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Os sistemas equipados com multiplas antenas no emissor e no recetor,
conhecidos como sistemas MIMO (Multiple Input Multiple Output), oferecem
capacidades mais elevadas, permitindo melhor rentabilizacéo do espectro e/ou
utilizacdo de aplicacbes mais exigentes. E sobejamente sabido que o canal
radio é caracterizado por propagacdo multipercurso, fendmeno considerado
problemético e cuja mitigacao tem sido conseguida através de técnicas como
diversidade, formatacdo de feixe ou antenas adaptativas. Explorando
convenientemente o dominio espacial os sistemas MIMO transformam as
caracteristicas multipercurso do canal huma mais-valia e permitem criar varios
canais virtuais, paralelos e independentes. Contudo, os beneficios atingiveis
sdo condicionados pelas caracteristicas do canal de propagacéo, que poderédo
nao ser sempre as ideais.

Este trabalho centra-se na caracterizag8o do canal radio para sistemas MIMO.
Inicia-se com a apresentacdo dos resultados fundamentais da teoria da
informacdo que despoletaram todo o entusiamo em torno deste tipo de
sistemas, sendo discutidas algumas das suas potencialidades e uma revisao
dos modelos existentes para sistemas MIMO.

A caracterizacdo do canal MIMO desenvolvida neste trabalho assenta em
medidas experimentais do canal direcional adquiridas em dupla via. O sistema
de medida é baseado num analisador de redes vetorial e numa plataforma de
posicionamento bidimensional, ambos controlados por um computador,
permitindo obter a resposta em frequéncia do canal radio nos vérios pontos
correspondentes & localizagdo dos elementos de um agregado virtual. As
medidas sé@o posteriormente processadas com o algoritmo SAGE (Space-
Alternating Expectation-Maximization), de forma a obter os pardmetros (atraso,
direcdo de chegada e amplitude complexa) das componentes multipercurso
mais significativas. Seguidamente, estes dados séo tratados com um algoritmo
de classificacdo (clustering) e organizados em grupos. Finalmente é extraida
informacao estatistica que permite caracterizar o comportamento das
componentes multipercurso do canal.

A informacgdo acerca das caracteristicas multipercurso do canal, induzidas
pelos espalhadores (scatterers) existentes no cenario de propagacéo,
possibilita a caracterizacao do canal MIMO e assim avaliar 0 seu desempenho.
O método foi por fim validado com medidas MIMO.
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Systems equipped with multiple antennas at the transmitter and at the receiver,
known as MIMO (Multiple Input Multiple Output) systems, offer higher
capacities, allowing an efficient exploitation of the available spectrum and/or
the employment of more demanding applications. It is well known that the radio
channel is characterized by multipath propagation, a phenomenon deemed
problematic and whose mitigation has been achieved through techniques such
as diversity, beamforming or adaptive antennas. By exploring conveniently the
spatial domain MIMO systems turn the characteristics of the multipath channel
into an advantage and allow creating multiple parallel and independent virtual
channels. However, the achievable benefits are constrained by the propagation
channel’s characteristics, which may not always be ideal.

This work focuses on the characterization of the MIMO radio channel. It begins
with the presentation of the fundamental results from information theory that
triggered the interest on these systems, including the discussion of some of
their potential benefits and a review of the existing channel models for MIMO
systems.

The characterization of the MIMO channel developed in this work is based on
experimental measurements of the double-directional channel. The
measurement system is based on a vector network analyzer and a
two-dimensional positioning platform, both controlled by a computer, allowing
the measurement of the channel’'s frequency response at the locations of a
synthetic array. Data is then processed using the SAGE (Space-Alternating
Expectation-Maximization) algorithm to obtain the parameters (delay, direction
of arrival and complex amplitude) of the channel’s most relevant multipath
components. Afterwards, using a clustering algorithm these data are grouped
into clusters. Finally, statistical information is extracted allowing the
characterization of the channel’s multipath components.

The information about the multipath characteristics of the channel, induced by
existing scatterers in the propagation scenario, enables the characterization of
MIMO channel and thus to evaluate its performance. The method was finally
validated using MIMO measurements.
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Throughout the thesis, the following notation is used to represent common operators:

() Complex conjugate operator
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E[ ] Mathematical expectation
[-]" Matrix conjugate-transpose operator
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Chapter 1

Introduction

Personal wireless communications are certainly a story of true success. The most obvious
is perhaps the case of mobile communications, where the achievement is due to its
attractiveness and users’ acceptance on the one hand and on the other, a great competition
between operators of mobile networks which allows providing reasonable prices for the
advantages that these networks offer when compared with the fixed network. However,
nowadays other types of wireless communications such as WLANSs (Wireless Local Area
Networks) and fixed broadband wireless accesses also take prominent places in society.
These services have been experiencing an increasing need for higher transmission rates,
capacity and quality of service owing to the increase of users and also owing to the
emergence of more demanding applications.

Power and spectrum constraints enforce a difficult challenge: to enhance the performance,
under unfriendly conditions, without increasing the power or spectrum requirements. The
radio channel is particularly problematical due to phenomena as multipath, fading,
shadowing, time dispersion and Doppler shift. A convenient use of the assigned frequency
bands is required so new, appealing and ground-breaking services may be placed at the
users’ disposal. Therefore, solutions able to exploit efficiently the available spectrum need
to be employed, not only for mobile communications but also for other types of wireless
communications.
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Early communication systems were based on the use of one antenna at transmitter and one
antenna at the receiver being known as SISO (Single-Input Single-Output) systems. This
kind of systems allows exploiting time, frequency and codification domains. By employing
smart antennas techniques — systems where several antennas are available at one side
(usually at the base station) — it is possible to exploit partially the spatial domain [1-3].
Namely, it is possible to benefit from the advantages offered by spatial diversity techniques
[4, 5] and/or from the gains given by beamforming [6, 7].

MIMO (Multiple-Input Multiple-Output) systems employ several antennas at both link
ends (i.e., at the transmitter and at the receiver) and may be perceived as the logical
extension of smart antennas technology and allow to fully exploit the spatial domain.
These systems promise more than the simultaneous use, at the transmitter and at the
receiver, of spatial diversity or beamforming. Studies presented in [8] and [9] showed that
by using MIMO technology in an environment characterized by an high number of
independent multipath components the capacity linearly grows with the minimum number
of transmit and receive antennas, while the use of several antennas at one link end only
provides a logarithmic increase. The concept of spatial multiplexing is the key for this
result: the multipath propagation characteristics are conveniently exploited so several
parallel non-interfering virtual sub-channels are provided.

Results on the capacity gains offered by MIMO systems, provided by early studies,
stimulated the interest on these systems in the area of space-time signal processing. A
number of algorithms [10-14] have been proposed in order to achieve the gains foreseen.
Nevertheless, the achievable benefits are constrained by the characteristics of the
propagation channel which are not always the ideal or the most desirable. Only a
comprehensive description of the propagation channel allows the assessment of the actual
transmission capacity.

This work aims to be a contribution to the characterization of the radio channel for MIMO
systems. The channel is described wusing experimental measurements of the
double-directional channel. The measurement system is based on a vector network
analyzer and a two-dimensional positioning platform, both controlled by a computer,
allowing the measurement of the channel’s frequency response at the locations of a
synthetic array. Data is then processed using the SAGE (Space-Alternating Generalized
Expectation-Maximization) algorithm to obtain the parameters (delay, direction of arrival
and complex amplitude) of the channel’s most relevant multipath components. Afterwards,
using a clustering algorithm, these data are grouped into clusters. Finally, statistical
information is extracted allowing the characterization of the channel’s multipath
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components which enables the characterization of MIMO channel and thus to evaluate its
performance.

This dissertation is organized as follows:

Chapter 2 presents the fundamental results from information theory that triggered the
interest on these systems, a discussion of some of their potential benefits and a review of
the existing channel models for MIMO systems.

Chapter 3 starts with the theoretical characterization of the wideband directional channel
impulse response. After that, the SIMO (Single-Input Multiple-Output) measurement
system and the measurement campaign are presented. The measurement campaign has
been carried out inside a sports hall: for each transmit-receive arrangement of positions a
double-directional measurement is available, consisting of two measurement files,
corresponding respectively, to the forward and reverse measurement. Subsequently, a brief
review on the available methods to estimate the parameters of the multipath components
arriving to a given receiver is given: the SAGE algorithm is explained in detail and its
performance is evaluated using synthetic data, generated with the extended Saleh-
Valenzuela model. Finally, experimental directional channel impulse responses, obtained
by entering measured data into the SAGE algorithm, are given.

Chapter 4 presents an exploratory study of the experimental directional channel impulse
responses obtained in Chapter 3. It begins with a brief review of the clustering algorithms,
focusing mainly on the selected algorithm. Next, the clustering framework is described
covering: the selected clustering algorithm; the measure function for evaluation of distance
between multipath components; the algorithm initialization; and the estimation of the
number of clusters that better fits the data. By using synthetic data sets, a structured study
on the performance of the selected framework and procedure adjustments, motivated by
this evaluation, are presented. Once more, synthetic data sets were generated with the
extended Saleh-Valenzuela model. Afterwards, the clustering output solutions for the
experimental directional channel impulse responses estimated in chapter 3, with the SAGE
algorithm, are presented and discussed. To finish, a physical analysis relating each cluster
with the scenario objects and obstacles is presented: at this stage clusters are further
classified according to the type of interaction which they represent (direct ray,
single-interaction, higher order interaction). Additionally, clusters from each pair of
measurement files composing a double-directional measurement, are linked at this stage.

Chapter 5 explains the MIMO channel model proposed and the MIMO channel simulator
implemented during this work. It starts with the envisaged channel model assumptions. In
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order to parameterize this model, a statistical analysis of the categorized data is
accomplished. Then, the MIMO measurement setup and the measurement campaign are
described. The MIMO channel measurements are presented and used for validation
purposes and so, the chapter ends with a comparison of the simulator outputs and the
measurements results.

Finally, Chapter 6 summarizes the major results and achievements from this dissertation
and draws some conclusions. Possible future work is also identified.




Chapter 2

MIMO Wireless Communications

This chapter presents the fundamentals of MIMO systems opening with the required
mathematical analysis to obtain the capacity accomplished by the system. The MIMO link
is represented using a complex matrix and its capacity is achieved using the extended
Shannon’s capacity formula. Subsequently, a discussion on MIMO systems potentials and
benefits is presented. The remaining of the chapter is devoted to the review of the most
relevant existent channel models for MIMO systems.

