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resumo 
 

 

Os sistemas equipados com múltiplas antenas no emissor e no recetor, 
conhecidos como sistemas MIMO (Multiple Input Multiple Output), oferecem 
capacidades mais elevadas, permitindo melhor rentabilização do espectro e/ou 
utilização de aplicações mais exigentes. É sobejamente sabido que o canal 
rádio é caracterizado por propagação multipercurso, fenómeno considerado 
problemático e cuja mitigação tem sido conseguida através de técnicas como 
diversidade, formatação de feixe ou antenas adaptativas. Explorando 
convenientemente o domínio espacial os sistemas MIMO transformam as 
características multipercurso do canal numa mais-valia e permitem criar vários 
canais virtuais, paralelos e independentes. Contudo, os benefícios atingíveis 
são condicionados pelas características do canal de propagação, que poderão 
não ser sempre as ideais. 
 
Este trabalho centra-se na caracterização do canal rádio para sistemas MIMO. 
Inicia-se com a apresentação dos resultados fundamentais da teoria da 
informação que despoletaram todo o entusiamo em torno deste tipo de 
sistemas, sendo discutidas algumas das suas potencialidades e uma revisão 
dos modelos existentes para sistemas MIMO. 
 
A caracterização do canal MIMO desenvolvida neste trabalho assenta em 
medidas experimentais do canal direcional adquiridas em dupla via. O sistema 
de medida é baseado num analisador de redes vetorial e numa plataforma de 
posicionamento bidimensional, ambos controlados por um computador, 
permitindo obter a resposta em frequência do canal rádio nos vários pontos 
correspondentes à localização dos elementos de um agregado virtual. As 
medidas são posteriormente processadas com o algoritmo SAGE (Space-
Alternating Expectation-Maximization), de forma a obter os parâmetros (atraso, 
direção de chegada e amplitude complexa) das componentes multipercurso 
mais significativas. Seguidamente, estes dados são tratados com um algoritmo 
de classificação (clustering) e organizados em grupos. Finalmente é extraída 
informação estatística que permite caracterizar o comportamento das 
componentes multipercurso do canal. 
 
A informação acerca das características multipercurso do canal, induzidas 
pelos espalhadores (scatterers) existentes no cenário de propagação, 
possibilita a caracterização do canal MIMO e assim avaliar o seu desempenho. 
O método foi por fim validado com medidas MIMO. 
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abstract 

 
Systems equipped with multiple antennas at the transmitter and at the receiver, 
known as MIMO (Multiple Input Multiple Output) systems, offer higher 
capacities, allowing an efficient exploitation of the available spectrum and/or 
the employment of more demanding applications. It is well known that the radio 
channel is characterized by multipath propagation, a phenomenon deemed 
problematic and whose mitigation has been achieved through techniques such 
as diversity, beamforming or adaptive antennas. By exploring conveniently the 
spatial domain MIMO systems turn the characteristics of the multipath channel 
into an advantage and allow creating multiple parallel and independent virtual 
channels. However, the achievable benefits are constrained by the propagation 
channel’s characteristics, which may not always be ideal. 
 
This work focuses on the characterization of the MIMO radio channel. It begins 
with the presentation of the fundamental results from information theory that 
triggered the interest on these systems, including the discussion of some of 
their potential benefits and a review of the existing channel models for MIMO 
systems. 
 
The characterization of the MIMO channel developed in this work is based on 
experimental measurements of the double-directional channel. The 
measurement system is based on a vector network analyzer and a 
two-dimensional positioning platform, both controlled by a computer, allowing 
the measurement of the channel’s frequency response at the locations of a 
synthetic array. Data is then processed using the SAGE (Space-Alternating 
Expectation-Maximization) algorithm to obtain the parameters (delay, direction 
of arrival and complex amplitude) of the channel’s most relevant multipath 
components. Afterwards, using a clustering algorithm these data are grouped 
into clusters. Finally, statistical information is extracted allowing the 
characterization of the channel’s multipath components. 
 
The information about the multipath characteristics of the channel, induced by 
existing scatterers in the propagation scenario, enables the characterization of 
MIMO channel and thus to evaluate its performance. The method was finally 
validated using MIMO measurements. 
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Chapter 1 

 Introduction 

Personal wireless communications are certainly a story of true success. The most obvious 

is perhaps the case of mobile communications, where the achievement is due to its 

attractiveness and users’ acceptance on the one hand and on the other, a great competition 

between operators of mobile networks which allows providing reasonable prices for the 

advantages that these networks offer when compared with the fixed network. However, 

nowadays other types of wireless communications such as WLANs (Wireless Local Area 

Networks) and fixed broadband wireless accesses also take prominent places in society. 

These services have been experiencing an increasing need for higher transmission rates, 

capacity and quality of service owing to the increase of users and also owing to the 

emergence of more demanding applications. 

Power and spectrum constraints enforce a difficult challenge: to enhance the performance, 

under unfriendly conditions, without increasing the power or spectrum requirements. The 

radio channel is particularly problematical due to phenomena as multipath, fading, 

shadowing, time dispersion and Doppler shift. A convenient use of the assigned frequency 

bands is required so new, appealing and ground-breaking services may be placed at the 

users’ disposal. Therefore, solutions able to exploit efficiently the available spectrum need 

to be employed, not only for mobile communications but also for other types of wireless 

communications. 
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Early communication systems were based on the use of one antenna at transmitter and one 

antenna at the receiver being known as SISO (Single-Input Single-Output) systems. This 

kind of systems allows exploiting time, frequency and codification domains. By employing 

smart antennas techniques – systems where several antennas are available at one side 

(usually at the base station) – it is possible to exploit partially the spatial domain [1-3]. 

Namely, it is possible to benefit from the advantages offered by spatial diversity techniques 

[4, 5] and/or from the gains given by beamforming [6, 7]. 

MIMO (Multiple-Input Multiple-Output) systems employ several antennas at both link 

ends (i.e., at the transmitter and at the receiver) and may be perceived as the logical 

extension of smart antennas technology and allow to fully exploit the spatial domain. 

These systems promise more than the simultaneous use, at the transmitter and at the 

receiver, of spatial diversity or beamforming. Studies presented in [8] and [9] showed that 

by using MIMO technology in an environment characterized by an high number of 

independent multipath components the capacity linearly grows with the minimum number 

of transmit and receive antennas, while the use of several antennas at one link end only 

provides a logarithmic increase. The concept of spatial multiplexing is the key for this 

result: the multipath propagation characteristics are conveniently exploited so several 

parallel non-interfering virtual sub-channels are provided. 

Results on the capacity gains offered by MIMO systems, provided by early studies, 

stimulated the interest on these systems in the area of space-time signal processing. A 

number of algorithms [10-14] have been proposed in order to achieve the gains foreseen. 

Nevertheless, the achievable benefits are constrained by the characteristics of the 

propagation channel which are not always the ideal or the most desirable. Only a 

comprehensive description of the propagation channel allows the assessment of the actual 

transmission capacity. 

This work aims to be a contribution to the characterization of the radio channel for MIMO 

systems. The channel is described using experimental measurements of the 

double-directional channel. The measurement system is based on a vector network 

analyzer and a two-dimensional positioning platform, both controlled by a computer, 

allowing the measurement of the channel’s frequency response at the locations of a 

synthetic array. Data is then processed using the SAGE (Space-Alternating Generalized 

Expectation-Maximization) algorithm to obtain the parameters (delay, direction of arrival 

and complex amplitude) of the channel’s most relevant multipath components. Afterwards, 

using a clustering algorithm, these data are grouped into clusters. Finally, statistical 

information is extracted allowing the characterization of the channel’s multipath 
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components which enables the characterization of MIMO channel and thus to evaluate its 

performance. 

This dissertation is organized as follows: 

Chapter 2 presents the fundamental results from information theory that triggered the 

interest on these systems, a discussion of some of their potential benefits and a review of 

the existing channel models for MIMO systems. 

Chapter 3 starts with the theoretical characterization of the wideband directional channel 

impulse response. After that, the SIMO (Single-Input Multiple-Output) measurement 

system and the measurement campaign are presented. The measurement campaign has 

been carried out inside a sports hall: for each transmit-receive arrangement of positions a 

double-directional measurement is available, consisting of two measurement files, 

corresponding respectively, to the forward and reverse measurement. Subsequently, a brief 

review on the available methods to estimate the parameters of the multipath components 

arriving to a given receiver is given: the SAGE algorithm is explained in detail and its 

performance is evaluated using synthetic data, generated with the extended Saleh-

Valenzuela model. Finally, experimental directional channel impulse responses, obtained 

by entering measured data into the SAGE algorithm, are given. 

Chapter 4 presents an exploratory study of the experimental directional channel impulse 

responses obtained in Chapter 3. It begins with a brief review of the clustering algorithms, 

focusing mainly on the selected algorithm. Next, the clustering framework is described 

covering: the selected clustering algorithm; the measure function for evaluation of distance 

between multipath components; the algorithm initialization; and the estimation of the 

number of clusters that better fits the data. By using synthetic data sets, a structured study 

on the performance of the selected framework and procedure adjustments, motivated by 

this evaluation, are presented. Once more, synthetic data sets were generated with the 

extended Saleh-Valenzuela model. Afterwards, the clustering output solutions for the 

experimental directional channel impulse responses estimated in chapter 3, with the SAGE 

algorithm, are presented and discussed. To finish, a physical analysis relating each cluster 

with the scenario objects and obstacles is presented: at this stage clusters are further 

classified according to the type of interaction which they represent (direct ray, 

single-interaction, higher order interaction). Additionally, clusters from each pair of 

measurement files composing a double-directional measurement, are linked at this stage. 

Chapter 5 explains the MIMO channel model proposed and the MIMO channel simulator 

implemented during this work. It starts with the envisaged channel model assumptions. In 
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order to parameterize this model, a statistical analysis of the categorized data is 

accomplished. Then, the MIMO measurement setup and the measurement campaign are 

described. The MIMO channel measurements are presented and used for validation 

purposes and so, the chapter ends with a comparison of the simulator outputs and the 

measurements results. 

Finally, Chapter 6 summarizes the major results and achievements from this dissertation 

and draws some conclusions. Possible future work is also identified. 
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Chapter 2 

 MIMO Wireless Communications 

This chapter presents the fundamentals of MIMO systems opening with the required 

mathematical analysis to obtain the capacity accomplished by the system. The MIMO link 

is represented using a complex matrix and its capacity is achieved using the extended 

Shannon’s capacity formula. Subsequently, a discussion on MIMO systems potentials and 

benefits is presented. The remaining of the chapter is devoted to the review of the most 

relevant existent channel models for MIMO systems. 

2.1. System Model 

Taking into account that MIMO systems make use of multiple antennas at both link ends, 

the MIMO channel must be described between all transmit and receive antenna pairs. 

Consider a MIMO system equipped with Nt antennas at the transmitter and Nr antennas at 

the receiver, as Figure 2-1 shows. Furthermore, consider the time-variant impulse response 

between the j-th transmitting antenna and the i-th receiving antenna represented as 

 ,, th ji . 
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Figure 2-1:  Schematic of a MIMO system with Nt antennas at the transmitter and Nr antennas at the receiver. 

From a system level point of view, the linear time-variant MIMO channel may be 

represented by the Nr Nt  matrix,  ,tH , expressed as 
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(2.1) 

Assuming sj(t) denoting the transmitted signal by the j-th antenna, the 1Nt  vector, 

       1 2

T

Ntt s t s t s t   s , corresponds to the Nt transmitted signals. The vector 

containing the Nr received signals,        1 2

T

Nrt y t y t y t   y , is then defined 

as 

        


 tdttt nsHy ,
 

(2.2) 

where t and τ represent time and delay, respectively, and  tn  is a noise vector. 

If time-invariant channels are taken into account, the channel matrix depends only on the 

delay, i.e.,     HH ,t . Therefore, 

             t t d t t t


        y H s n H s n  (2.3) 

where   denote the convolution operator. 

In addition, if the transmitted signal bandwidth is narrow enough that the channel response 

is allowed to be treated as frequency flat, the channel matrix is non-zero only for 0  and 

may be denoted simply by H . Under this assumption, equation (2.3) may be written as 

     ttt nsHy  . (2.4) 

In the discrete time domain equation (2.4) may alternatively be written as 

. . .

. . .

MIMO

Channel

H

 ts1

 ts2

 tsNt

 ty1

 tyNr

 ty2
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     kkk nsHy   (2.5) 

where k represents the index of the time sample. As may be easily concluded by observing 

this relation, the output at a given time instant k does not depend on the past inputs. Thus, 

aiming the legibility improvement, equation (2.5) can be simply expressed as 

 y Hs n . (2.6) 

2.2. Capacity analysis 

2.2.1. From Shannon to MIMO Systems Capacity 

The Shannon’s capacity formula provides the maximum possible rate of information 

transmission that can be achieved with arbitrarily small error probability, through a given 

channel. The instantaneous capacity, expressed in bps/Hz, of a frequency flat SISO 

channel (i.e., a white Gaussian channel) with complex gain h, is given by [8, 12] 

 2

2

2

22 1log1log hh
P

C T
SISO 













 
(2.7) 

with PT being the transmitted power, 2  the noise power and  

2
 TP


 

(2.8) 

the Signal to Noise Ratio (SNR) at the receiver. 

If receive diversity is present, it is possible to improve the capacity given the existence, at 

the receiver, of several replicas of the transmitted signal which potentially contribute to an 

increase of the SNR. Assuming Nr antennas at the receiver and maximum ratio combining, 

the SIMO capacity is defined as [14] 









 



Nr

i

iSIMO hC
1

2

2 1log 

 

(2.9) 

where hi is the gain of the channel established between the transmit antenna and the i-th 

receive antenna. Similarly, in a transmit diversity case with Nt transmitting antennas, if we 

consider constant total transmit power (PT) and no Channel State Information (CSI) at the 

transmitter, the transmit power is equally distributed by the transmitting antennas and 

MISO (Multiple-Input Single-Output) capacity is given by 
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












 



Nt

j

iMISO h
Nt

C
1

2

2 1log


. 

(2.10) 

Examining equations (2.9) and (2.10) it is obvious that SIMO and MISO capacities 

increase logarithmically with the linear increase in the number of receive antennas, Nr, and 

transmit antennas, Nt, respectively. Moreover, it is easy to notice that CSIMO > CMISO. This 

result can be explained by the impossibility of the transmitter, in the MISO channel, to 

conveniently exploit the antenna array gain, since it has no CSI. Assuming a MISO 

channel with CSI and identical channel conditions, it is possible to show [13] that MISO 

capacity equals SIMO capacity. 

Consider now the use of multiple antennas at both link ends. In this case, the channel 

presents multiple inputs as well as multiple outputs and its capacity may be computed by 

the extended Shannon’s capacity formula presented in [8] and [9], defined as 

 
   H

NrMIMOC HQHI
QQ




detlogmax 2
tr:   

(2.11) 

where 
NrI  is the NrNr   identity matrix, H

H  represents the conjugate transpose matrix of 

H  and E H   Q ss  is the NtNt   covariance matrix of the transmitted vector s, with 

 E  being the mathematical expectation. The condition   Qtr  must be satisfied in 

order to constrain the total transmit power to PT, regardless of number of transmitting 

antennas (Nt). 

2.2.2. Eigenvalue Analysis of the Channel 

No CSI at the transmitter 

If the transmitter has no CSI, the Nt components of the transmitted signal vector should be 

statistically independent and equally powered [13]. In this case, we have   NtNt IQ   

and 

2log det H

UP NrC
Nt

  
   

  
I HH

. 
(2.12) 

It can be shown that the MIMO channel capacity given by this equation increases linearly 

with the minimum number of transmit and receive antennas (Nt and Nr), contrasting with 

the logarithmically increase offered by the capacity of SIMO and MISO systems presented, 

respectively, in equations (2.9) and (2.10). To understand this result remember that every 
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matrix H  may be decomposed into singular values according to the following 

transformation 

H
UDVH   (2.13) 

where U and V are unitary matrices
1
 and D is a diagonal matrix containing the singular 

values of H , which by definition are always non-negative. Therefore, 

  HHHH
UUUDDUHH Λ  (2.14) 

is easily recognized as the eigenvalue decomposition of H
HH  with Λ the diagonal matrix 

of its eigenvalues. Denoting  Nrλ,λ,λ 21diagΛ  and recalling the well-known 

relation between singular value decomposition and eigenvalue decomposition [evident in 

equation (2.14)] it is straightforward to conclude that the singular values of H  may be 

expressed as  Nr,,  21diagD . 

Replacing equation (2.14) and   NtNt IQ   in equation (2.11) we can write 

















 H

NrUP
Nt

C UUI


detlog2

 

(2.15) 

with the subscript UP denoting Uniform Power allocation. Note that 
UPC  is not, actually, 

the Shannon capacity, because if the transmitter has the CSI it can generate a signal 

covariance which outperforms   NtNt IQ  . Even so, we refer to the expression in 

equation (2.15) as the capacity. 

Remembering that U is unitary and using the identity    BAIABI  nm detdet  with A 

nm  and B mn , equation (2.15) reduces to 



















Nt
C NrUP


Idetlog2

, 
(2.16) 

which can also be expressed as 














Nr

i

iUP
Nt

C
1

2 1log 


. 
(2.17) 

Comparing this result with equation (2.7) presented in section 2.2.1 for SISO channels, we 

verify that the MIMO channel capacity is given by the sum of capacities of Nr SISO 

independent channels, with λi (the squared singular values of matrix H) being the 

                                                 
1
 A n×n (square) matrix, U, is unitary if it satisfies the condition 

n

HH
IUUUU  . This condition 

implies that U is unitary if and only if H
UU 1 . 
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corresponding channel gains and PT/Nt being the corresponding transmit power. It is 

well-known that the number of non-zero singular values of a NtNr   matrix, which is 

called the matrix rank, is at the most, equal to the minimum of Nr and Nt. Thus, the use of 

multiple antennas at both link ends, generates a set of virtual parallel sub-channels, 

between the transmitter and the receiver, resulting in a linear capacity increase with 

 NtNrr ,min , i.e., the minimum number of transmit and receive antennas. 

Nevertheless, the MIMO capacity given by equation (2.17), depends crucially on the 

number and distribution of non-zero eigenvalues of the matrix H
HH . Obviously, if some 

eigenvalues are very small or zero, the system does not accomplish the expected capacity 

gain since the power allocated to these sub-channels cannot reach the receiver. Results 

presented in [8] and [9] demonstrated that the linear capacity growth is achieved for the 

independent and identically distributed (iid) flat Rayleigh fading channel, in which case the 

entries of matrix H follow a complex-Gaussian distribution. 

With CSI at the transmitter 

Consider now the case where the transmitter has information about the channel. Would this 

information, somehow, help to enhance the channel capacity? CSI at the transmitter may 

be achieved through feedback from the receiver. In this case, the individual sub-channels 

may be accessed using linear signal processing at the transmitter and the receiver, enabling 

an increase in the capacity. 

Let the 1r  signal vector which will be transmitted be denoted as s~ , with r  being the 

rank of the channel matrix, H . Recall the system model presented in equation (2.6) and 

also, the singular value decomposition presented in equation (2.13). Note that, if the 

channel matrix is known at the transmitter, it may compute the corresponding singular 

value decomposition. Then, before transmission, the signal vector s~  is multiplied by 

matrix V  such that sVs ~  (here V  has dimension rNt  , corresponding to the first r  

right singular vectors of H ). At the receiver, the received signal vector y  is multiplied by 

the matrix H
U  according with yUy

H~  (similarly, here U  has dimension rNr  , 

corresponding to the first r  left singular vectors of H ) . Hence, equation (2.6) may be 

rewritten as
2
 

nsDy ~~~   (2.18) 

                                                 
2
 Note that the channel matrix may be expressed as H

UDVH  , with U  and V  being matrices with 

dimension rNr   and rNt  , respectively, corresponding to the first r  left and right singular vectors  

of H , respectively; and with D  being a rr   diagonal matrix containing the non-zero singular values of 

H . In this case U  and V  are not unitary matrices but r

H
IVV   and r

H
IUU   are valid. 
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where the transformed received vector, y~ , and the transformed noise vector, nUn
H~ , are 

both 1r  vectors and D  is a r –dimensional diagonal matrix. Equation (2.18) means that 

if CSI is available at the transmitter H  may be explicitly decomposed into r  parallel 

sub-channels, fulfilling 

riiiii ,,2,1,~~~  nsy 
. (2.19) 

This explicit decomposition of the channel grants to the transmitter the access to individual 

sub-channels, allowing the use of some power allocation scheme which aims to maximize 

the channel capacity. This may be achieved by adjusting, in equation (2.11), the matrix of 

the signal covariance given by     HHH
VssVssQ ~~EE  . 

Consider    r

H  ,,diag~~E 21~  ssQs
, with   iis 

2~E . Again, to maintain the 

total power constrained to PT the condition   sQ~tr  should be satisfied. Using the 

singular value decomposition of the channel presented in equation (2.13), equation (2.11) 

may now be written as 

 
   s

QQ
ΛQI

ss

~2
tr:

detlogmax
~~




rOPC
  

(2.20) 

where OP denotes Optimum Power allocation. Alternatively, 

 



r

i

iiOPC
1

2 1log 
 

(2.21) 

where the condition 

1

r

i

i

 


  with 0i   (2.22) 

must be satisfied. 

The problem that arises is to obtain the weighting coefficients, 
i , which provide optimum 

power allocation and thus, maximum transmission bit rate. This problem has already been 

studied and the solution is the well-know “water-filling” algorithm [9, 13, 15]. It may be 

easily understood if we make an analogy with a set of vessels, each having a given liquid 

level, specified by i1  and that it is intended to fill all the vessels to a common level . 

This can be traduced mathematically by 













 r

r

i

i

1111
2

2

1

1


 

(2.23) 

where the weighting coefficients, i , fulfill the conditions in equation (2.22). 
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The water-filling principle is illustrated in Figure 2-2 showing that for each level 
i1  less 

than , the optimal power allocation consists in filling the corresponding sub-channel up to 

the level defined by . Therefore, we conclude that the best performing sub-channels 

(higher gain) receive more power while the worst performing channels get less power. 

Eventually, if 
i1  is greater than , no power will be allocated to the corresponding 

sub-channel. 

The solution can be found iteratively as follows. First, the counter k is set to 0 (this counter 

indicates the number of unused sub-channels). Then the level  is obtained taking the 

power constraint into account, according to 












 





kr

i ikr 1

11




. 

(2.24) 

Finally, the power allocated to each sub-channel is computed using 

kni
i

i  ,,1,
1






. 
(2.25) 

If the power allocated to the weakest channel is negative, i.e., 0kn , this channel should 

be discarded by defining 0kn  and the power allocated to the remaining channels 

should be updated, by running again the algorithm with the counter k incremented by 1. 

The procedure is iterated until the power allocated to each channel is non-negative. 

Evidently, as this method only considers the channels with good-quality and rejects the bad 

ones, it is expected that the corresponding capacity is greater than, or at least equal to, the 

capacity achieved without CSI at the transmitter. 

 
Figure 2-2:  Illustration of the water-filling algorithm. 
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2.2.3. Stochastic Channels 

MIMO capacity presented until now refers to the case of a deterministic channel or a 

sample channel realization. However, in general the channel matrix, H, is random and the 

corresponding capacity is a random variable where each channel realization presents an 

instantaneous capacity given by equation (2.17) if the channel is unknown at the 

transmitter, or equation (2.21) otherwise. The evaluation of the capacity offered by fading 

channels is usually based on two statistic quantities, namely, the ergordic capacity and the 

outage capacity. 

Ergodic Capacity 

The ergodic capacity of a MIMO channel is the ensemble average of the transmission rate 

over the distribution of the elements of the channel matrix, H [13]. It is particularly 

relevant when the channel is ergodic, i.e., every channel matrix is an independent 

realization of the same stochastic process and changes faster than the duration of a 

codeword (fast fading channel). In this case, any codeword experiences a large number of 

different channel realizations and the ergodic capacity can be viewed as the Shannon 

capacity of the channel since it is possible to achieve the corresponding information rate, 

with arbitrarily small error probability, if optimal codebooks are used. 

Figure 2-3 presents the ergodic capacity as a function of the SNR for some antenna 

configurations, assuming an iid Rayleigh fading channel (the elements of the channel 

matrix follow a zero-mean and unit variance complex-Gaussian distribution) and channel 

unknown at the transmitter. Naturally, the ergodic capacity improves with increasing SNR. 

In addition, we observe that ergodic capacity improves also with increasing Nt and Nr. 

However, increasing Nr (maintaining the same Nt) produces a more evident boost in the 

capacity than increasing Nt (cf. curves for 1×1, 2×1, 1×2 and 2×2, 3×2, 2×3). This 

behavior is due to the power constraint at the transmitter and also to the inability of the 

transmitter to exploit the channel efficiently, since it has no CSI. 
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Figure 2-3:  Ergodic capacity for different antenna configurations: the curves labels indicate Nt×Nr. 

Outage Capacity 

The outage capacity quantifies the level of capacity that is guaranteed with a given level of 

reliability. The q% outage capacity, Cout,q, is defined as the transmission rate that is 

achieved for (100-q)% of the channel realizations. As for the ergodic capacity, the outage 

capacity also improves with the increase in the SNR and in the number of the antennas. 

Outage capacity is a useful figure for the system characterization when the channel is 

unknown at the transmitter and the channel matrix, although random, remains constant 

over the duration of a codeword (but changes independently from block to block), 

corresponding to a slow fading channel. In this case, for any information rate there is a 

certain probability that the given channel realization does not support the desired rate, 

resulting in packet error and consequently in the occurrence of an outage situation. 

Therefore, a tradeoff must be established between the desired information rate and the 

outage probability. 

2.2.4. Frequency Selective Channels 

The capacity of a frequency selective MIMO channel (i.e., a wideband channel) may be 

calculated by dividing the frequency band of interest into M narrower sub-bands, such that 

each sub-channel can be considered as frequency flat (to achieve this requirement the 

bandwidth of these sub-channels must be smaller than the coherence bandwidth). Capacity 

is then obtained by summing the capacities of these sub-channels. 
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Consider Hi (i=1, 2, …, M) as being the i-th sub-channel matrix. The input-output relation 

for this sub-channel is described by equation (2.6). Now, let 1 2

T
T T T

N
   s s s , with 

dimension 1Nt M  , and 1 2

T
T T T

N
   y y y , with dimension 1Nr M  , be the 

transmitted and received signal vectors, respectively; 1 2

T
T T T

N
   n n n , with 

dimension 1Nr M  , be the noise vector; and the channel matrix  , with dimension 

Nr M Nt M , be a block diagonal matrix where Hi are the block diagonal elements. Thus, 

the wideband input-output relation is formally analogous to equation (2.6) and given as 

  . (2.26) 

The covariance matrix of , denoted as 
HE    Q , satisfies  tr M Q  in order 

to constraint average transmit power to PT. Form equation (2.11), the capacity of a 

frequency selective MIMO channels, in bps/Hz, is then given by 

 
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I Q
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(2.27) 

Considering the case in which the channel is unknown to the transmitter we should select 

  NtMNtQ I , meaning that the transmit power is equally distributed over space 

(transmit antennas) and frequency. In this case, the capacity can be written as 

2

1

1
log det

M
H

FS Nr i i

i

C
M Nt





  
   

  
 I Η Η

. 
(2.28) 

Obviously, if the entire channel response is frequency flat, i.e., 
i Η Η  (i=1, 2, …, M), 

this expression reduce to equation (2.12). In addition, if all 
iΗ  are iid (i.e., the bandwidth 

of each sub-channel is less than or equal to the coherence bandwidth), by the strong law of 

large numbers the capacity of a sample realization of the frequency selective channel 

approaches a fixed quantity as M   . 

