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resumo 
 

 

O efeito cardioprotetor do exercício físico moderado tem sido associado a uma 
adaptação benéfica do proteoma mitocondrial do coração. Com o intuito de 
melhor compreender o impacto do exercício físico praticado ao longo da vida 
na funcionalidade cardíaca e, especificamente, na regulação da atividade 
mitocondrial, no presente trabalho utilizou-se uma abordagem proteómica 
baseada em espectrometria de massa para avaliar as alterações promovidas 
por 54 semanas de exercício em tapete rolante no perfil proteico mitocondrial 
do coração de ratos, mais especificamente no acetiloma mitocondrial. Para o 
efeito utilizaram-se estratégias de enriquecimento baseadas em 
imunoprecipitação com anticorpos anti-acetil-lisina e anti-SIRT3.   
A avaliação da funcionalidade cardíaca suportou o efeito cardioprotetor da 
atividade física praticada ao longo de 54 semanas. A análise de mitocôndrias 
isoladas do coração evidenciou um aumento da capacidade de produção de 
ATP com a prática de exercício físico. Concomitantemente verificou-se um 
aumento da expressão de SIRT3 e alteração do perfil de proteínas 
mitocondriais acetiladas. Estas proteínas acetiladas estão envolvidas em 
vários processos biológicos, sendo de salientar o metabolismo cardíaco que se 
torna mais dependente da oxidação de hidratos de carbono com a prática de 
exercício físico. Curiosamente, de acordo com a ferramenta bioinformática 
STRING, a maioria das proteínas mitocondriais identificadas como acetiladas 
não parecem ser substrato da SIRT3. A análise por imunoprecipitação com 
anti-SIRT3 seguida de LC-MS/MS não permitiu identificar os potenciais 
substratos da SIRT3. No futuro será importante identificar as enzimas 
envolvidas na regulação do acetiloma mitocondrial para além da SIRT3, as 
suas proteínas substrato e, consequentemente, o seu impacto nos vários 
processos biológicos ativados pelo estilo de vida. 
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abstract 

 
Physical activity has been suggested to have a cardioprotective role, which 
seems to be related with mitochondrial adaptation. Aiming a better 
understanding of the impact of exercise training on heart functionality and, 
specifically, on the regulation of mitochondrial activity, in the present work we 
applied a mass spectrometry-based proteomic approach for the 
characterization of mitochondrial proteome adaptation to 54 weeks of moderate 
treadmill exercise. Focus was given to mitochondrial acetylome and so, 
enrichment strategies based on immunoprecipitation with anti-acetyl-lysine and 
anti-SIRT3 antibodies were used. 
Data highlighted the beneficial impact of 54-weeks of treadmill exercise on 
cardiac functionality. The analysis of mitochondria isolated from rat heart 
evidenced an exercise-related greater ability to produce ATP. Concomitantly, 
the mitochondrial expression of SIRT3 increased in exercised animals and was 
paralleled by alterations in the profile of acetylated proteins in heart 
mitochondria. These acetylated proteins are involved in a wide range of 
biological process being of notice the metabolism, which becomes more 
dependent on carbohydrates metabolism with lifelong exercise training. 
Curiously, none of the identified acetylated proteins are targets of SIRT3, 
according to STRING bioinformatics tool. Immunoprecipitation with anti-SIRT3 
followed by LC-MS/MS did not allowed the identification of SIRT3 substrates. In 
the future, it will be important the identification of the enzymes involved in the 
regulation of mitochondrial acetylome besides SIRT3 to better characterize the 
impact of this posttranslational modification on the biological processes 
activated by lifestyle. 
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Cardiovascular diseases (CVDs) are the main cause of death worldwide (1). World 

Health Organization (WHO) estimates that 17.3 million of people died from CVDs in 2008, 

representing about 30% of all deaths worldwide (2). Of these, 7.3 million were attributed to 

coronary heart disease and 6.3 million to stroke. Global cardiovascular deaths are projected 

to increase from 7.1 million in 2002 to 23.3 million by 2030 (3). In Europe approximately 

half of all deaths (47%) are from CVDs. Besides being the largest contributor to mortality 

and morbidity in world, particularly in Europe, CVDs have a great social and economic 

impact (4).  

CVDs are mostly associated and causally linked to four particular behaviors: tobacco 

use, unhealthy diet, physical inactivity and the harmful use of alcohol (2). Recent estimative 

suggests that physical inactivity may be responsible for up to 6% of all premature mortality 

worldwide. Regular physical activity and/or aerobic exercise training has been suggested as 

a preventive and/or treatment strategy for CVDs. Indeed, WHO recommends the practice of 

60 minutes of moderate to vigorous intensity physical activity daily for children and 

adolescents and at least 2.5 hours of moderate physical activity or 75 minutes of vigorous 

physical activity per week for adults aiming to protect the functionality of cardiovascular 

system (5). 

Physical exercise promotes the increase of oxygen consumption (6). Despite the 

increased generation of reactive oxygen/nitrogen species (RONS), several studies 

demonstrate that physical exercise can be cardioprotective by defending the myocardium 

against acute and chronic deleterious insults. The beneficial effects of physical activity seem 

to occur at different levels of cellular organization, being mitochondria a preferential target 

of this physiological stimulus (6, 7). Mitochondria play an important role in energy 

production and cell signaling in many tissues and their dysfunction has been implicated in a 

wide range of human diseases (8). Changes in energy status have been related to alterations 

in mitochondrial protein acetylation. Protein acetylation is an important post-translational 

modification that regulates mitochondrial proteins’ activity and overall mitochondria 

function. More than one-third of all proteins in mitochondria are acetylated, of which the 

majority are involved in some aspects of energy metabolism (9). Nevertheless, the role of 

protein acetylation in the regulation of mitochondria functionality is poorly characterized 

and even less the impact of exercise training on mitochondria acetylome. 
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3.1. Mitochondria: Molecular Structure and Function 

Mitochondria are double-membrane organelles present in almost all cell types. They are 

responsible for the production of ATP, fatty acid oxidation, and participate in apoptosis, 

calcium homeostasis and signaling through reactive oxygen species (10). Mitochondria are 

composed by an outer membrane, the intermembranar space, an inner membrane, contact 

sites, the cristae space and the matrix (11) (Figure 1).  

 

 

Figure 1. Schematic representation of mitochondria and its compartments (12). 

 

The outer membrane is smooth and contains porin that facilitates the transport of small 

molecules (< 5 kDa) in and out of mitochondria (11, 13). The intermembranar space is 

located between the inner and outer membrane. The protein most prominent in the 

intermembranar space is cytochrome c and enzymes such as adenylate kinase and creatine 

kinase. About 21 % of the total mitochondrial proteome is found in the inner membrane that 

is largely impermeable to all molecules. Thus, solutes require specific transport proteins to 

move across it. The inner membrane shows many invaginations called cristae that greatly 

increase its surface area, enhancing its ability to generate ATP. The cristae contain the 

electron transport chain (ETC) complexes (complexes I-IV) and ATP synthase (complex V) 
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(14). The matrix is located within the inner membrane and contain approximately two-thirds 

of the total protein content in mitochondria. The matrix contain mitochondrial ribosomes, 

tRNA, mtDNA and various enzymes used for pyruvate oxidation, for the oxidation of fatty 

acids, for citric acid cycle and for protein synthesis (10, 15). 

 

3.1.1. Oxidative Phosphorylation System 

The electron transport chain consists in multi-subunit complexes designed as 

NADH:ubiquinone oxidoreductase (Complex I), succinate dehydrogenase (Complex II), 

ubiquinone: cytochrome c oxidoreductase (Complex III), cytochrome c oxidase (Complex 

IV) and two connecting redox-active molecules, a lipophilic quinone, designated Coenzyme 

Q or ubiquinone, and a hydrophilic heme protein, designated cytochrome c (16). The 

mitochondrial oxidative phosphorylation (OXPHOS) system is composed of these 

complexes along with ATP synthase (complex V) (15) (Figure 2). 

 

Figure 2. Representation of the oxidative phosphorylation system within mitochondria. The 

tricarboxylic acid cycle produces reduced co-factors that donate electrons to the electron transport 

chain. Complexes use energy released from electrons to pump protons into the intermembranar space, 

which creates a membrane potential that is used to convert ADP to ATP. Figure was made based on 

Servier Medical Art.  
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Complex I is composed by 42-43 different polypeptides and it has an L-shaped form with 

an intermembranar arm and a peripheral one. The redox active centers are located in the 

peripheral arm of the enzyme, which contains the NADH-biding site, one molecule of flavin 

mononucleotide (FMN) and 6 iron sulfur centers (10, 15). This complex catalyzes the 

transference of two electrons from NADH to ubiquinone coupled with the injection of four 

protons from the mitochondrial matrix to the intermembranar space (10). 

Complex II is the membrane-bound component of the citric acid cycle that also functions 

as a component of the mitochondrial respiratory chain (15). It contains five prosthetic groups 

of two types and four different proteins subunits, two of which extend into the matrix and 

contain three Fe-S centers, bound flavin adenine dinucleotide (FAD), and a site for the 

substrate, succinate. The other two subunits are integral membrane proteins that contain a 

heme group, heme b and a binding site for ubiquinone (17). Succinate dehydrogenase 

catalyzes succinate oxidation to fumarate, thus reducing the covalently attached FAD. This 

reaction results in the transfer of 2 electrons from FADH2 to the inner membrane forming 

ubiquinone. In this complex there is no pumping of protons (10, 15). 