2.1.System Model

Taking into account that MIMO systems make use of multiple antennas at both link ends,
the MIMO channel must be described between all transmit and receive antenna pairs.
Consider a MIMO system equipped with Nt antennas at the transmitter and Nr antennas at
the receiver, as Figure 2-1 shows. Furthermore, consider the time-variant impulse response
between the j-th transmitting antenna and the i-th receiving antenna represented as

hi'j(t,r).
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Figure 2-1: Schematic of a MIMO system with Nt antennas at the transmitter and Nr antennas at the receiver.

From a system level point of view, the linear time-variant MIMO channel may be
represented by the Nrx Nt matrix, H(t, ), expressed as

hl,l(t'T) h1,2(t’7) hl,Nt(t’T)

H(t,r)— h2,1(:t17) hz,z(:tvf) hZ,Nt:(LT) 2.1)

th,l(t’T) th,z(t’T) th,Nt(t’T)_

Assuming s;j(t) denoting the transmitted signal by the j-th antenna, the Ntx1 vector,
s(t)=[s,(t) s, (t) - sy (t)]", corresponds to the Nt transmitted signals. The vector
containing the Nr received signals, ¥(t)=[ ¥, (t) Y,(t) - Yy (t)]", is then defined
as

y(t)=[H(t, 7)s(t—7)dz +n(t) (2.2)
where t and 7 represent time and delay, respectively, and n(t) is a noise vector.

If time-invariant channels are taken into account, the channel matrix depends only on the
delay, i.e., H(t,z)=H(z). Therefore,

y(t) :j H(r)s(t-7)dz +n(t)=H(r)®s(t) +n(t) (2.3)
where ® denote the convolution operator.

In addition, if the transmitted signal bandwidth is narrow enough that the channel response
is allowed to be treated as frequency flat, the channel matrix is non-zero only for =0 and
may be denoted simply by H. Under this assumption, equation (2.3) may be written as

y(t)=Hs(t)+n(t) (2.4)

In the discrete time domain equation (2.4) may alternatively be written as
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y[k]=Hs[k]+n[k] (2.5)

where k represents the index of the time sample. As may be easily concluded by observing
this relation, the output at a given time instant k does not depend on the past inputs. Thus,
aiming the legibility improvement, equation (2.5) can be simply expressed as

y=Hs+n. (2.6)

2.2. Capacity analysis

2.2.1.From Shannon to MIMO Systems Capacity

The Shannon’s capacity formula provides the maximum possible rate of information
transmission that can be achieved with arbitrarily small error probability, through a given
channel. The instantaneous capacity, expressed in bps/Hz, of a frequency flat SISO
channel (i.e., a white Gaussian channel) with complex gain h, is given by [8, 12]

P
Coo = Iogz(1+ G—T2|h|2j - Iog2(1+ p|h|2) (2.7)

with Pt being the transmitted power, &? the noise power and
P=—7 (2.8)

the Signal to Noise Ratio (SNR) at the receiver.

If receive diversity is present, it is possible to improve the capacity given the existence, at
the receiver, of several replicas of the transmitted signal which potentially contribute to an
increase of the SNR. Assuming Nr antennas at the receiver and maximum ratio combining,
the SIMO capacity is defined as [14]

Nr
Como = |ng(l+p2|hi|2j (2.9)
i1

where h; is the gain of the channel established between the transmit antenna and the i-th
receive antenna. Similarly, in a transmit diversity case with Nt transmitting antennas, if we
consider constant total transmit power (Pt) and no Channel State Information (CSI) at the
transmitter, the transmit power is equally distributed by the transmitting antennas and
MISO (Multiple-Input Single-Output) capacity is given by
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Ciiso = Iog{l+£§|hi|2J (2.10)
Nt 5=

Examining equations (2.9) and (2.10) it is obvious that SIMO and MISO capacities
increase logarithmically with the linear increase in the number of receive antennas, Nr, and
transmit antennas, Nt, respectively. Moreover, it is easy to notice that Csjvo > Cwmiso. This
result can be explained by the impossibility of the transmitter, in the MISO channel, to
conveniently exploit the antenna array gain, since it has no CSI. Assuming a MISO
channel with CSI and identical channel conditions, it is possible to show [13] that MISO
capacity equals SIMO capacity.

Consider now the use of multiple antennas at both link ends. In this case, the channel
presents multiple inputs as well as multiple outputs and its capacity may be computed by
the extended Shannon’s capacity formula presented in [8] and [9], defined as

Cunio = max {log, (det(1,, + HQH" )] 2.11)

where |, isthe NrxNr identity matrix, H" represents the conjugate transpose matrix of

Nr
H and Q= E[SSH] is the Ntx Nt covariance matrix of the transmitted vector s, with
E[ ] being the mathematical expectation. The condition tr(Q)=, must be satisfied in
order to constrain the total transmit power to Pr, regardless of number of transmitting

antennas (Nt).

2.2.2.Eigenvalue Analysis of the Channel

No CSI at the transmitter

If the transmitter has no CSI, the Nt components of the transmitted signal vector should be
statistically independent and equally powered [13]. In this case, we have Q=(p/Nt)I,,
and

C, = Iogz(det(lNr +ﬁ HHHD (2.12)

It can be shown that the MIMO channel capacity given by this equation increases linearly
with the minimum number of transmit and receive antennas (Nt and Nr), contrasting with
the logarithmically increase offered by the capacity of SIMO and MISO systems presented,
respectively, in equations (2.9) and (2.10). To understand this result remember that every
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matrix H may be decomposed into singular values according to the following
transformation

H = uDVv" (2.13)

where U and V are unitary matrices® and D is a diagonal matrix containing the singular
values of H, which by definition are always non-negative. Therefore,

HH" = U(DD" Ju" = UAU" (2.14)

is easily recognized as the eigenvalue decomposition of HH" with A the diagonal matrix
of its eigenvalues. Denoting A =diag{, 4, --- 4, and recalling the well-known
relation between singular value decomposition and eigenvalue decomposition [evident in
equation (2.14)] it is straightforward to conclude that the singular values of H may be

expressed as D=diagh/4, 4., - A |-

Replacing equation (2.14) and Q =(p/Nt)I,, in equation (2.11) we can write
Cyo = Iogz(det(l " +ﬁUAUH D (2.15)

with the subscript UP denoting Uniform Power allocation. Note that C,, is not, actually,
the Shannon capacity, because if the transmitter has the CSI it can generate a signal
covariance which outperforms Q=(p/Nt)l,,. Even so, we refer to the expression in
equation (2.15) as the capacity.

Remembering that U is unitary and using the identity det(l, + AB)=det(l, + BA) with A
mxn and B nxm, equation (2.15) reduces to

Cop = |ng[det(| Nr +ﬁAJJ (2.16)

which can also be expressed as

Nr
Cop = ZIOQZ(]'—’_Nﬁﬂ’lj (2.17)
i-1 t )
Comparing this result with equation (2.7) presented in section 2.2.1 for SISO channels, we
verify that the MIMO channel capacity is given by the sum of capacities of Nr SISO
independent channels, with A; (the squared singular values of matrix H) being the

L A nxn (square) matrix, U, is unitary if it satisfies the condition U"U=UU" = I,,. This condition

implies that U is unitary if and only if U™ = U"'.
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corresponding channel gains and P:/Nt being the corresponding transmit power. It is
well-known that the number of non-zero singular values of a Nr x Nt matrix, which is
called the matrix rank, is at the most, equal to the minimum of Nr and Nt. Thus, the use of
multiple antennas at both link ends, generates a set of virtual parallel sub-channels,
between the transmitter and the receiver, resulting in a linear capacity increase with
r =min(Nr, Nt), i.e., the minimum number of transmit and receive antennas.

Nevertheless, the MIMO capacity given by equation (2.17), depends crucially on the
number and distribution of non-zero eigenvalues of the matrix HH" . Obviously, if some
eigenvalues are very small or zero, the system does not accomplish the expected capacity
gain since the power allocated to these sub-channels cannot reach the receiver. Results
presented in [8] and [9] demonstrated that the linear capacity growth is achieved for the
independent and identically distributed (iid) flat Rayleigh fading channel, in which case the
entries of matrix H follow a complex-Gaussian distribution.

With CSI at the transmitter

Consider now the case where the transmitter has information about the channel. Would this
information, somehow, help to enhance the channel capacity? CSI at the transmitter may
be achieved through feedback from the receiver. In this case, the individual sub-channels
may be accessed using linear signal processing at the transmitter and the receiver, enabling
an increase in the capacity.

Let the rx1 signal vector which will be transmitted be denoted as s, with I' being the
rank of the channel matrix, H. Recall the system model presented in equation (2.6) and
also, the singular value decomposition presented in equation (2.13). Note that, if the
channel matrix is known at the transmitter, it may compute the corresponding singular
value decomposition. Then, before transmission, the signal vector s is multiplied by
matrix V such that s=Vs (here V has dimension Ntxr, corresponding to the first r
right singular vectors of H). At the receiver, the received signal vector y is multiplied by
the matrix u" according with y=U"y (similarly, here U has dimension Nrxr,
corresponding to the first I' left singular vectors of H) . Hence, equation (2.6) may be

rewritten as?

Yy —DS +n (2.18)

2 Note that the channel matrix may be expressed as H = UDV", with U and V being matrices with
dimension Nr xr and Ntxr, respectively, corresponding to the first I' left and right singular vectors
of H, respectively; and with D being a I' X I diagonal matrix containing the non-zero singular values of

H. Inthis case U and V are not unitary matrices but V"V =1, and U"U =1, are valid.

10
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where the transformed received vector, y , and the transformed noise vector, n=uU"n, are
both rx1 vectors and D is a I'-dimensional diagonal matrix. Equation (2.18) means that
if CSI is available at the transmitter H may be explicitly decomposed into I parallel
sub-channels, fulfilling

V. =JAS +n, i=12,..,r (2.19)

This explicit decomposition of the channel grants to the transmitter the access to individual
sub-channels, allowing the use of some power allocation scheme which aims to maximize
the channel capacity. This may be achieved by adjusting, in equation (2.11), the matrix of
the signal covariance given by Q =E[ss"| =VE[ss" v".

