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Abstract

This paper deals with the problem of constructing superregular matrices that lead to MDP con-
volutional codes. These matrices are a type of lower block triangular Toeplitz matrices with the
property that all the square submatrices that can possibly be nonsingular due to the lower block
triangular structure are nonsingular. We present a new class of matrices that are superregular over
a sufficiently large finite field F. Such construction works for any given choice of characteristic of
the field F and code parameters (n, k,d) such that (n — k)|d. We also discuss the size of F needed so
that the proposed matrices are superregular.

1. Introduction

In recent years, renewed efforts have been made to further analyze the distance properties of
convolutional codes [2, 4, 5, 6, 9, 13, 14, 15]. Convolutional codes with the maximum possible
distance (for a given choice of parameters) are called maximum distance separable (MDS). However,
for error control purposes it is also important to consider codes with large column distances.

The convolutional codes whose column distances increase as rapidly as possible for as long as
possible are called maximum distance profile (MDP) codes. These codes are specially appealing for
the performance of sequential decoding algorithms as they have the potential to have a maximum
number of errors corrected per time interval. In [10] a non-constructive proof of the existence of
such codes (for all transmission rates and all degrees) was given. However, the problem of how to
construct MDP codes is far from being solved and very little is known about the minimum field
size required for doing so. It turns out that this issue has been connected to the construction of a
particular type of superregular matrices. In [2] a concrete construction of superregular matrices is
given for all parameters (n, k, §) although over a field with a large characteristic and size. In [6] the
size of the field needed to have a superregular matrix is studied. They provide a bound on this size
and conjecture the existence of a much tighter bound based on examples and computer searches.

In this paper, we will address these issues and present a new class of matrices that are superregular
over a sufficiently large finite field F of any characteristic. We also provide a bound on the required
field size needed for such matrices to be superregular.
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2. Preliminaries: MDP convolutional codes and superregular matrices

In this section, we recall basic material from the theory of convolutional codes that is relevant to
the presented work and link it to the notion of superregular matrices.

Let TF be a finite field and F[z] the ring of polynomials with coefficients in F. A convolutional
code C of rate k/n is a F[z]-submodule of F[z]™ of rank k of the form

C = imp(,|G(2) = {G(2)u(z) : u(z) € F¥[z]},

where G(z) € F[z]"** is a right-invertible matrix over F[z]. For every convolutional code C there
exists a matrix, called the parity check matrix, H(z) € F[z]("~%)*" such that

C = kerpp,) H(z2) = {v(2) € F[z|" : H(z)v(z) = 0}. (1)

The degree of C, denoted by 4, is defined as the maximum degree of the full size minors of G(z).
Note that we can also choose H(z) to be left invertible over F[z], and in this case ¢ will also be equal
to the maximum degree of the full size minors of H[z]. A convolutional code of rate k/n and degree
d is called an (n, k,d) convolutional code.

The most important property of a code is its distance, defined as follows: The weight of a
polynomial vector v(z) = >, yviz" € F[z]™ is given by wt(v) = >, wt(v;), where wt(v;) is the
number of nonzero elements of v;. The distance of a convolutional code C is defined as

d(C) = min{wt(v(2)) |v(z) € C,v(z) # 0}.

If C = kerpy,) H(z), where H(z) = Z H,;2', for some v € N, then the j-th column distance of C is

i=0

defined as

dj(C) = min{wt(vj ;) = wt(vo +viz+ -+ v;zd) w(z) = Zvizi € C and vy # 0}

ieN
= min{wt(7;) : 7; = [vg...v;] € FITU" H(H,, ... ,Hj)U; =0,0(2) = Zvizi € C,v9 # 0}.
i€N

where
Hy 0 0 0
H, Hy 0 0

H(Ho,... H;)— | He Hi Ho - 0 | cRGm—RxG+in, (2)

H; Hj ., --- --- H

and H; =0 for j > v.

In this paper we focus on this important notion of column distance. This notion is closely related
to the notion of optimum distance profile (ODP), see [7, pp.112]. The following results about column
distances are proved in [2].

Proposition 2.1. Let C be an (n,k,d) convolutional code and L = |§/k] + [0/(n —k)]. Then
i) d5(C) < (j+1)(n—k)+1, Vj € No;

ii) if there exists j < L such that d§(C) = (j +1)(n — k) + 1, then d;(C) = (i + 1)(n — k) + 1, for
alli <j.