Complex III is composed by 9-10 polypeptides (15). The functional unit of complex III 

is a dimer, with two monomeric units of cytochrome b that contains two heme B groups. The 

enzymatic system has also two quinone-binding domains and an iron-sulfur protein center 

that reacts with cytochrome c1 (10, 15). This complex catalyzes the oxidation of ubiquinol 

and the transfer of electrons to the mobile carrier cytochrome c coupled to the transfer of 4 

protons to the inner membrane (10).  

Complex IV is a large enzyme composed by 13 subunits with four redox metal centers, 

CuA, heme a, heme a3, and CuB, that are part of a pathway from the substrate cytochrome 

c to oxygen (10, 17). This complex accepts four electrons from cytochrome c and transfers 

them to the molecular oxygen, which is reduced by ferricytochrome c to water. At the same 

time, two protons cross the inner membrane (10). 

Complex V is the final component of the oxidative phosphorylation system (15). 

Mitochondrial ATP synthase is an F-type ATPase and contains two distinct components: F1, 

a peripheral membrane protein where catalysis takes place, and Fo, which is integral to 

membrane and contains a proton channel. Intact F1Fo-ATP synthase can synthesize and 

hydrolyze ATP (18, 19). Complex V utilizes the potential created by the increased 
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concentration of protons in the intermembranar space to produce ATP, through the passage 

of these protons back into the mitochondrial matrix (10, 15).  

OXPHOS has a central role in cell bioenergetics and, consequently, in the homeostasis 

of several tissues and organs including the heart. Due to its functions in cell, OXPHOS is 

highly modulated by several pathophysiological conditions as physical activity (20).   
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3.2. Impact of Exercise Training on Cardiac Mitochondrial Function 

Exercise has been considered one of the most effective strategies to promote health. 

Physical activity in various forms has been shown to be an effective intervention that can 

provide defense against acute and chronic deleterious insults for the myocardium. These 

include in vitro anoxia reoxygenation (A-R) (21), diabetes mellitus (22, 23), aging (24) and 

doxorubicin (Dox) treatment (25). It has been suggested that the beneficial effects of 

increased physical activity occur at different levels of cellular organization, being 

mitochondria preferential target organelles (reviewed in 26).  

Endurance training was shown to limit the functional alterations of heart rat 

mitochondria submitted to in vitro anoxia-reoxygenation (21). Ascensão et al. (21) evaluated 

mitochondria functionality in A-R conditions, which significantly impaired state 3 and state 

4 respiration, as well as the respiratory control ratio (RCR) and ADP/O. However, 

mitochondrial state 3 respiration was significantly higher in trained than in the sedentary 

group both before and after A-R. The sedentary-related impairments in respiratory control 

ratio, ADP/O ratio and state 4 induced by A-R were significantly attenuated by endurance-

trained. These differences were related with differential oxidative modifications of 

mitochondrial proteins and phospholipids, as measured through the formation of carbonyl 

groups and malondialdehyde, respectively, which levels were higher in sedentary animals. 

Recent data demonstrates that even an acute bout of exercise protects against calcium-

induced cardiac mitochondrial permeability transition pore opening in doxorubicin-treated 

rats (25). This effect was related to the attenuation of drug-related mitochondrial respiration 

decrease manifested by impaired state 3, longer phosphorylative lag-phase, reduced maximal 

transmembrane potential and calcium-induced mitochondrial permeability transition pore 

(MPTP) opening. Moreover, exercise prevented doxorubicin-induced decrease of cardiac 

mitochondrial respiratory chain complexes I and V activities (25).  

Streptozotocin-induced hyperglycemia is another deleterious stimulus for cardiac 

mitochondrial functionality against which endurance treadmill training demonstrated a 

cross-tolerance effect (23). Indeed, 14 week of endurance training was shown to revert in 

rats the hyperglycemia- related increased susceptibility to MPTP gating of heart 

mitochondria. The beneficial effect of treadmill training was mediated by alterations in the 

expression of pore proteins like adenine nucleotide translocator (ANT) and cyclophilin D as 
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well as in pro- and anti-apoptotic proteins of the Bcl-2 family (23). Endurance training 

attenuated the increased activities of caspase-3 and -9 as well as the amplified Bax/Bcl-2 

ratio observed in the sedentary hyperglycemic group. Furthermore, endurance training 

reverted the hyperglycemia-induced cyclophilin D elevation, attenuating the decrease of 

ANT, voltage-dependent anion channel (VDAC) and transcription factor A (Tfam) (23).  

In aging, a lifelong voluntary wheel running program significantly reduced heart 

subsarcolemmal (SSM) and interfibrillar (IFM) mitochondrial hydrogen peroxide 

production (24). Additionally, MnSOD activity was significantly lowered in SSM and IFM 

following chronic voluntary exercise, which was interpreted as a sign of a reduction in 

mitochondrial superoxide production. Nevertheless, wheel running did not altered 

respiratory parameters (state 3, state 4 and RCR), antioxidant activities or content (catalase, 

glutathione peroxidase and glutathione reductase) or lipid peroxidation (24). This may 

suggests a balance between ROS-induced damage to lipids and antioxidant-repair systems 

(27). 

Taken together, these findings demonstrate that exercise training provides protection to 

heart mitochondria against deleterious insults like A-R, STZ-induced hyperglycemia, 

doxorubicin and aging. However, some contradictory findings were reported. A vigorous 

swimming training program (6 h/day, 5 days/week, 8-9 weeks) was related to mitochondrial 

dysfunction in a post-ischaemic rat heart (28). In this study, a decrease in state 4 respiration 

was noticed using malate-pyruvate and 2-oxoglutarate as substrates. The dramatic reduction 

of state 3 respiration rates with both malate-pyruvate and 2-oxoglutarate and the loss of 

respiratory control with 2-oxoglutarate clearly demonstrate that mitochondria from 

hypertrophied hearts induced by excessive hours of swimming reduced their potential for 

oxidative phosphorylation. 

In order to better understand the impact of exercise training on mitochondria 

functionality, an interactive perspective of the signaling pathways harbored in heart 

mitochondria is crucial. Proteomics offers great advantages, such it can provide global 

perception into protein expression, localization and interaction of mitochondrial proteins and 

related them with pathological conditions (29). Mitochondrial proteomics research has been 

focused on mitochondrial proteome profiling and of their post-translational modifications 

(PTMs) to create a complete mitochondrial database (30).  
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3.3. The Role of Post-Translational Modifications in the Mitochondrial Proteome  

Several proteins are post-translationally modified and most of these modifications are 

essential for their proper function in the cell. PTMs are covalent processing events that 

change the properties of a protein through proteolytic cleavage or by the addition of a 

modifying group to one or more amino acids residues (31). They can affect catalytic activity, 

subcellular localization, hydrophobicity and stability as well as association with other 

metabolically important pathway enzymes (11). There are about 87,308 experimentally 

identified post-translational modifications of proteins and 234,938 putative modifications on 

530,264 proteins (32), which include glycosylation, phosphorylation, acetylation, 

ubiquitination and oxidation. Together, these PTMs orchestrate the function of 

mitochondrial proteome. 

Phosphorylation is one of the most frequent PTMs with about one-third of eukaryotic 

proteins estimated to be phosphorylated as a consequence of the regulatory activity of protein 

kinases and phosphatases. Proteins of eukaryotic cells are mainly phosphorylated on 

threonine (Thr), tyrosine (Tyr) or serine (Ser) amino acid residues by protein kinases that 

catalyze the transfer of γ-phosphate group from ATP to the side chains of these specific 

amino acids (33). The transfer of γ-phosphate generates negatively charged side chains, 

which significantly changes the structural properties of proteins. The importance of 

phosphorylation/dephosphorylation in the regulation of mitochondrial processes is 

supported by the recent findings that mitochondria contain protein kinases, phosphatases, 

and phosphorylated proteins (34). Kinases and phosphatases comprise approximately 3% of 

human genome. The number of phosphoproteins identified in mitochondria are more than 

3817 considering all tissues/cells from all species (rat, mouse, cow, bovine, rabbit and 

human) and pathophysiological conditions studied (33). In mitochondria, phosphorylation 

has been shown to regulate the assembly of the ETC complexes and metabolic flux into the 

TCA cycle (35).  

The ubiquitination is a PTM in which ubiquitin is joined to an amino group on a 

substrate, either at the free amino terminus or on an internal lysine residue (36). In general 

ubiquitination occurs through a three sequential steps involving the action of three enzymes 

(36). In the step one, the C-terminal Gly residue of ubiquitin is activated by a specific 

enzyme, E1. This step requires ATP and consists in the formation of an ubiquitin adenylate 
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intermediate with release of PPi, followed by a thioester linkage of ubiquitin to a Cys residue 

of E1, with release of AMP. In the step two, activated ubiquitin is transferred to an active 

Cys residue of an ubiquitin-carrier protein, E2. Finally, in the step three, ubiquitin is linked 

by its C-terminus in an amide isopeptide linkage to a ε-amino group of substrate protein’s 

Lys residues. This step is catalyzed by an ubiquitin-protein ligase (E3 enzyme). Multiple 

rounds of ubiquitination results in a polyubiquitin (polyUb) tag that often leads to proteolytic 

degradation by the 26S proteasome (36). The ubiquitin–proteasome system (UPS) is one of 

the principal system by which cells regulate their proteome and increasing evidences show 

that the UPS is part of the mitochondrial protein quality control system (36). In several 

proteomic profilings of ubiquitinated mitochondrial proteins were identified. The proteomic 

screening of mouse heart allowed to identify 121 proteins that were ubiquitinated, and to 

detect 33 ubiquitination sites in 21 proteins (37). In this study, mitochondrial proteins 

represented 38% of all identified proteins, suggesting that the ubiquitination system plays an 

active role in the regulation of mitochondrial functions. Moreover, the identified 

mitochondrial proteins were found in all locations, such as the outer membrane, 

intermembranar space, inner membrane and matrix. The five components of OXPHOS 

system were identified as ubiquitin substrates (37).  