Consider Q.s.:E[‘s‘gH] =diag{y,, 7, --- 7}, with E[|'s'i|2] =7;. Again, to maintain the
total power constrained to Py the condition tr(Q:)=p should be satisfied. Using the

singular value decomposition of the channel presented in equation (2.13), equation (2.11)
may now be written as

Cop = max {log,(det(l, + AQ;))} (2.20)

Qs: tr(Qs)<p

where OP denotes Optimum Power allocation. Alternatively,

Cop =Z|Og2(1+ﬂf,7/i) (2.21)
i=1
where the condition
Z}/i=pWith 7,20 (2.22)

must be satisfied.

The problem that arises is to obtain the weighting coefficients, y,, which provide optimum
power allocation and thus, maximum transmission bit rate. This problem has already been
studied and the solution is the well-know “water-filling” algorithm [9, 13, 15]. It may be
easily understood if we make an analogy with a set of vessels, each having a given liquid
level, specified by 1/4, and that it is intended to fill all the vessels to a common level .
This can be traduced mathematically by

EORE O D T 223
) 71 2, V2 1 7i 2 Ve =H (2.23)

1 r

where the weighting coefficients, y;, fulfill the conditions in equation (2.22).

11
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The water-filling principle is illustrated in Figure 2-2 showing that for each level 1/4; less
than ., the optimal power allocation consists in filling the corresponding sub-channel up to
the level defined by .. Therefore, we conclude that the best performing sub-channels
(higher gain) receive more power while the worst performing channels get less power.
Eventually, if 1/4, is greater than x no power will be allocated to the corresponding
sub-channel.

The solution can be found iteratively as follows. First, the counter Kk is set to O (this counter
indicates the number of unused sub-channels). Then the level x is obtained taking the
power constraint into account, according to

ﬂr—kpizlxl. (2.24)
Finally, the power allocated to each sub-channel is computed using
= L =1 k
j/i—,u—z, I=1...,N— (2.25)

If the power allocated to the weakest channel is negative, i.e., y, , <0, this channel should
be discarded by defining », , =0 and the power allocated to the remaining channels
should be updated, by running again the algorithm with the counter k incremented by 1.
The procedure is iterated until the power allocated to each channel is non-negative.
Evidently, as this method only considers the channels with good-quality and rejects the bad
ones, it is expected that the corresponding capacity is greater than, or at least equal to, the
capacity achieved without CSI at the transmitter.

A
V3
n| " 1l
H i ﬂ’r—l ﬂ’r
1 | LA
y A

Figure 2-2: Illustration of the water-filling algorithm.

12
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2.2.3.Stochastic Channels

MIMO capacity presented until now refers to the case of a deterministic channel or a
sample channel realization. However, in general the channel matrix, H, is random and the
corresponding capacity is a random variable where each channel realization presents an
instantaneous capacity given by equation (2.17) if the channel is unknown at the
transmitter, or equation (2.21) otherwise. The evaluation of the capacity offered by fading
channels is usually based on two statistic quantities, namely, the ergordic capacity and the
outage capacity.

Ergodic Capacity

The ergodic capacity of a MIMO channel is the ensemble average of the transmission rate
over the distribution of the elements of the channel matrix, H [13]. It is particularly
relevant when the channel is ergodic, i.e., every channel matrix is an independent
realization of the same stochastic process and changes faster than the duration of a
codeword (fast fading channel). In this case, any codeword experiences a large number of
different channel realizations and the ergodic capacity can be viewed as the Shannon
capacity of the channel since it is possible to achieve the corresponding information rate,
with arbitrarily small error probability, if optimal codebooks are used.

Figure 2-3 presents the ergodic capacity as a function of the SNR for some antenna
configurations, assuming an iid Rayleigh fading channel (the elements of the channel
matrix follow a zero-mean and unit variance complex-Gaussian distribution) and channel
unknown at the transmitter. Naturally, the ergodic capacity improves with increasing SNR.
In addition, we observe that ergodic capacity improves also with increasing Nt and Nr.
However, increasing Nr (maintaining the same Nt) produces a more evident boost in the
capacity than increasing Nt (cf. curves for 1x1, 2x1, 1x2 and 2x2, 3x2, 2x3). This
behavior is due to the power constraint at the transmitter and also to the inability of the
transmitter to exploit the channel efficiently, since it has no CSI.

13
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Figure 2-3: Ergodic capacity for different antenna configurations: the curves labels indicate NtxNr.

Outage Capacity

The outage capacity quantifies the level of capacity that is guaranteed with a given level of
reliability. The q% outage capacity, Couq, IS defined as the transmission rate that is
achieved for (100-q)% of the channel realizations. As for the ergodic capacity, the outage
capacity also improves with the increase in the SNR and in the number of the antennas.

Outage capacity is a useful figure for the system characterization when the channel is
unknown at the transmitter and the channel matrix, although random, remains constant
over the duration of a codeword (but changes independently from block to block),
corresponding to a slow fading channel. In this case, for any information rate there is a
certain probability that the given channel realization does not support the desired rate,
resulting in packet error and consequently in the occurrence of an outage situation.
Therefore, a tradeoff must be established between the desired information rate and the
outage probability.

2.2.4.Frequency Selective Channels

The capacity of a frequency selective MIMO channel (i.e., a wideband channel) may be
calculated by dividing the frequency band of interest into M narrower sub-bands, such that
each sub-channel can be considered as frequency flat (to achieve this requirement the
bandwidth of these sub-channels must be smaller than the coherence bandwidth). Capacity
is then obtained by summing the capacities of these sub-channels.

14
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Consider H; (i=1, 2, ..., M) as being the i-th sub-channel matrix. The input-output relation

T
for this sub-channel is described by equation (2.6). Now, let S=[s] s} - s\ | , with
T
dimension NtMm =1, and y:[yI Y, VL] , with dimension Nrm x1, be the
T
transmitted and received signal vectors, respectively; N =[nI n, - n[,] , with

dimension Nr M =1, be the noise vector; and the channel matrix #, with dimension
Nr M < Nt M , be a block diagonal matrix where H; are the block diagonal elements. Thus,

the wideband input-output relation is formally analogous to equation (2.6) and given as

YV=HS+N (2.26)

The covariance matrix of S, denoted as Qs = E[ S8" |, satisfies tr(Qs)=Mp inorder
to constraint average transmit power to Pr. Form equation (2.11), the capacity of a
frequency selective MIMO channels, in bps/Hz, is then given by

CFS =

L max, {1og, (det(1,, + Q") | @2)

Considering the case in which the channel is unknown to the transmitter we should select
Qs :(p/Nt)thM, meaning that the transmit power is equally distributed over space
(transmit antennas) and frequency. In this case, the capacity can be written as

Coe == l0g, | det[ 1, +2 HH"
FS_M; 0g,| de Nr+m i (2.28)

Obviously, if the entire channel response is frequency flat, i.e., H, =H (i=l, 2, ..., M),
this expression reduce to equation (2.12). In addition, if all H; are iid (i.e., the bandwidth
of each sub-channel is less than or equal to the coherence bandwidth), by the strong law of
large numbers the capacity of a sample realization of the frequency selective channel
approaches a fixed quantity as M — oo.

If the channel is random, the ergodic and outage capacity, as seen above, are helpful
statistics for the channel characterization and may be defined similarly for frequency
selective channels as done previously in section 2.2.3 for frequency flat channels. It is
worth to mention that, the outage capacity of a frequency selective channel is higher than
the outage capacity of a frequency flat channel (at low outage probabilities). This is a result
of the increased tightening of the Cumulative Density Function (CDF) of capacity due to
frequency diversity offered by the frequency selective channel. This effect is illustrated in
Figure 2-4 showing the CDF of the information rate for a frequency selective MIMO
channel ( Nt = Nr = 2) with increasing M using a SNR of 10 dB.
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Figure 2-4: CDF of the information rate for an increasingly frequency selective MIMO channel.

As it may be observed in Figure 2-4, as the number of narrowband channels increases (M),
the CDF tightens and therefore the outage capacity (at given outage probability) also rises.
Furthermore, as the CDF tightens the outage capacity approaches to the ergodic capacity,
leading us (again) to the conclusion that asymptotically (in M) the capacity of a sample
realization of a frequency selective MIMO channel tends to the ergodic capacity.

Like in the case of the frequency flat channel, capacity of the frequency selective MIMO
channel may be improved if the channel is known by the transmitter. This case may be
treated using the same rationale that led to the water-filling algorithm, though here, the
power has to be distributed across space and frequency in order to maximize the spectral
efficiency, yielding to the space-frequency water-filling principle. Note that water-filling is
applicable only to orthogonal channels. To accomplish this requirement OFDM
(Orthogonal  Frequency Division Multiplex) techniques are employed. The
space-frequency water-filling algorithm provides the optimal power allocation, from which
it can be derived the optimal space-frequency covariance matrix, Qg, that is constrained to

tr(Qs) =M p and maximizes the channel capacity.

2.3. MIMO Potentials

It was already mentioned that the benefits of MIMO systems arise by exploiting the spatial
domain which allows the system to support the use of techniques as beamforming, spatial
diversity and spatial multiplexing. The latter can be used only in MIMO systems while the
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first two, though may be used in MIMO systems, require that only one of the link ends is
equipped with multiple antennas and thus may be applied as well in SIMO and MISO
systems. In the following sections fundamentals of each of these techniques will be
summarized.

2.3.1.Beamforming

In the last two decades beamforming (also called array gain) has been deeply studied under
the scope of topics as smart antennas or adaptive antennas. In cellular environments,
beamforming benefits include increased range, reduced interference and as a result
increased capacity, longer mobile battery life due to reduced transmit power, reduced
channel delay spread and reduced average human radio emission exposure. In MIMO
systems, beamforming can be performed either at the transmitter side, the receiver side or
both. However, the employment of this technique at the transmitter requires that it has CSI
(it assumed that the receiver has always perfect CSI).

Beamforming enables to focus transmit or receive power into (a) certain angular
direction(s) [6, 7] by choosing appropriate antenna weights. Thereby, the radiation pattern
of the antenna array may be modified to enhance the quality of signals departing or
arriving from the desired direction(s). Some of these techniques, particularly in the
presence of interference, attempt at the same time, to create a minimum for non-desired
directions like those from where the interfering signals arrive. This kind of beamforming is
usually called as spatial filtering for interference reduction (SFIR) but, with more complex
signal processing, each mobile in a cell can be extracted and simultaneously, interference
can be canceled, yielding a scheme known as space division multiple access (SDMA).