If the channel is random, the ergodic and outage capacity, as seen above, are helpful 

statistics for the channel characterization and may be defined similarly for frequency 

selective channels as done previously in section 2.2.3 for frequency flat channels. It is 

worth to mention that, the outage capacity of a frequency selective channel is higher than 

the outage capacity of a frequency flat channel (at low outage probabilities). This is a result 

of the increased tightening of the Cumulative Density Function (CDF) of capacity due to 

frequency diversity offered by the frequency selective channel. This effect is illustrated in 

Figure 2-4 showing the CDF of the information rate for a frequency selective MIMO 

channel ( 2Nt Nr  ) with increasing M using a SNR of 10 dB. 



Propagation Channel Modeling for MIMO Systems 

 16 

 
Figure 2-4:  CDF of the information rate for an increasingly frequency selective MIMO channel. 

As it may be observed in Figure 2-4, as the number of narrowband channels increases (M), 

the CDF tightens and therefore the outage capacity (at given outage probability) also rises. 

Furthermore, as the CDF tightens the outage capacity approaches to the ergodic capacity, 

leading us (again) to the conclusion that asymptotically (in M) the capacity of a sample 

realization of a frequency selective MIMO channel tends to the ergodic capacity. 

Like in the case of the frequency flat channel, capacity of the frequency selective MIMO 

channel may be improved if the channel is known by the transmitter. This case may be 

treated using the same rationale that led to the water-filling algorithm, though here, the 

power has to be distributed across space and frequency in order to maximize the spectral 

efficiency, yielding to the space-frequency water-filling principle. Note that water-filling is 

applicable only to orthogonal channels. To accomplish this requirement OFDM 

(Orthogonal Frequency Division Multiplex) techniques are employed. The 

space-frequency water-filling algorithm provides the optimal power allocation, from which 

it can be derived the optimal space-frequency covariance matrix, Q , that is constrained to 

 tr M Q  and maximizes the channel capacity. 

2.3. MIMO Potentials 

It was already mentioned that the benefits of MIMO systems arise by exploiting the spatial 

domain which allows the system to support the use of techniques as beamforming, spatial 

diversity and spatial multiplexing. The latter can be used only in MIMO systems while the 

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Information Rate (bps/Hz)

C
D

F

 

 

M=1

M=2

M=10



Chapter 2 – MIMO Wireless Communications 

 17 

first two, though may be used in MIMO systems, require that only one of the link ends is 

equipped with multiple antennas and thus may be applied as well in SIMO and MISO 

systems. In the following sections fundamentals of each of these techniques will be 

summarized. 

2.3.1. Beamforming 

In the last two decades beamforming (also called array gain) has been deeply studied under 

the scope of topics as smart antennas or adaptive antennas. In cellular environments, 

beamforming benefits include increased range, reduced interference and as a result 

increased capacity, longer mobile battery life due to reduced transmit power, reduced 

channel delay spread and reduced average human radio emission exposure. In MIMO 

systems, beamforming can be performed either at the transmitter side, the receiver side or 

both. However, the employment of this technique at the transmitter requires that it has CSI 

(it assumed that the receiver has always perfect CSI). 

Beamforming enables to focus transmit or receive power into (a) certain angular 

direction(s) [6, 7] by choosing appropriate antenna weights. Thereby, the radiation pattern 

of the antenna array may be modified to enhance the quality of signals departing or 

arriving from the desired direction(s). Some of these techniques, particularly in the 

presence of interference, attempt at the same time, to create a minimum for non-desired 

directions like those from where the interfering signals arrive. This kind of beamforming is 

usually called as spatial filtering for interference reduction (SFIR) but, with more complex 

signal processing, each mobile in a cell can be extracted and simultaneously, interference 

can be canceled, yielding a scheme known as space division multiple access (SDMA). 

Given that beamforming techniques aim to focus the signal power into a well-defined 

direction (or directions), it will perform better the more directive the channel is. The 

highest beamforming gain will be achieved for the most directive MIMO channel 

presenting one strong Direction of Departure (DoD) and one Direction of Arrival (DoA) 

only, such is the case under Line-of-Sight (LoS) conditions. One should note that the more 

directive the channel is, the more correlated are the signals from the several antennas 

available (spatial correlation). 

2.3.2. Spatial Diversity 

It is well known that the radio communications are strongly affected by fading, which is 

mainly generated by multipath propagation and causes fluctuations of the signal level not 

only across time, but also across space and frequency. This phenomenon impacts the 
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performance of any wireless system in terms of symbol or bit error rate. Fading is usually 

combated by employing diversity techniques. 

The principle of any diversity scheme is to provide the receiver with multiple versions 

(branches) of the same transmitted signal. If these versions are affected by independent 

fading conditions, the probability that all branches are in a deep fade at the same time 

reduces dramatically. Therefore, diversity increases the reliability of the radio link and 

leads to improved system performance in terms of error rate. 

As fading can occur in time, frequency and space domains, diversity techniques may 

correspondingly be developed in each of these domains. Nevertheless, both time and 

frequency diversity schemes involve a loss in time or bandwidth to allow the introduction 

of redundancy in the signal. On the contrary, spatial (and also polarization) diversity does 

not sacrifice time and bandwidth as it is provided by the use of multiple antennas at one or 

both sides of the link. However, the system spatial dimension, complexity and also cost are 

increased by using antenna arrays. 

Obviously, the performance of spatial diversity is highly dependent on the signals 

(branches) correlation which under ideal conditions should not exist if the branches 

experience independent fades. Hence, contrasting with beamforming, spatial diversity 

performs better when the channel is non-directive, i.e., channels which do not present 

dominant multipath components (MPCs), as strong LoS component for instance. 

In receive spatial diversity [16], the receiver combines the signals from the available 

antennas so the resulting signal presents considerably reduced amplitude fluctuations in 

comparison with the signal at any individual antenna. Several studies have shown that a 

separation of about one wavelength between the antennas suffices to provide signal 

branches significantly uncorrelated. 

Transmit spatial diversity may be achieved either with or without CSI at the transmitter. 

Yet, suitable design of the transmitted signal is required to obtain the potential diversity 

gains. In this context many contributions have emerged of which [5, 17-19] are referred. 

In MIMO systems spatial diversity can be exploited at both link ends, so the global system 

performance is improved and requires a combination of receive and transmit diversities 

presented above. 
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2.3.3. Spatial Multiplexing 

Spatial multiplexing is only possible in MIMO systems and offers a linear increase in the 

transmission rate (with increasing minimum number of transmit/receive antennas) without 

requiring more bandwidth or transmit power. It exploits the different spatial signatures 

existing between each transmit-receive antenna pair, which, under favorable channel 

conditions, are well separated. Thereby, the bit stream to be transmitted may be split into 

several (Nt at the most) sub-streams, modulated and transmitted simultaneously from each 

transmit antenna. The receiver, having complete knowledge of the channel (matrix H), 

distinguishes between several sub-channels and recovers these signals, which after 

demodulation yield the corresponding sub-streams to be combined, so the original bit 

stream is reconstructed. 

In a simple rationale, the problem is similar to the resolution of a system of linear 

equations. Actually, one decoding method commonly used is the zero-forcing technique 

which consists in inverting directly the channel matrix, H, though a simple approach it can 

result in poor results when the matrix is ill-conditioned. Alternatively, a receiver using 

maximum likelihood detector compares all possible combinations of symbols which could 

have been transmitted with what is observed and selects the most probable solution. This 

technique presents optimum performance but also high complexity which may be 

prohibitive. Evidently, the perfect recovery of the several transmitted sub-streams (so the 

original signal is also recovered) requires the equations composing the system to be 

independent meaning that each antenna sees an independent channel (or at least 

sufficiently different). 

Similarly to spatial diversity and contrasting to beamforming, spatial multiplexing 

performs better when the signals at receiving antennas are independent such as non-

directive channels exhibiting numerous MPCs. Nevertheless, unlike spatial diversity, that 

attempts to improve the signal quality fighting the multipath phenomenon, spatial 

multiplexing exploits efficiently this phenomenon in order to increase the transmission 

rate. A well-known algorithm that implements spatial multiplexing is the V-BLAST 

(Vertical – Bell Labs Layered Space Time) [20]. 

2.3.4. Transmission over MIMO systems 

The analysis presented in section 2.2, based on information theory, is useful as it motivates 

the research for technologies and architectures to benefit from gains promised by MIMO 

systems when compared to conventional systems. Although, it should be noted that this 

analysis only provides an upper bound without any limitation of complexity, and thus does 



Propagation Channel Modeling for MIMO Systems 

 20 

not reflects the performance achieved by a given transmission system. In fact, in the 

development of any algorithm or architecture, it is necessary to establish a compromise 

between a given performance measure and an acceptable level of complexity. On the other 

hand, as seen above, the specific channel conditions may dictate which of the techniques 

presented in the last sections (2.3.1, 2.3.2 and 2.3.3) will perform better. 

If both, transmit and receive sides are sufficiently non-directive both, spatial diversity (at 

transmitter and receiver) and spatial multiplexing, may be used. In this case the system 

requirements (desired data rate, reliability of transmission, etc.) will establish optimum 

tradeoff between these two techniques. In general, transmission schemes over MIMO 

channels typically fall into two categories: data rate maximization or diversity 

maximization. The first class of these techniques intends to improve the average capacity, 

but in general, individual streams should be encoded jointly in order to protect the 

transmitted signal against errors induced by channel fading and noise/interference. This 

brings in a second approach in which one attempts, as well, to minimize the outage 

probability, or equivalently, to maximize the outage capacity by introducing diversity. One 

should note that the level of redundancy may be so high that it does not provide any 

capacity improvement. In such case, the multiple antennas allows for spatial diversity but 

not for the data rate increase (at least in a direct manner). 

The set of techniques and algorithms used to encode jointly the signals for the multiple 

transmit antennas are referred as space-time codes (STCs). Generally, these techniques 

consist in generating and transmitting simultaneously a number of code symbols equal to 

the number of transmit antennas (one symbol is transmitted from each antenna). Symbols 

are generated by the space-time encoder such that by using suitable signal processing and 

decoding procedures at the receiver, the desired diversity and/or coding gains are achieved. 

The first schemes to develop STCs that emerged [18] were based on trellis codes, which 

required a multidimensional Viterbi algorithm at the receiver for signal decoding. Besides 

the coding gain that depends on the code complexity, these codes offer also a diversity gain 

without any loss in the bandwidth efficiency. However, in terms of complexity these 

techniques are very demanding which may not be reasonable for most systems. 

The popularity of STCs truly increased when space-time block codes (STBCs) emerged, 

mainly because for these codes it is possible to perform decoding using simple linear 

processing at the receiver. However, STBCs only provide diversity gain without any 

coding gain. Nevertheless, due to its simplicity when compared to trellis codes, they have 

attracted much attention overcoming the latter. In this context, it should be noted that this 

technology had its genesis on the scheme proposed by Alamouti [17] for transmitters with 
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two antennas. The Alamouti scheme revealed to be so attractive that it was included in 

W-CDMA and CDMA-2000 standards. Later, it has been generalized to an arbitrary 

number of antennas [19]. A detailed review of STC techniques can be found in [21]. 

Spatial multiplexing, presented in section 2.3.3, can be seen as a special case of STBCs 

where streams of independent data are transmitted over different antennas enabling to 

maximize the average data rate over the MIMO system. Even though, it allows the 

independent usage of the antennas, it offers limited diversity benefits and will hardly meet 

the requirements for a desired bit error rate. Alternatively, using STC may result in 

additional coding gain and diversity gain [22] which may help to improve system 

performance, even if the data rate is kept at the same level. It is also possible to sacrifice 

some data rate for more diversity gain. On the other hand, introducing diversity will 

contribute to increase indirectly the data rate given the improved error performance may 

allow the usage of higher level modulations. Studies presented in [23, 24] discuss some 

tradeoffs between diversity and spatial multiplexing. 

2.4. MIMO Channel Models 

The evolution of wireless communications led to the enhancement of early SISO 

propagation models, which provided information about power, in order to consider time 

and frequency variations information. Later, when space diversity and smart antennas 

techniques emerged spatial information was also considered and directional channel 

models came into the scene. MIMO systems have pushed further the evolution of 

propagation modeling toward more complex spatial-temporal considerations. This section 

is extensively based on the content of [25] and also of chapter 2 from [26]. 

2.4.1. Brief review of propagation mechanisms 

In any wireless communication system, signals arrive at the receiver via various 

propagation mechanisms. The existence of several MPCs with different time delays, DoDs, 

DoAs, phases and attenuation yield a highly complex transmission channel. The 

propagation mechanisms may be classified into five basic phenomena: 

i. Free-space or line-of-sight (LoS) propagation; 

ii. Transmission (and absorption); 

iii. Specular reflection; 

iv. Diffraction; 

v. Diffusion or diffuse scattering. 
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Any combination of these mechanisms may contribute to the received signal and except for 

LoS, all them involve the interaction of the propagating wave with one or more obstacles – 

walls, trees, cars, human beings, etc – which are usually referred as scatterers or interacting 

objects. The LoS path experiences free-space loss only. Transmission through an obstacle 

also causes partial absorption of energy. Specular reflection occurs when a propagating 

electromagnetic wave impinges upon a plane and smooth surface whose dimensions are 

much larger than the wavelength. Diffraction happens when the path between the 

transmitter and the receiver is obstructed by a discontinuity, such as an edge, wedge or 

cylinder. Finally, diffusion is caused by interactions of the wave with objects whose 

dimensions are on the same order of the wavelength as rough objects. In this case, the 

resulting wave is most often non-coherent: its phase is not deterministic and therefore is 

only characterized in a stochastic manner. 

The term channel is usually employed to describe the impulse response of the linear 

time-variant communication system between the transmitter and the receiver. Concerning 

SISO channels, a complete model for the impulse response may be expressed as the 

product of three factors: 

 Path-loss: a real-valued attenuation factor depending on the distance between the 

transmitter and the receiver (also called the range) and on the so-called path-loss 

exponent; 

 Shadowing: an additional random real-valued attenuation factor which, for a given 

range, depends on the specific location of the transmitter and the receiver; it is 

usually modeled by a lognormal variable; 

 Fading: a complex variable representing the signal fluctuations caused by the 

combination of non-coherent MPCs. 

A number of models for path-loss and shadowing have been proposed [16, 27] and their 

application is identical either for single or multi-antenna systems. This thesis is thus 

focused on MIMO fading models. 

2.4.2. The double-directional channel impulse response 

In MIMO systems, the transmitter and the receiver are both equipped with antenna arrays. 

The fading channel between each transmit-receive antenna pair may be described as SISO 

channel. However, modeling only individual SISO channels does not characterize 

completely the behavior of the MIMO channel. The model must include also the statistical 

correlations between the elements of the channel matrix. 
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As already referred, when dealing with MIMO channels space comes as an additional 

dimension and needs to be modeled on its own in the same way as time and frequency 

characteristics have been modeled for wideband SISO channels. For example, the angular 

distribution of energy should be described at both link ends. This leads to the so-called 

double-directional description of the channel: the term directional means that the channel 

model includes a description of the angular distribution of the energy at the antennas 

(contrasting to a non-directional model, which deals only with temporal spreading); the 

term double indicates that the spatial description of the channel concerns the transmitter 

and receiver sides. 

The double-directional channel impulse response, between a transmitter located at rtx and a 

receiver located at rrx, is usually given as the sum of contributions of L individual MPCs, 

expressed as [28]: 

   
1

, , , , , , , ,
L

tx rx tx rx tx rx tx rxh h 


 r r Ω Ω r r Ω Ω

, 
(2.29) 

where τ is the excess delay, 
txΩ  and 

rxΩ  are respectively, the DoD and the DoA in 3-D 

space. The contribution of the -th MPC is written as 

       , ,, , , ,tx rx tx rx tx tx rx rxh          r r Ω Ω Ω Ω Ω Ω
, (2.30) 

where   represents the complex amplitude,    is Dirac delta function. 

When the transmitter and/or the receiver and/or scatterers are moving, the values of τ, 
txΩ  

and 
rxΩ  are time-variant. A compact notation for the time-variant double-directional 

channel is given as 

   
1

, , , , , ,
L

tx rx tx rxh t h t 


 Ω Ω Ω Ω

 
(2.31) 

where all temporal variations were grouped into a unique dependence under the variable t. 

For this reason rtx and rrx were dropped for simplicity.  , , ,tx rxh t  Ω Ω  is defined 

similarly as in equation (2.30). 

The double-directional impulse response, now introduced, describes directly the physical 

propagation channel, whereas the MIMO channel matrix presented in equation (2.1) 

characterizes the response between all transmit-receive antenna pairs. Yet, the relationship 

between both points of view is straightforward and the impulse response between the j-th 

transmitting antenna and the i-th receiving antenna,  ,, th ji , is written as 
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     , ,, , , , , , , , ,j i

i j i j tx rx tx rx tx rx tx rx tx rxh t h t d d h t d d    Ω Ω Ω Ω r r Ω Ω Ω Ω
. (2.32) 

2.4.3. Model Classification 

Literature provides a variety of channel models, many of them based on measurements. 

These models may be categorized in several ways: narrowband (flat fading) or wideband 

(frequency-selective) models; time-invariant or time-variant models; deterministic or 

empirical models. Narrowband MIMO channels can be completely described by 

characterizing their spatial structure. However, wideband channels additionally require the 

modeling of the multipath channel properties. For time-varying channels it is furthermore 

necessary to describe the temporal evolution of the channel. 

An alternative categorization of the models may be made by distinguishing physical 

models and analytical models. Physical models represent the MIMO channel by 

characterizing the double-directional multipath propagation between the transmitter and 

the receiver. These models explicitly describe parameters as complex amplitude, DoD, 

DoA and delay for the MPCs present in the channel. On the other hand, analytical channel 

models describe the impulse response (or alternatively, the transfer function) between 

individual transmit-receive antenna pairs by a mathematical (or analytical) expression, 

without explicitly take into account the wave propagation. The individual impulse 

responses are collected in the MIMO channel matrix introduced in equation (2.1). 

Analytical models are widely used for the synthesis of MIMO matrices in the framework 

of system and algorithm development and verification. The relationship between physical 

and analytical models is the same as the one defined by equation (2.32) between wave 

propagation and the MIMO channel matrix. Notice that a physical model may be easily 

converted into an analytical model but not the opposite. 

Physical models may be additionally classified as deterministic models, geometry-based 

stochastic models or empirical stochastic models. These subclasses of physical models will 

be presented with more detail in subsections, 2.4.4, 2.4.5 and 2.4.6, respectively. 

Analytical models may also be further categorized as propagation-motivated models or 

correlation-based models. Propagation-motivated models treat the channel matrix by 

modeling propagation parameters. Examples of this kind are the virtual channel 

representation [29], the finite scatterer model [30] and the maximum entropy model [31]. 

On the other hand, correlation-based models describe the MIMO channel matrix in terms 

of the correlations between the matrix entries. The well-know Kronecker model [32] is one 

example of correlation-based models as well as the Weichselberger model [33]. 
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At last, one should also mention standardized models. These are reference models which 

were established by several international organizations in order to compare different 

MIMO systems under the same channel conditions. Examples of standardized models will 

be presented in section 2.4.7. 

2.4.4. Ray-based deterministic models 

Ray tracing is a method based on Geometrical Optics (GO) which has been extensively 

applied to the mobile terrestrial channel. In fact, if the wavelength is small compared to the 

size of obstacles, each contribution may be regarded as a narrow beam, generally called 

ray. The problem consists in calculating the electric field at the receiver, in amplitude, 

phase and polarization. This field, expressed by a 3-D complex vector, is obtained from the 

combination of the direct component with several contributions, each resulting from the 

interaction of the transmitted signal with the surrounding environment. 

Nevertheless, in general ray tracing techniques consider only four types of contributions: 

LoS, components transmitted through obstacles and components due to single or multiple 

reflections and diffractions. Components due to a combination of these four mechanisms 

may also be considered. However, ray tracing techniques usually do not handle diffuse 

scattering since this contribution is non-coherent as its phase is non-deterministic (the 

wavelength is not small compared to the size or roughness of obstacles). 

The application of ray tracing methods to a given propagation problem requires that the 

given scenario is decomposed into simple geometrical configurations for which the 

reflection, transmission and diffraction coefficients can be calculated. All rays contributing 

significantly to the channel description, at an examined position, must be traced and the 

complex impulse response of the channel is then obtained by adding all these significant 

contributions in a very similar way as in equation (2.29). The received signal is thus 

composed by a set of delayed impulses (rays) each corresponding to an attenuated and 

phase shifted version of the original transmitted impulse. Although ray tracing was 

introduced in propagation long before the emergence of multi-antenna systems, they are 

inherently multidimensional. The MIMO channel matrix is then obtained using equation 

(2.32). 

However, the accuracy of ray tracing tools is deeply dependent on: 

 the availability of up-to-date and high-resolution databases which describe the 

propagation scenario; 

 the accurate knowledge of electrical parameters for all objects in the scenario 

(permittivity, conductivity, loss tangent and roughness); 
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 the efficiency of the computational methods that are required to trace all paths 

between the transmitter and the receiver, in an reasonable simulation time, with 

enough resolution and for a sufficient order of reflections and diffractions. 

2.4.5. Geometry-based stochastic models 

All geometry-based models are specified by the locations of the scatterers. In deterministic 

geometrical methods, as ray tracing discussed above, the scatterers locations are defined in 

a database (arising from a rigorous scenario description). In contrast to ray tracing, 

Geometry-based Stochastic Channel Models (GSCM) assume that scatterers are randomly 

placed in a region according to a spatial scatterer density function. The channel impulse 

response is then obtained using a simplified ray tracing method. 

GSCM were originally developed for channel simulation in SIMO systems in order to 

perform considerations either about diversity or smart antennas techniques. The precursor 

of GSCM presented by Lee in [34] placed scatterers deterministically over a circumference 

(evenly spaced to be precise) around the mobile station and assumed: a random phase for 

each scatterer (uniformly distributed); there is no LoS path and only single-bounce 

scattering occurs. The radius of the circumference where the scatterers are placed may be 

specified by the desired delay spread. Years later, some groups almost simultaneously 

proposed to expand this model by using randomly placed scatterers [35] (or [36]), [37-40] 

and the GSCM concept was created. Although, all of these models, just referred, were 

proposed for SIMO systems, they can be easily adapted for MIMO systems. Nevertheless, 

there are a number of GSCM models proposed more recently, already in the context of 

MIMO systems as [41-44]. 

GSCMs present some important advantages: 

 there is a direct relation to the physical reality since essential parameters (as 

scatterers locations) may be frequently defined by a geometrical analysis; 

 several channel effects are implicitly reproduced as small-scale fading which is 

created by the superposition of MPCs from individual scatterers; DoA and delay 

drifts due to the mobile station movement are also implicitly included; 

 all information is inherent to the scatterers distribution, thus, dependencies of 

power delay profile or angular power spectrum do not conduct to a complication of 

the model; 

 effects as the movement of the transmitter, receiver or scatterers and shadowing 

may be easily included allowing to characterize long-term channel correlations in a 

straightforward manner. 
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The random placement of scatterers reflects the physical reality much better. In addition, 

under the single-bounce scattering assumption the ray tracing process becomes particularly 

simple: except for the LoS component, all the others are formed by two sub-paths 

connecting the scatterer to the transmitter and to the receiver, respectively. These two 

sub-paths, completely characterize, for each MPC, the DoD, DoA, propagation time and 

complex amplitude (attenuation may be defined according to some power decay law and 

phase is obtained from the total path length and from the scatterer interaction which 

introduces a random phase shift). 

Even so, for MIMO systems the single-bounce scattering may be restrictive since for a 

given scatterer, only two parameters among delay, DoD and DoA may be chosen 

independently (e.g. if DoA and delay are freely selected then DoD will be defined by these 

two parameters). Nevertheless, many environments reveal multiple-bounce scattering by 

presenting DoD, DoA and delay, totally uncoupled. Still, in this case, single-bounce 

scattering is well suited if the directional channel properties must be described for one link 

end only (as SIMO systems) by using the equivalent scatterer concept (see Figure 2-5). 

Equivalent scatterers are selected such that they reproduce conveniently multiple-bounce 

contributions in terms of delay and DoA [45]. In MIMO systems, the equivalent scatterer 

concept fails because the angular channel properties are described correctly only for one 

link end. In order to overcome this deficiency multiple-scattering has been included in 

several existing models as [42-44]. 

Different versions of GSCMs essentially differ in the proposed scatterer distributions. The 

simplest GSCM is achieved by assuming that the spatial distribution of scatterers is 

uniform. Far scatterers contribute with less power as the corresponding MPCs propagate 

over longer distances and thus arrive more attenuated. However, the presence of far 

scatters is important as it allows including important propagations effects that lead to 

increased temporal and angular dispersion. 

 

Figure 2-5:  Equivalent scatterer (□) concept (true scatterers are represent by ○). 

Tx Rx
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If an outlook is given to the available literature, we may find scatterers randomly placed 

on: 

 one ring around the mobile station [41]; in this MIMO model there is no LoS 

component and only single-scattering is considered; it represents Rayleigh fading 

channels and it is valid when the base station is elevated, thus not obstructed by 

local scatterers; [46] also for MIMO systems, places scatterers on a ring around the 

mobile station but this model is intended to represent Rice fading situations so a 

LoS component is considered; 

 an arrangement of rings and ellipses as suggested for the MIMO model presented in 

[42]; under the assumption that scattering mechanisms in macro-cellular scenarios 

generally consist in two-dimensional processes, scatterers producing components 

with identical delays are located on ellipses (with the corresponding foci being the 

transmitter and receiver positions), thus a tapped delay line may be conveniently 

described by a set of ellipses; however the model includes also a ring of scatterers 

around the mobile station and a circular area free of scatterers around the base 

station, the idea is to reproduce the angle-spreads differences seen at both link ends 

(unlike the base station, which is usually elevated, the mobile station is affected by 

a larger number of scatters due to its lower height); this model features multiple-

bounce scattering; 

 inside a circular area around the mobile station as in SIMO models presented in 

[35] and [40]; these models are intended to describe the uplink in large cell 

environments where all MPCs lie within a small angular spread; the appropriate 

radius of the circular scattering area depend on type of environment (urban, dense 

urban, etc.) and may be parameterized based on measurements; in these models 

only single-scattering is considered; 

 inside an elliptical area whose foci correspond to the transmitter and receiver 

positions, as proposed in [37]; this single-bounce SIMO model has been developed 

for microcellular environments, provided that in such environments the antennas 

heights are both relatively low, and thus, multipath is generated from both link 

ends; the ellipse size is defined by the maximum excess delay; in [38] a similar 

approach is presented but here the ellipse is subdivided into several elliptical 

subregions and inside each subregion are placed a number of scatterers which is 

given by a Poisson process; 

 an arrangement of locations able to reproduce the double-directional characteristics 

of the channel as proposed by the COST 273 [44] model; it includes local clusters 

around the transmitter and/or the receiver (with a large angle spread), randomly 
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placed single-bounce clusters and twin-clusters for multiple-bounce; for single-

bounce clusters DoD, DoA and delay are obtained by means of geometrical 

relationships; multiple-bounce is achieved using the twin-clusters concept where 

each physical cluster is split into two clusters, one related to the transmitter side, 

the other related to the receiver side, allowing to model the angular dispersion 

independently at each link end, so there is no geometrical relationship between 

DoD, DoA and delay. 