The mitochondrial oxidative phosphorylation is a major source of intracellular reactive 

oxygen species (ROS) and mitochondrial proteins are main targets for oxidative 

modifications and consequent loss of function. Protein oxidation results from the reaction of 

reactive oxygen species (superoxide anion, hydrogen peroxide, and hydroxyl radical) and 

reactive nitrogen species (nitric oxide and peroxynitrite) with both amino acid side chains 

and peptidic backbone (38). Reversible modifications occur essentially in the sulfur-

containing amino acids, namely cysteine and methionine. The types of oxidation that occur 

can be divided into reversible modifications, which are likely to be involved in regulatory 

processes, and irreversible modifications that are unlikely to be directly involved in 

signaling. Protein carbonylation and nitration are considered major forms of protein 

oxidation. OXPHOS subunits of heart mitochondria are particularly susceptible to these 

oxidative modifications (39). 

The post-translational acetylation of proteins was reported on a wide array of proteins 

and occurs by the covalent addition of an acetyl group to a ε-lysine residue. The addition of 

an acetyl group to lysines neutralizes its positive charge impacting the electrostatic 
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properties of the protein (40). It was initially reported on histones, but since then several 

non-histone proteins have been identified to be acetylated (reviewed in 40). In an extensive 

proteomic survey of cellular proteins, 277 lysine acetylation sites were identified in 133 

proteins from two fractions of mouse liver mitochondria, one from fed mice and the other 

from fasted mice (41). Among the acetylated proteins, 62% were identified in both fractions, 

14% were specific to fed mice, and 24% were specific to fasted mice. Most lysine-acetylated 

proteins from mitochondrial fractions were metabolic enzymes (91 proteins). Interestingly, 

lysine acetylation was also identified in ATP synthase Fo subunit 8, a protein originated in 

mtDNA, suggesting that the acetylation reaction can occur in mitochondria (9).  

 

3.3.1. Characterization of Mitochondrial Acetylome by Proteomics 

Protein acetylation has recently emerged as an important post-translational modification 

that regulates mitochondrial proteins and overall organelle function. Despite its recognized 

importance, few studies have performed acetylome profiling of isolated mitochondria. In 

one of these studies, 133 mitochondrial proteins were found to be acetylated on lysine. From 

these, more than half are involved in some aspect of energy metabolism (41). Notably 44% 

of mitochondrial dehydrogenases (21 proteins complexes) were acetylated suggesting that 

lysine acetylation serves as a feedback mechanism for the regulation of these enzymes 

activities in response to cellular energy demands. Moreover, the identified acetyl-lysines in 

16 proteins were believed to influence longevity (41). 

Recent improvements in proteomic technologies have extended the identification and 

quantitative analysis of protein expression in different pathophysiological conditions to 

include the study of their PTMs. Figure 3 deciphers the general workflow of proteomic 

analysis, including mitochondrial isolation, purification, mass spectrometry (MS) 

identification and data analysis. 
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Figure 3. Proteomics workflow for lysine acetylated proteins analysis from mitochondria isolated 

from tissues. MS: Mass spectrometry. Figure was made based on Servier Medical Art.  

 

An essential first step of mitochondrial PTMs identification is the preparation of pure 

and functional viable mitochondria. Mitochondrial fractions might be prepared by the 

disruption of the cellular organization (tissue homogenization) and differential 

centrifugation of the homogenate (42-45) followed by purification using free-flow 

electrophoresis or density gradients (e.g. Ficoll, Percoll, or Nycodenz) (41, 46). After these 

purification steps, some methods are employed for the enrichment of modified 

proteins/peptides, reducing proteomic complexity of biological samples and increasing the 

number of identified proteins. The enrichment approaches for protein acetylation have been 

based on immunoaffinity selection or immunoprecipitation, peptide isoelectric focusing and 

microchip (47-50). For example, Verdin and coworkers (51) isolated liver mitochondria by 

differential centrifugation, purified the mitochondrial fraction by density gradient 

centrifugation, digested mitochondrial matrix lysates with trypsin, immunoprecipitated the 

acetylated peptides with an anti-acetyllysine antibody and analyzed the resultant peptides by 

mass spectrometry. This approach allowed the identification of more than 1000 acetylated 

peptides in liver mitochondria from SIRT3 knockout mice. Immunoprecipitation using a 

combination of two polyclonal anti-acetyllysine antibodies was used by another research 

group in order to increase the diversity and efficiency of acetylated lysines peptides detection 

(45). This experimental strategy allowed the identification of 2187 unique lysine acetylation 

sites across 483 proteins in the liver mitochondria. 
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In addition to the enrichment of modified proteins/peptides, further separation methods 

are usual employed to reduce sample complexity before MS analyses (46). These methods 

include gel-based approaches such as one dimensional SDS-PAGE (42), two dimensional 

PAGE (2-DE) (52) for proteins as well as gel free-based approaches such as liquid 

chromatography (53) using e.g. strong cation exchange (SCX) (44) for trypsin generated 

peptides. After a separation step, sample is subjected to MS analysis. In recent years, MS 

has evolved dramatically and is now considered a central technology for the identification 

and quantification of proteins and PTMs (48). The development of two soft ionization 

techniques capable of ionizing non-volatile and thermounstable biological compounds, 

namely electrospray ionization (ESI) and matrix-assisted laser desorption/ ionization 

(MALDI) has facilitated protein analysis by MS and have been extensively used to study 

mitochondrial protein PTMs (46, 48). For tandem MS (MS/MS) experiments, fragmentation 

methods used are collision-induced dissociation (CID), electron-capture dissociation (ECD), 

electron transfer dissociation (ETD) and high energy dissociation (HCD). CID is still the 

most common fragmentation method, while the use of ECD and EDT for the characterization 

of protein PTMs in biological samples is still rare (48). Among mass analyzers, three basic 

types are often used for PTMs studies: ion trap (IT), time-of-flight (TOF) and quadrupole 

(Q). Once high resolving power and accuracy are essential for PTMs analysis, the most 

common tandem mass analyzers used are quadrupole time-of-flight (QqTOF), time-of-

flight/time-of-flight (TOF/TOF) and ion trap/orbitrap (IT/orbitrap) mass spectrometers (48). 

Recently, the orbitrap has acquired a prominent role in the study of acetylated proteins. For 

example, the study of mitochondrial acetylome in wild-type or SIRT3 knockout mice 

submitted to caloric restriction was performed using nano reverse phase liquid 

chromatography coupled to an ESI-Orbitrap (44). In this study, mitochondria were isolated 

by differential centrifugation and digested with LysC followed by trypsin. Resulting peptides 

were labeled with tandem mass tag isobaric levels and fractionated by SCX. Acetylated 

peptides were enriched with pan-acetyllysine antibody-agarose conjugate. Acetyl enriched 

and protein fractions were analyzed by nano-reverse phase liquid chromatography coupled 

to an ESI-Orbitrap. Fragmentation method used is HCD (44). 

In parallel to protein identification, two main strategies have been applied to the 

quantitative analysis of mitochondrial protein PTMs: a differential labeling quantitative 

techniques and MS-based label free approach. Isotope-labeling experiments include isotope-
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coded affinity tag, isobaric tags for relative and absolute quantification (iTRAQ) or tandem 

mass tag (TMT), stable isotopic labeling by amino acid in cell culture (SILAC) and stable 

isotopic labeling in mammals (SILAM). Post metabolic labeling strategies, such as iTRAQ, 

might be impractical in some cases. For example, peptide centric workflows that target PTM-

containing peptides or immunoaffinity enrichment procedures are incompatible with the 

chemical tag (48, 54). However, iTRAQ and TMT were used for quantitative mitochondrial 

acetylome analysis of fasting and refeeding mice (55). Label-free quantitative methods are 

a suitable alternative for protein PTMs experiments. These quantification methods might be 

used for mitochondrial acetylome analysis. For example, label-free quantification was used 

to analyze changes in lysine acetylation from mouse liver mitochondria in the absence of 

SIRT3 (45). This method revealed that lysine acetylation at 283 sites present in 136 proteins 

was significantly increased in the absence of SIRT3.  

Finally, modified peptides are identified through databases by searching their tandem 

mass spectrum using pattern matching with a variety of different algorithms, such as Peptide 

Sequence Tags, Sequest, or Mascot (48). The integration of acquired data in biological and 

molecular processes allow disclosing the physiological impact of lysine acetylation in 

mitochondrial proteins. So, it is increasingly recognized the value of bioinformatic tools for 

this kind of data analysis. DAVID, PANTHER, and REACTOME are examples of tools that 

allows the integration of proteins datasets, based on Gene Ontology terms, in metabolic 

pathways (56), giving an integrated picture of the most probable processes modulated by 

this type of PTM.  