Given that beamforming techniques aim to focus the signal power into a well-defined
direction (or directions), it will perform better the more directive the channel is. The
highest beamforming gain will be achieved for the most directive MIMO channel
presenting one strong Direction of Departure (DoD) and one Direction of Arrival (DoA)
only, such is the case under Line-of-Sight (LoS) conditions. One should note that the more
directive the channel is, the more correlated are the signals from the several antennas
available (spatial correlation).

2.3.2.Spatial Diversity

It is well known that the radio communications are strongly affected by fading, which is
mainly generated by multipath propagation and causes fluctuations of the signal level not
only across time, but also across space and frequency. This phenomenon impacts the
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performance of any wireless system in terms of symbol or bit error rate. Fading is usually
combated by employing diversity techniques.

The principle of any diversity scheme is to provide the receiver with multiple versions
(branches) of the same transmitted signal. If these versions are affected by independent
fading conditions, the probability that all branches are in a deep fade at the same time
reduces dramatically. Therefore, diversity increases the reliability of the radio link and
leads to improved system performance in terms of error rate.

As fading can occur in time, frequency and space domains, diversity techniques may
correspondingly be developed in each of these domains. Nevertheless, both time and
frequency diversity schemes involve a loss in time or bandwidth to allow the introduction
of redundancy in the signal. On the contrary, spatial (and also polarization) diversity does
not sacrifice time and bandwidth as it is provided by the use of multiple antennas at one or
both sides of the link. However, the system spatial dimension, complexity and also cost are
increased by using antenna arrays.

Obviously, the performance of spatial diversity is highly dependent on the signals
(branches) correlation which under ideal conditions should not exist if the branches
experience independent fades. Hence, contrasting with beamforming, spatial diversity
performs better when the channel is non-directive, i.e., channels which do not present
dominant multipath components (MPCs), as strong LoS component for instance.

In receive spatial diversity [16], the receiver combines the signals from the available
antennas so the resulting signal presents considerably reduced amplitude fluctuations in
comparison with the signal at any individual antenna. Several studies have shown that a
separation of about one wavelength between the antennas suffices to provide signal
branches significantly uncorrelated.

Transmit spatial diversity may be achieved either with or without CSI at the transmitter.
Yet, suitable design of the transmitted signal is required to obtain the potential diversity
gains. In this context many contributions have emerged of which [5, 17-19] are referred.

In MIMO systems spatial diversity can be exploited at both link ends, so the global system
performance is improved and requires a combination of receive and transmit diversities
presented above.
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2.3.3.Spatial Multiplexing

Spatial multiplexing is only possible in MIMO systems and offers a linear increase in the
transmission rate (with increasing minimum number of transmit/receive antennas) without
requiring more bandwidth or transmit power. It exploits the different spatial signatures
existing between each transmit-receive antenna pair, which, under favorable channel
conditions, are well separated. Thereby, the bit stream to be transmitted may be split into
several (Nt at the most) sub-streams, modulated and transmitted simultaneously from each
transmit antenna. The receiver, having complete knowledge of the channel (matrix H),
distinguishes between several sub-channels and recovers these signals, which after
demodulation yield the corresponding sub-streams to be combined, so the original bit
stream is reconstructed.

In a simple rationale, the problem is similar to the resolution of a system of linear
equations. Actually, one decoding method commonly used is the zero-forcing technique
which consists in inverting directly the channel matrix, H, though a simple approach it can
result in poor results when the matrix is ill-conditioned. Alternatively, a receiver using
maximum likelihood detector compares all possible combinations of symbols which could
have been transmitted with what is observed and selects the most probable solution. This
technique presents optimum performance but also high complexity which may be
prohibitive. Evidently, the perfect recovery of the several transmitted sub-streams (so the
original signal is also recovered) requires the equations composing the system to be
independent meaning that each antenna sees an independent channel (or at least
sufficiently different).

Similarly to spatial diversity and contrasting to beamforming, spatial multiplexing
performs better when the signals at receiving antennas are independent such as non-
directive channels exhibiting numerous MPCs. Nevertheless, unlike spatial diversity, that
attempts to improve the signal quality fighting the multipath phenomenon, spatial
multiplexing exploits efficiently this phenomenon in order to increase the transmission
rate. A well-known algorithm that implements spatial multiplexing is the V-BLAST
(Vertical — Bell Labs Layered Space Time) [20].

2.3.4.Transmission over MIMO systems

The analysis presented in section 2.2, based on information theory, is useful as it motivates
the research for technologies and architectures to benefit from gains promised by MIMO
systems when compared to conventional systems. Although, it should be noted that this
analysis only provides an upper bound without any limitation of complexity, and thus does
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not reflects the performance achieved by a given transmission system. In fact, in the
development of any algorithm or architecture, it is necessary to establish a compromise
between a given performance measure and an acceptable level of complexity. On the other
hand, as seen above, the specific channel conditions may dictate which of the techniques
presented in the last sections (2.3.1, 2.3.2 and 2.3.3) will perform better.

If both, transmit and receive sides are sufficiently non-directive both, spatial diversity (at
transmitter and receiver) and spatial multiplexing, may be used. In this case the system
requirements (desired data rate, reliability of transmission, etc.) will establish optimum
tradeoff between these two techniques. In general, transmission schemes over MIMO
channels typically fall into two categories: data rate maximization or diversity
maximization. The first class of these techniques intends to improve the average capacity,
but in general, individual streams should be encoded jointly in order to protect the
transmitted signal against errors induced by channel fading and noise/interference. This
brings in a second approach in which one attempts, as well, to minimize the outage
probability, or equivalently, to maximize the outage capacity by introducing diversity. One
should note that the level of redundancy may be so high that it does not provide any
capacity improvement. In such case, the multiple antennas allows for spatial diversity but
not for the data rate increase (at least in a direct manner).

The set of techniques and algorithms used to encode jointly the signals for the multiple
transmit antennas are referred as space-time codes (STCs). Generally, these techniques
consist in generating and transmitting simultaneously a number of code symbols equal to
the number of transmit antennas (one symbol is transmitted from each antenna). Symbols
are generated by the space-time encoder such that by using suitable signal processing and
decoding procedures at the receiver, the desired diversity and/or coding gains are achieved.

The first schemes to develop STCs that emerged [18] were based on trellis codes, which
required a multidimensional Viterbi algorithm at the receiver for signal decoding. Besides
the coding gain that depends on the code complexity, these codes offer also a diversity gain
without any loss in the bandwidth efficiency. However, in terms of complexity these
techniques are very demanding which may not be reasonable for most systems.

The popularity of STCs truly increased when space-time block codes (STBCs) emerged,
mainly because for these codes it is possible to perform decoding using simple linear
processing at the receiver. However, STBCs only provide diversity gain without any
coding gain. Nevertheless, due to its simplicity when compared to trellis codes, they have
attracted much attention overcoming the latter. In this context, it should be noted that this
technology had its genesis on the scheme proposed by Alamouti [17] for transmitters with
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two antennas. The Alamouti scheme revealed to be so attractive that it was included in
W-CDMA and CDMA-2000 standards. Later, it has been generalized to an arbitrary
number of antennas [19]. A detailed review of STC techniques can be found in [21].

Spatial multiplexing, presented in section 2.3.3, can be seen as a special case of STBCs
where streams of independent data are transmitted over different antennas enabling to
maximize the average data rate over the MIMO system. Even though, it allows the
independent usage of the antennas, it offers limited diversity benefits and will hardly meet
the requirements for a desired bit error rate. Alternatively, using STC may result in
additional coding gain and diversity gain [22] which may help to improve system
performance, even if the data rate is kept at the same level. It is also possible to sacrifice
some data rate for more diversity gain. On the other hand, introducing diversity will
contribute to increase indirectly the data rate given the improved error performance may
allow the usage of higher level modulations. Studies presented in [23, 24] discuss some
tradeoffs between diversity and spatial multiplexing.

2.4.MIMO Channel Models

The evolution of wireless communications led to the enhancement of early SISO
propagation models, which provided information about power, in order to consider time
and frequency variations information. Later, when space diversity and smart antennas
techniques emerged spatial information was also considered and directional channel
models came into the scene. MIMO systems have pushed further the evolution of
propagation modeling toward more complex spatial-temporal considerations. This section
is extensively based on the content of [25] and also of chapter 2 from [26].

2.4.1.Briefreview of propagation mechanisms

In any wireless communication system, signals arrive at the receiver via various
propagation mechanisms. The existence of several MPCs with different time delays, DoDs,
DoAs, phases and attenuation yield a highly complex transmission channel. The
propagation mechanisms may be classified into five basic phenomena:

i.  Free-space or line-of-sight (LoS) propagation;
ii.  Transmission (and absorption);
iii.  Specular reflection;
iv.  Diffraction;

v.  Diffusion or diffuse scattering.
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Any combination of these mechanisms may contribute to the received signal and except for
LoS, all them involve the interaction of the propagating wave with one or more obstacles —
walls, trees, cars, human beings, etc — which are usually referred as scatterers or interacting
objects. The LoS path experiences free-space loss only. Transmission through an obstacle
also causes partial absorption of energy. Specular reflection occurs when a propagating
electromagnetic wave impinges upon a plane and smooth surface whose dimensions are
much larger than the wavelength. Diffraction happens when the path between the
transmitter and the receiver is obstructed by a discontinuity, such as an edge, wedge or
cylinder. Finally, diffusion is caused by interactions of the wave with objects whose
dimensions are on the same order of the wavelength as rough objects. In this case, the
resulting wave is most often non-coherent: its phase is not deterministic and therefore is
only characterized in a stochastic manner.

The term channel is usually employed to describe the impulse response of the linear
time-variant communication system between the transmitter and the receiver. Concerning
SISO channels, a complete model for the impulse response may be expressed as the
product of three factors:

e Path-loss: a real-valued attenuation factor depending on the distance between the
transmitter and the receiver (also called the range) and on the so-called path-loss
exponent;

e Shadowing: an additional random real-valued attenuation factor which, for a given
range, depends on the specific location of the transmitter and the receiver; it is
usually modeled by a lognormal variable;

e Fading: a complex variable representing the signal fluctuations caused by the
combination of non-coherent MPCs.

A number of models for path-loss and shadowing have been proposed [16, 27] and their
application is identical either for single or multi-antenna systems. This thesis is thus
focused on MIMO fading models.

