int C+, u0 ∈ int C+. Hence

Ck(ϕ|C1
0 (Ω), 0) = Ck(ϕ̂|C1

0 (Ω), 0) for all k ≥ 0. (4.5)

From Palais [17] (see also Chang [7, p. 14]), we know that

Ck(ϕ|C1
0 (Ω), 0) = Ck(ϕ, 0) and Ck(ϕ̂|C1

0 (Ω), 0) = Ck(ϕ̂, 0) for all k ≥ 0. (4.6)

Combining (4.4), (4.5) and (4.6), we infer that

Ck(ϕ̂, 0) = δk,dm
Z for all k ≥ 0. (4.7)

We have

〈
ϕ′′(y0)u, v

〉
=

∫
Ω

(Du,Dv)RNdz−
∫
Ω

f ′
x(z, y0)uvdz for all u, v ∈ H1

0 (Ω).

Let σ(ϕ′′(y0)) be the spectrum of ϕ′′(y0) and assume that σ(ϕ′′(y0)) ⊆ [0, +∞). Then

‖Du‖2
2 ≥

∫
Ω

f ′
x(z, y0)u2

dz for all u, v ∈ H1
0 (Ω). (4.8)

If u ∈ kerϕ′′(y0), then

−Δu(z) = f ′
x(z, y0)u(z) a.e. in Ω, u|∂Ω = 0. (4.9)



662 N.S. Papageorgiou et al. / J. Math. Anal. Appl. 422 (2015) 646–666
From (4.8) we see that λ̂+(f ′
x(·, y0(·))) ≥ 1. Hence (4.9) implies that

dim kerϕ′′(y0) ≤ 1. (4.10)

By virtue of (4.2) we have

Ck(ϕ|C1
0 (Ω), y0) = Ck(ϕ̂|C1

0 (Ω), y0) for all k ≥ 0,

hence

Ck(ϕ, y0) = Ck(ϕ̂, y0) for all k ≥ 0
(
see [7,17]

)
. (4.11)

But we know that y0 is a critical point of mountain pass type for the functional ϕ̂ (see the proof of 
Proposition 5). Hence

C1(ϕ̂, y0) �= 0
(
see Chang [7] and Mawhin and Willem [16]

)
hence

C1(ϕ, y0) �= 0
(
see (4.11)

)
. (4.12)

From (4.10), (4.12) and Proposition 2.5 of Bartsch [5] and from Mawhin and Willem [16], we have

Ck(ϕ, y0) = δk,1Z for all k ≥ 0

hence

Ck(ϕ̂, y0) = δk,1Z for all k ≥ 0
(
see (4.11)

)
. (4.13)

Recall that ϕ̂ is coercive (see (3.16)). Therefore

Ck(ϕ̂,∞) = δk,1Z for all k ≥ 0. (4.14)

Suppose Kϕ̂ = {0, u0, v0, y0}. From (4.3), (4.7), (4.13), (4.14) and the Morse relation with t = −1 (see 
(2.3)), we have

2(−1)0 + (−1)1 + (−1)dm = (−1)0,

hence

(−1)dm = 0, a contradiction.

Therefore we can find ŷ ∈ Kϕ̂, ŷ /∈ {0, u0, v0, y0}. Hence ŷ ∈ C1
0 (Ω) solves (4.1) and it is nodal (see 

(3.17)). �
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5. Problems concave near the origin

In Theorems 3 and 4, the reaction f(z, ·) is restricted to be (p −1)-linear near zero. This precludes nonlin-
earities concave near the origin. This raises the question of whether we can have a multiplicity theorem with 
sign information for the solutions, in the presence of concave nonlinearities. Recently, Hu and Papageorgiou
[13] studied a parametric class of such problems and proved certain bifurcation type results.