 

3.3.2. Regulation of Mitochondrial Acetylome by Sirtuins 

Reversible lysine acetylation is highly regulated by protein deacetylases (9) and 

acetyltransferases (57). The majority of mitochondrial acetylation studies have been focused 

on mitochondrial deacetylases. However, recently it was identified a mitochondrial 

acetyltransferase, the general control of amino acid synthesis 5-like 1 (GCN5L1) protein 

(57). This protein functions as an essential component of the mitochondrial lysine 

acetyltransferase machinery and modulates mitochondrial respiration via acetylation of ETC 

proteins. The GCN5L1 depletion diminishes mitochondrial protein acetylation and augments 

mitochondrial enrichment of autophagy mediators and consequently increase mitochondrial 
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turnover and reduced mitochondrial protein content and/or mass (58). Interesting, the 

GCN5L1 also counters the mitochondrial deacetylase function of SIRT3 (57), a member of 

a large family of NAD+-dependent protein deacetylases called sirtuins. Knockdown of 

SIRT3 increased mitochondrial protein acetylation which was significantly reversed by the 

knockdown of GCN5L1. As a result, the knockdown of SIRT3 diminished mitochondrial 

oxygen consumption and cellular ATP levels and the knockdown of GCN5L1 reversed these 

metabolic phenotypes (57). 

Sirtuins are known to deacetylate lysine residues on histones and non-histone proteins 

(40) and are NAD+-dependent enzymes. The deacetylation of target residues, coupled to the 

cleavage of NAD+, results in the generation of nicotinamide and metabolite O-acetyl-ADP-

ribose (OOADPr). Sirtuins in mammals are a family of seven protein deacetylases/ADP 

ribosyltransferases (SIRT1–SIRT7). These have distinct subcellular localizations, such as 

nucleus (SIRT1, -2, -3, -6 and -7), cytoplasm (SIRT1 and -2) and mitochondria (SIRT3, -4 

and -5) (59). The mitochondrial sirtuins are referred to as mitochondrial stress sensors that 

can modulate activity of several mitochondrial proteins involved in metabolism (60). 

The first report on the functional role of mitochondrial proteins acetylation described the 

activation of acetyl-CoA synthase (AceCS2), a mitochondrial matrix enzyme, by 

mitochondrial SIRT3-catalyzed deacetylation of a single lysine residue (LyS635) (61). 

AceCS2 is abundant in murine heart and skeletal muscle, being inactivated by acetylation of 

the conserved lysine residues and rapidly reactivated by SIRT-3 mediated deacetylation (62). 

This target of SIRT3 is activated under caloric-restriction and functions during ketogenic 

states (Figure 4). 
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Figure 4. Representation of mitochondrial SIRT3 role in mitochondrial pathways. Mitochondrial 

SIRT3 influences metabolism by affecting several aspects of mitochondrial physiology. Adapted 

from (63). Figure was made based on Servier Medical Art. 

 

Three additional mitochondrial matrix proteins have been identified as substrates of 

SIRT3 and in all, lysine deacetylation results in the increase of their activities. These proteins 

include glutamate dehydrogenase (GDH), which catalyzes the oxidative deamination of 

glutamate to α-ketoglutarate; the TCA enzyme isocitrate dehydrogenase 2 (IDH2), which 

promotes regeneration of antioxidants (64); and the urea cycle enzyme ornithine 

transcarbamoylase (65). GDH is also a target of SIRT4. But in contrast to SIRT3, SIRT4 

inhibits the activity of this enzyme via ADP-ribosylation preventing the usage of amino acids 

as an energy source under basal dietary conditions (Figure 5). On the other hand, SIRT4 

activity is suppressed during caloric restriction resulting in the activation of GDH, which 

fuels the TCA cycle and possibly also gluconeogenesis (66). Another mitochondrial matrix 

enzyme involved in the urea cycle and regulated by acetylation/ deacetylation is the enzyme 

carbamoyl phosphate synthetase 1 (CPS1) (67). This enzyme detoxifies and disposes 
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ammonia in the organism, and it is deacetylated and activated by SIRT5. Indeed, fasted 

SIRT5 knockout mice revealed elevated serum ammonia levels (Figure 5).  

 

Figure 5. Representation of SIRT4 and SIRT5 role in mitochondrial pathways. Mitochondrial SIRT4 

and -5 influence metabolism by affecting several aspects of mitochondrial physiology. Adapted from 

(63). Figure was made based on Servier Medical Art. 

 

Moreover, the mitochondrial sirtuins SIRT3 and SIRT4 have been suggested to modulate 

fatty acid oxidation in skeletal muscle. SIRT3 was shown to stimulate fatty acid 

deacetylation on one acetylation site of long‐chain acyl‐CoA dehydrogenase (LCAD) out of 

eight total acetylation sites, thereby activating the fatty acid oxidation pathway (Figure 4) 

(51). LCAD was found hyperacetylated at lysine 42 in the absence of SIRT3, and 

deacetylated by this sirtuin in wild-type mice under fasted conditions. Furthermore, fasted 

SIRT3-knockout mice exhibited hallmarks of fatty acid oxidation disorders including 

reduced ATP levels and cold intolerance (51).  

Another study showed that SIRT3 deacetylates and stimulates the catalytic activity of 3-

hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a mitochondrial enzyme that 

catalyzes the conversion of acetoacetyl-CoA in 3-hydroxy-3-methylglutaryl-CoA, the rate-
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limiting step in β-hydroxybutyrate production (Figure 4) (68). In fasted SIRT3 knockout 

mice HMGCS2 is hyperacetylated and its enzymatic activity is reduced, resulting in the 

decrease of β-hydroxybutyrate synthesis. The sites of acetylation in HMGCS2 were shown 

to be regulated by SIRT3. Of eleven acetylation sites identified only three are targets of 

SIRT3 (Lys310, Lys447 and Lys473). Acetylation of Lys310, Lys447 and Lys473 leads to 

substantial changes in conformation and dynamics of the enzyme, primarily in two regions 

close to the active site, leaving the remainder of the protein largely unchanged. Such as 

HMGCS2, the AceCS2 is deacetylated and activated by SIRT3 and involved in ketogenesis, 

suggesting that SIRT3 have an important role as regulator of ketone bodies (62, 68). 

Interestingly, SIRT3 also deacetylates and inactivates cyclophilin D, a mitochondrial 

matrix protein, diminishing its peptidyl-propyl cis-trans isomerase activity and inducing its 

dissociation from the ANT, which then promotes the detachment of hexokinase II (HKII) 

from mitochondria, stimulating oxidative phosphorylation (69) (Figure 4). Moreover, SIRT3 

can regulated MPTP through the deacetylation of cyclophilin D at lysine 166, suppressing 

age-related cardiac hypertrophy (70). Cardiac myocytes from SIRT3 knockout mice were 

reported to exhibit increased mitochondrial swelling due to increased MPTP opening and 

accelerated signs of aging in the heart including cardiac hypertrophy and fibrosis (70). These 

data show that a loss of SIRT3 activity leads to increased activation of MPTP, which, in turn 

promotes mitochondrial alterations resulting in enhanced ROS production and cell 

dysfunction. It is also evident that SIRT3 activity is necessary to prevent mitochondrial and 

cardiac hypertrophy during aging (70). SIRT3 also regulates the activity of superoxide 

dismutase 2 (SOD2). Overexpression of SIRT3 in wild type mouse was shown to reduce 

cellular ROS levels by 40%.This diminishing of cellular ROS by SIRT3 was blunted in 

SOD2 knockout mouse, indicating that SOD2 is the major downstream mediator of SIRT3 

in reducing cellular ROS. SIRT3 activates SOD2 via deacetylation of Lys53 and Lys89 that 

are highly conserved across species (Figure 4) (71). Sirtuins have also been shown to 

deacetylate and activate multiple protein subunits of OXPHOS. SIRT3 can physically 

interact with complex I NDUF9 subunit, succinate dehydrogenase flavoprotein (SdhA) 

subunit, core I of complex III and with the ATPase subunit α of complex V (42, 43, 72, 73). 

SIRT3 activates these complexes and so, the genetic depletion of SIRT3 commits OXPHOS 

activity, mitochondrial oxygen consumption, and ATP production (Figure 4) (42, 43, 72, 

73).  
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3.4. Aims 

Considering the role of protein acetylation on the regulation of metabolism and the effect 

of physical activity in heart metabolic remodeling, the aim of the present thesis was to 

evaluate the impact of moderate exercise training on heart mitochondrial acetylome. To 

achieve this goal, we characterized the heart mitochondrial proteome and acetylome of 

sedentary (control) and lifelong exercised animals using liquid chromatography coupled to 

tandem mass spectrometry – nanoLC-MS/MS and related with SIRT3 and ATP synthase 

expression and ATP synthase activity. 
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2.1. Chemicals and Reagents  

Chemicals reagents such sodium orthovanadate, Triton X-100, SDS, glycerol 99%, 

bromophenol blue, ethylenediaminetetraacetic acid disodium salt (EDTA), ethylene glycol-

bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), iodoacetamide (IAA), 

dithiothreitol (DTT), HEPES, ammonium molybdate, oligomycin, protease subtilopeptidase 

A, protease inhibitor cocktail (#P8340), phosphatase inhibitor cocktail 2 (#P5726), 

phosphatase inhibitor cocktail 3 (#P0044), and bovine serum albumin (BSA) fat free were 

purchased from Sigma (Karlsruhe, Germany). Sequencing grade modified trypsin (porcine) 

was from Promega (Madsion, U.S.). Rabbit monoclonal anti-Sirt3 antibody (#2627), rabbit 

acetylated-lysine antibody (#9441) and protein A magnetic beads (#8687) were purchased 

from Cell Signaling Technology (Massachusetts, USA). Rabbit IgG (sc-2027) was acquired 

from Santa Cruz Biotechnology. Mouse monoclonal anti-ATPB antibody (ab14730) was 

obtained from Abcam (Cambridge, U.K.). Secondary peroxidase-conjugated antibody (anti-

rabbit IgG) was obtained from GE Healthcare (Buckinghamshire, UK).  