2.4.2.The double-directional channel impulse response

In MIMO systems, the transmitter and the receiver are both equipped with antenna arrays.
The fading channel between each transmit-receive antenna pair may be described as SISO
channel. However, modeling only individual SISO channels does not characterize
completely the behavior of the MIMO channel. The model must include also the statistical
correlations between the elements of the channel matrix.
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As already referred, when dealing with MIMO channels space comes as an additional
dimension and needs to be modeled on its own in the same way as time and frequency
characteristics have been modeled for wideband SISO channels. For example, the angular
distribution of energy should be described at both link ends. This leads to the so-called
double-directional description of the channel: the term directional means that the channel
model includes a description of the angular distribution of the energy at the antennas
(contrasting to a non-directional model, which deals only with temporal spreading); the
term double indicates that the spatial description of the channel concerns the transmitter
and receiver sides.

The double-directional channel impulse response, between a transmitter located at ri and a
receiver located at ry, is usually given as the sum of contributions of L individual MPCs,
expressed as [28]:

L

h(rtx’ rrx’T'th’er) = Zh[ (rtx’rrx’T’th’er) (229)
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where 7 is the excess delay, Q, and . are respectively, the DoD and the DoA in 3-D
space. The contribution of the ¢ -th MPC is written as
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where a, represents the complex amplitude, &(+) is Dirac delta function.

When the transmitter and/or the receiver and/or scatterers are moving, the values of 7,
and Q_ are time-variant. A compact notation for the time-variant double-directional
channel is given as

L
h(t,7,Q,.2,)=> h(1,7,.2,.2,) (2.31)
(=1
where all temporal variations were grouped into a unique dependence under the variable t.
For this reason ry and ry were dropped for simplicity. h,(t,7,€,,€,) is defined
similarly as in equation (2.30).

tx 7

The double-directional impulse response, now introduced, describes directly the physical
propagation channel, whereas the MIMO channel matrix presented in equation (2.1)
characterizes the response between all transmit-receive antenna pairs. Yet, the relationship
between both points of view is straightforward and the impulse response between the j-th
transmitting antenna and the i-th receiving antenna, h, ; (t,z), is written as
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2.4.3.Model Classification

Literature provides a variety of channel models, many of them based on measurements.
These models may be categorized in several ways: narrowband (flat fading) or wideband
(frequency-selective) models; time-invariant or time-variant models; deterministic or
empirical models. Narrowband MIMO channels can be completely described by
characterizing their spatial structure. However, wideband channels additionally require the
modeling of the multipath channel properties. For time-varying channels it is furthermore
necessary to describe the temporal evolution of the channel.

An alternative categorization of the models may be made by distinguishing physical
models and analytical models. Physical models represent the MIMO channel by
characterizing the double-directional multipath propagation between the transmitter and
the receiver. These models explicitly describe parameters as complex amplitude, DoD,
DoA and delay for the MPCs present in the channel. On the other hand, analytical channel
models describe the impulse response (or alternatively, the transfer function) between
individual transmit-receive antenna pairs by a mathematical (or analytical) expression,
without explicitly take into account the wave propagation. The individual impulse
responses are collected in the MIMO channel matrix introduced in equation (2.1).
Analytical models are widely used for the synthesis of MIMO matrices in the framework
of system and algorithm development and verification. The relationship between physical
and analytical models is the same as the one defined by equation (2.32) between wave
propagation and the MIMO channel matrix. Notice that a physical model may be easily
converted into an analytical model but not the opposite.

Physical models may be additionally classified as deterministic models, geometry-based
stochastic models or empirical stochastic models. These subclasses of physical models will
be presented with more detail in subsections, 2.4.4, 2.4.5 and 2.4.6, respectively.
Analytical models may also be further categorized as propagation-motivated models or
correlation-based models. Propagation-motivated models treat the channel matrix by
modeling propagation parameters. Examples of this kind are the virtual channel
representation [29], the finite scatterer model [30] and the maximum entropy model [31].
On the other hand, correlation-based models describe the MIMO channel matrix in terms
of the correlations between the matrix entries. The well-know Kronecker model [32] is one
example of correlation-based models as well as the Weichselberger model [33].
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At last, one should also mention standardized models. These are reference models which
were established by several international organizations in order to compare different
MIMO systems under the same channel conditions. Examples of standardized models will
be presented in section 2.4.7.

2.4.4.Ray-based deterministic models

Ray tracing is a method based on Geometrical Optics (GO) which has been extensively
applied to the mobile terrestrial channel. In fact, if the wavelength is small compared to the
size of obstacles, each contribution may be regarded as a narrow beam, generally called
ray. The problem consists in calculating the electric field at the receiver, in amplitude,
phase and polarization. This field, expressed by a 3-D complex vector, is obtained from the
combination of the direct component with several contributions, each resulting from the
interaction of the transmitted signal with the surrounding environment.

Nevertheless, in general ray tracing techniques consider only four types of contributions:
LoS, components transmitted through obstacles and components due to single or multiple
reflections and diffractions. Components due to a combination of these four mechanisms
may also be considered. However, ray tracing techniques usually do not handle diffuse
scattering since this contribution is non-coherent as its phase is non-deterministic (the
wavelength is not small compared to the size or roughness of obstacles).

The application of ray tracing methods to a given propagation problem requires that the
given scenario is decomposed into simple geometrical configurations for which the
reflection, transmission and diffraction coefficients can be calculated. All rays contributing
significantly to the channel description, at an examined position, must be traced and the
complex impulse response of the channel is then obtained by adding all these significant
contributions in a very similar way as in equation (2.29). The received signal is thus
composed by a set of delayed impulses (rays) each corresponding to an attenuated and
phase shifted version of the original transmitted impulse. Although ray tracing was
introduced in propagation long before the emergence of multi-antenna systems, they are
inherently multidimensional. The MIMO channel matrix is then obtained using equation
(2.32).

However, the accuracy of ray tracing tools is deeply dependent on:

e the availability of up-to-date and high-resolution databases which describe the
propagation scenario;

e the accurate knowledge of electrical parameters for all objects in the scenario
(permittivity, conductivity, loss tangent and roughness);
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e the efficiency of the computational methods that are required to trace all paths
between the transmitter and the receiver, in an reasonable simulation time, with
enough resolution and for a sufficient order of reflections and diffractions.

2.4.5.Geometry-based stochastic models

All geometry-based models are specified by the locations of the scatterers. In deterministic
geometrical methods, as ray tracing discussed above, the scatterers locations are defined in
a database (arising from a rigorous scenario description). In contrast to ray tracing,
Geometry-based Stochastic Channel Models (GSCM) assume that scatterers are randomly
placed in a region according to a spatial scatterer density function. The channel impulse
response is then obtained using a simplified ray tracing method.

GSCM were originally developed for channel simulation in SIMO systems in order to
perform considerations either about diversity or smart antennas techniques. The precursor
of GSCM presented by Lee in [34] placed scatterers deterministically over a circumference
(evenly spaced to be precise) around the mobile station and assumed: a random phase for
each scatterer (uniformly distributed); there is no LoS path and only single-bounce
scattering occurs. The radius of the circumference where the scatterers are placed may be
specified by the desired delay spread. Years later, some groups almost simultaneously
proposed to expand this model by using randomly placed scatterers [35] (or [36]), [37-40]
and the GSCM concept was created. Although, all of these models, just referred, were
proposed for SIMO systems, they can be easily adapted for MIMO systems. Nevertheless,
there are a number of GSCM models proposed more recently, already in the context of
MIMO systems as [41-44].

GSCMs present some important advantages:

e there is a direct relation to the physical reality since essential parameters (as
scatterers locations) may be frequently defined by a geometrical analysis;

e several channel effects are implicitly reproduced as small-scale fading which is
created by the superposition of MPCs from individual scatterers; DoA and delay
drifts due to the mobile station movement are also implicitly included;

e all information is inherent to the scatterers distribution, thus, dependencies of
power delay profile or angular power spectrum do not conduct to a complication of
the model;

o effects as the movement of the transmitter, receiver or scatterers and shadowing
may be easily included allowing to characterize long-term channel correlations in a
straightforward manner.
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The random placement of scatterers reflects the physical reality much better. In addition,
under the single-bounce scattering assumption the ray tracing process becomes particularly
simple: except for the LoS component, all the others are formed by two sub-paths
connecting the scatterer to the transmitter and to the receiver, respectively. These two
sub-paths, completely characterize, for each MPC, the DoD, DoA, propagation time and
complex amplitude (attenuation may be defined according to some power decay law and
phase is obtained from the total path length and from the scatterer interaction which
introduces a random phase shift).

Even so, for MIMO systems the single-bounce scattering may be restrictive since for a
given scatterer, only two parameters among delay, DoD and DoA may be chosen
independently (e.g. if DoA and delay are freely selected then DoD will be defined by these
two parameters). Nevertheless, many environments reveal multiple-bounce scattering by
presenting DoD, DoA and delay, totally uncoupled. Still, in this case, single-bounce
scattering is well suited if the directional channel properties must be described for one link
end only (as SIMO systems) by using the equivalent scatterer concept (see Figure 2-5).
Equivalent scatterers are selected such that they reproduce conveniently multiple-bounce
contributions in terms of delay and DoA [45]. In MIMO systems, the equivalent scatterer
concept fails because the angular channel properties are described correctly only for one
link end. In order to overcome this deficiency multiple-scattering has been included in
several existing models as [42-44].

Different versions of GSCMs essentially differ in the proposed scatterer distributions. The
simplest GSCM is achieved by assuming that the spatial distribution of scatterers is
uniform. Far scatterers contribute with less power as the corresponding MPCs propagate
over longer distances and thus arrive more attenuated. However, the presence of far
scatters is important as it allows including important propagations effects that lead to
increased temporal and angular dispersion.