A convolutional code C is called maximum distance profile (MDP) if its column distances achieve
the maximum possible values (for a given choice of parameters), i. e., if C has rate k/n and degree
d, then df (C) = (L +1)(n — k) + 1, for L= [§/k| + [0/(n — k)| and so d$(C) = (j + 1)(n — k) + 1,
for 7 < L. In order to characterize MDP codes we need to introduce the notion of superregular
matrices.

Let A = [u;;] be a square matrix of order m over F and S, the symmetric group of order m.
Recall that the determinant of A is given by

‘A| = Z (71)sgn(a)‘u10(1) © Hmo(m) - (3)

cESm

Whenever we use the word term, we will be considering one product of the form pi15(1) - * * thmo(m)>
with o € Sy, and the word component will be reserved to refer to each of the ji;,(;), with 1 <7 <m,
in a term.

A trivial term of the determinant is a term of (3), f1(1) - - * lmo(m), Such that exists 1 <i <m
with p,;) = 0. If A is a square submatrix of a matrix B, with entries in F, and all the terms of the
determinant of A are trivial we say that |A| is a trivial minor of B. We say that B is superregular
if all its non-trivial minors are different from zero.

It is important to remark here that there exist several related, but different, notions of super-
regular matrices in the literature. Unfortunately, all these notions are only particular cases of the
more general definition given above. Frequently, see for instance [11], a superregular matrix is de-
fined to be a matrix for which every square submatrix is nonsingular. Obviously all the entries of
these matrices must be nonzero. Also, in [1, 8, 12], several examples of triangular matrices were
constructed in such a way that all submatrices inside this triangular configuration were nonsingular.
However, all these notions do not apply to our case as they do not consider submatrices that contain
zeros. The more recent contributions [2, 4, 6, 14, 15] consider the same notion of superregularity as
us, but defined only for lower triangular matrices.

Next theorem shows how MDP (n, k, §) convolutional codes with (n — k)| can be characterized
by superregular matrices (see [2, Theorem 3.1]).

Theorem 2.1. Let C be an (n,k,d) convolutional code such that (n — k)|6 and represented as

C = ker]F[z] [A(Z) B(Z)],

where A(z) = ZAizi € Flz](n=Rx(n=k) " B(z) = ZBZ-zi € Flz] 9% and v = 24— We can
i=0 1=0
assume without lost of generality that Ay = I,_. Furthermore, let

A(z)"'B(2) = f: H,2* € F((z)) Rk
i=0

be the Laurent expansion of A(z)~1B(z) over the field F((z)) of Laurent series. Define L = |§/k| +
d/(n—k) and

H = [I(L-i-l)(n—k) ﬁ(H@, ey I:IL)] where

H 0 0 0
mo Ho 0 0

H(Hy,...,H)=| H2 Hi Ho 0 | ¢ pEADM—k)x(T+1)k, (@)
HL HL—l HO

The following are equivalent:



1. C is MDP.
2. H(Hy,...,Hy) is superregular.

Hence, the problem of constructing an MDP convolutional code relies on the problem of constructing
superregular lower block triangular Toeplitz matrices of the form (4). This problem is addressed in
the next section.

For the case where (n—k) t ¢, similar results were obtained using different methods from systems
theory, see [4, 5, 6] for more details. We will not consider this case in this paper.

3. A new class of MDP codes and superregular matrices

In this section, we introduce a new class of matrices of the form (4) and show that they are
superregular matrices over a sufficiently large field F. First, we recall previous contributions on
superregular matrices.

It is a common practice in building the matrix H(Ho, ..., Hr) of Theorem 2.1 to first construct a
large lower triangular superregular matrix in such a way that it contains the lower block triangular
Toeplitz matrix H(Ho, ..., Hr) as a submatrix. In [2], it was shown that for every positive integer
7 there exists a prime p = p(r) such that

r—1
0 0 0 0

r—1 r—1
1 0 0 0

S, = r—1 r—1 r—1 5

) ) 0 0 (5)

r—1 r—1 r—1

r—1 r—2 0

is superregular over IF,. Moreover, the authors proposed the first rough bound on the size of a field F
for a lower triangular Toeplitz matrix A to be superregular over F. Namely if we consider ¢ to be the
largest magnitude among the entries of A and if |F| > ¢"r"/2 then there exists a superregular lower
triangular Toeplitz matrix A € F"*". Later, in [6], the following more refined bound was presented:
If |F| > B, then there exists a superregular lower triangular Toeplitz matrix A € F"*", where

L3 (Y0 ()

Moreover, based on examples and computer searches, it was conjectured in [2, 6] that for £ > 5
there exists a superregular lower triangular Toeplitz matrix of order ¢ over the field Foc—2. If true,
it would considerably improve the bound given above. This remains an open problem.