 

2.4.6. Empirical stochastic models 

Empirical (or non-geometrical) stochastic models characterize MPCs from transmitter to 

receiver using statistical parameters only, not considering the geometry of the physical 

environment. These models are usually based on experimental results and generalize the 

tap-delay-line concept. MPCs may be treated individually or found to arrive in clusters. 

Extended Saleh-Valenzuela model 

Saleh and Valenzuela proposed a non-directional propagation model for indoor scenarios 

[47]. This model is based on measurements which showed MPCs arriving in clusters and 

also on the tap-delay-line approach. Therefore, the Saleh and Valenzuela (SV) model 

assumes clusters in the delay domain that are described using a double exponential decay 

process: one is used to control the power of a multipath cluster and another, presenting a 

more abrupt slope, is used to describe MPCs within the individual clusters. 

In [48, 49] it is further observed that clustering is also present in the angular domain. Thus, 

the SV model has been extended in order to include also a directional description of the 

channel, resulting in the following channel impulse response model: [49] 

       , , , ,

1 1

, , ,
K L

tx rx k k k tx tx k tx k rx rx k rx k

k

h t T            
 

        
 

(2.33) 

where 
kT , ,tx k  and ,rx k  are, respectively, the time delay, DoD and DoA of the k-th 

cluster, while 
k , ,tx k  and ,rx k  are the relative delay, DoD and DoA of the -th MPC 

within the k-th cluster. 

The MPCs amplitudes, 
k , are complex Gaussian variables whose mean power (relative 

to the first MPC) is given by 
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where Γ and   are power-delay time constants, respectively, for clusters and MPCs within 

the clusters. This double-exponential decay is illustrated in Figure 2-6. 

Variables 
kT  and 

k  are characterized by independent inter-arrival probability density 

functions as follows 

   1 1| expk k k kp T T T T       , (2.35) 

     1 1
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 

   
  , 

(2.36) 

where, by definition, 
1 0T   and 0 0k  . 

The angular variables, ,tx k  and ,rx k , are described as uniformly distributed, whereas 

the relative angles, ,tx k  and ,rx k , were experimentally found to follow a Laplace 

distribution expressed as 

 
21
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






 
  
   , 

(2.37) 

with 
  being the angular standard deviation. 

 

Zwick model 

In [50] it is stated that for indoor channels clustering does not take place if measurements 

are performed with a high bandwidth. Therefore, in this stochastic model for indoor 

environments MPCs are generated individually. A SISO model is applied, using a marked 

Poisson process for the appearance and the disappearance of non-LoS MPCs. The DoD and 

DoA are modeled with a Laplace distribution that migrates to a uniform distribution for 

larger delay times. The model explicitly includes a LoS signal component by modeling the 

transitions between LoS and obstructed LoS environments applying a Markov process. The 

SISO model is extended to a MIMO model by applying the plane wave assumption. 
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Figure 2-6:  Exponential decay of the mean amplitude for clusters and for MPCs within clusters. 

 

2.4.7. Standardized models 

In this section it is presented a brief review of some reference models for MIMO systems. 

As referred, these models are appropriate for comparing different system implementations. 

However, several of these models do not help to understand the MIMO propagation 

concepts. 

3GPP/3GPP2 Spatial Channel Model 

The Spatial Channel Model (SCM) [51] (or [52]) was created by the third-generation 

partnership project (3GPP and 3GPP2) for outdoor environments and a system bandwidth 

of 5 MHz at carrier frequency of 2 GHz. The SCM comprises a link-level model and a 

system-level model. 

The link-level model (also known as calibration model) is a simplified channel model 

which is intended for different equipment manufacturers to compare their implementations 

of the same signal processing algorithms. Comparing the performance of a given algorithm 

in the calibration model allows concluding, in a straightforward manner, if two 

implementations are equivalent. However, link-level simulations are not recommended for 

performance evaluation of different algorithms as they reflect only a single snapshot of the 

dynamic channel and thus, not allow assessing the general behavior of the system. If this 

kind of assessment is needed, then system-level simulations should be made. 

The link-level SCM may be implemented as a physical model or as an analytical model. 

The former is a non-geometrical stochastic model which describes the wideband 

characteristics of the channel using a tapped delay line. Each tap is independently faded 
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and is characterized by an azimuth power spectrum, assumed to follow a uniform 

distribution at the mobile station and a Laplace distribution at the base station. The mean 

direction and angular spread at both link ends are fixed and so the model describes 

stationary channel conditions. The Doppler spectrum is implicitly accounted for by 

defining the trajectory and the velocity of the mobile station. The physical model may be 

converted into an equivalent analytical model by specifying the number and configuration 

of antennas at the transmitter and the receiver. 

The system-level model [53] (also referred as simulation model) is proposed for 

performance assessment typically involving multiple links (multiple cells, sectors, base and 

mobile stations) where each link involves a mobile station and a base station. The system-

level SCM is a physical model comprising three different environments: urban macro-cell, 

suburban macro-cell and urban-cell. The modeling and simulation methodologies are 

identical for the three environments, but the parameters as delay spread, azimuth spread, 

shadowing and path loss, are different. 

Multipath propagation is assumed and the number of taps with different delays is 6. 

However, their delay and average power are randomly chosen from a probability density 

function. Each tap shows angular dispersion at both sides (base station and mobile station) 

which is introduced by means of describing each tap as a number of sub-paths that have all 

the same delay, but different DoA and DoD. Physically, this means that each tap 

corresponds to a cluster with 20 scatterers with the same time of arrival, but slightly 

different directions. Antenna radiation patterns and geometries may be chosen arbitrarily 

and when this is done analytical formulations can be extracted from the physical model. 

The model also includes some optional features as: a polarization model; far scatterer 

clusters; LoS component for the micro-cell environment; and a modified angular 

distribution at the mobile station aiming to describe the propagation in urban street 

canyons. 

IEEE 802.11 TGn models 

The TGn channel model of IEEE 802.11 [54] is an enhanced and standardized version of 

the Saleh-Valenzuela model. The model conception was based on measurements and it has 

been planned for indoor MIMO wireless LANs in the 2 GHz and 5 GHz bands, for 

bandwidths up to 100 MHz. 

The IEEE 802.11 TGn channel model defines a set of six environments, covering flat 

fading, residential, small office, typical office, large office and large open spaces. The 

directional impulse response is defined as a sum of clusters which overlap in the time 
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domain. For each environment the TGn model indicates a set of representative parameters: 

the number of clusters, values of DoD, DoA and cluster angular spreads (seen from 

transmitter and receiver) are fixed for each cluster of the different environments. Usually, 

each cluster consists up to 18 delay taps (separated at least by 10 ns), the number of 

clusters varies from 2 to 6 and the power angular profile of each cluster is described using 

a Laplace distribution (as in the Saleh-Valenzuela model) with angular spread in the range 

of 20º to 40º. Overall power angular profiles, at the transmitter and the receiver, are 

assumed to be statistically independent and are then computed separately at each side using 

the array geometry. The channel correlation matrix is subsequently obtained based on the 

Kronecker model. Global delay spread varies between 0 ns (corresponding to flat fading) 

and 150 ns. 

IEEE 802.16 models 

IEEE working group 802.16 has been central to the development of technical standards for 

fixed wireless access networks. Broadband wireless access (BWA) technology provides 

last mile access for high-speed residential and commercial Internet services. It is a 

promising alternative to digital subscriber line, cable and fiber technologies which are 

struggling to meet world-wide demand, especially outside metropolitan centers, for 

Internet services at reasonable cost. The IEEE 802.16 standard for BWA and its associated 

industry consortium, the WiMAX forum, has the potential to offer broadband access to 

virtually all users irrespective of location. WiMAX (the Worldwide Interoperability for 

Microwave Access) is a consortium of telecommunication equipment manufacturers, 

vendors and service providers, formed to promote the compatibility and interoperability of 

BWA devices incorporating the IEEE 802.16 and ETSI HiperMAN wireless standards. 

IEEE 802.16 was designed for LoS links operating at carrier frequencies between 10 GHz 

and 66 GHz. The first release of the standard (IEEE 802.16-2001) specifies a set of 

medium access control (MAC) and physical-layer standards intended to provide fixed 

broadband access using a point-to-point (PP) or point-to-multipoint (PMP) topology. The 

standard was revised in January 2003 to include non-LoS links operating at frequencies in 

both licensed and unlicensed bands between 2 GHz and 11 GHz. A consolidated standard, 

IEEE 802.16-2004, was issued in 2004. IEEE 802.16e-2005, was issued in December 2005 

which includes enhancements for physical and MAC layers that support nomadic and 

mobile operation in 2 to 11 GHz range. Two channel models are used for fixed and 

portable systems complying with the IEEE 802.16 standard. The Stanford University 

Interim (SUI) channel model [55] is used for fixed broadband access and the ITU Tapped-

Delay-Line channel model [56] is used for portable broadband access. 
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The WiMAX forum approved the mobile WiMAX system profile in 2006. Mobile 

WiMAX, based on 802.16e-2005, enables WiMAX systems to address portable and mobile 

devices in addition to fixed and nomadic applications. The WiMAX forum Mobile release 

1.0 channel model [56] defines the SISO and MIMO channel model requirements for 

mobile applications governed by the IEEE 802.16e standard. The purpose of the model is 

to provide a realistic and repeatable channel context for the testing and comparison of 

portable and mobile WiMAX-enabled devices. 

WINNER channel models 

The European WINNER (Wireless World Initiative New Radio) project started in 2004 

with the purpose of developing an innovative radio access concept, for beyond third 

generation (B3G) wireless systems. Work Package 5 (WP5) of WINNER project focused 

on MIMO channel modeling for bandwidths up to 100 MHz and carrier frequencies 

between 2 and 6 GHz. 

In the first stage of the project and due to immediate simulation needs, two existing 

channel models were selected as starting points: the 3GPP/3GPP2 SCM was selected for 

outdoor simulation and the IEEE 802.11 TGn model was selected for indoor simulation. 

As the SCM model had insufficient bandwidth and limited applicability range, in 2005 the 

SCM was extended to the SCM-Extended (SCME) [57] as follows: the bandwidth was 

extended for 100 MHz by introducing an intra-cluster delay spread; carrier frequencies of 5 

GHz were included by characterizing the corresponding path-loss functions. Additional 

upgrades to the original model comprise the LoS option for all scenarios, tapped-delay line 

models and time evolution of small scale parameters and the evolution of shadow fading. 

A reduced version of this model was adopted for the standardization of the 3GPP long term 

evolution (LTE). 

Despite the enhancements introduced in the SCM, SCME was considered inadequate for 

the simulation of B3G systems. Therefore, the WINNER Phase I channel model (WIM I) 

was presented in [58]. WIM I has unified structure for indoor and outdoor environments 

and is based on double-directional measurements campaigns carried out in the 5 GHz band 

with bandwidths up to 120 MHz. The novel features of the model are its parameterization, 

the inclusion of elevation in indoor scenarios, autocorrelation modeling of large-scale 

parameters (including cross-correlation) and scenario-dependent polarization modeling. 

WINNER Phase II channel model (WIM II) [59] evolved from WIM I and also from WIM 

II interim [60] channel models. In the WIM II the channel modeling work of WIM I was 

continued and the model features were extended: frequency range (2 to 6 GHz), the 
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number of scenarios, and a new set of multidimensional channel models were developed. 

They cover wide scope of propagation scenarios and environments and are based on 

generic channel modeling approach, which means the possibility to vary the number of 

antennas, the antenna configurations, geometry and the antenna beam pattern without 

changing the basic propagation model. This method enables the use of the same channel 

data in different link level and system level simulations and it is well suited for evaluation 

of adaptive radio links, equalization techniques, coding, modulation, and other transceiver 

techniques. 

CELTIC
3
 project WINNER+ has developed, evaluated and integrated innovative additional 

concepts based on the WINNER II technologies and LTE standard. Therefore, WIM II has 

been accordingly updated in order to meet the requirements for these additional concepts. 

The novel features of the WINNER+ models [61] are the elevation modeling, extension of 

the model down to 450 MHz. WINNER+ Final channel models can be used in link level 

and system level performance evaluation of wireless systems, as well as comparison of 

different algorithms, technologies and products. The models can be applied to any wireless 

system operating in 450 MHz – 6 GHz frequency range with up to 100 MHz RF 

bandwidth. The model supports multi-antenna technologies, polarization, multi-user, 

multi-cell, multi-hop networks and 3D modeling. 

 

                                                 
3
 Celtic-Plus is an industry-driven European research initiative to define, perform and finance through public 

and private funding common research projects in the area of telecommunications, new media, future Internet, 

and applications & services focusing on a new "Smart Connected World" paradigm. Celtic-Plus is a 

EUREKA ICT cluster and is part of the inter-governmental EUREKA network. 
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Chapter 3 

 SIMO Measurements and 

Estimation of the Directional Channel 

This chapter begins with a brief discussion of the wideband directional channel impulse 

response (DCIR) characteristics and then, a description of the SIMO measurement system 

and of the measurement campaign is presented. Afterwards, the estimation of the radio 

directional channel impulse response, involving the characterization of the most relevant 

MPCs (delay, DoA, and complex amplitude), is presented: it starts with a short review of 

the existing signal processing tools for high resolution estimation and description of the 

selected tool (SAGE algorithm), proceeds with its performance study with synthetic data 

and ends with results obtained by entering the measured data into this tool. 

3.1. The Wideband Radio Channel Characterization 

In the multipath propagation channel, several echoes of the transmitted signal arrive at the 

receiver due to phenomena as reflection, refraction and scattering. For narrowband 

systems, the channel may be adequately characterized in terms of shadowing by means a 

lognormal distribution and multipath fading by means a Rayleigh distribution (or a Rice 

distribution if a strong path is present) [27]. 
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However, it is important to describe also the channel effect if the signal occupies a wide 

range of frequencies. Therefore, consider two frequencies belonging to a transmitted signal 

with a given bandwidth. If these two frequencies are sufficiently close, the received 

amplitudes and phases of different propagation paths (MPCs) will vary approximately the 

same way in time. This means that though there is fading caused by multipath, the signal 

presents a very similar behavior at both frequencies. In other words, if the signal 

bandwidth is sufficiently small, all frequency components in it will behave analogously 

corresponding to the flat fading condition. 

As the frequency separation increases, the fading behavior at these two frequencies tends 

to be uncorrelated with respect to each other, since the corresponding electric lengths will 

be considerably different. The correlation level thus depends on the time spreading caused 

by the environment. This circumstance is termed as frequency selective fading and means 

that the signal will become distorted due to a non-uniform filtering of the transmitted 

signal (non-flat magnitude and nonlinear phase shift). The minimum bandwidth within 

which the spectral components present similar behavior (a correlation level higher than a 

given threshold) is known as coherence bandwidth. 

The delayed replicas of the transmitted signal can be related with specific scatterers in the 

environment. Therefore, to completely characterize propagation channel, it is not sufficient 

to know the powers and delays of the several MPCs being also required to characterize 

their angles of arrival and departure. 

3.1.1. Channel System Functions 

The radio propagation channel may be viewed as a linear filter that transforms input 

signals into output signals. However, since the behavior of the channel is generally 

time-variant, the transmission characteristics of the equivalent filter must be also 

considered as time-varying. As the inputs and outputs of a linear filter may be related both 

in time and in frequency domains, there are four transmission functions that can be used to 

characterize the propagation channel. 

The time domain description of linear system is attained by its time impulse response, 

which, in the case of time-variant channels is also a time-varying function. For a known 

input signal, the superposition principle allows obtaining the system output in the time 

domain. If the low-pass equivalent, time-varying impulse response is  ,h t  , where  

represents the delay variable, then the complex envelope at the output,  y t , is related to 

the complex envelope at the input,  x t , by the convolution operator as expressed in the 

following equation [62] 
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     ,y t x t h t d  



  . (3.1) 

Physically,  ,h t   may be understood as the channel response at the time t to an input with 

delay . The convolution can be rewritten as summation offering a physical interpretation 

of the channel given by a tapped delay line comprising differential delay and modulators 

[27]. 

The channel may also be characterized in terms of frequency variables by using a function 

which is dual of  ,h t  . This function, denoted by  ,H f  , relates the output spectrum, 

 Y f , with the input spectrum,  X f , in a similar way as  ,h t   relates the input-output 

time functions [27, 62]. The transmission characteristics are thus described in terms of 

frequency – f – and frequency-shift –  – variables by the expression 

     ,Y f X f H f d   



   . (3.2) 

While  ,h t   enables the perception of multipath by characterizing contributions from 

different scatterers having different path lengths, the perception of the time-varying 

behavior of the channel is given by  ,H f  , where the frequency-shift variable, , may 

be envisaged as the Doppler shift experienced in these channels. 

An alternative way of representing the channel is possible if the output time function,  

 x t , is expressed in terms of the input spectrum,  X f , to the channel equivalent filter 

[27, 62]. This function, denoted by  ,T f t , is called the time-variant transfer function and 

the input-output relationship is 

       , exp j2y t X f T f t ft df



  . (3.3) 

Function  ,T f t  is the Fourier transform of  ,h t   with respect to variable  and also the 

inverse Fourier transform of  ,H f   with respect to variable , as expressed in the 

following expressions 

         , , exp j2 , exp j2T f t h t f d H f t d      
 

 
    . (3.4) 

Functions  ,h t   and  ,H f   characterize only one aspect of the channel’s dispersive 

nature, respectively, the time delay and the Doppler shift. Another important representation 

of the channel is achieved by using the scattering function,  ,S   , which includes 

time-delay and Doppler-shift domains. Function  ,h t   may be obtained as the inverse 

Fourier transform of  ,S   , i.e., 

     , , exp j2h t S t d    



   (3.5) 
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and the corresponding input-output relationship is 

       , exp j2y t x t S t d d     
 

 
   . (3.6) 

This equation illustrates that output may be envisaged as the sum of delayed and 

Doppler-shifted contributions whose differential scattering amplitudes are given by 

 ,S d d    . Therefore,  ,S    explicitly characterizes the dispersive behavior of the 

channel in terms of time delays and Doppler shifts [62]. 

3.1.2. Stochastic Description of the Channel 

Real radio channels are in general time-variant, thus, the system functions presented in the 

previous section become stochastic processes, justifying the use of statistical models to 

characterize the channel. In stochastic models, the channel is usually described in terms of 

probabilities. One approach consists in describing the channel by means of autocorrelation 

functions. For example, the autocorrelation function (ACF) the of the random impulse 

response,  ,h t  , is defined as 

     *

1 2 1 2 1 1 2 2, , , E , ,hR t t h t h t       , (3.7) 

where  
*
 represents the complex conjugate. 

Several random radio channels present a dispersive behavior which is uncorrelated in the 

time-delay domain and in the Doppler-shift domain as well. In these channels the 

following assumptions are substantiated [62]: 

i. The stochastic process, described by the impulse response,  ,h t  , is wide sense 

stationary (WSS), meaning that the ACF depends only on 2 1t t t    and not on 

the absolute time instant t , i.e., 

     *

1 2 1 2, , E , ,hR t h t h t t         , (3.8) 

It can be demonstrated that the WSS assumption gives rise to uncorrelated Doppler 

shift scattering, i.e., the contributions of elemental scatterers are uncorrelated if 

they produce different Doppler shifts [27]. 

ii. The complex amplitudes of different path delays are uncorrelated, condition known 

as uncorrelated scattering (US), implying that the ACF vanishes for 1 2   

exhibiting a delta-function behavior for 1 2  . 

A channel fulfilling both the above assumptions is designated as a WSSUS channel. Such a 

description of the channel has proved to be a realistic assumption in several radio channels, 

being also functional in the case of the mobile multipath channel, at least for short section 
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of the traveled route. The ACF of the impulse response simplifies to  ,hR t   and the 

ACF for  ,T f t  simplifies to 

   1 2, , ,T TR f f t R f t    , (3.9) 

which depends only on the frequency separation, f , and not on the absolute frequencies. 

The time domain characterization of WSSUS channels is achieved by the ACF of the 

impulse response,  ,hR t  . Moreover, this ACF for 0t   is denoted as 

   ,0h hp R   and known as the power-delay profile (PDP). This function describes 

how the received power is distributed by the different delayed echoes arriving to the 

receiver and may be envisaged as the average over all Doppler shifts of the scattering 

function. Two statistical moments of  hp   are of practical interest: the average delay and 

the delay spread. The average delay, D , is the first moment of  hp   given by 

 

 

h

h

p d
D

p d


  

 













 (3.10) 

and the delay spread, S , is the square root of the second central moment, defined as 

   

 

2
  h

h

D p d
S

p d





  

 















. (3.11) 

Delay spread is found to be a significant parameter in the design and evaluation of 

communication systems as it indicates limits for the system performance due to 

intersymbol interference. 

The spaced-time correlation function is achieved by particularizing the ACF of  ,T f t , 

defined in equation (3.9), for 0t  , i.e.,  ,0TR f . On the other hand, the 

spaced-frequency correlation function is achieved by particularizing the same ACF for 

0f  , i.e.,  0,TR t . These functions provide a measure of how much the transmission 

characteristics of the channel vary with time and frequency spacing, respectively. From 

these correlation functions, the values of coherence time and coherence bandwidth may be 

computed. 

The coherence time is the period, Tc, over which the magnitude of the spaced-time 

correlation function is above a given correlation level. During this period, it can be 

assumed that the channel transfer function is roughly kept unchanged. The coherence 

bandwidth is the maximum frequency difference for which the correlation is maintained 
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above a given correlation level. It may be assumed that the transfer function is 

approximately constant for frequency separations smaller than the coherence bandwidth. 

3.2. SIMO Setup and Measurement Campaign 

The measurement system is shown schematically in Figure 3-1. It consists of a 2D 

positioning device, driven by stepper motors and equipped with one movable antenna 

connected to the receiving port of a vector network analyzer (VNA). Another static 

antenna is connected to the VNA transmitting port. The VNA is used to measure the 

frequency response of the time-invariant channel at the M locations of a virtual rectangular 

antenna array. A personal computer is used to control the positioning device and the VNA 

through the use of a commercial stepper motor control card and a GPIB interface, 

respectively. The software needed to control all equipment, acquire and save experimental 

data was implemented for this purpose in LabVIEW. 

The measurements were performed inside and from outside to inside of a sports hall in the 

campus of University of Aveiro. A set of nine double-directional channel measurements 

were acquired. Each double-directional measurement is obtained by placing the transmitter 

(Tx) and the receiver (Rx) in a given arrangement of positions to acquire a forward 

direction measurement file and then, by exchanging the transmitter and receiver positions, 

the reverse direction measurement file is acquired. Figure 3-2 presents the transmitter and 

receiver measurement positions corresponding to the nine forward measurement points and 

a photograph of one reverse measurement point. The scenario description is represented in 

a simplified way by black solid lines, where the larger rectangle represents the walls and 

the smaller rectangle represents the spectator seats. 

 

  
Figure 3-1:  Block diagram and a photograph of the SIMO channel measurement system. 
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Figure 3-2:  Description of the forward measurement positions in the scenario and a photograph 

corresponding to the reverse measurement position “PAV 10 rv”. 

For each single-directional measurement position, the (frequency domain) transfer function 

of the time-invariant channel was measured at 𝑀 = 15 × 15 receiving positions spaced by 

/8, in both dimensions. The RF bandwidth used was 200 MHz centered at 2 GHz and 

comprises 801 frequency sample points. Transmitter and receiver were both equipped with 

one /4 monopole antenna. 

3.3. Estimation of Superimposed Signals 

In general terms, the problem involves finding the parameters for a set of L MPCs which 

acceptably describe the signals observed in a set of M sensors. The signal observed at each 

sensor is the vector sum result of the several echoes existing in the scenario. A few high 

resolution algorithms have been proposed and used to estimate the parameters of the 

impinging waves (MPCs) in mobile radio environments. 

3.3.1. High Resolution Algorithms 

High resolution techniques developed for these problems are known as array signal 

processing and combine information collected in several sensors. In this context, two kinds 

of methods may be identified: spectral estimation and parametric estimation [1]. In the 

former, a spectral function of the parameters of interest is defined and the maximum 

locations of this function provide the estimation of the parameters. Spectral-based 

estimation techniques are computationally attractive but present limited accuracy or even 

insufficient, especially for scenarios involving highly correlated signals. The so called 

Multiple Signal Classification (MUSIC) algorithm lies in this kind of techniques [63, 64]. 

On the other hand, parametric estimation methods exploit more deeply the underlying data 

model and the estimation of coherent signals imposes no conceptual difficulties to these 
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methods. The price to pay for this increased efficiency and robustness is that the 

algorithms typically require a multidimensional search to find the estimates. Parametric 

estimation may be further classified as Parametric Subspace-Based Estimation (PSBE) or 

Deterministic Parametric Estimation (DPE). The method named Estimation of Signal 

Parameter via Rotational Invariance Technique (ESPRIT) and its derivatives fall in the 

PSBE methods, while Expectation-Maximization (EM) and Space-Alternating Generalized 

Expectation-Maximization (SAGE) algorithms belong to DPE. 

Standard ESPRIT has been described in [65] and exploits the rotational invariance 

structure of the signal subspace induced by the translational invariance structure of the 

corresponding sensor array. Unitary ESPRIT [66-68] constrains the array configuration to 

those verifying the centro-symmetric
4
 property and leads to phase factors lying in the unit 

circle. The formulation of this extension is similar to the standard ESPRIT but the 

centro-symmetric property of the array allows real-valued computations providing 

increased estimation accuracy with a reduced computational burden. 

In a wide variety of signal processing applications, the estimate of the unknown parameters 

can be obtained by maximizing the likelihood function, method known as maximum 

likelihood estimation (MLE). In the case of space-time signal processing, MLE does not 

impose any constraint to the array configuration. EM and SAGE algorithms are both based 

on the MLE. In particular, the SAGE algorithm simplifies the complex multidimensional 

optimization problem, such as estimating the parameters of several waves in a multipath 

propagation environment, to several separate one-dimensional optimization processes 

which can be performed sequentially. This algorithm, derived in its general form in [69], is 

an extension to the EM algorithm [70] and it has been used in areas like image 

reconstruction [71]. 

In the context of array signal processing, comparative convergence studies of the EM and 

SAGE algorithms applied to angle of arrival estimation may be found in [72] using 

synthetic data, and in [73] using measured sonar data. Concerning the wireless 

communications context, the SAGE algorithm has been used for joint delay, azimuth and 

Doppler frequency estimation in time-variant channels [74, 75], as well as, for joint delay, 

azimuth and elevation estimation in time-invariant channels [76]. 

EM and SAGE algorithms are presented in the following sections, starting with the 

underlying signal model. Bearing in mind the nature of the measurements available 

(section 3.2), the signal model is based on the frequency domain description of the 

                                                 
4
 A sensor array is called centro-symmetric if its elements are symmetric with respect to the centroid and the 

complex characteristics of paired elements are the same. 
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channel, i.e., on the transfer function of the channel, justifying why through this work the 

SAGE algorithm is sometimes referred as (Frequency Domain) FD-SAGE algorithm. 