Figure 2-5: Equivalent scatterer ((0) concept (true scatterers are represent by O).
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If an outlook is given to the available literature, we may find scatterers randomly placed

on.

one ring around the mobile station [41]; in this MIMO model there is no LoS
component and only single-scattering is considered; it represents Rayleigh fading
channels and it is valid when the base station is elevated, thus not obstructed by
local scatterers; [46] also for MIMO systems, places scatterers on a ring around the
mobile station but this model is intended to represent Rice fading situations so a
LoS component is considered;

an arrangement of rings and ellipses as suggested for the MIMO model presented in
[42]; under the assumption that scattering mechanisms in macro-cellular scenarios
generally consist in two-dimensional processes, scatterers producing components
with identical delays are located on ellipses (with the corresponding foci being the
transmitter and receiver positions), thus a tapped delay line may be conveniently
described by a set of ellipses; however the model includes also a ring of scatterers
around the mobile station and a circular area free of scatterers around the base
station, the idea is to reproduce the angle-spreads differences seen at both link ends
(unlike the base station, which is usually elevated, the mobile station is affected by
a larger number of scatters due to its lower height); this model features multiple-
bounce scattering;

inside a circular area around the mobile station as in SIMO models presented in
[35] and [40]; these models are intended to describe the uplink in large cell
environments where all MPCs lie within a small angular spread; the appropriate
radius of the circular scattering area depend on type of environment (urban, dense
urban, etc.) and may be parameterized based on measurements; in these models
only single-scattering is considered,;

inside an elliptical area whose foci correspond to the transmitter and receiver
positions, as proposed in [37]; this single-bounce SIMO model has been developed
for microcellular environments, provided that in such environments the antennas
heights are both relatively low, and thus, multipath is generated from both link
ends; the ellipse size is defined by the maximum excess delay; in [38] a similar
approach is presented but here the ellipse is subdivided into several elliptical
subregions and inside each subregion are placed a number of scatterers which is
given by a Poisson process;

an arrangement of locations able to reproduce the double-directional characteristics
of the channel as proposed by the COST 273 [44] model; it includes local clusters
around the transmitter and/or the receiver (with a large angle spread), randomly
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placed single-bounce clusters and twin-clusters for multiple-bounce; for single-
bounce clusters DoD, DoA and delay are obtained by means of geometrical
relationships; multiple-bounce is achieved using the twin-clusters concept where
each physical cluster is split into two clusters, one related to the transmitter side,
the other related to the receiver side, allowing to model the angular dispersion
independently at each link end, so there is no geometrical relationship between
DoD, DoA and delay.

2.4.6.Empirical stochastic models

Empirical (or non-geometrical) stochastic models characterize MPCs from transmitter to
receiver using statistical parameters only, not considering the geometry of the physical
environment. These models are usually based on experimental results and generalize the
tap-delay-line concept. MPCs may be treated individually or found to arrive in clusters.

Extended Saleh-Valenzuela model

Saleh and Valenzuela proposed a non-directional propagation model for indoor scenarios
[47]. This model is based on measurements which showed MPCs arriving in clusters and
also on the tap-delay-line approach. Therefore, the Saleh and Valenzuela (SV) model
assumes clusters in the delay domain that are described using a double exponential decay
process: one is used to control the power of a multipath cluster and another, presenting a
more abrupt slope, is used to describe MPCs within the individual clusters.

In [48, 49] it is further observed that clustering is also present in the angular domain. Thus,
the SV model has been extended in order to include also a directional description of the
channel, resulting in the following channel impulse response model: [49]

t 7, ¢tx’ rx Zzakcg(T_Tk _Tk()5(¢tx _q)tx,k _¢tx,k6)5(¢rx _(Drx,k _¢rx,kf) (233)
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where T,, ®,, and @, are, respectively, the time delay, DoD and DoA of the k-th
cluster, while 7,,, &, ,, and ¢, ,, are the relative delay, DoD and DoA of the ¢-th MPC
within the k-th cluster.

The MPCs amplitudes, «,,, are complex Gaussian variables whose mean power (relative
to the first MPC) is given by
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where I" and » are power-delay time constants, respectively, for clusters and MPCs within
the clusters. This double-exponential decay is illustrated in Figure 2-6.

Variables T, and ¢, are characterized by independent inter-arrival probability density
functions as follows

(T IT) =Aexp[-A(T-T,,) ] (2.35)

p(Tk( | Tk((—l)) = ﬂexp[_ﬂ(fk( ~ Tk(r) )} (2.36)

where, by definition, T, =0 and 7, =0.

The angular variables, @, and @, are described as uniformly distributed, whereas
the relative angles, &, ., and &, ,,, were experimentally found to follow a Laplace
distribution expressed as

2
Iﬁ)(s/5k5)=\/§1(7 eXp{—\/;—f“] (2.37)
[

with o, being the angular standard deviation.

Zwick model

In [50] it is stated that for indoor channels clustering does not take place if measurements
are performed with a high bandwidth. Therefore, in this stochastic model for indoor
environments MPCs are generated individually. A SISO model is applied, using a marked
Poisson process for the appearance and the disappearance of non-LoS MPCs. The DoD and
DoA are modeled with a Laplace distribution that migrates to a uniform distribution for
larger delay times. The model explicitly includes a LoS signal component by modeling the
transitions between LoS and obstructed LoS environments applying a Markov process. The
SISO model is extended to a MIMO model by applying the plane wave assumption.

30



Chapter 2 — MIMO Wireless Communications

[

Overall Decay Envelope
(Exponential Law)

/ Clusters

Power (dB)

\/

Excess delay (ns)

Figure 2-6: Exponential decay of the mean amplitude for clusters and for MPCs within clusters.

2.4.7.Standardized models

In this section it is presented a brief review of some reference models for MIMO systems.
As referred, these models are appropriate for comparing different system implementations.
However, several of these models do not help to understand the MIMO propagation
concepts.

3GPP/3GPPZ2 Spatial Channel Model

The Spatial Channel Model (SCM) [51] (or [52]) was created by the third-generation
partnership project (3GPP and 3GPP2) for outdoor environments and a system bandwidth
of 5 MHz at carrier frequency of 2 GHz. The SCM comprises a link-level model and a
system-level model.

The link-level model (also known as calibration model) is a simplified channel model
which is intended for different equipment manufacturers to compare their implementations
of the same signal processing algorithms. Comparing the performance of a given algorithm
in the calibration model allows concluding, in a straightforward manner, if two
implementations are equivalent. However, link-level simulations are not recommended for
performance evaluation of different algorithms as they reflect only a single snapshot of the
dynamic channel and thus, not allow assessing the general behavior of the system. If this
kind of assessment is needed, then system-level simulations should be made.

The link-level SCM may be implemented as a physical model or as an analytical model.
The former is a non-geometrical stochastic model which describes the wideband
characteristics of the channel using a tapped delay line. Each tap is independently faded
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and is characterized by an azimuth power spectrum, assumed to follow a uniform
distribution at the mobile station and a Laplace distribution at the base station. The mean
direction and angular spread at both link ends are fixed and so the model describes
stationary channel conditions. The Doppler spectrum is implicitly accounted for by
defining the trajectory and the velocity of the mobile station. The physical model may be
converted into an equivalent analytical model by specifying the number and configuration
of antennas at the transmitter and the receiver.

The system-level model [53] (also referred as simulation model) is proposed for
performance assessment typically involving multiple links (multiple cells, sectors, base and
mobile stations) where each link involves a mobile station and a base station. The system-
level SCM is a physical model comprising three different environments: urban macro-cell,
suburban macro-cell and urban-cell. The modeling and simulation methodologies are
identical for the three environments, but the parameters as delay spread, azimuth spread,
shadowing and path loss, are different.

Multipath propagation is assumed and the number of taps with different delays is 6.
However, their delay and average power are randomly chosen from a probability density
function. Each tap shows angular dispersion at both sides (base station and mobile station)
which is introduced by means of describing each tap as a number of sub-paths that have all
the same delay, but different DoA and DoD. Physically, this means that each tap
corresponds to a cluster with 20 scatterers with the same time of arrival, but slightly
different directions. Antenna radiation patterns and geometries may be chosen arbitrarily
and when this is done analytical formulations can be extracted from the physical model.

The model also includes some optional features as: a polarization model; far scatterer
clusters; LoS component for the micro-cell environment; and a modified angular
distribution at the mobile station aiming to describe the propagation in urban street
canyons.

IEEE 802.11 TGn models

The TGn channel model of IEEE 802.11 [54] is an enhanced and standardized version of
the Saleh-Valenzuela model. The model conception was based on measurements and it has
been planned for indoor MIMO wireless LANSs in the 2 GHz and 5 GHz bands, for
bandwidths up to 100 MHz.

The IEEE 802.11 TGn channel model defines a set of six environments, covering flat
fading, residential, small office, typical office, large office and large open spaces. The
directional impulse response is defined as a sum of clusters which overlap in the time
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domain. For each environment the TGn model indicates a set of representative parameters:
the number of clusters, values of DoD, DoA and cluster angular spreads (seen from
transmitter and receiver) are fixed for each cluster of the different environments. Usually,
each cluster consists up to 18 delay taps (separated at least by 10 ns), the number of
clusters varies from 2 to 6 and the power angular profile of each cluster is described using
a Laplace distribution (as in the Saleh-Valenzuela model) with angular spread in the range
of 20° to 40°. Overall power angular profiles, at the transmitter and the receiver, are
assumed to be statistically independent and are then computed separately at each side using
the array geometry. The channel correlation matrix is subsequently obtained based on the
Kronecker model. Global delay spread varies between 0 ns (corresponding to flat fading)
and 150 ns.

IEEE 802.16 models

IEEE working group 802.16 has been central to the development of technical standards for
fixed wireless access networks. Broadband wireless access (BWA) technology provides
last mile access for high-speed residential and commercial Internet services. It is a
promising alternative to digital subscriber line, cable and fiber technologies which are
struggling to meet world-wide demand, especially outside metropolitan centers, for
Internet services at reasonable cost. The IEEE 802.16 standard for BWA and its associated
industry consortium, the WiIMAX forum, has the potential to offer broadband access to
virtually all users irrespective of location. WiMAX (the Worldwide Interoperability for
Microwave Access) is a consortium of telecommunication equipment manufacturers,
vendors and service providers, formed to promote the compatibility and interoperability of
BWA devices incorporating the IEEE 802.16 and ETSI HiperMAN wireless standards.

IEEE 802.16 was designed for LoS links operating at carrier frequencies between 10 GHz
and 66 GHz. The first release of the standard (IEEE 802.16-2001) specifies a set of
medium access control (MAC) and physical-layer standards intended to provide fixed
broadband access using a point-to-point (PP) or point-to-multipoint (PMP) topology. The
standard was revised in January 2003 to include non-LoS links operating at frequencies in
both licensed and unlicensed bands between 2 GHz and 11 GHz. A consolidated standard,
IEEE 802.16-2004, was issued in 2004. IEEE 802.16e-2005, was issued in December 2005
which includes enhancements for physical and MAC layers that support nomadic and
mobile operation in 2 to 11 GHz range. Two channel models are used for fixed and
portable systems complying with the IEEE 802.16 standard. The Stanford University
Interim (SUI) channel model [55] is used for fixed broadband access and the ITU Tapped-
Delay-Line channel model [56] is used for portable broadband access.
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The WIMAX forum approved the mobile WiMAX system profile in 2006. Mobile
WIMAX, based on 802.16e-2005, enables WiMAX systems to address portable and mobile
devices in addition to fixed and nomadic applications. The WiMAX forum Mobile release
1.0 channel model [56] defines the SISO and MIMO channel model requirements for
mobile applications governed by the IEEE 802.16e standard. The purpose of the model is
to provide a realistic and repeatable channel context for the testing and comparison of
portable and mobile WiMAX-enabled devices.