 

2.2. Experimental design  

In order to understand the impact of lifelong exercise training on heart mitochondrial 

acetylome, the experimental protocol presented in the Figure 6 was followed. 
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Figure 6. Experimental design followed in the analysis of the effect of exercise training in the 

mitochondrial acetylome. Eight animals were used per group. Figure was made based on Servier Medical 

Art.  

 

2.3. Animals and Exercise Protocol 

Animal experiments were performed according to the Portuguese law on animal 

welfare and conform to the Guide for the Care and Use of Laboratory Animals published by 

the US National Institutes of Health (NIH Publication No. 85-23, Revised 1996). Female 

Sprague-Dawley rats (n= 20; with the age of 5 weeks and an average body weight of 132.46 

g at the beginning of the experiment; provided by Harlan Laboratories Models, Barcelona, 

Spain), were randomly separated into two groups: i) trained (Ex group; n=10; submitted to 

treadmill exercise training) and ii) sedentary (Cont group; n=10; with movement confined 

to the cage). Animals were maintained on a 12:12-h light-dark cycle and received food at ad 

libitum. Two animals from each group died during the time-course of the experimental 

protocol. At the end, 8 animals per group were considered for the study. 

Animals from the Ex group were adapted to treadmill exercise for two consecutive 

weeks, involving a gradual increase in the running time till 60 min/day at 20 m/min, 0% 

grade, 5 days/week. This exercise program remained constant during 54 weeks.  
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Twenty-four hours after the end of the last exercise training for Ex group rats were 

anaesthetized by inhalation with a mixture of 4% sevoflurane with oxygen, intubated for 

mechanical ventilation (respiratory frequency 100 min-1 and weight adjusted tidal volume; 

Harvad Small Animal Ventilator-Model 683) and placed over a heating pad (37ºC) for 

hemodynamic evaluation. Once completed this analysis, the heart was excised for 

mitochondria isolation. 

 

2.4. Mitochondria Isolation 

Mitochondria isolation was performed as previously described (74). All procedures 

were performed at 4 ºC. Briefly, after excised the hearts were immediately washed with 0.5 

mM EGTA, 10 mM HEPES-KOH (pH 7.4) and minced in an ice-cold isolation medium 

containing 250 mM sucrose, 0.5mM EGTA, 10 mM HEPES-KOH (pH 7.4) and 0.1% 

defatted BSA. The minced blood-free tissue was resuspended in isolation medium 

containing protease subtilopeptidase A type VIII (1 mg/g tissue) and homogenized with 

tightly fitted Potter-Elvehjen homogenizer and Teflon pestle. The suspension was incubated 

for 1 min (4ºC) and re-homogenized. Homogenate was centrifuged at 14500 g during 10 

min. the supernatant fluid was decanted, and the pellet, essentially devoid of protease, was 

gently resuspended in solution medium. The suspension was centrifuged (750 g, 10 min) and 

resulting supernatant was centrifuged again (12000 g, 10 min). The pellet containing the 

mitochondrial fraction, was gently resuspended in a washing medium containing 250 mM 

sucrose and 10 mM HEPES-KOH (pH 7.4). Phosphatase and protease inhibitors were added 

and all the procedures were performed at 4 ºC. 

Mitochondrial protein concentration was estimated with a colorimetric method (RC 

DC protein assay, Bio-Rad) using BSA as standard. This assay is based on a modification of 

the Lowry et al.(75) protocol, allowing the quantification of the protein in the presence of 

reducing agents and detergents.  

 

2.5. Determination of ATP synthase activity  

For spectrophotometric determination of respiratory chain complex V activity, 

mitochondrial fractions were disrupted by a combination of freeze–thawing cycles in 
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hypotonic media (25 mM potassium phosphate, pH 7.2) and the activity was measured as 

previously described. The phosphate produced by hydrolysis of ATP reacts with ammonium 

molybdate in the presence of reducing agents to form a blue-color complex, the intensity of 

which is proportional to the concentration of phosphate in solution. Oligomycin was used as 

an inhibitor of mitochondrial ATPase activity. Each sample was analyzed in duplicate. 

 

2.6. Immunoprecipitation 

For immunoprecipitation, mitochondrial fractions (with 500 µg of protein) were 

incubated with the antibodies anti-SIRT3 or anti-acetyl lysine. The antibody was added to 

the sample (at dilution recommended by the supplier) and the mixture was incubated 

overnight with rotation at 4ºC. Next, immunocomplexes were captured with protein A 

magnetic beads: 15 µL Protein A magnetic beads was added to the sample. After a 30 min 

incubation with rotation at 4ºC, the supernatant was discharged. The beads were washed five 

times with 500 µL of cell lysis buffer (20 mM Tris.HCl (pH 7.5), 150 mM NaCl, 1 mM 

Na2EDTA, 1 mM EGTA, 2.5 mM Na2HPO4, 1 mM Na3VO4, 1 µg/mL leupeptin, 1% Triton 

X-100 and 1 mM PMSF). Between washes, the sample was kept on ice. Then, captured 

proteins were eluted from the beads. To elute the bound proteins for western blot analysis, 

the beads were resuspended with 20 µL of SDS sample buffer (187.5 mM Tris.HCl (pH 6.8), 

6% (w/v) SDS, 30% glycerol and 0.03% (w/v) bromophenol blue) with 1/10 volume of 1.25 

M DTT. Then, samples were centrifuged for 30 sec at 14000 g, boiled at 100ºC for 5 min 

and centrifuged at 14000 g for 1 min.  For negative control of immunoprecipitation 

experiments was used normal rabbit IgG (sc-2027).  

 

2.7. Western blotting 

Fifteen µL of sample were electrophoresed on a 12.5 % SDS-PAGE, as described by 

Laemmli (76), and then transferred to a nitrocellulose membrane (Whatman®, Proton) in 

transfer buffer during 2 hours (200 mA). Then, nonspecific binding was blocked with 5% 

(w/v) dry nonfat milk in Tris buffered saline with Tween-20 (TBS-T (20 mM Tris-HCl pH 

8, 150 mM NaCl and 0.05% Tween-20) and the membrane was incubated with primary 

antibody (anti-SIRT3 or anti-ATP synthase subunit β, 1:1000 in blocking solution) for 2 
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hours at 4ºC, washed and incubated with secondary horseradish peroxidase-conjugated anti-

rabbit (GE Healthcare) for 2 hours. Immunoreactive bands were detected by enhanced 

chemiluminescence ECL (GE Healthcare) according to the manufacturer’s procedure and 

images were recorded using X-ray film (Kodak Biomax Light Film, Sigma). Films were 

scanned in Molecular Images Gel Doc XR+ System (Bio-Rad) and analyzed with Quantity 

One Software (v 4.6.3 Bio-Rad).  

  

2.8. In-solution digestion 

Mitochondrial protein extracts were reduced with dithiothreitol, alkylated with 

iodoacetamide and digested with trypsin using filter-aided sample preparation (FASP) 

procedure (77). Briefly, 100 µg of each sample was solubilized in 4 % SDS. Protein were 

reduced with 0.1 M of DTT and 0.1M HEPES, and incubated for 30 min at 60ºC. After 

reduction with DTT, samples were mixed with 0.2 mL of a solution of 8 M Urea, 0.1 M 

HEPES, pH 8.5 (UH solution), loaded into filtration devices (3K Micron, Milipore) 

centrifuged at 14000 g for 20 min, and washed twice with UH solution. Then, the 

concentrates were alkylated with 50 mM iodoacetamide (IAA) in UH solution during 20 min 

at 25ºC in dark, and washed twice with UH solution. The concentrate was diluted with 0.1 

mL of 50 mM ammonium bicarbonate (ABC) and digested 18 h at 37ºC with 2 µg of trypsin 

diluted in 30 µL of 50 mM ABC. Finally, eluted peptides were acidified with 10 µL of formic 

acid and cleaned up on a homemade column filled with C18 disk (3M, Empore, USA) for 

subsequent analysis by LC-MS/MS.  

 

2.9. Peptide separation by nano-HPLC 

The peptides were analyzed by nanoflow liquid chromatography tandem mass 

spectrometry (nanoLC-MS/MS) on an EAY-nLC system (Proxeon Biosystems, Odense, 

Denmark) connected to the LTQ Orbitrap Velos instrument (Thermo Fisher Scientific, 

Bremen, Germany) through a nanoelectrospray ion source, as previously described (78). 

Briefly, one microgram of the peptide mixture for each sample was autosampled directly 

onto the analytical HPLC column (120 mm Х75 µm i.d., 3 µm particle size (Nikkyo Technos 

Co., Ltd.). Chromatographic gradients started at 97% buffer A (0.1% formic acid in water) 
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and 3% buffer B (0.1% formic acid in acetonitrile) with a flow rate of 300 nL/min, and 

gradually increased to 93% buffer A and 7% buffer B in 1 min, and to 65% buffer A/35% 

buffer B in 120 min. After each analysis, the column was washed for 10 min with 10% buffer 

A/90% buffer B. The effluent obtained from the HPLC column was directly electrosprayed 

into the mass spectrometer. The mass spectrometer was operated in positive ionization mode 

with nanospray voltage set at 2.2 kV and source temperature at 325 °C. Ultramark 1621 for 

the FT mass analyzer was used for external calibration prior the analyses. Moreover, an 

internal calibration was also performed using the background polysiloxane ion signal at m/z 

445.1200. The instrument was operated in DDA mode and full MS scans with 1 microscans 

at resolution of 60,000 were used over a mass range of m/z 250-2000 with detection in the 

Orbitrap. Auto gain control (AGC) was set to 1E6, dynamic exclusion (60 seconds) and 

charge state filtering disqualifying singly charged peptides was activated. In each cycle of 

DDA analysis, following each survey scan the top ten most intense ions with multiple 

charged ions above a threshold ion count of 5,000 were selected for fragmentation at 

normalized collision energy of 35%. Fragment ion spectra produced via collision-induced 

dissociation (CID) were acquired in the Ion Trap, AGC was set to 5e4, isolation window of 

2.0 m/z, activation time of 0.1ms and maximum injection time of 100 ms was used. All data 

were acquired with Xcalibur software v2.2.  