3.3.2. Signal Model 

In the considered underlying model, a finite number, L, of plane waves are impinging at 

the receiver antenna array with M elements and the channel is assumed time-invariant. The 

channel impulse response at the m-th antenna element can be expressed as 

     
1

2π
, , exp j , ,

λ

L

m mh r e        


 
  

 
  (3.12) 

where:  represents the time delay,  the incidence azimuth,  the incidence elevation 

(measured with respect to the horizontal plane) and  the complex amplitude of the -th 

wave; λ denotes the wavelength and ,  the scalar product; rm is a row vector containing 

the m-th antenna element coordinates and 

   
T

, cos cos , cos sin , sine         (3.13) 

is the unit vector in IR
3
 pointing toward the direction defined by  and , where  

T

 

denotes matrix transposition. In (3.12) the expression 

   
2

, exp j , ,m mc r e


   


 
  

 
 (3.14) 

accounts for the phase shift, relative to a chosen reference, suffered by the -th wave due 

to a small difference in the travelled distance to reach the m-th antenna element. The vector 

     
T

1, , , , ,Mc c c          (3.15) 

is the so called array steering vector. Defining  , , ,      as being the vector which 

contains the parameters of the -th wave, the contribution of this wave to the M impulse 

responses may be expressed as 

         
T

1; ; ,..., ; ,Mh h h c                . (3.16) 

Alternatively, in the frequency domain, the measured channel transfer matrix across the 

array, possibly corrupted with noise is given by 

       
1

; , exp j2π
L

H f c f N f    


    (3.17) 
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with  L ,...,1  and  N f  denoting a M-dimensional vector of complex white Gaussian 

noise, i.e., 

     , 1, ,m m mN f N f jN f m M     (3.18) 

where        1 1, , , ,m mN f N f N f N f   
 are also random processes of real-valued 

and independent white Gaussian noise with zero mean and unit spectral power. 

The contribution of the -th wave to the channel transfer function is denoted as 

     ; , exp j2πS f c f      . (3.19) 

In addition, consider 

   
1

; ;
L

S f S f 


  . (3.20) 

The problem to solve is the estimation of the channel parameters, i.e., to obtain the L 

components of vector θ. 

3.3.3. Maximum-Likelihood Estimation and the EM Algorithm 

The log-likelihood function of θ given an observation    H f y f  over obsD  is [74] 

        ; 2 Re ; ;
obs obs

H H

D D
y S f y f df S f df           (3.21) 

where  represents the Euclidean norm and  
H

 denotes conjugate transpose operator. 

The MLE of θ is the value of this vector which maximizes the function  ; y  , i.e., 

    ML
ˆ arg max ;y y


   . (3.22) 

Obtaining  ML
ˆ y  is computationally prohibitive owing to its high dimension when L is 

large and also because there is no closed formula to express the maxima of the 

log-likelihood function used by the MLE. Even taking into consideration that the values of 

the complex amplitudes may be expressed as a function of the other parameters, the 

procedure to obtain the MLE represents a 3L-D nonlinear optimization process [74]. 

The EM algorithm [70] appears as a general method to solve the MLE problem in an 

iterative way. It has been developed to address this problem when a part of the 

observations is missing or suppressed. The primary idea is to decompose the observed 

signal in the several components and in estimating the parameters of each component 

individually. This algorithm is based on two key concepts: the complete data 

(unobservable) and the incomplete data (observable), allowing the decomposition of the 
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above procedure in L 3-D optimization procedures to estimate the waves’ parameters, 

which may be performed separately and in parallel. Each 3-D optimization procedure aims 

to obtain the parameters of a given wave only. In our problem, a possible choice for the 

complete data set is the contribution of each individual wave to the channel transfer 

function, corrupted by a fraction of the additive noise, i.e., 

     fNfSfX    ;  (3.23) 

where, μ,  = 1, …, L, must satisfy 

1

1
L




 . (3.24) 

The vector containing the parameters of the -th wave, θ, constitutes one parameter subset. 

On the other hand, the measured (observed) channel transfer function, )( fH , represents 

the incomplete data set. Figure 3-3 shows the relation between these data sets. 

To understand the rationale principle of the EM algorithm, consider that the complete data 

may be observed. Taking into account that    1 , , LX f X f  are independent, the 

components ,X 
   are irrelevant for the estimation of  . The log-likelihood function 

for  , given the observation    X f x f  over obsD  is similar to (3.21), i.e., 

        ; 2 Re ; ;
obs obs

H H

D D
x S f x f df S f df          , (3.25) 

and the corresponding MLE is 

      
ML

ˆ arg max ;x x


   . (3.26) 

 
Figure 3-3:  Relation between the complete data (unobservable) and the incomplete data (observable). 
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As  X f  is not observable, its estimation may be based on the observation 

   H f y f  of the incomplete data and on the previous estimate,   , of  . The most 

obvious way to proceed is to obtain the conditional expectation of  X f  given the 

observation    H f y f  and assuming   , i.e., 

   ˆ
ˆˆ ; E , 1, ,x f X f y L





      (3.27) 

where  E  represents the expectation assuming the parameter value  . The parameters 

of   may be updated by calculating its MLE given the observation    ˆˆ ;X f x f   

according to 

    
ML

ˆ ˆˆ ; , 1, ,x f L     . (3.28) 

Operations in equations (3.27) and (3.28) are mentioned, respectively, as E-step 

(Expectation) and M-step (Maximization) of the EM algorithm [74]. Starting with an initial 

estimate  ˆ 0 , the algorithm produces a sequence of estimates   ˆ : 0,1,n n   by 

performing iteratively these two steps. In the n-th iteration the assignments  ˆ ˆ n    and 

 ˆ 1n   , for 1, ,L  are made. 

Figure 3-4 presents the signal flowchart of the EM algorithm and as it evidences, the major 

advantage of this algorithm is that it enables to decompose the 3L-D nonlinear 

optimization process, essential to jointly estimate the parameters of the L MPCs, into L 3-D 

optimization problems, which may be carried out separately, each providing the estimate of 

a single MPC. 

Inserting (3.19) in (3.25) it can be shown that the complex amplitude,  , which 

maximizes  ; x  may be obtained in a closed form as a function of  , ,    and 

approximating the integral by a sample summation, yields to the following procedure for 

the algorithm’s M-step 

   
 

  
, ,ML

ˆ ˆˆ , , arg max , , ;x z x
  

       (3.29) 

        ML ML

1 ˆ ˆˆ ˆ , , ;x z x x
MN

     (3.30) 

with N the number of samples in the frequency domain and 

       , , ; , exp j2πHz x c x f f      . (3.31) 
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Figure 3-4:  Signal flowchart of the EM algorithm. 

The estimate,  ˆˆ ;x f  , of the complete data set,  X f , may be obtained by 

       
1

ˆ ˆ ˆˆ ; ; ;
L

x f S f y f S f    



 
     

 
  (3.32) 

where the first denotes the contribution of the -th MPC assuming    and the 

expression within brackets represents an estimate of the noise assuming   . Given 

equations (3.30) and (3.32) present low computational effort, the complexity of the EM 

algorithm is essentially determined by the 3-D optimization procedure in equation (3.29). 

Taking into account the constraint imposed by equation (3.24), the nonnegative 

coefficients may be freely chosen in order to maximize the convergence speed of the 

algorithm. 

3.3.4. Description of the SAGE Algorithm 

The SAGE algorithm may be viewed as an extension of the EM algorithm: each one of the 

SAGE iterations is, in fact, an EM iteration to update just a subset of the components of θ, 

maintaining the parameters of the other components fixed at their previous values. For 

each of these subsets, an admissible hidden data is defined, such that, it represents a 

complete data set, if the components belonging the complementary subset are assumed to 

be known. This way, the algorithm replaces the L 3-D parallel optimization procedures, 

used in the EM algorithm, by a serial optimization approach. As a result, according to [69] 
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and [74], in comparison to the EM algorithm, the SAGE algorithm presents faster 

convergence and lower complexity. 

Again, the complete data set is chosen to be the contribution of each wave to the channel 

transfer function as given in (3.23) but choosing μ=1, resulting in the following procedure 

to obtain the estimate,  ˆˆ ;x f  , of the complete data set,  X f , corresponding to the 

E-step of the algorithm, 

     
1

ˆ ˆˆ ; ;
L

x f y f S f  




    . 
(3.33) 

Figure 3-5 shows the signal flowchart of the SAGE algorithm. Contrasting with the EM 

algorithm (Figure 3-4), which at each iteration updates the estimates of all MPCs (all 

components of θ), note that the SAGE algorithm, at the n-th elementary iteration, updates 

only the parameters of the component  mod 1n L  . An iteration cycle of the SAGE 

algorithm is defined as L consecutive elementary iteration steps needed for updating the 

parameter estimates of all MPCs once. The computational complexity of one iteration step 

of the EM algorithm is identical to that of one iteration cycle of the SAGE algorithm. 

Therefore, the rationale leading to the SAGE algorithm is directly based on the EM 

algorithm but it allows for complexity reduction by simplifying the optimization procedure 

and also presents faster convergence as each new estimate of θ, obtained at the n-th 

elementary iteration step is immediately used at (n+1)-th elementary iteration step. 

Additional complexity reduction may be achieved within the SAGE algorithm framework, 

by further decomposing the optimization procedure. Each subset θ is split into three 

subsets:  ,  ,  ,   and  ,   and the MLE is obtained for the parameters in each 

subset while maintaining the parameters in other sets fixed. As already mentioned, the 

MLE of α may be expressed as a function of  , ,   , so that the 3-D optimization 

procedure in equation (3.29) reduces to 3 1-D optimization procedures. The update 

procedures needed to obtain a new estimate for the parameters of the -th wave, ̂  , given 

the previous estimates of all waves,  ˆ , can then be written as 

   ˆ ˆ ˆˆ ˆarg max , , ; ;z x f


        , (3.34) 

   ˆ ˆ ˆˆ ˆarg max , , ; ;z x f


        , (3.35) 

   ˆ ˆ ˆˆ ˆarg max , , ; ;z x f


        , (3.36) 

  1 ˆ ˆ ˆˆ ˆ ˆ, , ; ;z x f
MN

         , (3.37) 
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where  , , ;z x    is given by (3.31). 

Like in the original EM algorithm, the SAGE basic iteration stage that updates the 

parameters of a given wave comprises two steps: the E-step, given in (3.33), aims to obtain 

the expected complete data set; and the M-step, given in equation (3.29) and (3.30) [or in 

(3.34) – (3.37)], performs the MLE estimation of each parameter of the considered wave. 

Initialization of the SAGE algorithm 

Beginning with the pre-initial setting  ˆ 0, ,0  , the initial estimates for each 1, , L  

are obtained according to 

   
1

ˆˆˆ arg max ; exp j2π
M

m

X f f


  


 
   

 
  (3.38) 

 
 

   
,

ˆ ˆ ˆˆˆ, arg max , , ; ;z X f
 

          (3.39) 

and (3.37) to obtain  ˆ . 

In (3.38) the term inside the summation expresses a frequency correlation. It is used as a 

method to obtain the initial delay estimate since at this point ˆ  and  ˆ  are unknown. The 

2-D optimization in (3.39) is used instead of (3.35) and (3.36) because according to [76] 

assuming 0ˆ   may cause an erroneous azimuth estimation. 

 
Figure 3-5:  Signal flowchart of the SAGE algorithm. 
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3.4. SAGE Results using Synthetic Data 

It is important to investigate the SAGE algorithm capability to retrieve the superimposed 

signals. For this purpose, a preliminary study has been performed using synthetic data, 

provided by the extended Saleh-Valenzuela (ESV) model (the available version has been 

implemented by [77]). As described in section 2.4.6, the ESV model characterizes complex 

amplitude, time of arrival (ToA), angle of arrival [48] and angle of departure [49] for each 

multipath component (MPC). This model assumes that rays (or MPCs) arrive at the 

receiver in clusters and also that they have different statistical distributions for each of the 

parameters. 

In order to study how the number of MPCs in the channel and their relative power 

influence the quality of the solution obtained, several sets of data have been generated 

using different combinations for number of clusters (NC) – number of rays in each cluster 

(NR) and also with different combinations for the time constants controlling the power 

decay (Γ and γ). The arrival rates were the same for all sets. Three of these sets were 

selected to present here and the corresponding parameters, used in the ESV model, can be 

found in Table 3-1. 

The output of the ESV model is then used to obtain the transfer function matrix of the 

channel by using equation (3.17) but considering no added noise. The frequency response 

of the channel is computed at 𝑀 = 11 × 11 positions, spaced by 0.5λ in both dimensions, 

each comprising 801 frequency samples in a 200 MHz bandwidth and centered on 2 GHz. 

Finally, by providing the SAGE with the frequency responses matrix of each synthetic 

channel, the corresponding MPCs estimates are obtained for comparison purposes. 

Selected results are displayed in Figure 3-6 to Figure 3-11 and were also presented in [78]. 

Observing the impulse responses of the sets presented here, it can be perceived that in two 

of them – Figure 3-6 (corresponding to “ch4”) and Figure 3-8 (corresponding to “ch9”) – 

although the number of MPCs is very different, they present almost the same amplitude 

range (from 0 dB to about 30 dB) and in Figure 3-10 the amplitude range is wider (from 0 

dB to about 60 dB). Therefore, the first two cases were classified as “moderate” power 

decay and the last one classified as “pronounced” power decay, respectively. 

Table 3-1:  Parameters for the ESV model used to generate the data sets. 

Set Name NC NR Γ (ns) γ (ns) Comment 

ch3 5 10 60 20 “Pronounced” power decay 

ch4 3 5 90 30 “Moderated” power decay 

ch9 5 10 120 40 “Moderated” power decay 
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From the results shown it can be concluded that if the channel presents a small number of 

rays and moderate power decay (Figure 3-6 and Figure 3-7) the SAGE algorithm is able to 

retrieve a good estimate for almost all the rays. In this particular case, notice that only the 

last two rays (152 ns and 153 ns), which are simultaneously the ones with lowest power, 

were not correctly estimated. Instead, two nonexistent rays are placed near one of the first 

rays (37 ns), which present much higher power. These fictitious rays present delay and 

azimuth very similar to the real one, but much lower amplitude. Average delay, delay 

spread, average azimuth and azimuth spread for the considered channel and the respective 

SAGE retrieval have been computed and compared. For this case errors were less than 1% 

for all parameters, showing that, despite the failure in the estimation of those two rays, the 

retrieved waves represent a good description of this channel. 

  
Figure 3-6:  SAGE retrieval results (15 estimates requested) for “ch4” (15 rays, “moderate” power decay). 

Left: Generated impulse response and SAGE retrieval. Right: Reconstructed impulse responses by using 

IFFT on frequency responses obtained with equation (3.17). 

  
Figure 3-7:  Directional impulse responses (time and azimuth domains) for “ch4”. 

Left: ESV generated impulse response. Right: SAGE retrieved impulse response.  
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Figure 3-8:  SAGE retrieval results (50 estimates requested) for “ch9” (50 rays, “moderate” power decay). 

Left: Generated impulse response and SAGE retrieval. Right: Reconstructed impulse responses by using 

IFFT on frequency responses obtained with equation (3.17).  

  
Figure 3-9:  Directional impulse responses (time and azimuth domains) for “ch9”. 

Left: ESV generated impulse response. Right: SAGE retrieved impulse response. 

As the number of rays in the channel increases, the number of rays whose estimate is lost 

increases and therefore, the number of fictitious rays retrieved also increases. In the case of 

“ch9” (Figure 3-8 and Figure 3-9), although the retrieved rays still provide a good 

description of the channel (average delay and average azimuth errors less than 1%, delay 

spread error about 2.4% and azimuth spread error about 2%), SAGE algorithm failed to 

estimate correctly 8 rays (out of a total of 50) and, obviously, there are 8 fictitious MPCs in 

the solution given by the algorithm. Like in the previous case, it can be observed, that 

fictitious rays typically present delay and azimuth similar to an existing one. In addition, it 

can be perceived that placing these fictitious MPCs near a real one seem to cause a loss in 

quality of the corresponding estimate. 
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Figure 3-10:  SAGE retrieval results (50 estimates requested) for “ch3” (50 rays, “pronounced” power 

decay). Left: Generated impulse response and SAGE retrieval. Right: Reconstructed impulse responses by 

using IFFT on frequency responses obtained with equation (3.17). 

  
Figure 3-11:  Directional impulse responses (time and azimuth domains) for “ch3”. 

Left: ESV generated impulse response. Right: SAGE retrieved impulse response. 
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a real MPC (150ns, 1.05º) for which delay and amplitude are correctly estimated but not 

the azimuth (178.9º instead 1.05º). 

Moreover, this data set enables to conclude also that may not be easy to establish a 

well-defined criterion for estimation limits as “components with power above a certain 

threshold” or “maximum delay” as the algorithm seems not to follow a strict order: note 

that there are MPCs without a corresponding estimate with delays smaller than the last 

MPC estimated (241 ns) and also with higher power than the MPC estimated presenting 

the lowest power (-26.3 dB). Consequently, if one tries to reduce the number of MPCs that 

is requested for estimation by the SAGE algorithm, aiming to reduce the number of 

fictitious rays, some estimates of real MPCs may be lost (it is even possible to loose only 

real MPCs without reducing the number of fictitious MPCs). Therefore, the number of rays 

that is requested for estimation by the SAGE algorithm must be carefully chosen. It is 

important to be aware that some MPCs provided by the algorithm may be fictitious and if 

one does not have previous knowledge of the channel properties, one may not distinguish 

them easily. Nevertheless, fictitious rays are likely to show parameters very similar to their 

neighbors, as if they were repeated, causing a slight loss in the quality of the real MPC 

estimate, but maintaining the major properties of the channel (delay and azimuth spreads). 

Considering the results on the performance of SAGE algorithm presented in this section, it 

can be perceived that, sometimes, the algorithm fails to estimate some of the most delayed 

and lower power MPCs and provides, in their place, some fictitious MPCs. As the number 

of MPCs in the channel and the power decay increases, the number of MPCs whose 

estimate is lost increases and therefore, the number of fictitious MPCs retrieved also 

increases. In general, the lost MPCs are the ones with less power and thus, the impact is 

not as critical as one could initially expect: mean delay, delay spread, mean azimuth and 

azimuth spread errors presented are acceptable. 

Although observations and conclusions taken from this performance study evidence some 

failures, the estimate of the directional impulse response is satisfactory, so this tool may, 

globally, be considered adequate for further use with experimental data in order 

characterize the directional impulse response of measured channels. 

3.5. Experimental DCIRs obtained with SAGE algorithm 

As explained in section 3.2, each double-directional measurement comprises two 

measurement files (forward and reverse directions). In its turn, each measurement file 

contains the matrix of the channel transfer functions, along with the corresponding sensor 
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positions. In order to obtain the parameters estimate for a given number of MPCs, each 

matrix of measured frequency responses has been used as input to the SAGE algorithm. 

Figure 3-12 and Figure 3-13 present the results for one of the measurement positions listed 

in Figure 3-2. In left side of these figures, it can be observed the time domain impulse 

response of the channel, obtained by IFFT from the measured frequency responses and 

averaged over all sensors; the corresponding MPCs retrieved by the SAGE algorithm; and 

the time domain impulse response, obtained by IFFT using the frequency responses 

reconstructed from the SAGE outputs. In the right side, it can be observed the DCIR 

estimated by the SAGE algorithm. Directions of arrival (azimuth) are given with respect to 

the direction defined by the position of the transmitter, i.e., the transmitter presents always 

zero azimuth ( 0º  ). 

  
Figure 3-12:  Forward measurement results [PAV-10] – Left: Average impulse response obtained from 

measurements and SAGE output. Right: DCIR estimated by SAGE. 

  
Figure 3-13:  Reverse measurement results [PAV-10rv] – Left: Average IR obtained from measurements and 

SAGE output. Right: Directional IR estimated by SAGE. 
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The number of MPCs may be estimated, from observed data, by applying well-known 

information theoretic criteria, namely, the Akaike information criterion (AIC) and the 

minimum description length (MDL) [79], for which several performance studies and 

improvements have been reported [80-82], since when these were first proposed. 

Nevertheless, one must take into account the behavior presented by the SAGE algorithm in 

section 3.4, showing that, even in the absence of noise, the algorithm misses some of the 

rays undergoing longer delays and supplies, in their place, fictitious rays. As a result, the 

number of rays to be requested from the SAGE algorithm, L, has been manually chosen by 

carrying out several attempts (trying different values) and analyzing the time domain 

impulse response of the measured channel, averaged over all sensors, and the output results 

of the SAGE algorithm as shown in the left side of Figure 3-12. For each processed 

measurement data file, the number of MPCs to be estimated, L, has been set to that value 

above which continuing increasing this value would not provide MPCs in “new” delays, 

i.e., higher delays than the current maximum delay or not covered delays, as the gap 

between 250 ns and 300 ns in left side of Figure 3-12. 

Again, the average delay and delay spread had been computed, for the measurements and 

for the SAGE results, both using the averaged (over all sensors) IFFTs of the frequency 

responses. In general, results were within a maximum error of 10% by considering IFFT 

contributions which are within a minimum dynamic range of 19 dB below the highest 

peak. In some measurement files, it was possible to increase this dynamic range to more 

than 25 dB (especially in non-LoS measurements). In the particular case of the 

measurement files presented in Figure 3-12 and Figure 3-13 (respectively, forward and 

corresponding reverse measurement) the dynamic range considered is 19 dB, resulting in 

about 3% for average delay error (both measurements); 8.6% for forward measurement 

delay spread error and 0.3% for reverse measurement delay spread error. 
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Chapter 4 

 Exploratory Study of the Directional 

Channel Information 

Several of the existing physical channel models [25, 47, 49] assume that MPCs arrive in 

clusters, i.e., groups of MPCs showing analogous parameters such as delay, DoA and DoD. 

In fact, results from measured channels show that MPCs often appear in clusters [48, 83] 

and normally, this may be confirmed by a simple visual inspection. Therefore, it is 

essential that cluster-based channel models be able to describe the relevant characteristics 

of the clusters. Such models may be parameterized by extracting the information needed 

from experimental data. 

Obviously, visual inspection is not suitable, thus more rigorous and objective methods are 

required to perform clustering. In this context, a wide range of options to perform 

classification of data may be found in the literature [84, 85]. In this work, the K-means 

algorithm which belongs to the group of partitioning algorithms has been used. In [86] this 

algorithm has already been successfully applied to the problem of clustering the radio 

channel parameters and there it is referred as KPowerMeans (KPM) because it also 

considers the power of the MPCs when performing the clustering. 
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This chapter starts with a brief review of the clustering algorithms, focusing mainly on the 

selected algorithm. Contents in section 4.1 are widely based in [84] and [85]. The cluster 

validation subject is also addressed, i.e., attention is paid to the problem of estimating the 

number of clusters in multipath radio channel data sets. Cluster validity indices allow 

comparing and ranking several clustering solutions, with different number of clusters, thus 

enabling the selection of the best solution. Results on the performance evaluation of the 

chosen clustering framework using synthetic data are presented. Subsequently, the 

clustering output solutions for experimental DCIRs estimated in chapter 3, with the SAGE 

algorithm, are given. Finally, this chapter closes with a physical analysis relating each 

cluster with the obstacles present in the scenario: clusters are further classified according to 

the type of interaction which they represent (direct ray, single interaction, higher order 

interaction). Moreover, clusters from each double-directional measurement, are linked at 

this step also. 

4.1. Brief Review of Clustering Algorithms 

The purpose of any clustering tool is to evaluate the relationships among patterns, usually 

vectors in the multidimensional space, in order to organize these patterns into groups, or 

clusters, based on the principle of maximizing the intra-cluster similarity and minimizing 

the inter-cluster similarity. That is, patterns in the same cluster are more similar to each 

other and patterns belonging to different clusters are more dissimilar. Similarities or 

dissimilarities are assessed based on the attributes values describing the patterns. Often, 

distance measures are used. 

Typical pattern clustering activity involves the following steps: 

i. Pattern representation (optionally including feature extraction and/or selection); 

ii. Definition of a pattern proximity measure appropriate to the data domain; 

iii. Clustering or grouping; 

iv. Data abstraction; 

v. Assessment of output. 

Pattern representation refers to the number of available patterns, the number, type, and 

scale of the features available to the clustering algorithm. Feature selection is the process 

of identifying the most effective subset of the original features to use in clustering. Feature 

extraction is the use of one or more transformations of the input features to produce new 

salient features. Either or both of these techniques can be used to obtain an appropriate set 

of features to use in clustering. 
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Pattern proximity or similarity is usually measured by a distance function defined on pairs 

of patterns. To help avoid dependence on the choice of measurement units, the data should 

be standardized. Standardizing measurements attempts to give all features (variables) an 

equal weight. However, in some applications, users may intentionally want to give more 

weight to certain feature than to the others. The most popular distance measure is 

Euclidean distance. If each feature is assigned a weight according to its perceived 

importance, the weighted Euclidean distance may be expressed as 

2 2 2

1 1 1 2 2 2ij i j i j m im jmd w x x w x x w x x       , (4.1) 

where patterns ix  and jx  are single data items consisting in vectors which contain m 

features, i.e.,  1, , mx xx  and 1, , mw w  are feature the weights. Minkowski distance is 

a generalized metric defined as 

 
 1

1 1 2 2

p p p p

ij i j i j im jmd x x x x x x       , (4.2) 

where p is a positive integer. It represents the Euclidean distance for 2p   and for 1p   

such distance is known as the Manhattan distance. Weighting can also be applied to the 

Minkowski distance. 

The grouping step can be performed in a number of ways. In general, the output clustering 

can be hard or fuzzy: a hard clustering algorithm allocates each pattern to a single cluster 

during its operation and in its output; a fuzzy clustering method assigns degrees of 

membership in several clusters to each input pattern. A fuzzy clustering can be converted 

to a hard clustering by assigning each pattern to the cluster with the largest measure of 

membership. 

It is difficult to provide a crisp categorization of clustering methods because these 

categories may overlap, so that a method may integrate ideas of several categories. 

Nevertheless, it is useful to present a relatively organized picture of the different clustering 

methods. The major clustering methods may be classified into the following categories: 

 Partitioning methods: For a database of N objects or data patterns, a partitioning 

method constructs K, partitions of the data, where each partition represents a cluster 

and K N . A problem accompanying the use of partitioning algorithms is the 

choice of the number of desired partitions to construct, K. But given K, a 

partitioning method creates an initial partitioning and then uses an iterative 

relocation technique that attempts to improve the partitioning by moving objects 

from one group to another. The general criterion of a good partitioning is that 
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objects in the same cluster are close or related to each other, whereas objects of 

different clusters are far apart or very different. 

To achieve global optimality in partitioning-based methods clustering would 

require the exhaustive enumeration of all of the possible partitions. Combinatorial 

search of the set of possible partitions for an optimum value of a criterion is clearly 

computationally prohibitive. Instead, most applications adopt heuristic methods, 

such as the K-means algorithm, where each cluster is represented by the mean 

value of the objects in the cluster. In practice, therefore, the algorithm is typically 

run multiple times with different starting states, and the best configuration obtained 

from all of the runs is used as the output clustering. 