We introduce the following hypotheses on the reaction f(z, x):

H5: f : Ω × R → R is a Carathéodory function, such that:
(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that |f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
(ii) limx→±∞

f(z,x)
|x|p−2x = −∞ uniformly for a.a. z ∈ Ω;

(iii) there exist r ∈ (p, p∗) and constants ĉ1, ̂c2 > 0, ĉ1 > λ̂2 such that

f(z, x)x ≥ ĉ1|x|p − ĉ2|x|r for a.a. z ∈ Ω, all x ∈ R.

Remark. Now the growth of f(z, ·) is subcritical both from above and below.

Example. A simple function satisfying hypotheses H5 is the following

f(x) = |x|q−2x− ĉ|x|r−2x for all x ∈ R, with 1 < q ≤ p < r < ∞, ĉ > λ̂2.

We start by considering the following auxiliary Dirichlet problem:

−Δpu(z) = ĉ1
∣∣u(z)

∣∣p−2
u(z) − ĉ2

∣∣u(z)
∣∣r−2

u(z) in Ω, u|∂Ω = 0. (5.1)

Proposition 6. Problem (5.1) has a unique nontrivial positive solution u ∈ int C+ and a unique nontrivial 
negative solution v = −u ∈ − int C+.

Proof. Let ψ+ : W 1,p
0 (Ω) → R be the C1-functional defined by

ψ+(u) = 1
p
‖Du‖pp −

ĉ1
p

∥∥u+∥∥p
p

+ ĉ2
p

∥∥u+∥∥r
r

for all u ∈ W 1,p
0 (Ω).

Then

ψ+(u) ≥ 1
p
‖Du‖pp − ĉ3

∥∥u+∥∥p
r

+ ĉ2
r

∥∥u+∥∥r
r

for some ĉ3 > 0 (recall r > p). (5.2)

Because r > p, from (5.2) we infer that ψ+ is coercive. Also, since r < p∗, by the Sobolev embedding 
theorem, we have that ψ+ is sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we 
can find u ∈ W 1,p

0 (Ω) such that

ψ+(u) = inf
{
ψ+(u) : u ∈ W 1,p

0 (Ω)
}

= m+. (5.3)

Since ĉ2 > λ̂2, for t ∈ (0, 1) small, we have ψ(tû1) < 0, hence

ψ+(u) = m+ < 0 = ψ+(0), i.e. u �= 0.

From (5.3), we have ψ′
+(u) = 0, hence

A(u) = ĉ1
(
u+)p−1 − ĉ2

(
u+)r−1

. (5.4)
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On (5.4) we act with −u− ∈ W 1,p
0 (Ω) and obtain u ≥ 0, u �= 0. Hence

A(u) = ĉ1u
p−1 − ĉ2u

r−1,

and we obtain that

u ∈ C+\{0} solves problem (5.1).

If ρ = ‖u‖∞, then Δpu(z) ≤ ĉ2ρ
r−pu(z)p−1 a.e. in Ω, hence

u ∈ int C+
(
see Vasquez [21]

)
.

Now, we show the uniqueness of u ∈ int C+. To this end, let u, v be two nontrivial positive solutions of 
(5.1). From the above argument, we have that u, v ∈ int C+. Let

R(u, v)(z) =
∥∥Du(z)

∥∥p − ∥∥Dv(z)
∥∥p(Dv(z), D

(
u(z)p

v(z)p−1

))
RN

.

From the generalized Picone’s identity of Allegretto and Huang [2], we have

R(u, v)(z) ≥ 0 a.e. in Ω.

Note that ∫
Ω

(
ĉ1 − ĉ2u

r−p
)(
up − vp

)
dz

=
∫
Ω

(
ĉ1u

p−1 − ĉ2u
r−1

up−1

)(
up − vp

)
dz

=
∫
Ω

−Δpu

(
u− vp

up−1

)
dz

(
see (5.1)

)

=
∫
Ω

‖Du‖p−2
(
Du,Du−D

(
vp

up−1

))
RN

dz

(
by the nonlinear Green’s identity see [12, p. 210]

)
= ‖Du‖pp − ‖Dv‖pp +

∫
Ω

R(v, u)dz. (5.5)