WINNER channel models

The European WINNER (Wireless World Initiative New Radio) project started in 2004
with the purpose of developing an innovative radio access concept, for beyond third
generation (B3G) wireless systems. Work Package 5 (WP5) of WINNER project focused
on MIMO channel modeling for bandwidths up to 100 MHz and carrier frequencies
between 2 and 6 GHz.

In the first stage of the project and due to immediate simulation needs, two existing
channel models were selected as starting points: the 3GPP/3GPP2 SCM was selected for
outdoor simulation and the IEEE 802.11 TGn model was selected for indoor simulation.
As the SCM model had insufficient bandwidth and limited applicability range, in 2005 the
SCM was extended to the SCM-Extended (SCME) [57] as follows: the bandwidth was
extended for 100 MHz by introducing an intra-cluster delay spread; carrier frequencies of 5
GHz were included by characterizing the corresponding path-loss functions. Additional
upgrades to the original model comprise the LoS option for all scenarios, tapped-delay line
models and time evolution of small scale parameters and the evolution of shadow fading.
A reduced version of this model was adopted for the standardization of the 3GPP long term
evolution (LTE).

Despite the enhancements introduced in the SCM, SCME was considered inadequate for
the simulation of B3G systems. Therefore, the WINNER Phase | channel model (WIM 1)
was presented in [58]. WIM I has unified structure for indoor and outdoor environments
and is based on double-directional measurements campaigns carried out in the 5 GHz band
with bandwidths up to 120 MHz. The novel features of the model are its parameterization,
the inclusion of elevation in indoor scenarios, autocorrelation modeling of large-scale
parameters (including cross-correlation) and scenario-dependent polarization modeling.

WINNER Phase 11 channel model (WIM I1) [59] evolved from WIM | and also from WIM
Il interim [60] channel models. In the WIM 11 the channel modeling work of WIM | was
continued and the model features were extended: frequency range (2 to 6 GHz), the
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number of scenarios, and a new set of multidimensional channel models were developed.
They cover wide scope of propagation scenarios and environments and are based on
generic channel modeling approach, which means the possibility to vary the number of
antennas, the antenna configurations, geometry and the antenna beam pattern without
changing the basic propagation model. This method enables the use of the same channel
data in different link level and system level simulations and it is well suited for evaluation
of adaptive radio links, equalization techniques, coding, modulation, and other transceiver
techniques.

CELTIC?® project WINNER+ has developed, evaluated and integrated innovative additional
concepts based on the WINNER 11 technologies and LTE standard. Therefore, WIM 11 has
been accordingly updated in order to meet the requirements for these additional concepts.
The novel features of the WINNER+ models [61] are the elevation modeling, extension of
the model down to 450 MHz. WINNER+ Final channel models can be used in link level
and system level performance evaluation of wireless systems, as well as comparison of
different algorithms, technologies and products. The models can be applied to any wireless
system operating in 450 MHz — 6 GHz frequency range with up to 100 MHz RF
bandwidth. The model supports multi-antenna technologies, polarization, multi-user,
multi-cell, multi-hop networks and 3D modeling.

? Celtic-Plus is an industry-driven European research initiative to define, perform and finance through public
and private funding common research projects in the area of telecommunications, new media, future Internet,
and applications & services focusing on a new "Smart Connected World" paradigm. Celtic-Plus is a
EUREKA ICT cluster and is part of the inter-governmental EUREKA network.
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Chapter 3

SIMO Measurements and

Estimation of the Directional Channel

This chapter begins with a brief discussion of the wideband directional channel impulse
response (DCIR) characteristics and then, a description of the SIMO measurement system
and of the measurement campaign is presented. Afterwards, the estimation of the radio
directional channel impulse response, involving the characterization of the most relevant
MPCs (delay, DoA, and complex amplitude), is presented: it starts with a short review of
the existing signal processing tools for high resolution estimation and description of the
selected tool (SAGE algorithm), proceeds with its performance study with synthetic data
and ends with results obtained by entering the measured data into this tool.

3.1. The Wideband Radio Channel Characterization

In the multipath propagation channel, several echoes of the transmitted signal arrive at the
receiver due to phenomena as reflection, refraction and scattering. For narrowband
systems, the channel may be adequately characterized in terms of shadowing by means a
lognormal distribution and multipath fading by means a Rayleigh distribution (or a Rice
distribution if a strong path is present) [27].
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However, it is important to describe also the channel effect if the signal occupies a wide
range of frequencies. Therefore, consider two frequencies belonging to a transmitted signal
with a given bandwidth. If these two frequencies are sufficiently close, the received
amplitudes and phases of different propagation paths (MPCs) will vary approximately the
same way in time. This means that though there is fading caused by multipath, the signal
presents a very similar behavior at both frequencies. In other words, if the signal
bandwidth is sufficiently small, all frequency components in it will behave analogously
corresponding to the flat fading condition.

As the frequency separation increases, the fading behavior at these two frequencies tends
to be uncorrelated with respect to each other, since the corresponding electric lengths will
be considerably different. The correlation level thus depends on the time spreading caused
by the environment. This circumstance is termed as frequency selective fading and means
that the signal will become distorted due to a non-uniform filtering of the transmitted
signal (non-flat magnitude and nonlinear phase shift). The minimum bandwidth within
which the spectral components present similar behavior (a correlation level higher than a
given threshold) is known as coherence bandwidth.

The delayed replicas of the transmitted signal can be related with specific scatterers in the
environment. Therefore, to completely characterize propagation channel, it is not sufficient
to know the powers and delays of the several MPCs being also required to characterize
their angles of arrival and departure.

3.1.1.Channel System Functions

The radio propagation channel may be viewed as a linear filter that transforms input
signals into output signals. However, since the behavior of the channel is generally
time-variant, the transmission characteristics of the equivalent filter must be also
considered as time-varying. As the inputs and outputs of a linear filter may be related both
in time and in frequency domains, there are four transmission functions that can be used to
characterize the propagation channel.

The time domain description of linear system is attained by its time impulse response,
which, in the case of time-variant channels is also a time-varying function. For a known
input signal, the superposition principle allows obtaining the system output in the time
domain. If the low-pass equivalent, time-varying impulse response is h(t,z), where z
represents the delay variable, then the complex envelope at the output, y(t), is related to
the complex envelope at the input, x(t), by the convolution operator as expressed in the
following equation [62]
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y(t)=[ " x(t-7)h(t,r)dz. (3.1)

Physically, h(t,z) may be understood as the channel response at the time t to an input with
delay z. The convolution can be rewritten as summation offering a physical interpretation
of the channel given by a tapped delay line comprising differential delay and modulators
[27].

The channel may also be characterized in terms of frequency variables by using a function
which is dual of h(t,z). This function, denoted by H(f,v), relates the output spectrum,
Y (), with the input spectrum, X (f), inasimilar way as h(t,z) relates the input-output
time functions [27, 62]. The transmission characteristics are thus described in terms of
frequency — f — and frequency-shift — v — variables by the expression

Y(f)=[ X(f-v)H(f-v,v)dv. (32)

While h(t,z) enables the perception of multipath by characterizing contributions from
different scatterers having different path lengths, the perception of the time-varying
behavior of the channel is given by H(f,v), where the frequency-shift variable, v, may
be envisaged as the Doppler shift experienced in these channels.

An alternative way of representing the channel is possible if the output time function,
X(t), is expressed in terms of the input spectrum, X ( f), to the channel equivalent filter
[27, 62]. This function, denoted by T ( f,t), is called the time-variant transfer function and
the input-output relationship is

y(t) =] X(f)T(f.t)exp(jexft)df . (33)

Function T ( f,t) is the Fourier transform of h(t,z) with respect to variable zand also the
inverse Fourier transform of H(f,v) with respect to variable v, as expressed in the
following expressions

T(f.t)=[ h(tz)exp(-jezfr)dr = H(f,v)exp(j2mt)dv. (3.4)
Functions h(t,z) and H(f,v) characterize only one aspect of the channel’s dispersive
nature, respectively, the time delay and the Doppler shift. Another important representation
of the channel is achieved by using the scattering function, S(z’,v), which includes
time-delay and Doppler-shift domains. Function h(t,z) may be obtained as the inverse
Fourier transform of S(z,v), i.e.,

+o0

h(tr)=[S(z.v)exp(j2zvt)dv (3.5)
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and the corresponding input-output relationship is
y(t)= rmrwx(t —7)S(z,v)exp(j2zvt)dvdr. (3.6)

This equation illustrates that output may be envisaged as the sum of delayed and
Doppler-shifted contributions whose differential scattering amplitudes are given by
S(z,v)dvdr. Therefore, S(z,v) explicitly characterizes the dispersive behavior of the
channel in terms of time delays and Doppler shifts [62].

3.1.2.Stochastic Description of the Channel

Real radio channels are in general time-variant, thus, the system functions presented in the
previous section become stochastic processes, justifying the use of statistical models to
characterize the channel. In stochastic models, the channel is usually described in terms of
probabilities. One approach consists in describing the channel by means of autocorrelation
functions. For example, the autocorrelation function (ACF) the of the random impulse
response, h(t,z), is defined as

Ry (2074t ) =E[ h(z,t)h"(z,.1,) ], (3.7)
where () represents the complex conjugate.

Several random radio channels present a dispersive behavior which is uncorrelated in the
time-delay domain and in the Doppler-shift domain as well. In these channels the
following assumptions are substantiated [62]:

I. The stochastic process, described by the impulse response, h(t,z), is wide sense
stationary (WSS), meaning that the ACF depends only on At=t, —t, and not on
the absolute time instant t, i.e.,

Ry (7,7, A) =E[ h(7,,t)h" (7,,t + AY) (3.8)
It can be demonstrated that the WSS assumption gives rise to uncorrelated Doppler

shift scattering, i.e., the contributions of elemental scatterers are uncorrelated if
they produce different Doppler shifts [27].

ii. The complex amplitudes of different path delays are uncorrelated, condition known
as uncorrelated scattering (US), implying that the ACF vanishes for 7, #7,
exhibiting a delta-function behavior for 7, =7,.