 Hierarchical methods: These methods create a hierarchical decomposition of the 

given set of data objects. A hierarchical method can be classified as being either 

agglomerative or divisive, based on how the hierarchical decomposition is formed. 

The agglomerative approach, also known as bottom-up approach, starts with each 

object forming a separate group. It successively merges the objects or groups that 

are closer to one another, until all of the groups are merged into one (the topmost 

level of the hierarchy), or until a termination condition holds. The divisive 

approach, also called the top-down approach, starts with all objects in the same 

cluster. In each successive iteration, a cluster is split up into smaller clusters, until 

eventually each object is one cluster or until a termination condition holds. 

Hierarchical methods suffer from the fact that once a step (merge or split) is done, 

it can never be undone. This rigidity is useful in that it leads to smaller computation 

costs by not having to worry about combinatorial number of different choices. 

However, such techniques cannot correct erroneous decisions. 

 Density-based methods: Most partitioning methods cluster objects are based on 

the distance between objects. Such methods can find only spherical-shaped clusters 

and encounter difficulty at discovering clusters of arbitrary shapes. Other clustering 

methods have been developed based on the notion of density. Their general idea is 

to continue growing the given cluster as long as the density (number of objects or 

data points) in the neighborhood exceeds some threshold; that is; for each data 

point within a given cluster, the neighborhood of given radius has to contain at least 

a minimum number of points. Such a method can be used to filter out noise 

(outliers) and discover clusters of arbitrary shape. 

 Grid-based methods: Grid-based methods quantize the object space into a finite 

number of cells that form a grid structure. All the clustering operations are 

performed on the grid structure (i.e., on the quantized space). The main advantage 
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of this approach is its fast processing time, which is typically independent of the 

number of data objects and dependent only on the number of cells in each 

dimension in the quantized space. 

 Model-based methods: Model-based methods attempt to optimize the fit between 

the given data and some mathematical model. Such methods are often based on the 

assumption that the data are generated by a mixture of underlying probability 

distributions. 

Data abstraction is the process of extracting a simple and compact representation of a data 

set. A cluster of data objects (patterns) can be treated collectively as one group and so may 

be considered as a form of data compression. In the clustering context, a typical data 

abstraction is a compact description of each cluster, usually in terms of cluster prototypes 

or representative patterns such as the centroid. 

Cluster validity analysis, is the assessment of a clustering procedure’s output. Often, this 

analysis uses a specific criterion of optimality. One approach is based in relative tests 

which compare two structures and measures their relative merit, aiming to find the best 

clustering solution that a clustering algorithm can define. The idea is the evaluation of a 

clustering structure by comparing it to other clustering schemes, resulting by same 

algorithm (and the same input data) but with different parameter values. 

4.2. Clustering of the Multipath Radio Channel Parameters 

With respect to the problem of clustering the radio channel parameters, each MPC is seen 

as a pattern or data object. In this context, the K-means algorithm has been used frequently. 

As mentioned in section 4.1, this algorithm belongs to the group of the so-called 

partitioning algorithms. As also mentioned before, in [86] a version of this algorithm is 

referred as KPowerMeans (KPM) because it also considers the power of the multipath 

components when performing the grouping. In [87] the Fuzzy-c-means algorithm is 

investigated as an alternative to the K-means and also the performance of different 

initialization approaches. This study concludes that under random initialization the 

Fuzzy-c-means algorithm outperforms the KPM algorithm, but if deterministic 

initialization is used both algorithms perform in a similar manner. 

Throughout this section and the next, the required tools for the establishment of a complete 

clustering framework are presented. Performance evaluation and eventual adjustments are 

presented in section 4.4. 
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4.2.1. MPC Distance 

As discussed above (section 4.1), clustering algorithms require a measure to evaluate 

pattern similarity or dissimilarity between a given pair of patterns, MPCs in this context. 

Therefore, a measure for distance calculation between two MPCs is required. The data set 

is multidimensional and data in different dimensions presents distinct units (as time and 

angles, the latter presenting also the periodicity problem). This problem has been 

efficiently solved in [88] introducing the multipath component distance (MCD) which 

normalizes and scales the data in each dimension and also solves the angular ambiguity 

problem. MCD is computed as the Euclidean norm of a vector having as coordinates the 

normalized distances in each domain: delay and angle. 

For delay, the distance between two MPCs is defined as the normalized absolute distance 

between the corresponding delays, scaled by the normalized standard deviation of the 

delays and an additional delay scaling factor (DSF),  , which is used to control the 

importance of the delay domain on the overall MCD. 

The delay distance is thus given by 
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where  max maxij i j      and std  is the standard deviation of the delays [88]. 

The angular distance between two MPCs is defined as  
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Note that 
DoA,MCD ij

 is vector-valued and that the length of the vector, i.e, 
DoA,MCD ij

, is 

proportional (one half) to the distance between the two associated unit vectors pointing 

towards the directions defined by each MPC. The maximum that 
DoA,MCD ij

 may present 

is 1 unit for the case of two collinear DoAs pointing in opposite directions. 

The overall MCD is expressed as 

 
2 2

, DoA,MCD MCD MCDij ij ij  . (4.5) 

The delay-part of this measure is in the interval  0,  and the angular-part is in the interval 

 0,1 , but do not necessarily touch these boundaries. All parameter dimensions are 
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normalized, therefore this distance metric is suitable for joint clustering of the multipath 

radio channel parameters. 

4.2.2. KPM Algorithm 

Regarding the clustering of multipath radio channel parameters, the inputs to the chosen 

algorithm are the desired number of clusters, K, and the parameters of all multipath 

components. The data can be structured in an L×N matrix where L is the number of 

multipath components and N is the number of parameters available for each component: 

delay, azimuth, and power. The algorithm’s output is a class label vector containing a 

cluster index for each channel component. 

Consider the following notation: L is the total number of MPCs; each single MPC is 

characterized by its power, P  and a parameter vector  ,s    containing the delay,   

and the azimuth  ; K represents the number of clusters; k is the index of a given cluster; 

Lk is the number of MPCs belonging to cluster k and kc  is the centroid position of k-th 

cluster. 

For fuzzy schemes, the output of the cluster algorithm is a membership matrix denoted as 

 kuU , 1, ,k K  and 1, ,L , where  0,1ku   represent the degree of 

membership of the -th MPC to the k-th cluster and verify the following condition 

1

1
K

k

k

u


 . (4.6) 

The output of a hard partitioning scheme may also be expressed by the membership matrix, 

U, if the following condition holds 

1 -th MPC in -th cluster

0 otherwise
k

k
u


 


; (4.7) 

meaning that in hard clustering each MPC may belong to only one cluster. 
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For a given number, K, of desired clusters the KPM algorithm runs as follows: 

1- Initialization: calculate the starting positions of the clusters’ centroids. 

2- For i = 1 to MaxIterations 

a. Create the data partition by assigning each MPC to the nearest cluster 

(centroid). 

b. Update each cluster’s centroid as being the center of the group of MPCs 

belonging to the given cluster (power weighted average in each dimension). 

c. If no movement of clusters’ centroids Go To step 3. 

3- Return the class label vector. 

The KPM algorithm determines, iteratively, the cluster centroids in order to minimize the 

total sum of distances of each multipath component to the respective centroid. The k-th 

cluster centroid (computed in step 2-b) is denoted as  ,k ck ckc   , where 
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Therefore, the centroid can be seen as the center of mass of a given cluster as it is 

computed as the power weighted average, in each dimension, of the components 

composing the cluster. 

Note that when calculating the azimuth of the cluster centroid, attention should be paid on 

the angles ambiguity [89]. For this purpose, consider 
k  being the vector containing the 

azimuths of MPCs belonging to the k-th cluster, expressed in the interval  ,  . Let this 

vector to be split into: kn  containing 0k   and kp  containing 0k  . The azimuth 

power weighted average, expressed in equation (4.9), may be conveniently computed by 
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where 
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Therefore, 
kn  and 

kp  are, respectively, the power weighted averages of negative and 

nonnegative angles. In order to solve the ambiguity, which arises if 
kp kn    , let 
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Thus, 
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Finally, to ensure 
ck  in the interval  ,  , 
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Depending on the selected criteria to evaluate the distance between one MPC and a given 

centroid, the algorithm may reach different solutions. MCD is used as the basic distance 

measure, but when computing distances seeking the assignment of a given MPC to a 

cluster (step 2-a), the distance measure is the result of MCD weighted with the 

corresponding MPC power, i.e, the cost function given by 

 , MCD ,ck kd P s c  , (4.15) 

when minimized determines the allocation of the -th MPC to the k-th cluster. Inclusion of 

power into the distance function is advantageous as clusters focus on and try to distinguish 

the strongest MPCs, usually the most relevant in the channel behavior and description. 

Concerning the KPM initialization, it is common to choose the first set of centroids 

randomly from the data. Nevertheless, random initialization requires running the clustering 

algorithm several times, for the same desired number of clusters, K, in order to obtain the 

best solution. In [90] a deterministic approach, is proposed which is also used in [87]. This 

method uses log-power weighted MCD to compute distances and also tries to identify, at 

this stage, the number of clusters present in the data set, Kopt. However, as will be 

discussed below (section 4.4.1), this procedure prevents placing initial centroids in 
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multipath components with less power and, thus, even when K is the actual number of 

clusters in the data set, Ktrue, the KPM is unable to reach the correct solution. In this work, 

at initialization stage MCD is not power weighted, therefore, the initialization procedure 

consists: 

1- choose the MPC having the strongest power to be the first centroid, 

2- repeat: 

a. for each MPC, obtain the minimum distance to the centroids available (here 

MCD is not power weighted) 

b. choose the MPC having the maximum distance to be next centroid 

until the desired number of centroids, K, is reached. 

The idea is to spread the centroids over all the data. After the first round of MPCs 

assignment, due to the power weighted average used to compute the centroids locations 

(step 2-b of KPM) they move rapidly to places where the strongest MPCs are located. 

Furthermore, the number of clusters, present in a given data set, is not estimated in the 

initialization step. Instead, as explained bellow, it is estimated by running the clustering 

algorithm for several candidate numbers of clusters and then, by employing cluster validity 

indices. 

4.3. Clustering Validation 

As discussed above, the KPM algorithm requires, as input, the desired number of clusters, 

K, to perform the data partition. The number of clusters is naturally known if we are 

considering synthetic data. However, if we are dealing with experimental data we must 

find out the number of clusters present in the data using an objective criterion. The best 

solution (Kopt) may be selected by a Cluster Validity Index (CVI). A CVI should be able to 

rank the different clustering solutions in terms of their goodness: it measures numerically, 

for each solution, properties as compactness or clusters separation. 

Nevertheless, each cluster validity index captures a particular feature of the solution while 

other features may be disregarded or given less importance. Thus, depending on the chosen 

index different solutions may be reached. There are many indices available in the 

literature, and several studies on performance comparison [91] show that there is no index 

which outperforms all the others. Therefore, improvements on the estimation of Kopt may 
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be achieved if several indices are combined as suggested in [92]. The idea is to reach a 

trade-off solution, potentially more robust. 

4.3.1. Validation Indices 

This section presents four well-known CVIs among the community of clustering 

practitioners: Xie-Beni, Calinski-Harabasz, PBM and Generalized Dunn’s indices, which 

will be defined afterwards. Mathematical formulations presented below consider the 

notation introduced in section 4.2.2 and assume also the MCD as the distance measure. 

Xie-Beni (XB) index: XB index has been presented in [93] and for a given clustering 

solution, it represents the ratio of the clusters’ compactness to the clusters’ separation. 

Mathematically, this index is expressed as 
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By including the membership matrix, U, this index has been proposed to be suitable for 

cluster validation on fuzzy partitions, but it if ku  verifies equation (4.7) it is adequate to 

be used on hard partitions, as well [94, 95]. 

The optimal partition, Kopt, is obtained by minimizing the index. As XB is defined by a 

quotient, this corresponds to minimize the numerator and maximize the denominator. Note 

that numerator represents the sum of each MPC distance to the corresponding centroid that 

it belongs (assuming hard portioning of data), thus the smaller this sum is the more 

compact are the clusters. On the other hand, note that for a specific data set, L is a constant 

value and the remaining part of the denominator represents the minimum distance between 

two centroids (inter cluster distance), therefore the higher this minimum distance is the 

more separated the clusters are. Hence, XB index tries to identify the solution which 

presents the more compact and separated clusters. 

Generalized Dunn’s index: This index has been proposed in [96] as a generalization of the 

original Dunn’s index with the objective of improving its sensitivity to aberrant data for the 

case when clusters are expected to be volumetric clouds (as opposed to boundaries or 

surfaces) in the feature space. 

In a similar way as the original Dunn’s index, its generalized version is defined as the 

quotient between a minimum distance involving two clusters (set distance – δ) and a 

maximum distance involving one cluster (cluster diameter – Δ), but considers several 
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alternative definitions for distance metric (six possibilities for set distance and three for 

cluster diameter). Using 
i  and 

j  the generalized Dunn’s index is defined by 
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where 61  i  and 31  j . Depending on the functional forms used to define δi and Δj it 

may present 18 different forms. Results presented in [96] show that one of the most 

successful forms is D53, with δ5 and Δ3 defined as 
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respectively. Likewise the XB index, D53 also attempts to recognize clustering solutions 

that are compact, i.e., presenting small cluster diameters and well separated, i.e., high set 

diameters. Thus, contrasting with XB, Kopt is specified by the maximum value of the D53 

index. 

Calinski-Harabasz (CH) index: It is formulated as [94] 

  

  

2

1 0

2

1 1

MCD ,

1

MCD ,k

K
k k k

CH
K L
k k

L c c

K

s c

L K





 

 
 

 
 

  
 

 
 

, (4.20) 

where 
0c  is the global centroid of the entire data set, which may be computed using 

equations (4.8) to (4.14). 

The numerator of CH index represents a between-cluster scatter measure, i.e., a function 

involving inter-cluster parameters which measures the spreading (separation) of the 

clusters; while the denominator represent a within-cluster scatter measure, i.e., a function 

involving only MPCs and the centroid of a given cluster aiming to quantify the clusters 

compactness. Thus, the solution exhibiting the more compact and separated clusters 

maximizes CH index and specifies Kopt. 
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PBM index: This index has been developed in [94] for hard clustering and is formulated as 

  

 

2

1 1

21
2,1

,MCD

,MCDmax1
















  

K

k

L

k

kk
kk

PBM
k

cs

cc

K
 

 . (4.21) 

Kopt is indicated by maximum value of PBM index. A formulation suitable for fuzzy 

partitioning methods is presented in [95]. 

PBM index may be viewed as the product of two factors. The first factor decreases with 

increasing K. The numerator of the quotient representing the second factor, measures the 

maximum separation between a pair of clusters and increases with K. It is desirable to 

increase this contribution as possible in order to have the best inter-cluster separation. Note 

that this value is bounded up by the maximum separation between two points in the data 

set. The denominator of the same quotient represents the sum of all intra-cluster distances. 

It is desirable to minimize this measure in order to provide compact clusters. This may be 

achieved by increasing K. Thus the second factor increases with K, and supports solution 

with higher values of K. However, while the second factor is increasing with K, the first 

factor is diminishing, leading to the identification of the data partition which presents 

increased cluster compactness and cluster separation while keeping the number of clusters 

as small as possible. 

4.3.2. Fusion Techniques 

Given a set of data partitions, each cluster validity index tries to identify which one is the 

best. Nevertheless, each index uses a different strategy, thus depending on the chosen 

index a different solution may be selected. As mentioned before, improvements on the 

estimation of Kopt may be achieved if several indices are combined trying to attain a trade-

off solution, potentially more robust. In this work, two strategies taken from [92], have 

been considered to accomplish the fusion of indices: score and decision rank fusion 

methods. 

A score fusion method is defined as a mathematical operation involving several 

independent indices (e.g., their arithmetic mean), resulting in a combined score. Thus, to 

obtain sensible results, it is necessary to normalize the indices involved to a common range 

of values, before computing the score. The selected scheme for normalization was 

min-max
5
, which scales each index to the [0,1] range. Moreover, as presented in the 

                                                 

5
 Given an observation vector  1, , Nx xx , min-max normalization of x  is obtained by min

max min

x

x x
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previous section, the XB index specifies Kopt by minimization, whereas the other three 

show a maximum for the best solution. To achieve index consistency, after min-max 

normalization, 1 XB  has been used for fusion purposes (to ensure that XB, as other 

indices considered, indicates the best clustering partition through a maximum value). 

Score Fusion Methods: Assuming that M indices are available, the following combined 

measures defined in [92] were considered 
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and 

         1 2SF-Med median ,  ,  ,  Mk k k k   . (4.24) 

These combined measures represent, respectively, the arithmetic mean, the geometric 

mean and the median of the indices selected to be combined. In [92] a scheme defined by 

using the harmonic mean is also presented. 

Decision Rank Fusion Method (Kr): In addition to the fusion methods above, a 

rank-based scheme is now introduced which is similar to a voting scheme: each index 

creates a ranking for the available clustering solutions where the worst solution gets one 

point, then each solution in the rank gets one point more than the previous one and, finally, 

the best solution gets two points more than the previous one. After that, the scores given to 

each clustering solution, by each index, are summed to obtain the combined score. The 

solution exhibiting the highest score indicates Kopt. 

4.4. Clustering Results using Synthetic DCIRs 

This section presents results on the performance evaluation of the KPM algorithm and also 

of the cluster validity indices. First, preliminary results were convenient to validate the 

clustering scheme, namely the initialization procedure and the distance metric used by the 

algorithm (a similar study has been presented in [97]). Afterwards, a more detailed and 

structured study has been carried out in order to assess the quality of the clustering solution 

which has been reached when the algorithm is provided with K=Ktrue and also, to assess the 

accuracy of the cluster validity methods (individual indices and fusion schemes).  

For this purpose, synthetic data were generated using the Extended Saleh-Valenzuela 

model [48]. For preliminary tests a few data sets were generated while for the subsequent 
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studies several sets of data were generated with the actual number of clusters, Ktrue, ranging 

from 3 to 10: for each value of Ktrue, 1000 data sets were generated and for each set, a set 

of possible clustering solutions were obtained by running the KPM algorithm with K 

varying from 2 to 11. 

4.4.1. Preliminary Evaluation of the Clustering Framework 

KPM Algorithm and Initialization 

Figure 4-1 shows one of data sets generated (among the few sets generated for preliminary 

tests). This particular data set presents 7 clusters (i.e., Ktrue=7), which are distinguished by 

different markers. A set of possible data partitions were collected by running the KPM 

algorithm for K varying from 2 up to 11. 

Figure 4-2 compares the final clustering solutions obtained, by the KPM algorithm for K=7 

(i.e., K=Ktrue), for two different initialization approaches: in the left-side of Figure 4-2 

MCD is not power weighted as proposed in section 4.2.2 and in the right-side of the same 

figure MCD is power weighted as suggested in [90] (also used in [87]). 

As it may be observed, the solution in left-side of Figure 4-2 is very similar to the real data 

set. Only 2 MPCs were incorrectly assigned to the yellow cluster (left triangles in Figure 

4-1) that should belong to the green cluster (diamonds in Figure 4-1). These two MPCs are 

less distant to the yellow cluster than to the green one, thus more similar to MPCs that 

belong to the yellow cluster. Therefore, the solution is perfectly acceptable. In addition, if 

the data partition obtained for K=8 is inspected, it can be concluded that the new cluster is 

composed only by the squared-shaped MPC (Figure 4-1), that is remotely isolated from the 

others in the same cluster. Given this particularity of the data set, at least visually, this 

solution seems to be equally acceptable. 

On the other hand, by observing the clustering solution in the right-side of Figure 4-2, 

which used power weighted MCD at the initialization, it may be concluded that for K=Ktrue 

(7 in this case), the KPM algorithm is unable to reach the correct solution: clusters with 

several strong components are subdivided into smaller clusters and clusters composed by 

components with less power are grouped into macro-clusters. 
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Figure 4-1:  Sample of a synthetic channel generated, using  

the ESV model, with 7 clusters and 8 MPCs per cluster. 

 

  
Figure 4-2:  Comparison of final KPM partitions for K=7 using different initialization strategies.  

Left: MCD without power weight. Right: MCD with power weight. 

 

To understand these results, the initial states used by the KPM algorithm provided by each 

initialization scheme are compared in Figure 4-3. It is apparent, that the initialization 

scheme proposed in [90], which uses MCD power weighted (right-side of Figure 4-3), 

prevents placing initial centroids in MPCs with less power, as is the case of the diamond 

and left triangle shaped clusters in Figure 4-1. Contrariwise, initial centroids tend to be 

concentrated on the MPCs with more power, and as a consequence, the KPM performance 

is substantially affected because once the centroids are placed in those stronger MPCs, 

these components will hold the centroids nearby and they cannot move near to MPCs with 

less power. 
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Figure 4-3:  Comparison of initialization strategies. 

Left: MCD without power weight. Right: MCD with power weight. 

In contrast, if, in the initialization, MCD is not power weighted (left-side of Figure 4-3), 

initial centroids are more spread over all the data. Afterwards, within a few iterations, the 

centroids are dragged to near the components having more power (due to the power 

weighted average used in the centroids update). These results lead to the conclusion that 

this initialization procedure is the most adequate. 

Cluster Validation 

Figure 4-4 presents the results of validation indices (in the left-side) and of combined 

techniques (in the right-side) for each KPM clustering solution, still considering the data 

set of Figure 4-1. For each measure, the selected Kopt is highlighted by a red circle. 

In this case, only CH index is able to identify Kopt correctly, but for D53 index solutions 

with K=7 or K=8 present almost the same score meaning that are both equally good. For 

PBM index K=7 is identified as the second best solution and for XB index it scores the 

fourth place. As for the contemplated fusion techniques, results show that all techniques 

were able to identify Kopt=7, which is correct number of cluster in the data set, despite not 

all individual indices estimated in this value for Kopt. These results show that combining 

individual validation indices is a viable way of increasing the robustness and accuracy on 

the estimation of the number of clusters, when compared to the use of a single validation 

index. 

Furthermore, it may be observed (right-side of Figure 4-4) that all the three score 

fusion-based methods studied (SF-A, SF-G and SF-Med) present very similar behavior and 

thus, very similar results. Consequently, in the structured study presented below only 

SF-G, based in the geometric mean, has been considered. 
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Figure 4-4:  Cluster Validation for the data set of Figure 4-1 (Ktrue=7) with Kopt highlighted by a red circle. 

Left: Individual indices results. Right: Fusion techniques results. 

 

4.4.2. Structured Evaluation of the Clustering Framework 

Generate and analyze just a few data sets is useful to have a valuable and perhaps 

indispensable visual picture on the behavior and on the internal functioning mechanisms of 

the algorithm. However, such a study may not reflect rigorously the accuracy of methods 

under evaluation. 

In order to accomplish a more structured study, a large number of data sets should be 

generated and analyzed. With this objective, 8×1000 data sets were generated: 1000 data 

sets for each Ktrue, with Ktrue ranging from 3 to 10. For each data set 10 possible clustering 

solutions were obtained by running the KPM algorithm with K varying from 2 to 11. 

During the data generation process, some preventive measures were introduced to avoid 

the creation of data sets presenting overlapping clusters or multipath components identified 

as outliers. 

Yet, analyzing a large number of data sets by examining each one individually is not 

practicable, thus such a task must be mechanized. The analysis approach is explained 

below. 

KPM Algorithm Accuracy 

The KPM algorithm accuracy has been assessed by evaluating if, for K=Ktrue, it is able to 

find correct solution, i.e., if the KPM solution found (with K=Ktrue) acceptably resembles 

the real data partition. This verification has been made by comparing the position of the 

centroids in the data set with those presented in the KPM solution obtained for K=Ktrue: if 
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position match for all centroids is achieved it is considered that KPM had succeeded in 

finding the correct solution. 

Figure 4-5 presents KPM success rates for all Ktrue values considered. It can be observed 

that, as Ktrue increases the KPM accuracy slightly decreases. This may be explained 

because, as Ktrue increases, the complexity of the problem also increases (more degrees of 

freedom). Nevertheless, the success rate was always higher than 70% and, thus, it may be 

concluded that KPM accomplishes the clustering task suitably. 

Performance of Individual Indices (CVIs) 

Each validation index analyses, compares and selects one solution among all candidate 

solutions found by the KPM algorithm. A given index has succeeded in finding the correct 

number of clusters if the selected solution, Kopt, matches the actual number, Ktrue. However, 

to guarantee a fair evaluation of each index, the success or failure rates (presented below) 

were obtained considering only the cases where KPM succeeded in finding the correct 

solution. 

Figure 4-6 shows the success rate for the indices presented above (section 4.3.1). From this 

figure we can conclude that PBM shows a poor performance, particularly for the smaller 

values of Ktrue: the average success rate for PBM was 9.6%. We can also see that CH 

presents a very good performance for Ktrue=10, but not so good performances for smaller 

values of Ktrue with an average success rate of 28%. Both these two indices include a 

penalty factor with increasing K, to prevent the overestimation of K, however it seems not 

to be working in this kind of data sets. 

On the other hand, XB and D53 present stable performances, almost independent of Ktrue, 

with average success rates of 55.3% and 53.1% respectively. According to these results, it 

has been decided to use only these two indices in further investigations involving the 

fusion techniques mentioned above (section 4.3.2). 

In addition, the type of failure, i.e., under or overestimation, has also been investigated. 

Thus, Figure 4-7 characterizes the underestimation and overestimation rates, for XB and 

D53 only. We can observe that both indices present a similar behavior: the 

underestimations (average rate of 40.0% for XB and 42.9% for D53) are always more 

frequent than the overestimations (4.7% for XB and 4.0% for D53). 
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Figure 4-5:  KPM success rate. 

 

  
Figure 4-6:  CVI success rates. Figure 4-7:  Underestimation and overestimation 

rates for XB and D53. 

 

Performance of Fusion Techniques 

According to the results of individual validation indices, presented in the previous section, 

XB and D53 indices were selected to employ with the fusion methods under investigation. 

Figure 4-8 presents the success rates of the considered fusion techniques together with 

those for the XB and D53 indices (for ease of comparison). Observing this figure, we may 

conclude that the score fusion method considered, SF-G, is always better than that of, at 

least one of the individual indices (better than D53 for Ktrue=[4, 5, 6] and better than both 

for the remaining cases). However the improvement is not very significant. 
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Figure 4-8:  Fusion techniques success rate. 

 

Regarding the suggested decision rank fusion method, we can conclude that this method 

always outperforms all individual indices and also outperforms SF-G. Performance 

improvement is particularly evident and significant for Ktrue=[3, 7,..., 10], representing the 

majority of the cases studied. 

4.5. Summary of the Clustering Framework 

In the previous section an evaluation of the several clustering related tools, presented 

throughout sections 4.2 and 4.3, has been carried out. Frequently, several alternate options 

were available and sometimes some adjustments had been introduced. In this section the 

clustering framework, thereby achieved, is briefly summarized. Though potentially 

independent, four interrelated steps play an important role in the global framework and 

consequently influence substantially the final results: clustering approach, distance 

function, initialization of the algorithm, clustering validation. 

The KPM algorithm is used as the underlying clustering algorithm with the power 

weighted MCD distance to measure distances between MPCs and centroids (both 

presented in section 4.2). 