Reversing the roles of u and v in the above argument, we obtain

∫
Ω

(
ĉ1 − ĉ2v

r−p
)(
vp − up

)
dz = ‖Dv‖pp − ‖Du‖pp +

∫
Ω

R(u, v)dz. (5.6)

Adding (5.5) and (5.6), we obtain

0 ≥
∫

ĉ2
(
vr−p − ur−p

)(
up − vp

)
dz =

∫ (
R(v, u) + R(u, v)

)
dz ≥ 0,
Ω Ω
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hence

u = v
(
since x → ĉ2x

r−p is strictly increasing in (0,∞)
)
.

This proves the uniqueness of u ∈ int C+.
By the oddness of (5.1), v = −u ∈ − int C+ is the unique nontrivial negative solution of (5.1). �
Let S+ (resp. S−) be the set of nontrivial positive (resp. negative) solutions of (1.1). From Proposition 3, 

we show that S+, S− �= ∅ and S+ ⊆ int C+, S− ⊆ − int C+.
Note that hypothesis H1(iii) allows the presence of concave terms.

Proposition 7. If hypotheses H5 hold and ũ ∈ S+ (resp. ṽ ∈ S−), then u ≤ ũ (resp. ṽ ≤ v = −u).

Proof. We introduce the following Carathéodory function

γ+(z, x) =

⎧⎨
⎩

0 if x < 0
ĉ1x

p−1 − ĉ2x
r−1 if 0 ≤ x ≤ ũ(z)

ĉ1ũ(z)p−1 − ĉ2ũ(z)r−1 if x > ũ(z).
(5.7)

Let Γ+(z, x) =
∫ x

0 γ+(z, s)ds and consider the C1-functional σ+ : W 1,p
0 (Ω) → R defined by

σ+(u) = 1
p
‖Du‖pp −

∫
Ω

Γ+
(
z, u(z)

)
dz for all u ∈ W 1,p

0 (Ω).

Evidently σ+ is coercive (see (5.7)) and it is sequentially weakly lower semicontinuous (recall that r < p∗). 
So, by the Weierstrass theorem, we can find û ∈ W 1,p

0 (Ω) such that

σ+(û) = inf
{
σ+(u) : u ∈ W 1,p

0 (Ω)
}
. (5.8)

As before, since ĉ1 > λ̂2, we have σ+(û) < 0 = σ+(0), hence û �= 0. From (5.8), we have σ′
+(û) = 0, hence

A(û) = Nγ+(û). (5.9)

Acting on (5.9) with −û− ∈ W 1,p
0 (Ω) and with (û− ũ)+ ∈ W 1,p

0 (Ω), we show that û ∈ [0, ̃u], û �= 0 (see 
the proof of Proposition 3). Hence from (5.9) and (5.7), we have

A(û) = ĉ1û
p−1 − ĉ2û

r−1,

hence

û is a nontrivial solution of (5.1).

Then û = u ∈ int C+ (see Proposition 6), and we conclude that

u ≤ ũ.

Similarly, we show that ṽ ≤ v = −u ∈ − int C+. �
Using this proposition, we can show the existence of extremal constant sign solutions for problem (1.1). 

This is done as in the proof of Proposition 4, using the Kuratowski–Zorn lemma. In this case, the nontriviality 
of the limit function u (see (3.10)) follows from the fact that u ≥ u (see Proposition 7).

Similarly for the extremal nontrivial negative solution. So, we can state the following proposition.
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Proposition 8. If hypotheses H5 hold, then problem (1.1) admits extremal constant sign solutions u∗ ∈ int C+, 
v∗ ∈ − int C+.

Having these extremal constant sign solutions and reasoning as in the proof of Proposition 5, we have 
the following multiplicity theorem.

Theorem 5. If hypotheses H5 hold, then problem (1.1) admits at least three nontrivial smooth solutions 
u0 ∈ int C+, v0 ∈ − int C+ and y0 ∈ C1

0 (Ω) nodal.
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