We propose a new type of superregular matrices with the form of (4). Of course, this will bring
about a new class of MDP codes. Let (n, k,d) be given such that (n — k)|d. Let M = max{n —k, k}



and L = [0/k] +0/(n — k). Let o be a primitive element of a finite field F = F,~ and define

(Tol Ty | ... [TL] =
0 1 M—1 M 2M—1 ML M(L+1)—1
a2 a2 ... az a2 ... a2 02 ... a2
1 2 M M+1 2M ML+1 M(L+1)
Oé2 OéQ R Oé2 0(2 O[Q O[Q s O[Q
2 3 M+41 M+42 2M+1 ML+2 M(L+1)+1
— a2 az - a2 az . a2 - a2 . a2 .(7)
M-—1 M 2M —2 2M—1 3M—2 M(L+1)—1 M(L+2)—2
a2 a2 .. a2 a2 ... a2 az ... a2
Define also, T (Ty,T1,. .., 1) € FEADMX(LADM 15y
To 0 0 0
T T, 0 0
T(T()a"'aTL) = 2 1 0 0 . (8)
TL ij_1 e e TO

We are going to prove that if N is sufficiently large then 7 (T, T1,...,TL) is superregular. First,
we need the following well known result.

Theorem 3.1 ([3]). Let F be a finite field with pN elements. Let o be a primitive element of F and
p(z) be the minimal polynomial of a (i. e., F = TF,[2]/(p(2)) and deg p(z) = N). If f(z) € Fplz]
with f(a) =0 then p(z) | f(2).

Theorem 3.2. Let L, M € N, « be a primitive element of a finite field F of characteristic p, p(z) be
the minimal polynomial of a and consider T (Ty, Ty, ..., Ty) € FEHDMX(L+DM 17| > pE T
then the matriz T (To, Ty, ...,TL) is superregular (over TF).

Proof: Let [tr1 -+« toa| |81 -+ tiarltor -+ toar] denote the columns of T (T, ...,TL) and
define T(To,...,TL) = [t01 t0M|t11 thl""tLl tLM], 1. €., set

T(To,...,TL) =
r 0 M-—-1 A
0 ... 0 .. 0 ... 0 a? ... a2
0 0 0 0 o2 a2
M—-1 2M—2
0 0 .. 0 0 2 .. a2
0 M—=T M 2M—T
0 0 a? a2 a? a2
1 M M+1 2M
0 0 a? a? a? e 2
M-—-1 2M—2 2M—1 3M—2
0 0 2 . o? a? . o?
0420 T a2Mfl T a2ZW(L—1) T a21\lL—1 azML T azM(L+1)—1
1 M M(L—-1)+1 ML ML+1 M(L+1)
a2 ... a2 DR a2 ... a2 a2 ... a2
oM—1 o 0622M72 o aQAIL—l o azAl(L+1)—2 a2NI(L+1)—1 o a2M(L+2)—2




We show that T (Tp,...,Tr) is superregular. Obviously, this readily implies that T (Ty,...,7%)
is superregular as well.
Let A = [u;5] be a square submatrix of T (Tp,...,Ty) of size m < M(L + 1), such that |A] is a
nontrivial minor of T (Ty,...,TL).
If ps; # 0 then p;; is a power of a. Let v;; € N such
il = ;5.

Note that each term of the determinant of A given by (3) is zero or a power of a. Given o € S,
such that f115(1) - fmo(m) 7 0, let v, such that
a’ = Hio(1) ** Hmo(m)-

Consider m > 1 otherwise the proof is trivial. First we show that the exponents of o appearing
in any nontrivial term of |A| are all smaller tharLQM(L"'Q)_l.
From the particular structure of the matrix 7 (Tp, ..., Tr), it follows that

21/1‘]‘/ < Vij and 21/in < Vij if i< and j/ <7J. (9)

Let o € Sy, and suppose fi15(1)H25(2) * * * Bmo(m) 7 0- Define
Ry ={(i,j) eN*|1<i,j<kandi=korj=k}
and
R(0) = {(i,j) € N*| (i,7) = (t,0(t)) for some t € {1,2,...,m}}.