The initialization procedure uses MCD distance to measure distances between MPCs, but, 

as explained, in this step MCD is not power weighted. This scheme has the advantage of 

spreading centroids over all the data, letting power pull the centroids near to the MPCs 

with more power at the stage of centroids updating. In data sets analyzed, this procedure 

has revealed to be more adequate allowing the KPM algorithm to find the right solution 

when the requested number of clusters matches the true number of clusters. Otherwise, the 
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clusters having several strong MPCs are subdivided in smaller clusters and clusters 

composed of MPCs with less power are grouped together in a macro-cluster. 

The actual number of clusters was known as the data was synthesized using a cluster-based 

propagation model, but, for experimental data the number of clusters need to be found. 

Four cluster validity indices, available in the literature, were investigated. These indices 

address the problem by comparing data partitions with different number of clusters. 

Results show that none of the indices is able to always predict correctly the desired number 

of clusters. From the four indices studied, XB and D53 presented the best results with 

similar performances. Two fusion techniques were also presented. Results confirmed that 

improvements over those of single indices can be achieved. The best seems to be the 

decision rank fusion scheme (Kr) proposed in this work and already published in [98]. 

Therefore, XB and D53 indices and the Kr fusion scheme were selected to employ in the 

analysis of experimental data. 

By congregating all, a framework has been envisaged which is suitable to be applied to 

experimental DCIRs estimated from measured data, as those presented in chapter 3. This 

framework may be schematized as follows in two main steps: 

1- For the given data set, run the KPM algorithm for min max,...,K K K , i.e., for several 

candidate numbers of clusters. 

2- Apply clustering validity (XB and D53 indices and Kr fusion scheme) to support the 

selection of the best data partition. 

4.6. Clustering Results using Real DCIRs 

A clustering framework has been presented and evaluated throughout sections 4.2 to 4.5. 

This section provides sample results obtained by this framework on the experimental 

DCRIs acquired in chapter 3. To establish a link with results presented in that chapter the 

clustering results for same measurement point will be presented. 

Therefore, Figure 4-9 and Figure 4-10 show results which are corresponded with those in 

Figure 3-12 and Figure 3-13, respectively. Results of the selected cluster validity metrics 

appear on the left-side of these figures. The selected clustering solution, in the 

delay-azimuth plane, appear on the right-side of the same figures, where each MPC is 

represented by a blue triangle whose size is ruled by its power, circles with the same color 
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represent MPCs belonging to a given cluster and the diamond shaped marker with the same 

color represents the centroid of this cluster. 

In the forward measurement (Figure 4-9) we can see that, for XB Kopt=6, for D53 K=[5, 6] 

are equally good solutions and the rank fusion also suggests that Kopt=6. In the reverse 

measurement (Figure 4-10), all cluster validity metrics indicate Kopt=5, but, in order to 

establish a physical interpretation which links results from the forward and reverse 

measurements files, the clustering partition with K=6 clusters has also been the one which 

was chosen (see section 4.6). 

In the next section a physical explanation for the clusters identified in each forward and 

reverse measurement pairs is attempted. 

 

  
Figure 4-9:  Forward Measurement [PAV-10] – Left: Cluster validity results for each KPM solution. 

Right: Clustering solution that was selected for this experimental data set. 

 

  
Figure 4-10:  Reverse Measurement [PAV-10rv] – Left: Cluster validity results for each KPM solution. 

Right: Clustering solution that was selected for this experimental data set. 
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4.7. Physical Analysis of Clustered DCIRs 

Trying to provide a physical interpretation for the clusters identified in each experimental 

DCIR and also to establish a linkage between each forward and reverse measurement pairs, 

further classification of the clusters was accomplished. This classification has been 

achieved by relating each cluster delay and azimuth to the objects in the scenario and by 

combining simultaneously the information of the two single-directional measurements, 

which compose one double-directional measurement. 

This way, each cluster has been classified into one of the following types: 

 Type 0: corresponds to the first cluster which contains the direct ray (possibly 

attenuated if non or obstructed line-of-sight conditions exist); 

 Type 1: corresponds to clusters that represent a single interaction, i.e., clusters that 

present delay coincidence in both measurements and, in addition, the azimuth of 

these clusters matched to the same specific objects in the scenario; 

 Type 2: corresponds to clusters that represent a higher order interaction, i.e., when 

reversing the measurement direction the channel also presents a contribution with 

the same delay but an azimuth match is not found with any specific object in the 

scenario; 

 Type 3: corresponds to unexplained clusters, i.e., a delay contribution that is shown 

only in one direction of the double-directional measurement. 

An illustration of the method employed for cluster classification is given bellow, but, 

similar results were also presented in [99]. 

In order to identify clusters (from the forward and reverse measurements) belonging to 

each of the types above, Figure 4-11 shows, overlaid in the scenario layout, the delay of 

each cluster (centroid), represented by an ellipse whose foci are the positions of the 

transmitter and the receiver, and the corresponding azimuths, represented by a line 

departing from the respective transceiver node to the intersection with the ellipse. Near this 

intersection there is a label to identify the cluster number and if it is a cluster from the 

forward measurement (e.g., F2) or from the reverse measurement (e.g., R2). Moreover, the 

same color has been used to represent similar delays. Azimuths of forward measurements 

correspond to DoAs and azimuths of reverse measurements correspond to DoDs (indeed, 

these were obtained as DoAs with the receiver placed in transmitter position and vice 

versa). The simplified scenario description (sports hall) is represented by black solid lines, 

where the larger rectangle represents the walls and the smaller rectangle represents the 

spectator seats. 
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The smaller ellipses (red: F1-R1) represent the first cluster, which includes the direct ray, 

are identified as type 0. These clusters correspond to the first ones represented, also in red, 

in Figure 4-9 and Figure 4-10, respectively. 

The ellipses in magenta (R5-F5) – yellow cluster in Figure 4-9 and blue cluster in Figure 

4-10 – despite a slight delay mismatch, correspond undoubtedly to a single interaction in 

the scenario wall, and, hence, these clusters are classified as type 1. 

The larger ellipses (light green: F6-R6) – the most delayed clusters (also in green in Figure 

4-9 and Figure 4-10) – illustrate the identification process for clusters type 2, where it is 

clearly shown that despite the delay of contributions present in forward and reverse 

direction is very similar, the corresponding DoD and DoA do not match only one specific 

object in the scenario, suggesting a higher order interaction. In this particular case, it may 

be easily confirmed that these clusters correspond to a double-bounce interaction in the 

scenario walls. 

 

 
Figure 4-11:  Clusters linkage and relation with the scenario objects  

for a forward and reverse measurement pair [PAV-10]--[PAV-10rv]. 
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Regarding ellipses in blue (corresponding delays from 136 ns to 139 ns) there is only one 

contribution (cluster) in the forward measurement (F4) and in the reverse measurement two 

contributions (R3 and R4) appear for the same delay, but none matches the forward 

contribution in the same angular point. This would suggest that perhaps there is any 

undetected cluster or maybe some mechanism splits a DoD into two DoAs, thus 

corresponding to higher order interactions (type 2 or type 3). However, a more careful 

inspection reveals that the direction by F4 is roughly the mean direction defined by R3 and 

R4, suggesting that, for the reverse measurement, the clustering algorithm has erroneously 

split a single cluster into two clusters. Then, the KPM clustering solution with K=5, for the 

reverse measurement, has been examined and observed that, for this solution, R2 and R5 

appear merged together (instead of R3 and R4 as would be desirable). Therefore, it was 

decided to (manually) force the merging of R3 and R4, to verify if the DoD of the merged 

cluster matches the DoA corresponding to F4. 

Similarly, for ellipses in dark green (corresponding delays from 106 ns to 119 ns) there are 

two clusters in the forward measurement (F2 and F3) and in the reverse measurement only 

one cluster (R2) appears for approximately the same delay, but none of the forward 

clusters matches the reverse contribution in the same angular point. Again, the KPM 

clustering solution with K=5, but for the forward measurement, has been examined and 

perceived that, for this solution, F5 and F6 come merged together (instead of F2 and F3 as 

would be desirable). Over again, it was decided to (manually) force the merging of F2 and 

F3, to verify if the DoA of the merged cluster matches the DoD corresponding to R2. 

Figure 4-12 presents the cluster type 1 already identified (magenta) and clusters which, in 

the meanwhile, have been merged ([F2+F3] to compare with R2 and F4 to compare with 

[R3+R4]). As it can be perceived, by organizing clustered data this way allows identifying 

plus two single interaction contributions corresponding to type 1 clusters. However, the 

delay matching and the DoA-DoD matching is not perfect in some cases (especially in the 

case [F2+F3]-R3), but in the contribution of type 1 identified previously (magenta: F5-R5), 

where it was not necessary any post processing of the clustering solution, the delay and 

azimuth matching were not perfect either. 
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Figure 4-12:  Clusters type 1 identified for the measurement pair [PAV-10]--[PAV-10rv]. 

 

It should be mentioned that, despite these manual adjustments on the clustering solutions, 

the global clustering framework (clustering algorithm plus cluster validation) applied has 

revealed to be a valuable tool, either in obtaining the several candidate partitions for the 

data set as in the selection of a particular partition. Nevertheless, as the data samples 

presented throughout this section illustrate, it is important to have a (human) look and 

some criticism into the outputs of supposedly automatic and systematized tools, so that 

corrective measures are applied, if needed. 

As a final conclusion, given the physical analysis of the data centroids has been able to 

identify meaningful interactions with the propagation scenario, it may be said that results 

presented here confirm that the assumption of MPCs arriving in clusters is adequate to 

describe the channel macro-structure. Small-scale effects are introduced by the 

superposition of individual MPCs. 
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Chapter 5 

 MIMO Modeling and Measurements 

This chapter describes the MIMO modeling approach followed. To start, the underlying 

modeling assumptions are defined; then the gathering of statistical data, extracted from the 

categorized experimental data collected in the previous chapters, is accomplished; finally, 

the channel simulator is explained. MIMO channel measurements are also presented and 

then used for validation purposes. 

5.1. Modeling Assumptions 

The modeling methodology proposed in this work can be classified as a geometry-based 

stochastic channel model (GSCM) and therefore, falls within the physical models category. 

The option for a clustered modeling approach may be justified by remembering the results 

concerning the physical analysis of clustered DCIRs, presented in chapter 4. These results 

demonstrated the adequacy of the assumption that MPCs arrive in clusters, because when 

analyzing the cluster centroids, meaningful interactions with the propagation scenario were 

identified, which, probably would not be recognized so clearly, if individual MPCs were 

instead analyzed. 

Nevertheless, unlike several of the GSCMs mentioned in section 2.4.5 (and also unlike the 

work presented in [100]), in this approach scatterers are not directly placed in the scenario 

according to a spatial scatterer density function. As an alternative, parameters of individual 
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MPCs, describing the physical channel, are generated from a set of assumed underlying 

statistical distributions. Subsequently, the scatterers positions are determined from the 

parameters of the MPCs. In this way, this method combines empirical stochastic channel 

modeling and geometry-based stochastic channel modeling. 

At last, similarly to all geometry-based models, if the radio link properties are defined, the 

physical model may be converted into the equivalent analytical model, i.e., the transfer 

matrix of the channel can be computed. The radio link description involves defining: the 

number of antennas at the transmitter and receiver arrays; the arrangement of the antenna 

arrays (including the antenna separation distance and the array spatial orientation) and the 

transmitter and/or the receiver route(s). By this way, it is possible to evaluate different 

radio link arrangements for the same physical channel structure. 

The model should be able to generate MPCs that reproduce the clusters properties 

observed in experimental data: delays, azimuths and power. In this context, one must take 

into account rules that govern inter-cluster properties (i.e., centroids properties) and rules 

that govern intra-cluster properties (MPCs inside clusters). 

The proposed model consists of: 

 One Cluster Type 0 containing: 

o The direct ray (first MPC) possibly attenuated if non- or obstructed 

line-of-sight condition is assumed. Time of arrival of the first MPC is 

settled by the distance between the transmitter and the receiver. 

o In LoS conditions, a second component deterministically placed may exist, 

with same power as LoS, in order to reproduce situations where a strong 

specular reflection with small excess delay occurs (i.e., belonging to the 

first cluster), as a reflection on the floor or on the ceiling. 

o Several equal powered random MPCs whose excess delay is assumed to be 

exponentially distributed and the DoA is assumed to follow a Laplace 

distribution. 

 A few Clusters Type 1 where only delay and DoA are random (as these clusters 

represent single interactions DoD is defined by the corresponding delay and DoA 

pair). These clusters consist of: 

o Random centroids whose excess delay is assumed follow an exponential 

distribution, while DoA is assumed to be uniformly distributed. 

o In each cluster, a number of equal powered random MPCs whose excess 

delay is assumed to follow a Gaussian distribution around the respective 



Chapter 5 – MIMO Modeling and Measurements 

 89 

centroid delay and the DoA is assumed to follow a Laplace distribution, 

also, around the corresponding centroid DoA. 

 A few Clusters Type 2 similar to clusters type 1, but where delay, DoA and DoD 

of centroids and MPCs are all random variables, because these represent higher 

order interactions. 

Moreover, it is proposed to use LoS power as the reference level and additional parameters 

are introduced to specify the power ratio between the reference level and the total power of 

MPCs in each cluster type. Furthermore, complementary parameters are also introduced in 

order to control the centroids power decay vs delay. 

The assumptions presented in this section envisage a methodology suitable for MIMO 

channel modeling. Although, to actually being able to model and simulate a particular 

channel it is necessary to parameterize the assumed statistical distributions and other 

proposed variables. This can be achieved by carrying out a statistical analysis on the 

structured data available. Besides, it should also be mentioned that, in addition to the 

statistical distributions and strategies suggested above, to describe each feature of the 

model, other have also been investigated. Results from this statistical analysis are given in 

the next section. 

5.2. Statistical Analysis of Clustered DCIRs 

As explained in the previous section, the channel modeling approach followed is driven by 

empirical data: a set of MPCs are generated according to statistical distributions which rule 

the parameters characterizing each MPC. This section presents the extraction of the 

statistical parameters which tune each assumed distribution. 

The data available consists in a set of MPCs (each one is characterized by its delay, 

azimuth and complex amplitude), a class label vector for MPCs containing a cluster index 

for each MPC, the centroids position of each cluster (i.e., the center of the group of MPCs 

belonging to a specified cluster, given by a power weighted average in each dimension of 

the delay-azimuth domains) and a class label vector for clusters containing the respective 

cluster type (0, 1, 2 or 3, according to the classification introduced in section 4.7). 

The analysis of data has been split into inter- and intra-cluster study: the former deals with 

centroids (each one representing a group of MPCs) and the latter deals with individual 

MPCs. Clusters type 0 were treated differently: only intra-cluster analysis has been 

performed and besides, delays of individual MPCs in this cluster type are referred to the 

delay of the direct ray, which in turn, is established by the distance between the transmitter 
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and the receiver. For the remaining clusters, the intra-cluster delay of individual MPCs are 

referred to the delay of corresponding cluster centroid (allowing for negative excess 

delays). 

 

5.2.1. Inter-Cluster Analysis 

The left-side of Figure 5-1 displays the centroids power vs time of arrival, of all clusters 

available from the several measurement files and the right-side displays centroids azimuth 

vs time of arrival. Represented clusters are distinguished in a twofold way: LoS clusters 

are represented by circles and Obstructed LoS (OLoS) clusters are represented by asterisks; 

while each cluster type is distinguished by one color. Legend in the left-side figure also 

applies to the right-side figure. 

Number of Clusters 

Typical values for the number of clusters have been extracted. Obviously, the number of 

type 0 clusters will be set to one. Therefore, the number of clusters of type 1 and type 2 for 

each measurement file has been considered. Characterization is achieved by computing 

some statistical measures whose results are collected in Table 5-1. 

Either for type 1 as for type 2, the most representative value seems to be 2 clusters. The 

maximum number of clusters observed was 4 for type 1; 5 for type 2, while for these two 

types together, the observed maximum was 6 and the observed minimum number was 3. 

Hence, the observed total number of clusters, i.e., type 0 (1) plus type 1 plus type 2, varies 

from 4 to 7. 

  
Figure 5-1:  Available clusters from all measurement files. 

Left: Centroids power vs time of arrival. Right: Centroids azimuth vs time of arrival. 
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Table 5-1:  Number of clusters type 1 and type 2. 

Cluster ID Range Mean Mode Median 

Type 1 [0, 4] 1.9 2 2 

Type 2 [0, 5] 2.0 1 2 

Type 1 + Type 2 [3, 6] 3.9 3 4 

 

Delay and Azimuth Analysis 

The experimental Cumulative Density Functions (CDFs) of excess delay and inter-arrival 

delay for centroids of the several clusters were fitted to an exponential distribution. 

Initially, cluster delays of all measurement files were collected all together as a data 

ensemble, but obviously, centroids of type 0 were excluded from this the data set in the 

excess delay analysis, because it would create an erroneous probability at zero excess delay 

and in the inter-arrival analysis, they are naturally excluded by computing the inter-arrival 

between the first two clusters. As explained before, time of arrival for cluster zero is not 

statistically drawn, as it is implicitly defined by the distance between the transmitter and 

the receiver. Both CDFs (for cluster excess delays and cluster inter-arrival delays) present 

a reasonable adjustment to the exponential distribution. The chi-square goodness-of-fit 

test
6
, at significance level of 1%, has been used to verify the suitability of the exponential 

distribution [101]. 

Nevertheless, as clusters of type 1 represent single-bounce interactions, it is expected that 

the corresponding excess delays are smaller than excess delays for clusters of type 2, 

which represent higher order interactions, and accordingly represent, potentially, higher 

path lengths. This assumption may be visually confirmed in Figure 5-1, where it can be 

clearly seen that the maximum time of arrival for clusters type 1 is about 300 ns, while for 

clusters type 2 is about 550 ns. Additionally, clusters of type 3 (those whose delay 

contribution was identified in only one direction of the double-directional measurement) 

present times of arrival covering the entire range of estimated times. These contributions 

may arise from an inability of the SAGE algorithm in estimating the equivalent 

                                                 
6
 The chi-square goodness-of-fit test is used to test if a sample of data comes from a population with a 

specific distribution. It evaluates how likely it is that any observed difference between the sets arose by 

chance. The test consists in computing a normalized sum of squared deviations between observed and 

theoretical frequencies. If the probability (given by a 
2χ  distribution) of observing such a deviation is higher 

than the specified significance level the hypothesis that the data come from a population with the specified 

distribution cannot be rejected. 
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contribution in the inverse direction measurement file (this has been clearly observed in the 

contributions with higher times of arrival); or may also arise from an inadequate 

recognition of clusters (i.e., splitting of a single existing cluster or merging of different 

existing clusters) in one direction of the measurement, associated with a correct 

identification in the opposite direction of the measurement. Any of these reasons, 

contribute to the inability of performing the linkage of each of these clusters with another 

cluster in the measurement made in the opposite direction. 

Therefore, in a second analysis step, three data collections were composed: one comprising 

clusters of type 1 together with clusters of type 2 and the other two comprising clusters of 

these two types separately. Hence, in this analysis, clusters of type 3 were not considered. 

Each data collection has also been fitted to an exponential distribution and Figure 5-2 

depicts the CDFs obtained and the corresponding fitting to the exponential distribution. In 

the legend it can be read the survival parameter, β, (corresponding to the mean delay) of 

each adjusted exponential distribution. Again, by using the chi-square goodness-of-fit test 

(significance level of 1%) has been concluded that the hypothesis of data coming from an 

exponential distribution cannot be rejected. Indeed, Figure 5-2 confirms that the parameter 

which characterizes the exponential is considerably different if clusters type 1 and clusters 

type 2 are examined individually. In contrast, the behavior of the inter-arrival delay seems 

to be independent of the type of cluster considered, since no substantial difference has been 

perceived by splitting the clusters based on their type. 

Regarding the azimuth analysis, the data ensemble comprising clusters of type 1 together 

with clusters of type 2 has been subjected to the chi-square goodness-of-fit test 

(significance level of 1%) and it sustained that the assumption of centroids azimuth being 

uniformly distributed in [-π, π] is acceptable. 

Power Analysis 

The delay analysis conducted evidenced that either the excess delay as the inter-arrival 

delay may be adequately modeled by an exponential distribution appropriately 

parameterized, but, to extract rules for power-delay decay it is more convenient to employ 

the excess delay which, hereafter, is simply referred as delay. Once more, clusters of type 1 

and clusters of type 2 were analyzed separately, in order to scrutinize if the power-delay 

behavior of these two types of clusters is significantly different. Additionally, centroids of 

each cluster type were further split into centroids from LoS and OLoS measurements. The 

left-side of Figure 5-3 displays results for clusters of type 1 and the right-side results for 

clusters of type 2. In the legend of this figure it can be read the slopes obtained for each 

data set. 
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Results in Figure 5-3 indicate that if LoS and OLoS data is considered together as a data 

ensemble, the global power decay slopes for clusters type 1 and clusters type 2 are roughly 

similar. Analogously, for clusters type 1, LoS and OLoS centroids also present similar 

slopes (note that the two lines in magenta look almost parallel). On the other hand, for 

clusters type 2, LoS and OLoS centroids reveal very different slopes: a much higher slope 

for LoS centroids and a significantly lower slope for OLoS clusters). 

 

  
Figure 5-2:  Experimental CDFs (solid lines) and adjusted exponential CDFs (dotted lines). 

Left: Excess delay analysis. Right: Inter-arrival delay analysis. 

 

 

  
Figure 5-3:  Power decay slope vs. delay. Left: Clusters type 1. Right: Clusters type 2. 
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In order to attain a comprehensive power characterization, the first MPC has been 

established as the power reference. This MPC corresponds to the direct ray, which under 

LoS conditions presents the highest power. Furthermore, the ratio between the power of 

this MPC, 
2

D , to the power sum of all MPCs in each cluster type has been computed. 

These quotients represent the power relation between the direct ray to the multipath power 

belonging to each cluster type, T, and may be denoted by 

 
2

D

2
, : , 0,1,2T i T

i

i

K i C T





  


. (5.1) 

Once again, as for the power decay slope, typical values for these power ratios have been 

identified for clear LoS and OLoS situations. Moreover, taking into account the behavior 

shown by the measurements under LoS condition and concerning to the power ratio for 

cluster type 0, K0, two situations have further been distinguished: direct ray only (D) plus 

multipath or direct ray and strong specular reflection (D+R) plus multipath. In this cluster 

type, the multipath power excludes the direct ray (first MPC) and also, if existing, the 

strong specular reflection, since these are viewed as deterministic components. For clusters 

type 1 and 2, the multipath power represents the power sum of all components belonging to 

these cluster types. 

Measurements displayed in Figure 3-12 and Figure 3-13 correspond to a D+R case: notice 

the two big, dark red circles at initial delays. These two circles belong both to cluster 0 (cf. 

with Figure 4-9 and Figure 4-10, respectively). Yet, not all LoS measurement files show 

this behavior. 

In addition, for OLoS measurements the obstruction loss has been investigated by 

comparing the power of the first MPC (i.e., the reference level) of these measurement files 

with the power of the first MPC in LoS measurements. The four OLoS measurements 

provided distinct values for the obstruction loss parameter, as just defined, because each 

measurement has been carried out in different conditions. Available measurements cover 

OLoS situations created by: a red brick wall (inside-outside); a door with some parts made 

of glass; a combined version of the previous two situations; and by the spectators’ seats (in 

this last case more than one wall may be traversed and/or possibly concrete parts). It has 

been found that the first two cases show very similar obstruction losses (about 3 dB) which 

correspond also to the lowest observed losses. 
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Final Remarks 

The reader, who takes a reading from one end to the other, may, at this moment, be 

wondering about the lack of values for all features and different situations mentioned 

(namely, for identified power ratios). In this section, it is intended to put the emphasis on 

the followed methodology allowing the gathering of data which will be used for 

parameterization of the envisaged channel simulator. When explaining the simulator it will 

be obligatory to enumerate all relevant features, its characterization and numeric values. If 

all data is presented as the methodology is being explained, data becomes spread across 

several subsections. It is the author’s opinion that, if the information is congregated all 

together it may be easier to attain the global picture. Hence, a global summary of data 

made available either by the present inter-cluster analysis, as by the intra-cluster analysis 

described in section 5.2.2, is given in section 5.3, when explaining the channel simulator. 

Data gathered during this inter-cluster analysis characterizes the channel macro-structure 

completely. For an assumed number of clusters (of type 1 and type 2) present in the 

channel, this data allows to draw the excess delay for each cluster centroid, the respective 

azimuth and to compute each cluster total power. 

 

5.2.2. Intra-Cluster Analysis 

Intra-cluster analysis has been accomplished in a very similar way as already done for 

inter-cluster analysis: typical values for the number of MPCs in each cluster; statistical 

distributions and the corresponding parameters, for intra-cluster delay and azimuth, are 

given in this section. 

Number of MPCs per Cluster 

Figure 5-4 shows the number of MPCs in each cluster. Again, each cluster type is 

differentiated by one color, whereas LoS clusters are represented by circles and OLoS 

clusters are represented by asterisks. In this figure, it may be observed that the number of 

MPCs seems to be related with the cluster type. Also, a relation with the cluster delay 

seems to exist, but this behavior may the caused by the inability of the SAGE algorithm in 

estimating MPCs with higher delays and less power (as described in chapter 3). Taking this 

into account and with the purpose of not to complicate the model assumptions, only the 

connection with the cluster type is studied. 

Thus, by computing again some statistical measures, for each cluster type, representative 

values for the number of MPCs per cluster have been identified. Mode is not presented 
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because some parameters presented several modes. Additionally, the total number of 

MPCs, present in the channel, has also been computed. Table 5-2 summarizes the data 

collected by this study. 

Delay Analysis 

For clusters of type 0, the first MPC (corresponding to the direct ray delay) has been 

established as the delay reference. Intra-cluster delays and the corresponding empirical 

CDF have then been computed. As for centroid delays (inter-cluster), the exponential 

distribution appropriately parameterized, may be used to characterize the intra-cluster 

delay for clusters of type 0. 

 

 
Figure 5-4:  Number of MPCs per cluster: each cluster type is differentiated by one color,  

whereas LoS clusters are represented by circles and OLoS clusters by asterisks. 

 

Table 5-2:  Typical values for the number of MPCs per cluster and for the total number of MPCs. 
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 Clusters T0 [6, 38] 17.2 16 

Clusters T1 [2, 31] 12.6 11 

Clusters T2 [1, 25] 7.3 7 

Global: T[0,2] [1, 38] 11.6 10 

Total N.º of MPCs [48, 82] 65.3 66.5 
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In contrast, the delay reference for clusters of types 1 and 2 is given by the corresponding 

cluster centroid. This intra-cluster delay signifies the delay deviation of a given MPC from 

the corresponding centroid. For this reason, it is expected that intra-cluster delays may be 

conveniently described by a statistical distribution that shows symmetry around the mean 

value (expected to be zero). The left-side of Figure 5-5 displays, this delay deviation for 

MPCs belonging to clusters of type 1 and type 2, but in separate charts for LoS and OLoS 

clusters. At least visually, the expected symmetry is reasonably confirmed. Besides, it can 

be observed that OLoS delays appear to be more spread than LoS delays. Hence, besides 

the global data set, CDFs for LoS and OLoS delays were also considered individually. 