 

2.10.  Protein identification and annotation 

Raw files were processed using Proteome Discoverer version 1.3 (Thermo Fisher 

Scientific, Bremen). Peak lists were searched using Mascot software version 2.3 (Matrix 

Science, UK) against a SwissProt database containing entries corresponding to Rattus 

norvegicus (version of July 2012) containing 7,755 protein entries, a list of 598 common 

contaminants, and all the corresponding decoy entries. Trypsin was chosen as enzyme and a 

maximum of three miscleavages were allowed. Carbamidomethylation (C) was set as a fixed 

modification, whereas oxidation (M), acetylation (N-terminal) and phosphorylation (STY) 

were used as variable modifications. Searches were performed using a peptide tolerance of 

7 ppm, a product ion tolerance of 0.5 Da. Resulting data files were filtered for Mascot 

IonScore > 20 for the acetylated dataset. 
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2.11. Label-free quantitation of acetylated peptides 

For each identified acetylated protein, the peak area was extracted using the 

'Precursor Ions Area Detector' module of Proteome Discoverer (v1.4) with a mass tolerance 

of 2 ppm. Areas were normalized to ensure that the medians of all peptide areas were the 

same in all samples: (log(area)normalized =log(area)raw - (median(log(area))sample – 

median(log(area))dataset)). Protein abundance was estimated using the median of the three 

most intense peptides per protein. Observed changes in the abundance of acetylated peptides 

were corrected with observed protein fold-change: acetylated peptide_logFC 

=|log(acetylated peptideFC)raw - log(proteinFC)|. 

 

2.12. Statistical Analysis  

Regarding western blotting data, the optical densities of each protein band were 

exported, after normalization, from QuantityOne® imaging software (V4.6.3, BioRad) to 

GraphPad Prism5 and the unpaired Student’s t-test was used at 95% confidence degree, in 

order to evaluate differences of protein expression between the two groups (Control and 

Exercised group). Unpaired Student t-test was also applied to ATP synthase activity data.



 

 

 

 

 

 

 

 

III. Results 
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3.1. Characterization of animal’s response to exercise training  

In order to evaluate the effect of lifelong exercise training on cardiac function it was 

performed hemodynamic analysis, which confirmed that 54 week-treadmill running 

improves cardiac function. Indeed, the exercised animals exhibited a significant increase in 

peak systolic pressure (Pmax), and a decrease in end-diastolic pressure (EDP) and time 

constant of ventricular pressure decay (Tau) (data not shown). Moreover, to analyze the 

oxidative activity in heart, the ATP synthase subunit β expression and ATP synthase activity 

was evaluated in mitochondria isolated from heart of rats from both groups. There was a 

significant increase of complex V activity in exercised animals (Figure 7), suggesting that 

exercised animals exhibited better ability to produce ATP. 

 

 

Figure 7. Evaluation of ATP synthase activity (A) and of ATP synthase subunit β expression 

evaluated by western blotting (B). A representative immunoblot is presented above the graph. Values 

are expressed as mean ± standard deviation (**p<0.01 vs. Cont). 

 

To understand the effect of physical training on the regulation of mitochondria 

proteome, nanoLC-MS/MS analysis of mitochondria isolated from heart of exercised 

animals and sedentary ones was performed. This analysis resulted in the identification of 

638 proteins, most of which with catalytic activity, binding, structural molecule activity and 

transporter activity (Figure 8, A). The most representative biological process clusters were 

localization, metabolic process and cellular metabolic process (Figure 8, B). From the 

identified proteins, 287 were common to all animals analyzed, 32 were only identified in the 
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control group and 34 were exclusively observed in exercised animals. The majority of these 

unique proteins were involved in metabolism. 

 

 

Figure 8. Categorical analysis of identified proteins based on molecular function (A) and biological 

process (B) assigned by PANTHER.  

 

3.2. Impact of exercise in the regulation of mitochondrial acetylome 

In order to evaluate the effect of exercise in the regulation of mitochondrial 

acetylome, nanoLC-MS/MS analysis of isolated mitochondria was performed targeting 

acetylated proteins. This approach resulted in the identification of 9 lysine acetylated 

peptides from 9 proteins (Supplemental Table A- 1). The two most significantly molecular 
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function clusters to which these proteins belong were binding and catalytic activity (Figure 

9, A). Similarly, the most representative biological process was metabolism (Figure 9, B). 

 

 

Figure 9. Categorical analysis of lysine acetylated proteins based on molecular function (A) and 

biological process (B) assigned by PANTHER.  

 

From the identified proteins, 5 were common to all animals analyzed, 3 were 

exclusively identified in exercised animals and 1 was only observed in sedentary rats (Table 

1). Interestingly, serine/threonine-protein kinase 10, inositol 1,4,5-trisphosphate receptor 

type 2 and protein phosphatase 1 regulatory subunit 14B were only found acetylated in 

exercised animals. These proteins are not traditionally located in mitochondria but they seem 

to interact with this organelle in the heart of exercised animals. Indeed, it is nowadays 

recognized that a significant portion of the identified proteins has more than one subcellular 

location, which biological significance remains to be disclosed. Multi-residential proteins 

seem to support mitochondrial protein trafficking and communication with other organelles 
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(78). Additional analysis of protein domains using Pfam database (http://pfam.sanger.ac.uk) 

revealed that some of identified acetylation sites are located in known protein domains such 

as polo kinase kinase domain identified on serine/threonine-protein kinase 10 and PKC-

activated protein phosphatase-1 inhibitor domain identified on protein phosphatase 1 

regulatory subunit 14B. This domain family of polo kinase kinase is essential during mitosis 

for the activation of Cdc25C, for spindle assembly, and for cyclin B degradation.  

 

Table 1. List of identified acetylated proteins unique in control (Cont) and unique in exercised group 

(Ex), including acetylated lysine site, Domain Pfam and functional role. 

 

In order to evaluate the involvement of SIRT3, the most well characterized 

mitochondrial deacetylase, in the regulation of these identified acetylated proteins, a protein-

protein interaction analysis was performed with STRING 9.1 (http://string-db.org/) 

Accession 

number 

Protein name Acetylated 

lysine 

Domain 

(Pfam) 

Functional Role Express 

in Ex/ 

Cont 

E9PTG8 Serine/threonine-

protein kinase 10 

K703; 

K710 

Polo 

Kinase 

Kinase 

Polo-like kinase 1 (Plx1) is 

essential during mitosis for the 

activation of Cdc25C, for spindle 

assembly, and for cyclin B 

degradation. This family is Polo 

kinase kinase (PKK) which 

phosphorylates Polo kinase and 

Polo-like kinase to activate them.  

Ex 

P29995 Inositol 1,4,5-

trisphosphate 

receptor type 2 

K1113 - - Ex 

Q8K3F3 Protein 

phosphatase 1 

regulatory 

subunit 14B 

K140 PKC-

activated 

protein 

phosphat

ase-1 

inhibitor 

Signaling pathways activate 

kinases such as PKC or Rho-

dependent kinases that 

phosphorylate the myosin 

phosphatase inhibitor protein 

called CPI-17. Phosphorylation of 

CPI-17 at Thr-38 enhances its 

inhibitory potency 1000-fold, 

creating a molecular switch for 

regulating contraction 

Ex 

Q4FZU3 Nuclear speckle 

splicing 

regulatory 

protein 1 

K123;K124 DUF204

0 

The proteins do contain a coiled-

coil domain, but the function is 

unknown. 

Cont 

http://pfam.sanger.ac.uk/
http://string-db.org/
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bioinformatic tool (Figure 10). Curiously, according to this analysis none of the identified 

acetylated proteins interact with SIRT3. 

 

 

Figure 10. Protein-protein interaction of identified acetylated proteins with SIRT3 (String 9.1). 

Deacetylase SIRT3 and the identified acetylated proteins are shown with black and red circles, 

respectively.  