It follows from (9) that
Z Vij < QZW(L-"-Z)—Q(m—k—',-l)
(4,J)ERKNR(0)

for 1 < k < m. Hence,

ve = > Y wy <2MEART2 g oMLy gM (L) mam
k=1 (4,j)€ RxNR(c)

oM (L+2)—2 2471'

<
=0
2M(L+2)—2é
3
< 2M(L+2)—1.

So the exponent of & on any nonzero term is smaller than 2M(L+2)=1 Next, we will prove the
following result:

Statement 1: If there are nontrivial terms, then there exists a unique term o with
highest exponent 5.

Since p(z) has degree greater than 3, if Statement 1 holds true then the uniqueness of 8 will imply
that |A] = f(a) = £a® + v(«), where v(z) is a polynomial of degree smaller than 3. This would
immediately imply that |A| # 0 since otherwise, by theorem 3.1, one would have that p(2) | f(2),
which contradicts the fact that the degree o f(2) is less than 2M(E4+2)=1 Therefore, we will obtain
that T (Tp, ..., Tyr) is superregular, which will conclude the proof.



The idea of the proof of Statement 1 is to define recursively a permutation & of S, such that
the corresponding term will have the highest exponent. We will show that, whenever possible,
a(m) =m, i. e., the term defined by & contains the component at the bottom-right corner, namely
mm- However, this is not always possible as the terms corresponding to permutations o, with
o(m) = m, can all be zero. For this reason, we divide our proof in two cases. First we study the
case when it is possible to have a nontrivial term, where the corresponding permutation o satisfies
o(m) = m, and we prove that, for any term o without this property, there is one term with
this property which has an exponent of « larger than B\ In the second case, all the terms having
o(m) = m are trivial, so we construct a new matrix A’ of size | < m having the last [ rows and the
first  columns of the matrix A and where it is possible to have a nontrivial term of |A’| with the
associated permutation o satisfying o(l) = I. We then use the first case to get (m) = [.

After establishing the value of &(m) we construct a submatrix A; of A obtained by the elimination
of the last row and the (m) column of A and repeat the process for the matrix Ay, obtaining the value
of (m—1). Proceeding in this way, we recursively define a sequence of matrices Ag = A, Ay, ... A1
where, for each 0 < i < m — 1, A; is a square matrix of size m — i and, using cases 1 or 2 applied
to the matrix A;, we define &(m — ¢). Thus, we define a unique permutation & whose corresponding
term has the highest exponent.

As the construction of a new permutation in the first case is hard to follow, we will illustrate the
process with an example.

Write A as a block matrix in the following form

0, |

0o
A= : B, | Do |, (10)
O,
By,

where, for each 1 < 7 < h, O; is a null matrix with /; columns and, for each 0 < j < h, Bj is a
matrix with k; rows and no entry equal to zero. We have Iy > --- > [, and m = ko > k1 > -+ > k.
The minor |A| being nontrivial means that we cannot have a row with more zeros than the number
of rows below it. Therefore, we have k; > [; for any 1 < i < h.

If h = 0 then A = By and all entries of A are nonzero. Note that if all the elements just above
the main antidiagonal of A are zero (i. e., k; = ; for all 1 <4 < h) then there exists a unique term of
|A| which is nonzero, namely, the one constituted by the elements of the main antidiagonal of A and
therefore fi,,,, is not a component in such a term. Moreover, if any k; = [;, for some 1 < ¢ < h, then,
the components that correspond to the first I; columns of a nontrivial term of |A] must be selected
within the last k; rows, i. e. we must have o(j) <;, for j € {m —1; +1,--- ,m} and consequently,
we cannot have o(m) = m. Roughly speaking, in this case, to obtain a nontrivial term of |A| we are
forced to pick up I; of its components in the [; x [; submatrix of A located in the lower left corner.