A channel fulfilling both the above assumptions is designated as a WSSUS channel. Such a
description of the channel has proved to be a realistic assumption in several radio channels,
being also functional in the case of the mobile multipath channel, at least for short section
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of the traveled route. The ACF of the impulse response simplifies to R, (z,At) and the
ACEF for T ( f,t) simplifies to

R; (., f,,At)=R; (Af,At), (3.9)
which depends only on the frequency separation, Af , and not on the absolute frequencies.

The time domain characterization of WSSUS channels is achieved by the ACF of the
impulse response, R, (z,At). Moreover, this ACF for At=0 is denoted as
Py (z) =R, (z,0) and known as the power-delay profile (PDP). This function describes
how the received power is distributed by the different delayed echoes arriving to the
receiver and may be envisaged as the average over all Doppler shifts of the scattering
function. Two statistical moments of p, (r) are of practical interest: the average delay and
the delay spread. The average delay, D, , is the first moment of p, (r) given by

+Ooz'p r)dr
» ph(z')dz'
and the delay spread, S, , is the square root of the second central moment, defined as
“(z-D.) p, (r)dz
S = JL(z=b)p () . (3.12)

_Jr: P (r)dr

Delay spread is found to be a significant parameter in the design and evaluation of
communication systems as it indicates limits for the system performance due to
intersymbol interference.

The spaced-time correlation function is achieved by particularizing the ACF of T ( f,t),
defined in equation (3.9), for At=0, ie, R;(Af,0). On the other hand, the
spaced-frequency correlation function is achieved by particularizing the same ACF for
Af =0, i.e., R; (0,At). These functions provide a measure of how much the transmission
characteristics of the channel vary with time and frequency spacing, respectively. From
these correlation functions, the values of coherence time and coherence bandwidth may be
computed.

The coherence time is the period, T, over which the magnitude of the spaced-time
correlation function is above a given correlation level. During this period, it can be
assumed that the channel transfer function is roughly kept unchanged. The coherence
bandwidth is the maximum frequency difference for which the correlation is maintained
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above a given correlation level. It may be assumed that the transfer function is
approximately constant for frequency separations smaller than the coherence bandwidth.

3.2.SIMO Setup and Measurement Campaign

The measurement system is shown schematically in Figure 3-1. It consists of a 2D
positioning device, driven by stepper motors and equipped with one movable antenna
connected to the receiving port of a vector network analyzer (VNA). Another static
antenna is connected to the VNA transmitting port. The VNA is used to measure the
frequency response of the time-invariant channel at the M locations of a virtual rectangular
antenna array. A personal computer is used to control the positioning device and the VNA
through the use of a commercial stepper motor control card and a GPIB interface,
respectively. The software needed to control all equipment, acquire and save experimental
data was implemented for this purpose in LabVIEW.

The measurements were performed inside and from outside to inside of a sports hall in the
campus of University of Aveiro. A set of nine double-directional channel measurements
were acquired. Each double-directional measurement is obtained by placing the transmitter
(Tx) and the receiver (Rx) in a given arrangement of positions to acquire a forward
direction measurement file and then, by exchanging the transmitter and receiver positions,
the reverse direction measurement file is acquired. Figure 3-2 presents the transmitter and
receiver measurement positions corresponding to the nine forward measurement points and
a photograph of one reverse measurement point. The scenario description is represented in
a simplified way by black solid lines, where the larger rectangle represents the walls and
the smaller rectangle represents the spectator seats.
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Figure 3-1: Block diagram and a photograph of the SIMO channel measurement system.
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Scenario Layout and Forward Measurement Positions
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Figure 3-2: Description of the forward measurement positions in the scenario and a photograph
corresponding to the reverse measurement position “PAV 10 rv”.

For each single-directional measurement position, the (frequency domain) transfer function
of the time-invariant channel was measured at M = 15 x 15 receiving positions spaced by
A8, in both dimensions. The RF bandwidth used was 200 MHz centered at 2 GHz and
comprises 801 frequency sample points. Transmitter and receiver were both equipped with
one A/4 monopole antenna.

3.3.Estimation of Superimposed Signals

In general terms, the problem involves finding the parameters for a set of L MPCs which
acceptably describe the signals observed in a set of M sensors. The signal observed at each
sensor is the vector sum result of the several echoes existing in the scenario. A few high
resolution algorithms have been proposed and used to estimate the parameters of the
impinging waves (MPCs) in mobile radio environments.

3.3.1.High Resolution Algorithms

High resolution techniques developed for these problems are known as array signal
processing and combine information collected in several sensors. In this context, two kinds
of methods may be identified: spectral estimation and parametric estimation [1]. In the
former, a spectral function of the parameters of interest is defined and the maximum
locations of this function provide the estimation of the parameters. Spectral-based
estimation techniques are computationally attractive but present limited accuracy or even
insufficient, especially for scenarios involving highly correlated signals. The so called
Multiple Signal Classification (MUSIC) algorithm lies in this kind of techniques [63, 64].

On the other hand, parametric estimation methods exploit more deeply the underlying data
model and the estimation of coherent signals imposes no conceptual difficulties to these
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methods. The price to pay for this increased efficiency and robustness is that the
algorithms typically require a multidimensional search to find the estimates. Parametric
estimation may be further classified as Parametric Subspace-Based Estimation (PSBE) or
Deterministic Parametric Estimation (DPE). The method named Estimation of Signal
Parameter via Rotational Invariance Technique (ESPRIT) and its derivatives fall in the
PSBE methods, while Expectation-Maximization (EM) and Space-Alternating Generalized
Expectation-Maximization (SAGE) algorithms belong to DPE.

Standard ESPRIT has been described in [65] and exploits the rotational invariance
structure of the signal subspace induced by the translational invariance structure of the
corresponding sensor array. Unitary ESPRIT [66-68] constrains the array configuration to
those verifying the centro-symmetric* property and leads to phase factors lying in the unit
circle. The formulation of this extension is similar to the standard ESPRIT but the
centro-symmetric property of the array allows real-valued computations providing
increased estimation accuracy with a reduced computational burden.

In a wide variety of signal processing applications, the estimate of the unknown parameters
can be obtained by maximizing the likelihood function, method known as maximum
likelihood estimation (MLE). In the case of space-time signal processing, MLE does not
impose any constraint to the array configuration. EM and SAGE algorithms are both based
on the MLE. In particular, the SAGE algorithm simplifies the complex multidimensional
optimization problem, such as estimating the parameters of several waves in a multipath
propagation environment, to several separate one-dimensional optimization processes
which can be performed sequentially. This algorithm, derived in its general form in [69], is
an extension to the EM algorithm [70] and it has been used in areas like image
reconstruction [71].

In the context of array signal processing, comparative convergence studies of the EM and
SAGE algorithms applied to angle of arrival estimation may be found in [72] using
synthetic data, and in [73] using measured sonar data. Concerning the wireless
communications context, the SAGE algorithm has been used for joint delay, azimuth and
Doppler frequency estimation in time-variant channels [74, 75], as well as, for joint delay,
azimuth and elevation estimation in time-invariant channels [76].

EM and SAGE algorithms are presented in the following sections, starting with the
underlying signal model. Bearing in mind the nature of the measurements available
(section 3.2), the signal model is based on the frequency domain description of the

* A sensor array is called centro-symmetric if its elements are symmetric with respect to the centroid and the
complex characteristics of paired elements are the same.
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channel, i.e., on the transfer function of the channel, justifying why through this work the
SAGE algorithm is sometimes referred as (Frequency Domain) FD-SAGE algorithm.

3.3.2.Signal Model

In the considered underlying model, a finite number, L, of plane waves are impinging at
the receiver antenna array with M elements and the channel is assumed time-invariant. The
channel impulse response at the m-th antenna element can be expressed as

. (7.0,8) Za(exp( <rm,e(¢(,ﬂ()>j5(r—rc) (3.12)

where: 7, represents the time delay, ¢, the incidence azimuth, g, the incidence elevation
(measured with respect to the horizontal plane) and ¢, the complex amplitude of the ¢-th
wave; 4 denotes the wavelength and () the scalar product; ry, is a row vector containing
the m-th antenna element coordinates and

e(¢, B)=[cos Bcos g, cos Ssin ¢, sin ﬂ]T (3.13)

is the unit vector in R® pointing toward the direction defined by ¢ and g, where []'
denotes matrix transposition. In (3.12) the expression

¢ (¢:8.) = exp[ o <rm,e(¢(,ﬂl)>j (314)

accounts for the phase shift, relative to a chosen reference, suffered by the ¢ -th wave due
to a small difference in the travelled distance to reach the m-th antenna element. The vector

B)=[c.(4.8). .y (4.8)] (3.15)

is the so called array steering vector. Defining 6, =[z,.¢,,8,.«,] as being the vector which
contains the parameters of the ¢-th wave, the contribution of this wave to the M impulse
responses may be expressed as

zl:hl(r;gt)"“’hM (T;H():IT = acc(¢uﬂz)5(f—2’(). (3.16)

Alternatively, in the frequency domain, the measured channel transfer matrix across the
array, possibly corrupted with noise is given by

H(f:0)=Y ac(d 8. )exp(—j2nz, )+ N(f) (3.17)
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with 9=Jg,,...6.] and N(f) denoting a M-dimensional vector of complex white Gaussian
noise, i.e.,

Nm(f)=Nm‘R(f)+ij3(f)! m:]‘!""M (318)

where Ny, (f),N5(f), - ,Now (f),N,(f) are also random processes of real-valued
and independent white Gaussian noise with zero mean and unit spectral power.

The contribution of the /-th wave to the channel transfer function is denoted as
S(f;0,)=ac(¢,B,)exp(-j2nz,f). (3.19)

In addition, consider
S(f:0)=35(f:6,). (3.20)
=y
The problem to solve is the estimation of the channel parameters, i.e., to obtain the L
components of vector 6.
3.3.3.Maximum-Likelihood Estimation and the EM Algorithm

The log-likelihood function of @ given an observation H (f)=y(f) over D, is [74]

A(H;y)=2_|'Ders Re{s" (f';H)y(f’)}df’—I

" (f40)|df’ (3.21)

Dobs

where
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