 

Moreover, label-free quantitative analysis evidenced differences among groups for 

common peptides (Table A- 2). Acetylated peptides distribution among groups was depicted 

in a radar-plot based on label-free levels (Figure 11). The acetylated peptides 

DLHHTLILVNNK (N-terminal) from decorin, LLQLGHKac from PH domain leucine-rich 

repeated protein phosphatase 1, QMKacIIHKacNGYSK from guanine nucleotide-binding 

protein G(t) subunit alpha-3 and VKLLTGKac from dynamic-like 120 kDa protein were 

found to have an increase in magnitude change of 0.03, 0.004, 0.004 and 0.0015, 

respectively, being more abundant in mitochondria of exercised rats. In mitochondria of 
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sedentary animals, the acetylated peptides LTLASKLKacR from NEDD8-conjugating 

enzyme UBE2F and SSGALLPKPQMR (N-terminal) from cytochrome c oxidase subunit 

6C-2 were found in higher amounts (0.002 and 0.002 magnitude change). According to 

ClueGo + CluePedia comparative analysis, the most representative biological processes on 

exercise animals are G-protein signaling, coupled to cyclic nucleotide second messenger and 

embryonic heart tube formation. In sedentary rats the most representative biological process 

is transition between slow and fast fibers (Figure 12). 
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Figure 11. Radar plot of frequency analysis of acetylated peptides modulated by exercise training. Red nodes refer to exercised group whereas green 

nodes refer to control group. 
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Figure 12. Comparative ClueGo + CluePedia analysis of increased acetylated proteins in each group according biological processes. Red nodes refer to 

exercised group whereas green nodes refer to control group.  
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Using an experimental approach for the enrichment of acetylated proteins based on 

acetyl-lysine immunoprecipitation followed by LC-MS/MS analysis with label-free 

quantification it was possible to identify 111 proteins, from which 4 N-terminal acetylated 

and 7 lysine acetylated proteins were considered for comparative analysis between groups 

once the acetylated peptides were detected (Supplemental Table A- 3). The most significant 

molecular function cluster to which these proteins belong was catalytic activity (Figure 13, 

A). Similarly, the most representative biological process was metabolism (Figure 13, B). 

 

Figure 13. Categorical analysis of enriched lysine acetylated proteins based on molecular function 

(A) and biological process (B) assigned by PANTHER. 

 

From these, 5 acetylated peptides from 5 proteins were found lysine acetylated in 

heart mitochondria from exercised rats (Supplemental Table A- 3). The two most significant 

molecular function clusters to which these proteins belong were catalytic activity and 

binding (Figure 14, A). The majority of these acetylated proteins are involved in metabolism 

(Figure 14, B). Indeed, the largest changes in lysine acetylation were observed in key 

metabolic pathways including ketogenesis (hydroxymethylglutaryl-CoA lyase (HMGCL)), 

in tricarboxylic acid cycle (TCA) (citrate synthase (CS)), and fatty acid oxidation (enoyl-

CoA isomerase 1 (ECI1) and short-chain specific acyl-CoA dehydrogenase) (Supplemental 
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Table A- 3). The acetylation of K48 residue of HMGCL, K327 of citrate synthase and K410 

of dihydrolipoyl dehydrogenase was previously reported (45); however, its effect on activity 

is not known. 

 

 

Figure 14. Categorical analysis of lysine acetylated proteins of exercised animals based on 

molecular function (A) and biological process (B) assigned by PANTHER. 

 

Additional protein domain analysis performed with Pfam database 

(http://pfam.sanger.ac.uk) revealed that some of the identified acetylation sites are located 

in known protein domains such as acyl-CoA dehydrogenase, c-terminal domain identified 

on short-chain specific acyl-CoA dehydrogenase (Supplemental Table A- 3). Moreover, 

protein-protein interaction network analysis performed with String (9.1) showed complex 

interaction among acetylated proteins. However, according to this analysis none of the 

identified acetylated proteins interact with SIRT3 (Figure 15). 

http://pfam.sanger.ac.uk/
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Figure 15. Protein-protein interaction of lysine acetylated proteins with SIRT3 (String 9.1). 

Deacetylase SIRT3 and identified acetylated proteins using enrichment with an anti-acetyllysine 

antibody followed by LC-MS/MS are shown with black and red circles, respectively.   

 

Considering the role of SIRT3 on the regulation of mitochondrial acetylome, the 

expression of this mitochondrial deacetylase was evaluated in mitochondria isolated from 

heart of rats from both groups. Data showed that 54 weeks of treadmill exercise promoted a 

significant increase of mitochondrial SIRT3 in the heart (Figure 16).  
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Figure 16. Western blotting analysis of SIRT3 expression in mitochondria isolated from heart. A 

representative immunoblot is presented above the graph. Values are expressed as mean ± standard 

deviation (***p<0,001 vs. Cont). 

 

To better explore the role of SIRT3 in the regulation of cardiac mitochondrial 

acetylome, immunoprecipitation was performed followed by LC-MS/MS; however, no 

positive identifications were obtained, possibly justified by the low amount of protein 

obtained. Future work should focus on the optimization of immunoprecipitation’s 

conditions. 

 

  



 

 

 

 

 

 

 

 

IV. Discussion 
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Exercise has been considered one of the most effective strategies to promote health 

(78). Indeed, lifelong exercise improves cardiac function and, consequently, promotes 

health, quality and extension of the life span (78). Increasing evidences suggest that the 

beneficial effects of increased physical activity occur in mitochondria (7), namely through a 

significant remodeling of the mitochondrial cardiac proteome towards carbohydrate 

metabolism, protein translation, redox protection and apoptotic resistance (78-80). Several 

studies show that endurance training results in a reduction of mitochondrial oxidant capacity 

(24, 81) and enhanced mitochondrial antioxidant activity. Eight weeks of endurance training 

was reported to increase the levels of glutathione peroxidase 1 suggesting that heart tissue 

has a strong enzymatic antioxidant defense against exercise-induced oxidative stress (82). 

Since energy metabolism is at the heart of mitochondria, the link between cardioprotection 

and mitochondria is likely. Indeed, the shifting of mitochondrial oxidation preference from 

fatty acids to glucose results in a relatively greater production of ATP per unit of oxygen 

consumed and has been related to improve cardiac function and clinical outcomes of 

ischemic heart disease (83). During endurance training heart energy turnover increases 

several fold when compared with resting conditions, with a consequent rise in mitochondrial 

ATP production. The increased activity of ATP synthase (Figure 7) in heart mitochondria of 

lifelong exercised rats supports the increased mitochondrial ability to produce ATP 

promoted by exercise (25). 

Mitochondria are highly dynamic organelles that continuously adjust ATP generation 

to match changing bioenergetics demands of cells. So, the regulation of proteins involved in 

energy production may help to satisfy the increased energy demands promoted by exercise 

and maintain and/or enhance cardiac function in resting conditions (79). Among the benefits 

in cardiac function, the deacetylation of OXPHOS complexes was reported with the 

consequent enhance of its oxidative phosphorylative state. In heart mitochondria, the major 

regulator of ATP synthesis is mitochondrial deacetylase SIRT3 (42). SIRT3 can physically 

interact with complex I NDUF9 subunit, SdhA subunit, core I of complex III and with the 

ATPase subunit α of complex V, activating them (42, 43, 72, 73). In the present study, 54 

week of treadmill exercise increased the levels of SIRT3 (Figure 16), which might explain, 

at least in part, the increase of ATP synthase activity and levels observed in the heart of 

exercised animals (Figure 7). Previous studies have also reported increased activity of the 

respiratory chain complex in the heart of mice subjected to swimming (84) and endurance 
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treadmill exercise (85). In heart, SIRT3 also protects against oxidative stress in a Foxo3a –

dependent manner, and has also been shown to regulate opening of the MPTP via 

deacetylation of cyclophilin D (70, 86). So, it is evident that exercise induces a cardiac 

mitochondrial phenotype that resists to apoptotic stimuli (87). The mechanism underlying 

the increased expression of SIRT3 is not completely understood; however, sirtuin enzymatic 

activity requires NAD+ as a cofactor which levels increase during exercise (60).  

Despite increased levels of the deacetylase SIRT3, more mitochondrial proteins were 

found acetylated in the heart of exercised rats, either using or not enrichment strategies. 

Though allowing the identification of more post-translational modified proteins, 

stoichiometry is loss with enrichment strategies, as the one used in the present study, which 

makes difficult to understand its biological meaning (88). Knowledge of acetylation 

stoichiometry is often needed to understand the mechanism and impact of this modification 

in the control of protein functions, such as enzymatic activity (45, 89). However, proteomic 

experiments carried out without enrichment resulted in the identification of very few 

acetylation sites, consistent with low to moderate levels of lysine acetylation (45). More 

recently, Nakayasu et al. (89) described a sophisticated method using a mass spectrometry 

method with a combination of isotope labeling and detection of a diagnostic fragment ion to 

determine the stoichiometry of acetylated lysine residues. Indeed, in our study, more proteins 

were identifies using immunoprecipitation with an anti-acetyl lysine antibody, most of which 

are involved in metabolic pathways. However, exercise training only impacted 8 proteins, 3 

of which involved in fatty acid oxidation, short-chain specific acyl-CoA dehydrogenase, 

enoyl-CoA delta isomerase 1 and carnitine/acylcarnitine carrier protein (Supplemental 

Table A- 3). The acetylation of these enzymes, and eventually the inhibition of their activity, 

might support an exercise-induced metabolic adaptation towards carbohydrate oxidation 

(78). The acetylation of dynamic-like 120 kDa protein (OPA1) at K931 was reported to be a 

target of SIRT3 (90). Higher levels of acetylated OPA1 were observed in exercised heart 

(Supplemental Table A- 2). In mammals, this protein is responsible for mitochondrial inner 

membrane fusion and is also involved in the maintenance of cristae structure and protection 

of cells from death stimuli. In heart under stress conditions, this protein was found 

hyperacetylated, reducing its GTPase activity (90). OPA1 appeared to be necessary for the 

adaptive response to exercise and mitochondrial biogenesis (91). Moreover, it can be 

speculated whether increased SIRT3 activity during exercise enhanced energy metabolism 
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is related to organelle fission. Indeed, in the context of mitochondrial dynamics, exercise 

promotes dynamin related protein 1 (DRP1) phosphorylation at serine 637 by protein kinase 

A (PKA), a process thought to inhibit DRP1-induced mitochondrial fission and apoptotic 

cell death (92). Taken together, the acetylation of proteins involved in metabolism and 

mitochondrial biogenesis seems to underlie heart adaptive remodeling in response to lifelong 

exercise training.  