Let us denote the highest possible exponent in « of a nontrivial term of |A| as
B = rgleal\)f{b cal = Po(1) " * Hmo(m), for some o € Sy, }.
Thus, it is enough to show that there is a unique & € .S, such that
o = Y (m) P —17(m—1) "+ P (1)- (11)

Let 0 € S, such that o = Hio(1) *** Mmo(m) then the following statements are true:



Case 1: If h=0or [; < k; for any 1 <4 < h, then o(m) = m.

Case 2: If [; = k; for some i € {1,...,h}, then o(m) = Iz, where i is the maximum i € {1,...,h}
such that [; = k;.

Note that, by the way f is defined, it could be the exponent of o of more than one term. We
prove that, whenever one permutation does not satisfy the conditions in cases 1 and 2, then the
corresponding term will have an exponent of o smaller than 3. Therefore, we will be able to prove
that only one permutation &(m), defined recursively by the conditions in cases 1 and 2, satisfies (11).

Proof Case 1: First we are going to prove that if h = 0 or I; < k; for all 1 < ¢ < h, then the
entries of A just above the main antidiagonal are nonzero, i. e.,

Pm—iyi 70 forany i€ {l,...,m—1}. (12)

If h = 0 then all entries of A are nonzero, in particular pi(,,—;; # 0 for any 1 <7 <m — 1.

Now, suppose I; < k; for all 1 < j < h. If, for some i € {1,...,m — 1}, we have pi(m,_;); = 0 then
there exists j € {1,...,h} such that I; > 4, but then k; < m — (m — 1), so k; <!; which contradicts
our hypothesis. Therefore, we obtain (12).

Take o € S, with

Hom (m)Mm—18(m—1) " * H15(1) 7 0,

and fiymg(m) # Hmm- Such a permutation always exists, because, for example, the elements of the
antidiagonal are nonzero, i. e. pjm—iy1) 7 0 for 1 <7 < m.
Let v; € N, such that
A" = g (m)m—16(m—1) * * * 115 (1)
We prove the statement of Case 1 by constructing a permutation o € S,,, obtained from & by
multiplying & by a product of transpositions, with the following properties

1. d(m) = m;

2. piz@y # 0, for any 1 <@ <my

3. The exponent of the term corresponding to o is larger than the exponent of the term corres-
ponding to o.

We start by giving some intuition of how the permutation ¢ is obtained, then we formally
construct o satisfying the three properties mentioned above, and in the end, we illustrate this
construction with an example.

Suppose that o(m) = j and 7(i1) = m with 1 < iy,5 <m — 1, if p;,; # 0 (this always happens
if h = 0) then it is enough to take & = & - (jm), where (jm) is the transposition that takes j to m
and m to j . That is, o is defined by

1. o(m) = m;
2. o(i1) = J;
3. g(k) =a(k), for any k # m and k # 4;.
But if p;,; = 0, then we define ¢(i1) = d1, for a chosen 6; > m — 41 (so that u,;,5, # 0, by (12))

and for iy defined by (i2) = d1, we check if u,,; is different from zero, in which case, we define
0 =20-(jm)(617). If pi,; =0, then we proceed in a similar manner obtaining in the end

0 =0-(jm)(0r0,—1)(0r—10,—2) - (6261)(17), (13)

for some r < m.



Formally, we construct o € S, recursively, as follows:
Define 69 = m and while yz-1(5,)5(m) = 0, define
max

6i =0 LAl )
+1 U(jzm—a—l(a,-)a (J))

and let r be the first integer such that piz-1(5.)5(m) # 0. The permutation ¢ € S,, will be defined

by the following
1. ¢(m) =m and 5(c~1(6,)) = 5(m)
2. For 0 <i<r, o(@ &) = iy1;
0<i<r}, o(i)=0o(%).