Among several symmetric statistical distributions that could be used to characterize 

intra-cluster delay, the Laplace and the Gaussian distributions were studied. The chi-square 

goodness-of-fit test evidenced that either the Laplace or the Gaussian distribution may 

represent the data sets analyzed. Thereby, the Gaussian distribution has been chosen. The 

right-side of Figure 5-5 presents the three empirical CDFs and the respective fitting to the 

Gaussian distribution. As expected, the standard deviation of LoS intra-cluster delays is 

smaller than for OLoS delays. 

 

Azimuth Analysis 

In the same way, for azimuth intra-cluster statistics, the azimuth reference for a given MPC 

is established as the respective cluster centroid. When computing the azimuth deviation of 

a given MPC to the corresponding centroid, attention must be paid to the angles ambiguity: 

note that any angle difference cannot be greater than 180º. Additionally, in this case, the 

sign information is also relevant. 

The left-side of Figure 5-6 shows the intra-cluster azimuth distinguished by each cluster 

type. In this figure and unlike the delay behavior, it is obvious that for higher centroid 

delays the data spread tends to diminish. Therefore, two data sets were formed: one with 

azimuth data corresponding to centroids whose delay, c , is not greater than 150 ns and the 

other one corresponding to centroids whose delay is greater than 150 ns. The respective 

empirical CDFs and fitting to the Laplace distribution are given in the right-side of Figure 

5-6. 
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Figure 5-5:  Intra-cluster delay analysis. Left: LoS and OLoS delays for clusters of types 1 and 2.  

Right: Empirical CDFs and fitting to the Gaussian distribution. 

 

  
Figure 5-6:  Intra-cluster azimuth analysis. Left: Azimuth deviation from centroid.  

Right: Empirical CDFs and fitting to the Laplace distribution. 
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The parameters extracted through the intra-cluster analysis will enable to draw the 

intra-cluster delays and also, the intra-cluster azimuths, for MPCs in each cluster (except 

for the first MPC in cluster 0). The effective delay and azimuth of a given MPC may be 

obtained by adding the intra-cluster delay and azimuth, respectively, to the delay and 

azimuth of the corresponding centroid, which in turn are dictated by inter-cluster 

characterization, presented in section 5.2.1. The power of each cluster, which may also be 

computed from these parameters (power ratio and power decay slope), is assumed to be 

equally distributed by the MPCs belonging to the given cluster. 
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5.3. Channel Simulator Description 

The fundamental modeling assumptions (presented in section 5.1) and the statistical 

analysis just carried out (in section 5.2) enable the channel characterization by means of 

simulation. Figure 5-7 displays the flowchart of the developed channel simulator: 

rectangular shaped objects represent software routines and oval shaped objects represent 

data input/output. 

 
Figure 5-7:  Flowchart of the channel simulator: rectangular shaped object  

represent software routines and oval shaped objects represent data input/output. 
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As Figure 5-7 shows, the channel simulator comprises the following main steps: 

1- Configuration: 

a. Specify all parameters for the underlying statistical distributions and for the 

assumed rules that govern inter- and intra-cluster properties. 

b. Characterize the radio link (carrier frequency, bandwidth, transmitter- receiver 

distance); the transmitter and receiver arrays arrangements; the transmitter 

and/or the receiver travelled paths. 

2- Generation of the channel MPCs from the previously configured parameters. 

3- Generation of the coordinates (positions) and complex amplitudes of scatterers in 

the channel. 

4- Generation of the coordinates of the transmitter and receiver arrays along the 

corresponding travelled path. 

5- By means of simplified ray tracing obtain the matrix series of the channel frequency 

responses. 

 

The most relevant implementation aspects of the channel simulator are explained in the 

following subsections. At the same time, the achievements and outputs at each step are 

illustrated using a generated sample channel. 

In the flowchart a supplementary step is represented which regards the channel analysis: 

some of the common evaluation measures are mentioned, but this list is not closed. The 

matrix series of the channel frequency responses may be manipulated (analyzed) so it 

provides the features whose assessment is in target. Some results of these evaluation 

measures, for the same generated sample channel, are given in section 5.3.5. 

5.3.1. Generation of Channel Centroids and MPCs (Step 2) 

Table 5-3 and Table 5-4 recapitulate all data, gathered in the previous section, which 

allows the parameterization of the simulator concerning the inter- and intra-cluster channel 

properties (step 1-a.). This data enables to generate every channel cluster and MPCs 

belonging to it, according to the assumptions enumerated in page 88. Besides, the program 

writing for the construction of the physical channel also follows the sequence established 

in page 88 and this will be, as well, the sequence followed here. 
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Table 5-3:  Inter-cluster characterization parameters used by the channel simulator. 

Attribute Characterization Parameterization 

Excess delay 
Exponential distribution 

- survival parameter: β 

Cluster T1: β1 [ns] 117 

Cluster T2: β2 [ns] 163 

Azimuth 
Uniform distribution 

- interval limits 
Global [T1+T2]: [deg] [180, 180] 

P
o
w

er
 

Power 

Decay 

Linear slope in dB per 

time delay unit 

Cluster T1 

[dB/µs] 

LoS 38.5 

OLoS 44.2 

Global [LoS+OLoS] 48.1 

Cluster T2 

[dB/µs] 

LoS 63.2 

OLoS 29.9 

Global [LoS+OLoS] 46.0 

Power 

Reference 

First MPC 
2

D  

- If LoS  0 dB 

- If OLoS  –LOBST 

(obstruction loss) 

LOBST for 

OLoS 

[dB] 

Red brick wall or Door 3 

Red brick wall + Door 12 

Several walls / Concrete 20 

Power 

Ratio 

2

D

2T

i

i

K






 where 

2

D  direct ray power 

2

i  i-th MPC power 

Cluster T0 

K0 [dB] 

LoS 
D 2.5 

D+R 0.8 

OLoS 17 

Cluster T1 

K1 [dB] 

LoS 3.5 

OLoS -14 

Cluster T2 

K2 [dB] 

LoS 10 

OLoS -7 

Number of Clusters 

Cluster T0 1 

Cluster T1 2 

Cluster T2 2 

 

Nevertheless, some aspects are shared among different features (clusters types and/or 

centroids) and one of these is the generation of random variables with prescribed 

distributions. Delays and azimuths (for centroids and also for individual MPCs) are 

randomly drawn from the underlying statistical distributions. According to the feature 

considered, different distributions were envisaged and parameterization data for these 

distributions has been extracted in section 5.2. In addition to the uniform and Gaussian 

distributions, the exponential and Laplace distributions were also the contemplated. 
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Table 5-4:  Intra-cluster characterization parameters used by the channel simulator. 

Attribute Characterization Parameterization 

Delay 

Exponential distribution 

- survival parameter: β 
Cluster T0: β0 [ns] 24 

Normal distribution 

- mean: c c   

- standard deviation: σ 

Clusters T[1,2] 
σ [ns] 

LoS 21 

OLoS 34 

Global 25 

Azimuth 

Laplace distribution 

- mean: c c   

- scale parameter: b 

2
b   where σ is the 

standard deviation 

Standard deviation 

σ [deg] 

c   150 ns 33 

c  > 150 ns 15 

Number of MPCs 

Cluster T0 m0 15 

Cluster T1 m1 15 

Cluster T2 m2 10 

 

Regularly, programming languages or environments for numerical computation offer tools 

for generating random variables that follow the uniform distribution. Frequently, also the 

Gaussian distribution and maybe others are contemplated. But, naturally, not all 

distributions are provided and a method must be employed for generating random variable 

with a desired (generic) CDF. In the main, methods for generating random variables with a 

given CDF are based on the availability of random numbers that are uniformly distributed. 

One of these methods has been employed and it is presented in appendix A. 

 

Cluster 0 

Cluster 0 consists of 0m  MPCs. As explained before, the first MPC belonging to cluster 0 

is not randomly drawn: total delay (or time of arrival) is defined by the distance between 

the transmitter and the receiver; the azimuth is zero and its power is given by the 

obstruction loss parameter (0 dB for LoS condition). Azimuths of MPCs belonging to 

cluster 0 correspond to DoAs and are referred to the line from the receiver to the 

transmitter, thus, the azimuth of the transmitter is always zero. 
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Still for LoS situation, if the simulator is run with the option for a strong specular 

reflection, a second equal powered MPC is placed: the excess delay of this MPC is 

uniformly distributed in the interval [15, 25] ns and the azimuth is zero as well. 

The delays and azimuths (DoA) for the remaining 0 2m   or 0 1m   MPCs (respectively, if 

the strong reflection exists or not) are then randomly drawn from the underlying statistical 

distributions: an exponential distribution (with parameter β) for delays and a Laplace 

distribution with zero mean (µ) and standard deviation (σ) for azimuths. The generation of 

random variables uses the CDF transformation method presented in appendix A. 

Let 0m  denote the number of MPCs in cluster 0 which are randomly drawn. The amplitude 

of these MPCs is defined by the power ratio, K0, according to 

D

0

0 0

i
m K


 


. (5.2) 

 

Clusters Type 1 and Type 2 

Aside from specific parameterization values, clusters Type 1 and Type 2 present several 

similarities and just a few differences. For this reason, here they are discussed conjointly 

and every difference is evidenced, but, in the channel simulator they are treated separately. 

For these clusters types the centroids are drawn first where delays follow an exponential 

distribution; azimuths are uniformly distributed and power is established by the power 

ratio, K1 (or K2) and by the power decay slope, 1S  (or 2S ) parameters. 

Azimuths of MPCs belonging to clusters type 1 correspond to DoAs, as in cluster 0, but for 

clusters type 2 two azimuths are drawn for each centroid, one being the DoD and the other 

being the DoA. This is because each MPC in clusters of type 1 will be associated to only 

one scatterer position (representing a single-bounce interaction), while each MPC in 

clusters type 2 will be associated with two scatterer positions (allowing to represent 

double- or multiple-bounce interactions). 

The power of each centroid represents the power sum of individual MPCs in the 

corresponding cluster. The following exemplary formulas are given for clusters type 1, but 

identical ones are used for clusters type 2, which may be obtained simply by replacing K1 

by K2 and 
1S  by 

2S . The power (in dB) of clusters follows a linear decay law, given by 

dB dB

1 0ck ckP S P  , (5.3) 
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where ck denotes the cluster index; dB

ckP  and ck  the power and delay of this cluster, 

respectively, and dB

0P  represents the y-axis intercept. Note however that, the intercept does 

not correspond to the power of cluster 0. Indeed, the following condition must be satisfied 

2 2

D D

1 2

cki
cki

K
P

 


 


, (5.4) 

where 
i  denotes the amplitude of individual MPCs belonging to a given cluster type, 

while 
ckP  represents the power sum of individual MPCs belonging to a specific cluster, ck. 

By inserting 

 dB
1 0

1010

ckS P

ckP

 

 , 
(5.5) 

in (5.4), dB

0P  may be expressed as 

1

2

dB D dB

0 10 1
10

10log

10
ckS

ck

P K



 
 

  
 
 
 


. (5.6) 

With each cluster centroid specified, the individual MPCs may now be generated. Inside 

clusters, a number of equal powered MPCs are placed whose delays follow a Gaussian 

distribution, with mean μ ck  and standard deviation specified in Table 5-4. 

Azimuths follow a Laplace distribution, with mean defined by the corresponding centroid 

azimuth and standard deviation specified also in Table 5-4. Analogously to the centroids, 

the azimuth of each MPC belonging to clusters of type 1 represents DoA, while each MPC 

belonging to clusters of type 2 has a DoA and also a DoD. 

Regarding the delay generation, and taking into account that the Gaussian distribution is, 

theoretically, unbounded, there is a chance that a negative delay is drawn (especially if the 

centroid delay is small). In case of having drawn a negative delay, a new centroid delay 

and corresponding MPCs delays are drawn. For this reason and because the cluster power 

depends on its delay, the exact processing order is: 
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1- Generate delay and azimuth(s) for every cluster centroid. 

2- Generate delay and azimuth(s) for every MPC. 

3- Check for negative delays 

Yes: 

a. Generate new centroid delay for problematic cluster(s). 

b. Generate new delay for MPCs belonging to these clusters. 

c. Go to step 3. 

4- Obtain each cluster power by using equations (5.6) and (5.3). 

5- Distribute (equally) the power of each cluster among MPCs belonging to it. 

 

Figure 5-8 displays a sample of a generated channel for the case of LoS plus a strong 

reflection. In the left-side of this figure, the channel impulse response is shown, where 

individual MPCs are represented by stems ending in point-shaped markers and cluster 

centroids are represented by stems ending in diamond-shaped markers. In addition, cluster 

types are distinguished by color. In the right-side of this figure, the DCIR is presented 

which achieves a more complete channel representation, i.e., a representation covering 

delay, DoA and amplitude domains. 

 

  
Figure 5-8:  Sample of a generated channel for LoS plus strong reflection condition. Left: Channel MPCs 

(points) and cluster centroids (diamonds). Right: Directional channel impulse response. 

0 100 200 300 400 500
-30

-25

-20

-15

-10

-5

0

5

10

Delays (ns)

Im
p

u
ls

e
 R

e
s
p

o
n

s
e

 (
d

B
)

Generated Channel (LoS-DirRay+StrgRef)

 

 

Cluster 0

Type 1 clusters

Type 2 clusters



Propagation Channel Modeling for MIMO Systems 

 106 

5.3.2. Generation of the Channel Scatterers (Step 3) 

With exception of the direct ray, MPCs generated in the previous step, are then represented 

by scatterers in the propagation scenario whose positions are computed from the respective 

delays and azimuth(s). The MPC amplitude is assigned to the associated scatterer. In 

addition, a random phase,  , is attached to each scatterer. 

Figure 5-9 illustrates the method employed [62] to find the scatterer position corresponding 

to a given MPC: the transmitter and receiver, separated by 2d, are assumed to be placed on 

the foci of an ellipse (centered at the origin and with the major axis along the x-axis) which 

is defined by the MPC delay and the respective azimuth(s) define(s) the scatterer position 

in this ellipse. The general equation of an ellipse is expressed by 

2 2

2 2
1

x y

a b
  , (5.7) 

where, a and b are the semi-major and semi-minor axes, respectively, which verify 
2 2 2d a b  . The ellipse eccentricity is 

d
e

a
  and also of interest are 

1r a ex   and 2r a ex  . (5.8) 

The path length associated to the delay of a given MPC, created by means of a reflection 

on a scatterer, defines one ellipse verifying 1 2 2r r a c   , where c is the speed of light. 

Therefore, each ellipse (with parameters ai and bi) is specified by the delay of a given 

MPC, i , and by the distance between the transmitter and receiver, 2d, as follows 

2

i
i

c
a


  and 

2 2

i ib a d  . (5.9) 

 

 
Figure 5-9:  Single-bounce scatterers (magenta) and multiple-bounce scatterers (black). 
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The azimuth information allows to obtain the scatterer position,  ,i ix y , on the ellipse i, 

where the x-y axes are assumed to define the horizontal plane. As explained before, for 

single-bounce scatterers (representing MPCs belonging to cluster type 1) the azimuth 

corresponds to DoA and (in conjunction with delay) suffice for completely determine its 

position. Observing the geometry of the problem (Figure 5-9) it can be easily concluded 

that there is a single solution which satisfies a given path length (defined by delay) for a 

given DoA. Thus, the scatterer position is given by 

 
 

 
DoA

2 DoA

DoA

cos
cos

1 cos

i

i

d a
x d r

e







  


 (5.10) 

   DoAsini i iy a e x   . (5.11) 

With exception of the direct ray, MPCs belonging to cluster 0 also represent a 

single-bounce reflection. However, the characteristics of the propagation scenario (sports 

hall) may justify, besides reflections in the floor, also reflections in the ceiling or, as well, 

the combination of these two. Therefore, for these MPCs the corresponding single-bounce 

scatterers were assumed to be positioned in ellipses placed in the vertical x-z plane, so 

0iy   and equations (5.10) and (5.11) give, respectively, the ix  and iz  coordinates. 

Regarding multiple-bounce scatterers (representing MPCs belonging to clusters type 2), 

these are additionally characterized by a DoD and it may exist several solutions that satisfy 

a given path length (delay) for the DoD/DoA pair. Therefore, it has been decided to 

employ the equivalent scatterer concept, but, in order to conveniently reproduce the 

channel properties at both link-ends, each MPC is represented by two equivalent scatterers 

as shown in Figure 5-9. Similarly to single-bounce scatterers, the equivalent scatterer for 

arrival (represented by a diamond shaped marker) is obtained using equations in (5.10) and 

(5.11), but, to obtain the equivalent scatterer for departure (represented by a hexagram 

shaped marker) these equations must be updated as follows 

  
 

 
DoD

DoD 1 DoD

DoD

cos
cos

1 cos

i

i

a d
x d r

e







   


 (5.12) 

   DoD DoDsini i iy a e x   . (5.13) 

The total path length, associated with each pair of two equivalent scatterers, is defined by 

the corresponding MPC delay and they are assumed to be (jointly) represented by only one 

amplitude coefficient, corresponding to the MPC amplitude. 

Figure 5-10 displays the channel scatterers for the sample channel presented in Figure 5-8, 

where: blue scatterers represent MPCs of cluster 0 (with exception of the direct ray); 
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magenta scatterers describe contributions from clusters type 1; while black scatterers are 

associated with clusters type 2. For the latter, each contribution is characterized by one pair 

of scatterers: one represented by a hexagram shaped marker plus another represented by a 

diamond shaped marker. 

 

5.3.3. Generation of the traveled route(s) (Step4) 

In this work it is suggested to achieve the channel characterization by means of simulation, 

providing for this purpose, synthetic series of channel realizations. To produce these series, 

the transmitter and/or the receiver are assumed to travel along a straight route, which is 

closely sampled. Each sampling point in the route corresponds to one value in the 

simulated series, i.e., a snapshot. If velocity is known, the generated series may be 

represented either in the traveled distance domain or in the time domain. 

The transmitter and receiver are assumed to be equipped with linear antenna arrays. Table 

5-5 offers sample parameters that stipulate the arrangement, at the transmitter and receiver, 

of the antenna arrays: number of antennas, antenna separation and array orientation. This 

table includes also parameters that specify the transmitter and receiver routes (direction, 

length and inter-samples separation) and the radio link (carrier frequency and bandwidth). 

Figure 5-11 explains the geometry and the physical interpretation of these parameters. 

 

 
Figure 5-10:  Scatterers for the sample channel presented in Figure 5-8. 
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Table 5-5:  Configuration parameters for: the radio link and the transmitter and receiver arrays and routes. 

Attribute Parameter Description Sample value 
R

ad
io

 L
in

k
 Fc Carrier frequency [GHz] 2 

BW Frequency bandwidth [MHz] 200 

Nf Number of frequency points 801 

dTxRx Transmitter to receiver distance 13 

T
x

/R
x

 a
n
te

n
n
a 

ar
ra

y
 

Nt/Nr Number of antennas 2 

dTx ( Tx ) 

dRx ( Rx ) 

Distance between antennas 

[wavelengths] 
0.5 

Tx_ang ( Tx ) 

Rx_ang ( Rx ) 

Array orientation referred to x-axis 

[rad] 
π/2 

T
x
/R

x
 r

o
u
te

 

TxRt_dr ( Tx ) 

RxRt_dr ( Rx ) 

Route direction referred to x-axis 

[rad] 
π/2 

TxRt_step ( Tx ) 

RxRt_step ( Rx ) 

Route step (inter-snapshots space) 

[wavelengths] 
0.25 

TxRt_lgth 

RxRt_lgth 
Route length [wavelengths] 5 

 

 
Figure 5-11:  Geometry and physical interpretation for parameters in Table 5-5 specifying the transmitter and 

receiver antenna arrays and routes. 

 

The simulation route is generated as follows: for each position of the transmitter, the 

receiver performs an entire scan of its path; then, the transmitter advances one position in 

its route and the receiver performs another scan in the opposite direction; until the 

transmitter reaches all considered simulation positions. This provides approximately 
Tx RxN NS S  channel realizations, where TxNS

 and RxNS
 are, respectively, the number of 

Tx Rx dd

Tx

Rx

Tx

TxTx
Rx Rx

Rx

x
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samples in transmitter and receiver routes (these correspond roughly to the route length 

divided by the route step – cf. Table 5-5). Nevertheless, if other route schemes should be 

considered, this can be done by updating only the routine which generates the simulation 

paths. 

5.3.4. Obtaining the Frequency Responses Matrix Series (Step 5) 

The channel frequency response is computed, at each sampling point and for each possible 

combination of input and output antennas, by means of simple ray tracing mechanism, 

considering the direct ray and every scatterer contribution, which is expressed as 

        D 0 1 2

1

Direct ray Scatterers contributions

2 2
exp j d exp j d d

Ls
ij j i

ijh n n n n
 

  
 

   
        

   
 , 

(5.14) 

where,  ijh n  designates the frequency response from the j-th transmit antenna to the i-th 

receive antenna, at the n-th sampling point; Ls denotes the number of scatterers;   and   

are, respectively, the amplitude and phase of the -th scatterer. In addition, 0 Tx Rxd dij

j i  

represents the distance from the j-th transmit antenna to the i-th receive antenna; 

1 Tx ScDoDd dj

j  denotes the distance from the j-th transmit antenna to the -th scatterer and 

2 ScDoA Rxd di

i  designates the distance from the -th scatterer to the i-th receive antenna; 

all at the n-th sampling point. 

For single-bounce scatterers (those corresponding to cluster 0, excluding the direct ray, and 

to clusters type 1), 
1d j  and 

2d i  are computed using the same scatterer. Yet, for 

multiple-bounce scatterers 
1d j  is calculated using the equivalent scatterer found from DoD, 

while 
2d i  is obtained using the equivalent scatterer established from DoA. 

In the left-side of Figure 5-12 is illustrated the assumed propagation mechanism for 

clusters type 1 (single-bounce): 
1 2d dj i  is represented by gray solid lines departing from 

the transmitter and reaching the receiver through one scatterer. 

In the right-side of Figure 5-12, is exemplified the propagation process for cluster type 2 

(multiple-bounce): 
1d j  corresponds to the gray solid line departing from the transmitter to 

one hexagram shaped scatterer, while 
2d i  corresponds to gray solid line departing from one 

diamond shaped scatterer to the receiver. Each channel contribution is described by using 

two linked equivalent scatterers: this one-to-one association is represented by a gray dotted 

line. 
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Figure 5-12:  Propagation mechanism for single-bounce (right) and multiple-bounce scatterers (left). 

Scatterers generated for the sample channel presented in Figure 5-8. 

 

5.3.5. Simulator Sample Results 

This section presents some output results obtained for the channel being used as example 

in the previous sections (corresponding to Figure 5-8 and Figure 5-10). Simulation 

parameters for the radio link and for the transmitter and receiver arrays and routes were 

used as indicated in Table 5-5. Chosen results are divided into SISO outputs and MIMO 

outputs. 

In addition, simulator outputs for one OLoS sample channel are offered in appendix B. 

This simulation has also used the parameters specified in Table 5-5. 

SISO outputs 

In the left-side of Figure 5-13 it is presented the received amplitude, for all channel 

realizations and frequencies, corresponding to one transmit-receive antenna pair (
11h ). In 

the right-side of this figure it can be observed the channel series only for f =2 GHz, while 

in the left-side of Figure 5-14 it is shown the frequency response obtained for one single 

channel realization (one sampling position or snapshot). Additionally, in the right-side of 

Figure 5-14 it is displayed the channel impulse response corresponding to this channel 

realization, which has been obtained by using the IFFT algorithm. 
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Figure 5-13:  Received amplitude for the generated sample channel. Left: Complete data set generated. 

Right: Channel realization series for f =2 GHz. 

  
Figure 5-14:  One realization. Left: Frequency response. Right: Impulse response (obtained by IFFT). 

Figure 5-15 exhibits the channel autocorrelations: the left-side contains the frequency 

autocorrelation of the channel realization shown in left-side of Figure 5-14 and in the 

right-side, the spatial autocorrelation corresponding (partially) to the channel realization 

series presented in the right-side of Figure 5-13. Indeed, the spatial autocorrelation has 

been computed considering only one receiver route scan and using a smaller inter-samples 

separation, so that the autocorrelation function is properly displayed. Also represented in 

this figure is the zero order Bessel function of the first kind, which theoretically rules the 

spatial autocorrelation function: a reasonable agreement is found for this frequency. 

As discussed in section 3.1, the correlation bandwidth of the channel may be computed 

from the frequency autocorrelation. On the other hand, the spatial autocorrelation provides 

information on the correlation level for a given spatial separation or the minimum spatial 

separation to achieve a given correlation threshold. 
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Figure 5-15:  Channel autocorrelation. Left: Frequency domain. Right: Spatial domain. 

 

MIMO outputs 

The left-side of Figure 5-16 presents the six channel cross-correlations: these are 

computed, for each frequency, as the correlation between each series pair of the channel 

matrix entries. For a 2x2 MIMO setup it is possible to compute six channel 

cross-correlations. It is expected that two of these depend only on the separation at the 

receiver side, where each one considers a fixed transmitter and the two receivers: these two 

– 11, 21h hR  and 12, 22h hR  – are represented by the yellow-red pair, respectively, and should be 

roughly the same (because when considering one transmitter or the other would not have 

much influence). 

In a similar manner, there are two comparable cross-correlation values depending only on 

the separation at the transmitter side (where each one considers a fixed receiver and the 

two transmitters): these two – 11, 12h hR  and 21, 22h hR  – correspond to the cyan-blue pair. For 

each pair it is, actually, observed that cross-correlations are similar to each other and 

similar to those of the other pair, as well. This result is comprehensible given the symmetry 

of the simulated MIMO arrangement (same inter-antenna spacing and also same number of 

antennas, at the transmitter and receiver sides). 

Moreover, there are two cross-correlations depending on the separation, either at the 

transmitter either at the receiver sides: 
11, 22h hR  and 

21, 12h hR . These are represented in green 

and black, respectively, and present also, approximately, analogous behavior to each other 

(i.e., the same frequency comportment with approximately the same levels). 

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency autocorrelation for h
11

 [LoS-DirRay+StrgRef - snapshot 1]

Frequency displacement (MHz)

N
o
rm

a
liz

e
d

 c
o
rr

e
la

ti
o
n

75 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Spatial autocorrelation for h
11

 [LoS-DirRay+StrgRef -- f = 2 GHz]

Spatial displacement (wavelengths)

N
o
rm

a
liz

e
d

 c
o

rr
e

la
ti
o
n

 

 

Simulated data

Theoretical



Propagation Channel Modeling for MIMO Systems 

 114 

  
Figure 5-16:  Left: Channel cross-correlations. Right: CDF of the channel singular values for f =2 GHz. 

  
Figure 5-17:  Channel capacity. Left: Global data set. Right: Capacity CDF for f =2 GHz. 

 

Series of the two singular values of each 2x2 MIMO channel matrix, for each frequency 

have been computed. In the right-side of Figure 5-16 the corresponding CDFs are given 

while in the left-side of Figure 5-17 it is displayed the instantaneous capacity for the global 

data set (all frequencies and channel realizations), considering a SNR of 10 dB. In the 

right-side of the same figure the corresponding CDF for f =2 GHz is presented, where it is 

also included the CDF of the SISO capacity computed using one transmit-receive antenna 

pair  11h . 