 



 

 

 

 

  

 

 

 

V. Conclusion 

 



 

 

 

In order to evaluate the effects of exercise training in heart mitochondrial acetylome 

an animal model was used and involved a training program of 54 weeks of moderate 

treadmill exercise. Data obtained allowed to conclude that exercise improves cardiac 

function through adaptation of mitochondrial proteome that resulted in an increased ability 

to produce ATP. This cardiac adaptive remodeling involved the regulation of mitochondrial 

proteome acetylome in a process that seems to involve SIRT3 deacetylase. Data didn’t 

allowed to clearly infer on the protein substrates of this deacetylase. Among the main targets 

of protein acetylation modulated by lifelong physical activity are metabolic proteins, as for 

example enzymes from in fatty acid oxidation.  

Future work will be necessary to clearly identify the mitochondrial proteins regulated 

by acetylation in exercised heart and the enzymes involved in such regulation, envisioning 

a better molecular comprehension of the cardiac adaptive remodeling promoted by exercise 

training. 
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Table A- 1. List of identified acetylated proteins including acetylated lysine sites, Domain Pfam and functional role.  

Acession 

number 

Protein Name Peptide  Acetylated 

lysine 

Domain (Pfam) Functional Role Express in 

Ex/ Cont 

E9PTG8 Serine/threonine-protein 

kinase 10 

QKaEDLELAMKK  K703; K711 PKK (Polo 

Kinase Kinase)  

Polo-like kinase 1 (Plx1) is essential during 

mitosis for the activation of Cdc25C, for spindle 

assembly, and for cyclin B degradation. This 

family is Polo kinase kinase (PKK) which 

phosphorylates Polo kinase and Polo-like kinase 

to activate them. PKK is a serine/threonine 

kinase. 

Ex 

P29995 Inositol 1,4,5-

trisphosphate receptor type 

2 

QIKADLDQLR  K1113 - - Ex 

Q8K3F3 Protein phosphatase 1 

regulatory subunit 14B 

IRGMQK  K140 PP1 inhibitor 

(PKC-activated 

protein 

phosphatase-1 

inhibitor) 

Contractility of vascular smooth muscle depends 

on phosphorylation of myosin light chains, and is 

modulated by hormonal control of myosin 

phosphatase activity. Signaling pathways activate 

kinases such as PKC or Rho-dependent kinases 

that phosphorylate the myosin phosphatase 

inhibitor protein called CPI-17. Phosphorylation 

of CPI-17 at Thr-38 enhances its inhibitory 

potency 1000-fold, creating a molecular switch 

for regulating contraction 

Ex 

Q4FZU3 Nuclear speckle splicing 

regulatory protein 1 

MEKKIQR  K123 ;K124 DUF2040 The proteins do contain a coiled-coil domain, but 

the function is unknown. 

Cont 

P05426 60S ribosomal protein L7 KVAAALGTLK  K19 - - Ex and Cont 

P19511 ATP synthase F(0) 

complex subunit B1, 

mitochondrial 

EKAQQALVQK  K154 Mt_ATP-

synt_B 

The Fo sector of the ATP synthase is a membrane 

bound complex which mediates proton transport. 

It is composed of nine different polypeptide 

subunits (a, b, c, d, e, f, g F6, A6L) 

Ex and Cont 
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P63036 DnaJ homolog subfamily 

A member 1 

KAYRKLALK  K24;K28;K32 DnaJ DnaJ domains (J-domains) are associated with 

hsp70 heat-shock system and it is thought that this 

domain mediates the interaction. DnaJ-domain is 

therefore part of a chaperone (protein folding) 

system.  

Ex and Cont 

Q02769 Squalene synthase GVVKIRK  K318 SQS_PSY - Ex and Cont 

Q9EQH5 C-terminal-binding protein 

2 

MALVDKHK  K6 - - Ex and Cont 

 

 

Table A- 2. Label-free quantitative analysis of common acetylated proteins. 

Acession 

number 

Protein name Effect 

exercise 

Peptide Lysine 

acetylation 

Domain (Pfam) Functional Role 

Q01129 Decorin -0,03 DLHTLILVNNK    

Q9WTR8 PH domain leucine-rich repeat 

protein phosphatase 1 

-0,005 LLQLGHK K214 - - 

P04897 

P63095 

P29348 

Guanine nucleotide-binding protein 

G(i) subunit alpha-2; 

Guanine nucleotide-binding protein 

G(s) subunit alpha isoforms short; 

Guanine nucleotide-binding protein 

G(t) subunit alpha-3 

-0,004 QMKIIHKNGYSK K54;k58 G-protein alpha 

subunit 

G proteins couple receptors of extracellular 

signals to intracellular signaling pathways. 

The G protein alpha subunit binds guanyl 

nucleotide and is a weak GTPase.  

Q05962 ADP/ATP translocase 1 -0,003 GDQALSFLK - - - 

Q641W3 Nuclear fragile X mental 

retardation-interacting protein 1 

-0,003 ITLKQK k428 - - 

Q765A7 GPI inositol-deacylase -0,003 ALLTLK - - - 

Q08290 Calponin-1 -0,002 NKLAQK K21 - - 
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B2GV24 E3 UFM1-protein ligase 1 -0,002 KKILSK K608;609 - - 

P97832 Heart- and neural crest derivatives-

expressed protein 1 

-0,002 KGSGPKK K96 Helix-loop-helix 

DNA-binding 

domain  

The helix-loop-helix (HLH) DNA-binding 

domain consists of a closed bundle of four 

helices in a left-handed twist with two 

crossover connections. The HLH domain 

directs dimerisation, and is juxtaposed to 

basic regions to create a DNA interaction 

interface surface that recognises specific 

DNA sequences. Basic region/HLH (bHLH) 

proteins regulate diverse biological 

pathways  

Q3MID3 ADP-ribosylation factor GTPase-

activating protein 2 

-0,002 KGLGAQK K228 - - 

Q9WUJ3 Myomegalin -0,001 ELRQLR  - - 

Q2TA68 Dynamin-like 120 kDa protein, 

mitochondrial 

-0,002 VKLLTGK K931 - - 

Q66HC3 Protein C9orf72 homolog -0,001 ALTLIK  - - 

Q5U203 NEDD8-conjugating enzyme 

UBE2F 

0,002 LTLASKLKR K9 - - 

Q5U2Y1 General transcription factor II-I 0,001 ITDLRK K715 GTF2I This region of sequence similarity is found 

up to six times in a variety of proteins 

including GTF2I. It has been suggested that 

this may be a DNA binding domain  

Q63489 general transcription factor IIF 

subunit 2 

0,0004 LKEILK K218 TFIIF_beta Accurate transcription in vivo requires at 

least six general transcription initiation 

factors, in addition to RNA polymerase II. 

Transcription initiation factor IIF (TFIIF) is 

a tetramer of two beta subunits associate 

with two alpha subunits which interacts 

directly with RNA polymerase II. The beta 

subunit of TFIIF is required for recruitment 

of RNA polymerase II onto the promoter. 
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Table A- 3. List of identified acetylated proteins using acetyl-lysine immunoprecipitation  

Acession 

number 

Name Post-

Translational 

Modifications 

Domain (Pfam) Functional Role Effect 

Exercise 

P18163 Long-chain-fatty-acid--CoA ligase 

1 

N-Term(Ac) - - ↔ 

P56574 Isocitrate dehydrogenase [NADP] K282 (Ac) Iso_dh Isocitrate dehydrogenase (IDH), is an important enzyme 

of carbohydrate metabolism which catalyses the 

oxidative decarboxylation of isocitrate into alpha-

ketoglutarate. 

↓ 

P04636 Malate dehydrogenase N-Term(Ac) - - ↑ 

P15651 Short-chain specific acyl-CoA 

dehydrogenase 

K262 (Ac) Acyl-CoA_dh_1 C-terminal domain of Acyl-CoA dehydrogenase is an 

all-alpha, four helical up-and-down bundle. 

↑ 

P23965 Enoyl-CoA delta isomerase 1 K76(Acetyl) ECH Enoyl-CoA hydratase catalyses the hydratation of 2-

trans-enoyl-CoA into 3-hydroxyacyl-CoA. 

↑ 

P40190 Interleukin-6 receptor subunit beta N-Term(Acetyl) - - ↑ 

P97519 Hydroxymethylglutaryl-CoA lyase K48(Acetyl) HMGL-like Key enzyme in ketogenesis. Terminal step in leucine 

catabolism. Ketone bodies (beta-hydroxybutyrate, 

acetoacetate and acetone) are essential as an alternative 

source of energy to glucose, as lipid precursors and as 

regulators of metabolism 

↑ 

P97521 Mitochondrial 

carnitine/acylcarnitine carrier 

protein 

N-Term(Acetyl) - - ↑ 

Q6P6R2 Dihydrolipoyl dehydrogenase K410(Acetyl) Pyr_redox_dim This family includes both class I and class II 

oxidoreductases and also NADH oxidases and 

peroxidases. 

↑ 

Q8VHF5 Citrate synthase K327(Acetyl) Citrate_synt - ↑ 

P31399 ATP synthase subunit d K63(Acetyl); 

K73(Acetyl) 

Mt_ATP-

synt_D 

This family consists of several ATP synthase D chain, 

mitochondrial (ATP5H) proteins. 

↔ 