3. ForigI={c"1(4)
By definition, 71(d;41) is the maximum of 571(;) + 1 values, so since we cannot have two

components of a term in the same row, we must have 5-1(8;41) > 5 1(;). So,

Vmg(m) + Z Vs-1(5,)6, < Z V(m—i) (m—r+i)-
=1 1=0

V(im—i) (m—r+i) < 27i27r+il/mma

By (9), we have
then . .
Vma(m) + Z Vs—-1(5,)6; < ZQ_Tme < Vmm
i=1 i=0
Therefore
Vg = Z Vig(s) t Z Vig (4)
i€l igl
< VUmm + Z Vig (i)
igIu{m}
< Vmg(m) T Z Vig(s) T Z Vig (i)
igIu{m} iel

= Ua
which implies that v is not a maximum, that is v < .
Hence, in order to achieve the greatest possible exponent, we need to consider o(m) =m

In order to illustrate how the construction of & works, consider the following matrix,



0/0j0O|O0O]O|O|O]O]|]O]O|O]O]|O0]|Xx
ojojojojOo|l0j]O|0O]O]O0O]O O x
0/|0]0O|O0O]O|O]OJO]O]O0]|Xx
0j0j0O|JO0O]O|O|O]0O]O0O]O X
0|0]0O|0O0]O|O0]O O] | x
0/0]0O|0]0|O0 ([l X
0j/0j]0O|0]0O0|O O x
0][0]0|0]0|0]x
0|00 O x
0]01]O0 X
0|00 X
0| x
0 U X

X
U X
X O

We have h =7, (I1,...,17) = (13,11,10,7,6,3,1), (ko,...,k7) = (16,15,14,12,11,8,5, 3), so we have
l; < k; for 1 <i < h. The x symbols denote the permutation

6=(11431161387105 154 122 16)(9),

and the [0 symbols denote the positions where the computed permutation ¢ is different from o.
Effectively, one can compute o following the steps described above as follows:
dp = m = 16 and pz-1(16)5(16) = H21 = 0. Then

07 = 0o iy
' 7 <j216131§}x1(6o>0 m)
= 0 (max{1,2,5})
= 15.
Next, since piz-1(15)5(16) = 51 = 0, we define
dy =0 (max{1,2,3,4,5,6}) = 13.
In the end we obtain the sequences
(517 627 R 56) = (157 13,10,9,8, 4)

and
(37(60),57(61),...,6 () = (2,5,6,7,9,13,15).

Since fiz-1(4y5(16) = p151 7 0, we define ¢ by
1. 5(16) =16 and 5 (61 (4)) = o(15) = 1;

2. 5(2) = 15,5(5) = 13,5(6) = 10,5(7)

. =9,5(9) =8 and 5(13) = 4;
3. Foric {1,3,4,8,10,11,12,14}, 5(i) = &

(4)-

In other words, taking j = 5~ !(16) = 1 in equation (13), we have

& = 7-(116)(48)(89)(910)(10 13)(13 15)(15 1)
— (1143116105134 122 15)(7 9 8)(16).
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Proof Case 2: Let ¢ € S,, with

P (m)Pm—15(m—1) - Bi5(1) 7 0,

Since k; = I3, then, in any nontrivial term of | A|, we must have 5 (j) < Iz for j € {m—I;+1,...,m},
which amounts to saying that in order to obtain a nontrivial term of |A| one must pick up [ of its
components in a matrix A’ obtained from A by picking the rows with indices m — l; + 1,...,m
and the columns with indices 1,...,l;. Obviously, if & gives rise to a term of |A| with the highest
exponent, then the corresponding term of |A’| must also have the highest exponent among all terms
of |A’|. In order to know which term of |A’| has the highest possible exponent in « one can apply
the statement of Case 1 for |A’| instead of |A| to conclude that finq(m) = Hmi--

In this way we have shown that if & € .S,,, satisfies

O‘B = KEma(m)Hm—15(m—1) " H15(1),
then (m) = m when the matrix A satisfies the conditions of Case 1 or 7(m) = I; when the matrix
A satisfies the conditions of Case 2.

Once @(m) has been uniquely determined, we can remove from A its m-th row and its @(m)-th
column to obtain a new square matrix A; of order m — 1. We follow the same previous arguments
applied to A; instead of to A to determine &(m — 1). In this way, we define recursively a sequence
of matrices A = Ag, A1, Aa, ... Ap—1, and for each A; we uniquely define (m — #) using one of the
two Cases. Hence there is only one permutation, namely &, satisfying equation (11) and therefore
we prove the existence of a unique maximum in the exponents of the terms of |A|. O

We illustrate the whole process of deriving the permutation & that gives rise to the unique term
with highest exponent in o with the following example.