Ergodic capacities, corresponding to the right-side of Figure 5-17 are, respectively for 

MIMO and SISO, 3.6 bps/Hz and 1.9 bps/Hz, providing a capacity gain of about 1.9, 

almost achieving, for this frequency, the theoretical linear capacity increase given by 
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example), corresponding results are, respectively for MIMO and SISO, 6.1 bps/Hz and 3.7 

bps/Hz: capacity gain has slightly decreased, but the ergodic capacity has effectively 

increased. The capacity increase for this frequency may be explained because the 

corresponding channel amplitude seems to be, generally, higher than that obtained for the 

channel corresponding to f =2 GHz (cf. with the left-sides of Figure 5-13 and Figure 5-17 

the stain of red is greater for 1.9 GHz than for 2 GHz, which, instead presents more blue). 

The slight decrease in the capacity gain may be explained by the increase presented by all 

cross-correlations (cf. with the left-side of Figure 5-16). 

5.4. MIMO Measurement Campaign 

The channel simulator developed in this work enables the characterization and analysis of 

the multipath MIMO channel. However, in order to perceive how accurately the channel is 

being described, the simulator must be, itself, assessed and validated. For this purpose, a 

MIMO measurement campaign, in the same propagation scenario, has been planned. 

The SIMO measurement system, presented in section 3.2, has been modified in order to 

allow MIMO radio channel measurements: as shown in the left-side of Figure 5-18, the 

two linear positioning units have been detached. In addition, the software which controls 

the equipment, acquires and saves experimental data has been updated. By this way, the 

updated measurement system provides linear synthetic arrays both at the transmitter and 

receiver, thus, MIMO measurements. As the main measuring task is performed by the 

VNA under the control of the computer, the setup is easily interchanged from one 

configuration to the other by attaching or detaching the two positioning units. 

The right-side of Figure 5-18 displays a photograph taken during one specific 

measurement. On the other hand, the left-side of Figure 5-19 presents the transmitter and 

receiver arrangement of positions, for all accomplished measurements. By observing this 

figure, it can be acknowledged that measurements were performed by placing the 

transmitter and the receiver exactly on the same positions as those used for SIMO 

measurements (cf. Figure 3-2). Moreover, for each arrangement, the same designation has 

been adopted. However, there are two SIMO arrangements (PAV 3 and PAV 5) that could 

not be repeated using the MIMO measurement setup, due to limitations on the length of the 

cables which feed the stepper motors. 
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Figure 5-18:  Left: Block diagram of the MIMO channel measurement system. Right: Photograph 

corresponding to the one measurement position (“PAV 10”). 

 

  
Figure 5-19:  Left: Description of the MIMO measurement positions in the scenario. Right: Mean power 

level of each measured frequency response for the arrangement “PAV 10”. 
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three times, where each sub-collection delivers 21 21 441   frequency responses: for each 

of the 21 transmitter positions, the receiver performs an entire scan along the positioning 

unit. The channel transfer matrix, for different MIMO configurations, may be obtained by 

selecting the adequate sample points during post-processing. 

The right-side of Figure 5-19 depicts the mean power level for all the 3 441 1323   

frequency responses available corresponding to one transmitter-receiver arrangement, 

where each of the three sub-collections (each comprising 441 frequency responses), is 

identified by one color. Indeed, power levels presented in this figure were normalized so 

that the global mean power corresponds to 0 dB (actually, the measured mean power level 

is about 61 dB). 

In addition, for some measuring positions, it has been observed a slight variation (about ±1 

dB for this particular data set) in the mean power level corresponding to each 

sub-collection of frequency responses. This behavior may be due to mismatches in the 

cable junctions (particularly in the interface antenna-cable) caused by the antenna motion 

which drags and imposes some tension on the cables. In order to unify the mean power 

level for the three data sub-collections, each section has been adjusted individually. 

5.5. Measurements Results vs Simulator Outputs 

In this section, results obtained directly from the MIMO measurements are compared to the 

simulator outputs, for validation purposes. To accomplish a rationale comparison (i.e., 

rigorous and yet fair), the simulator is parameterized so it reproduces the structure of the 

measured channel conveniently. Therefore, instead of generating the cluster centroids 

randomly (using parameters presented in Table 5-3), these are alternatively established by 

consulting the database created with the clustered DCIRs and whose statistical analysis has 

been presented in section 5.2. 

Regarding cluster 0, the database supplies the direct ray characterization, comprising its 

delay, 0 , and power, 
2

D . Likewise, if a strong specular reflection is present, its delay 

and power are also specified. Similarly, the power of other MPCs belonging to this cluster 

is given, whereas their delay and azimuth are randomly drawn from the underlying 

statistical distributions as explained in section 5.3.1. Nevertheless, applicable parameters 

reported in Table 5-4 were correspondingly updated in order to reflect the characteristics of 

this specific measurement point. 

For the remaining clusters, the database provides the cluster centroids. For clusters type 1, 

it stipulates the centroids delay ck , DoA azimuth, DoA

ck , and power, 
ckP . For clusters type 
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2, it gives additionally, the centroid DoD azimuth, DoD

ck . As in cluster 0, individual MPCs 

belonging to each cluster are then randomly drawn, once more, according to the assumed 

statistical distributions and as explained in section 5.3.1. Again, related parameters stated 

in Table 5-4 were consistently refreshed. 

Furthermore, in order to exactly reproduce the measurement conditions, parameters in 

Table 5-5 may not be adjusted freely: namely, the transmitter and receiver routes and the 

arrangement of the antenna arrays must be compliant with the available measurements. 

This means, for example, that the minimum inter-antenna and inter-sampling separations, 

Tx , Rx , Tx  and Rx , are constrained to /4, corresponding to the measurement 

separation. Aside from these restrictions, the remaining simulation steps (i.e., the 

generation of the channel scatterers and the computation of the frequency responses 

matrix) run exactly in the same way as for any other free simulation. 

Results presented in this section concern the data set designated as “PAV 10”, 

corresponding to a LoS plus strong reflection case. This data set has been used along this 

thesis to explain each step of the work carried out, so that a guiding thread is maintained. 

Figure 5-20 shows the generated channel for simulation of this measurement point: in the 

left-side of this figure it is presented the channel impulse response, while, in the right-side 

it may be observed the corresponding channel scattereres overlaid on the scenario layout 

(using the coordinate axes of Figure 5-9). By prescribing directly the cluster centroids for 

simulation, it becomes guaranteed a correct description of the main physical contributions 

from the propagation scenario. 

 

  
Figure 5-20:  Generated channel for “PAV 10”. Left: Channel MPCs. Right: Channel scatterers. 
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For this evaluation study, the transmitter and receiver number of antennas have been both 

set to 2 Nt Nr ; whereas parameters Tx , Rx , Tx  and Rx  were all set to /4, thus, 

providing the maximum number of channel realizations. Nevertheless, it has been decided 

to use only the red part of the data set presented in Figure 5-19 (comprising samples from a 

single data sub-collection), though, similar conclusions would be obtained if a different (or 

even more than one) sub-collection had been chosen. 

Recalling the power reference established for simulations (0 dB for direct ray under LoS 

condition) and the adjustment made to the measurements (0 dB for mean power level) it 

can be easily concluded that measurements and simulations use different power references. 

For comparison purposes of certain features (received amplitude, impulse response, etc.) it 

is important to use the same reference level. One way of achieving this normalization is to 

find the power level of the direct ray for the measurements and bring it to the same level 

used in simulations (or vice-versa). However, the power level of the direct ray has been 

estimated from SIMO measurements and as referred before, even in MIMO measurements 

made in a single batch, some power fluctuations were observed. For this reason, it was 

preferred to adjust the mean power level by forcing the mean power level of measurements 

to match the simulations mean power level. 

In the following, the validation of the channel simulator is given by evaluating the 

achieved channel characterization for SISO and for MIMO setups: measurements and the 

corresponding simulations results are compared, mainly using graphical arrangements. 

Given the high amount of available figures, some are instead presented in appendix C. 

5.5.1. Assessment of the SISO Characterization 

The left-side of Figure 5-21 presents the frequency response for a single channel 

realization (snapshot) and the right-side shows the channel realization series for 2 GHz. 

The CDFs of these specific data sets may be found in (appendix C) Figure C-2, whereas 

Figure C-1 shows the measured and simulated global data sets. 

The frequency domain autocorrelation, corresponding to the frequency response shown in 

the left-side of Figure 5-21, is displayed also in the left-side of Figure 5-22: from this it is 

possible to evaluate the coherence bandwidth of the channel, for a given correlation level. 

For this specific channel realization and considering the 50% correlation level, the 

coherence bandwidth is about 1.96 MHz for measurements and 1.53 MHz for simulations. 

Indeed, for this channel realization simulations and measurements differ substantially, but 

by examining other channel realizations it can be concluded that this behavior is not 

systematic. The mean value of the coherence bandwidth has been found to be 1.63 MHz 
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for simulations and 1.69 MHz for measurements (deviation of 3.6%). The CDF of 

coherence bandwidths corresponding to the several channel realizations is given in 

left-side of Figure C-3. 

The right-side of Figure 5-22 presents the spatial autocorrelation of the channel realization 

shown in the right-side of Figure 5-21 (f = 2 GHz). Again, as for the simulations presented 

in section 5.3.5, to achieve an adequate sampling so that the autocorrelation function is 

correctly displayed, the channel series had been simulated using a smaller inter-samples 

separation. However, measurements were acquired using /4 as sample spacing; therefore 

an interpolation is performed using the data points available from measurements. Similarly 

to the simulations presented before, in this figure is represented (black line) the zero order 

Bessel function of first kind. A reasonable agreement between the three curves is observed. 

Additionally, Figure 5-23 exhibits the spatial autocorrelation for the entire set of sample 

frequencies available: similar structures are observed, but the correlation (relative) side 

maxima tend to be more exacerbated for simulation results than in the measurements. On 

the other hand, the main lobe is slightly larger for measurements: on average, for a 

displacement of /4, the correlation level is about 0.28 for simulations and 0.32 for 

measurements (cf. with right-side of Figure C-3). 

Figure 5-24 offers time domain results: in the left-side of this figure it is given the channel 

impulse response for the channel realization presented in the left-side of Figure 5-21 

(obtained by IFFT); whereas the right-side shows the delay spread CDF computed from 

impulse responses as the one presented in the left-side (delay spread has been computed by 

considering only impulse response points above the threshold represented by the black 

line, corresponding, in this case, to 33 dB). Obtained average delay spread is 56.4 ns for 

simulations and 58.6 ns for measurements. 

  
Figure 5-21:  Received amplitude (one antenna) for “PAV 10”. Left: Frequency response of one channel 

realization. Right: Channel realization series for f = 2 GHz. 
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Figure 5-22:  Channel autocorrelation. Left: Frequency domain autocorrelation (one channel realization). 

Right: Spatial domain autocorrelation for f = 2 GHz. 

  
Figure 5-23:  Spatial autocorrelation for all frequencies available. 

  
Figure 5-24:  Left: Channel impulse response (one snapshot). Right: CDF of delay spread. 
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Taking into consideration results presented in this subsection, it may be considered that the 

channel simulator is able to characterize the SISO channel in a satisfactory way. Although 

some acceptable deviations, the results obtained directly from measurements and those 

obtained from simulations present, for all investigated features, similar behavior. 

Additionally, observed deviations were about 5 % and regularly less 10 %. 

5.5.2. Assessment of the MIMO Characterization 

Figure 5-25 depicts the channel cross-correlations. The two analogous cross-correlation 

values depending only on the separation at the receiver side (those considering a fixed 

transmitter and the two receivers) are represented by the yellow-red pair for measurements 

and the cyan-blue pair for simulations, in the topmost graphic. Likewise, the two 

comparable cross-correlation values depending only on the separation at the transmitter 

side (those where each one considers a fixed receiver and the two transmitters), appear in 

the middle and use also the same color scheme, for measurements and simulations (as used 

for cross-correlations depending only on the receiver side separation).  

For both cross-correlations mentioned, it may be observed that measurements and 

simulations present analogous correlation levels. Once more, as for the simulations 

presented before (section 5.3.5), cross-correlations depending only on the receiver side 

separation present very similar behavior to those depending only on the transmitter side 

separation. Again, this observation may be justified with the symmetry of the simulated 

MIMO arrangement (same inter-antenna spacing and also same number of antennas, at the 

transmitter and receiver sides). 

For cross-correlations depending on the separation, either at the transmitter either at the 

receiver sides, the concordance between measurements and simulations is not so good. A 

careful analysis evidences that for one of these two cross-correlations, simulation results 

tend to be overestimated, whereas for the other simulation results tend to be 

underestimated. Consequently, this means that the MIMO channel characterization in 

global terms (singular values, capacity gain, etc.), may not be compromised. 

In the left-side of Figure 5-26 are displayed the CDFs of the singular values corresponding 

to the channel realization series for 2 GHz, while in the right-side of this figure the CDFs 

of the channel capacity, for the same channel realization series, are given (cf. Figure C-4). 

In addition, the right-side of Figure 5-26 also presents, for comparison purposes, the SISO 

channel capacity: it is clear that, for this specific channel, the capacity gain, although close, 

does not achieve the theoretical value given by  min , 2r Nr Nt   (capacity increase 

found is about 1.7, but recall that this is a LoS channel). 
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Figure 5-25:  Channel cross-correlations. 

  
Figure 5-26:  CDFs of channel realization series for f = 2 GHz (cf. Figure C-4). Left: CDF of singular values. 

Right: CDF of capacity. 
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“signature codes” are, essentially, the contributions from the scatterers present in the 

propagation scenario. By characterizing the channel scatterers properly (complex 

amplitude and position), the question becomes merely of geometric nature. Consequently, 

evolving from SISO to MIMO setups represents, essentially, a problem of spatial 

sampling. 

5.6. Final Comments on the Modeling Methodology 

Results and considerations presented above substantiate (once more) the geometry-based 

stochastic modeling methodology proposed in this work. Recall that, for validation 

purposes, only the cluster centroids and the respective power were supplied, whereas 

individual MPCs were randomly generated. Nevertheless, these prescribed data (for 

validation) may also be randomly generated. If realistic and well parameterized rules are 

available, then, aside from statistical variability (inherent to any random draw), the 

generated channel MPCs will be, as well, realistic and ultimately, also the corresponding 

generated scatterers. 

As just explained, the more realistic are the underlying statistics and rules characterizing 

the channel the more realistic would be the simulation outputs. If different propagation 

scenarios should be characterized, an exploratory analysis of corresponding available 

measurements must be carried out. However, as the problem of the radio channel 

characterization has been deeply investigated, it may be possible to make use of the 

knowledge available in the literature. 

On the other hand, the validation procedure has opened the possibility of directly prescribe 

some channel data (cluster centroids). Therefore, this opportunity may also be used, 

particularly, if important channel contributions may be easily estimated by a simple 

analysis of the propagation scenario or if they can be extracted from available 

measurement data or results reported in the literature. 
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Chapter 6 

 Conclusion 

Capabilities of MIMO systems are limited by the characteristics of the radio channel. In 

fact, the benefits of MIMO (spatial multiplexing, spatial diversity and beamforming) 

depend on the structure of the underlying radio multipath propagation. 

This work represented an effort to give a contribution to the characterization of the radio 

channel for MIMO systems. Some of the existing physical channel models assume that 

MPCs arrive in clusters, i.e., groups of MPCs showing analogous parameters such as delay, 

DoA and DoD. Actually, results from measured channels show that MPCs often appear in 

clusters and usually, this may be confirmed by a simple visual inspection. However, in 

order to accurately describe the relevant characteristics of the clusters, such models may be 

parameterized by extracting the information from experimental data. On the other hand, the 

consciousness that the channel properties are intrinsically ruled by the interactions between 

the transmitted signal and the scatterers existent in the propagation scenario, motivated the 

entire approach followed. The work main steps and the adopted methodology are, thus, 

delineated: 

 The directional channel has been described using experimental measurements of 

the double-directional channel (each double-directional measurement comprises 

one forward direction plus one reverse direction SIMO measurements). By using a 

high resolution algorithm, the most relevant MPCs (delay, direction of arrival and 

complex amplitude) of the channel were obtained, from SIMO measurements. 
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 Afterwards, using a clustering algorithm, MPCs composing each directional 

channel impulse response were grouped into clusters and then, each pair of 

clustered DCIRs (composing one double-directional data set) were, jointly, 

analyzed physically, so that each cluster is further classified according to the type 

of propagation mechanism that it represents (single- or multiple-bounce). 

 Finally, a statistical analysis of the structured database has been performed: rules, 

underlying statistics and corresponding parameterization values have been 

extracted. The gathered data has been used to parameterize the channel simulator, 

which uses it in order to randomly generate a set of MPCs that reproduce the most 

significant features of the channel; from these the channel scatterers are obtained 

and lastly, the channel transfer matrix is computed by considering the interaction of 

the transmitted signal with each scatterer. 

6.1. Final Remarks 

In the following, the main achievements presented in each chapter are summarized. 

Chapter 2 presents the fundamental results from information theory, which motivated the 

interest on MIMO systems, and a discussion about some of their potential benefits. Still in 

this chapter, the most important aspects and models for the MIMO channel description are 

reviewed. 

Chapter 3 opens with a short outline of the wideband radio channel characterization, then, 

the SIMO measurement system and the measurement campaign, carried out inside a sports 

hall, are described. Subsequently, the SAGE algorithm, which, among some high 

resolution tools available, has been chosen for estimating the channel MPCs, is presented. 

The ability of the SAGE algorithm in retrieving the superimposed signals (MPCs) has been 

examined using synthetic data, which was generated with the extended Saleh-Valenzuela 

model. Results on this performance study evidenced that, occasionally, the algorithm fails 

to estimate some of the most delayed and lower power MPCs and provides, in their place, 

some fictitious MPCs. As the number of MPCs in the channel and the power decay 

increases, the number of MPCs whose estimate is lost increases and therefore, the number 

of fictitious MPCs retrieved also increases. Nevertheless, the lost MPCs are those with less 

power and thus, less relevant in the channel characterization. Despite these observations 

suggest some failures, the estimates obtained for the directional impulse responses were 

considered satisfactory, so globally, this tool has been considered adequate to be employed 

with experimental data. 
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In chapter 4, the data classification problem is addressed and starts with a brief review of 

the clustering algorithms, focusing mainly on the selected algorithm: a version of the 

K-means algorithm (KPM algorithm), which also uses the power of the MPCs when 

performing the clustering, has been used. The most pertinent issues, in the global clustering 

framework, comprise: the selection of a measure for evaluating the distance between 

MPCs; the initialization procedure; and cluster validation (i.e., the estimation of the 

number of clusters in a given data set). Although it has been found very useful tools in the 

literature, some original contributions were also included in the global framework, namely, 

in the initialization procedure and in the cluster validation steps. These contributions were, 

partially, motivated by the results of a very complete performance study that has been 

carried out, using synthetic data. The clustering framework implemented was then applied 

to the DCIRs estimated from measurements, in the previous chapter (chapter 3), using the 

SAGE algorithm. To close, this chapter also presents a physical analysis of the clustered 

DCIRs, where further classification of each cluster of the channel is accomplished. This 

classification has been achieved by relating each cluster delay and azimuth to the objects in 

the scenario and by combining simultaneously the information of the two single-directional 

measurements, which compose one double-directional measurement. Thereby, the type of 

interaction that each cluster represents (direct ray, single-bounce or multiple-bounce) is 

identified and a linkage between each forward and reverse measurement pairs is attained. 

At last, in chapter 5 a set of assumptions are postulated, which include rules and 

underlying statistical distributions governing the channel structure in terms of cluster 

centroids and individual MPCs (inside clusters). These assumptions allowed the 

developing of the channel simulator for MIMO systems that has been validated using 

MIMO measurements carried out in the same scenario. The validation of the channel 

simulator consisted of a comprehensive comparison (including SISO and MIMO 

evaluation measures) between measurements results and simulator outputs. In general 

terms and despite some acceptable deviations between measurements and simulations, the 

achieved characterization of the channel may be considered very satisfactory. Another 

important conclusion is that as long as the channel scatterers are accurately characterized, 

the subsequent channel properties will be also correctly described, because the channel 

scatterers definitely determine the intrinsic channel properties. In this case, the channel 

characterization (for SISO to MIMO systems) is generically a geometric problem. 
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6.2. Future Work 

The present work may be enriched by considering improvements of practical nature, as 

software/programming enhancements of the simulator developed and also, enlargements 

related with the extent of application. Among possible advances it can be referred: 

 To attain a friendly data input into the simulator. Indeed, there is a significant 

volume of data that must be defined in order to run the channel simulator. Default 

parameters were included within the programming routines, but, it would be 

desirable to have an agreeable way of changing these parameters (so that different 

configurations can be easily interchanged). The best solution it would be to have a 

graphical user interface running on top of the routines already implemented. This 

graphical interface could be thought to provide also amenable visualization and 

analysis of the simulator outputs. 

 The available parameterization data could be enlarged, so that other scenarios or 

environments are considered. The idea would be to provide typical sets of 

parameters (as those given for the scenario contemplated in this thesis) so the 

simulator could be used more extensively. This could be achieved by performing 

new measurement campaigns and undertake an exploratory analysis similar to that 

present in this thesis. Alternatively, it may be possible to make use of the 

knowledge available in the literature. On the other hand, it may be possible to 

estimate important channel contributions by a simple analysis of the propagation 

scenario allowing to directly prescribing the cluster centroids (as made in the 

validation). 

 The computation of channel matrix is being already performed using 3-D 

coordinates, but, the scatterers placement (in the scenario) considers only 2-D 

information (DoAs and DoDs correspond to azimuths). If 3-D DoAs and DoDs are 

available (comprising azimuth and elevation), the routine for the scatterers 

placement could be updated and an even more realistic description of the channel 

scatteres could be achieved. 

 Finally, the channel characterization could be made polarization dependent. 
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Appendix A 

 Method for  

Generating Random Variables 

The CDF transformation method [101] assumes a random variable, U, uniformly 

distributed in the interval  0,1 . Let  XF x  be the CDF of the random variable that must 

be generated. Consider the random variable,  1

XZ F U , where  1F x  represents the 

inverse function of  F x . Thus, first U is selected and then Z is found as indicated in 

Figure A-1. The CDF of Z is 

     1

X XP Z x P F U x P U F x         . (A.1) 

Since U is uniformly distributed in  0,1  and if 0 1h  , then  P U h h  , 

consequently,    XP Z x F x  , so  1

XZ F U  has the desired CDF. 

Exponential distribution: The CDF of a random variable X exponentially distributed is 

given by 

  1 exp , 0
β

X

x
F x x

 
    

 
, (A.2) 

where β 0  is the scale parameter. The expected value of X, is   βE X   and the variance 

is   2var βX   (so, the standard deviation is σ β ). 
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Figure A-1:  Transformation method for generating a random variable with CDF  XF x . 

 

An exponential random variable may be generated by inverting the following expression 

  1 exp
β

X

x
U F x

 
    

 
, (A.3) 

which results 

 β ln 1X U   , (A.4) 

where  ln  denotes the natural logarithm function. Note that as U is uniformly distributed 

in  0,1 , then 1 U  is also uniformly distributed in the same interval, so the simpler 

expression  β lnX U    may be used instead. 

 

Laplace distribution: The CDF of a random variable X, following a Laplace distribution 

with parameters µ and b, is expressed as 

 

1 μ
exp , μ

2 b

1 μ
1 exp , μ

2 b

X

x
x

F x
x

x

  
 

  
 

       

, (A.5) 

with μ a location parameter and b 0  a scale parameter. The expected value of X, is 

  μE X   and the variance is   2var 2bX   (thus, the standard deviation is σ 2b ). The 

CDF of the random variable X may be observed in Figure A-2. 
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Figure A-2:  CDF a random variable following a Laplace distribution with parameters µ and b. 

 

To generate random variables that follow a Laplace distribution the CDF transformation 

method may be applied as in the previous case of the exponential distribution. But, in this 

case the CDF has two branches as illustrated in Figure A-2, therefore the inverse function 

for each branch must be found and, additionally, the variable U must be split into two 

uniform variables, U1 and U2, covering the intervals  1
20,  and  1

2 ,1 , respectively. By 

inverting 

1

1 μ
exp

2 b

x
U

 
  

 
, (A.6) 

and 

2

1 μ
1 exp

2 b

x
U

 
   

 
, (A.7) 

results 

 1 1μ b ln 2X U   , (A.8) 

and 

  2 2μ b ln 2 1X U    , (A.9) 

where 12U  and  22 1 U  are both uniformly distributed in the interval  0,1 . 

Furthermore, consider the following change of variables 

 
1 1

2 2

1 2 2

1 2 2 1

U U

U U

 

  
. (A.10) 
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Thus, 1U   and 2U   become, respectively, uniformly distributed in  1
2 , 0 and  1

20, . 

Besides, 
1 1U U    and 

2 2U U  , consequently, 

 

1 1

2 2

1 2 2

1 2 2 1

U U

U U

 

  
. (A.11) 

In addition, let  1 2U U U  , thus equations (A.8) and (A.9) may be written simply as 

   
σ

μ sgn ln 1 2
2

X U U   , (A.12) 

where U is uniformly distributed in  1 1
2 2, ,  sgn  represents the sign function and the 

scale parameter has been replaced by σ 2b . 
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Appendix B 

 Simulator Sample Results: 

OLoS Channel 

This appendix presents some output results obtained for a sample OLoS channel. 

B.1. Channel MPCs and Scatterers 

  
Figure B-1:  Generated sample OLoS channel. Left: Channel MPCs. Right: Channel scatterers. 
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B.2. SISO Outputs 

  
Figure B-2:  Received amplitude for the generated sample OLoS channel. Left: Complete data set generated. 

Right: Channel realization series for f =2 GHz. 

  
Figure B-3:  One realization. Left: Frequency response. Right: Impulse response (obtained by IFFT). 

  
Figure B-4:  Channel autocorrelation. Left: Frequency domain. Right: Spatial domain. 
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B.3. MIMO Outputs 

  
Figure B-5:  Left: Channel cross-correlations. Right: CDF of the channel singular values for f =2 GHz. 

  
Figure B-6:  Channel instantaneous capacity. Left: Series for f =2 GHz. Right: complete data set. 

  
Figure B-7:  CDFs of obtained series for f =2 GHz. Left: Singular values. Right: Channel capacity. 
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Appendix C 

 Measurements vs Simulations: 

Additional Results 

This appendix presents additional output results obtained for the evaluation study 

presented in section 5.5 using the data set designated as “PAV 10”. 

C.1. Assessment of the SISO Characterization 
 

  
Figure C-1:  Received amplitude (one antenna) for “PAV 10”. Left: Measurements. Right: Simulations. 
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Figure C-2:  CDF of received amplitude for “PAV 10” (cf. Figure 5-21). Left: CDF of the frequency 

response corresponding to one channel realization. Right: Amplitude CDF for f = 2 GHz. 

 

 

  
Figure C-3:  CDF of channel autocorrelation (cf. Figure 5-22). Left: Coherence bandwidth for 50% 

correlation level. Right: Correlation level for a spatial displacement of /4. 
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C.2. Assessment of the MIMO Characterization 

  
Figure C-4:  Channel realization series for f = 2 GHz. Left: Singular values. Right: Capacity. 

 

 

 

  
Figure C-5:  One channel realization. Left: Singular values. Right: Capacity. 
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Figure C-6:  CDFs of channel realization shown in Figure C-5. Left: Singular values. Right: Capacity. 

 

 

  
Figure C-7:  Channel instantaneous capacity of the global data set. 
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