Example 3.1. Let

0j0{0|0j0|0O|0j0O|O|0|O0]O

0j0j{0|0j0|0O|0Oj0O]|0O|0O]O

0j0{0|0j0|0O|0]0]|0O]|O0O

0j0{0|0j0|0O|0O]0]|0O]|O0O

0(0{0|0[0]|0]|O0O

0(0|{0|0|0O]|O

0j0{0|0|0]|O0
AiOOOOOO

0700

0100

0700

0

0

We have h = 7, (Iy,...,l7) = (12,11,10,7,6,3,1), (ko,...,k7) = (14,13,12,10,9,6,3,1), so the
largest i for which l; = k; is i =7 and Iz = 1. So, for the matriz A" obtained from A by picking the
row with index m and the column with index 1, we have h = 0, so a(m) = 1. The new square matriz
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A1 will be

o|lolo|o
o|lolo|o
o|o|o|o

o|lo|o|o|o

Ay

(o] Ren) Hen] Hen] Hen] o) Nen) Nan]
[e=] Ren) Hen] Hen] Hen] o) Nen) Nean]
[en] Ren) Hen] Hen] Hen] o] Nen] Han]

(o) Hen) Hev) Hew) Hov) N ool Hev] Hev] Nen] Nav) Nan)
() Hen) Hew) Hew) Hev) Hev] Nev] Hov) Nan] Nav) Ras]

Now, i =6 and Iz = 2, so (m) = 3 (the second column in the matriz Ay is the third column in the
matriz A).
In the end we obtain

ojojojojofofojojojojojo|0O
0fofojojojojojojojo0jo0|0O
ojojojojofofojo0o|0]|0]|0O
0(0(0j0]O|O]O]O]|O]O t
0j0j0j0OJ0O|0|0]|0O
0(0j0j0]|0|0]DO
0(0(0]0]|0|O0 g
0(0(0]0]|0|O g
0j0]0|0O

o(o0(o0}| |0

01010 O

004

0| |O

O

The T symbols denote the permutation .

It is well-known that if NV is an integer and p a prime number then there exists a finite field F
with p" elements and therefore there exists a finite field F such that |F| = p2METHTh
follows from the proof of Theorem 3.2 that it is enough to have |F| > p((zM(L“)_Q)(%)) in order to
T(To,T1,...,TL) to be superregular. It can be checked using computer algebra programs that there
are particular examples (for small values of (n,k,d)) of superregular matrices that require a much
smaller field size, see for instance [2, Example 3.10]. However, the proposed superregular matrices
can be constructed for any given characteristic p and parameters (n, k, ) and therefore provides a
general construction. Note that the superregular matrix S, given in (5) requires, in general, a large
characteristic p(r).

We are now in the position to present a new class of MDP convolutional codes. The result easily
follows from Theorem 2.1, Theorem 3.2 and the fact that submatrices of a superregular matrix
inherit the superregularity property.

. However, it

Corollary 3.1. Let (n,k,0) be given and let Ty = [tfj], 1<4,5<mand0<{<L be the entries
of the matriz Ty as in (7). Define H, = [tfj] 1<i<n-k 1<j<kand0<{ < L. Let
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n—k’

Az) = ZAizi € Flz)"=0>*(=k) gnd B(z) = ZBizi € Flz) =Rk with v = 2 Ag = I, 4,
i=0

i=0 =
Ay € Fn=k)x(n=k) “ith 1 < i < v is obtained by solving the equations

H, - H
Hy_ yph - Hy ~ ~

[Au"'Al} : . :*[HL"'Hqul]a
A, - H,

and B; = Aon + Alﬁi—l + -+ AZ‘HQ, with 0 <1 < wv.

If|F| > PV dhen the convolutional code C = kerg[,)[A(2) B(z)] is an MDP convolutional
code of rate k/n and degree 0.

Remark 3.1. Details about the construction of the matrices A(z) and B(z) presented in Corollary
3.1 can be found in [2, Appendiz C]

The following example illustrates the construction of a (5,2,3) MDP convolutional code.

Example 3.2. Sincen =15, k=2 and § = 3, we have that L =2 and v = 1. Let us consider o a
root of the primitive polynomial 2'0?* + 239 + 237 4+ 236 + 1 € Fy[x], i. e., a primitive element over
the field Fyio2a and the matriz

aQO a21 | a23 a24 | a26 a27
[Hy Hy Ho] = a2 o | a2t o? | a2 o
a22 a23 | a2o a26 | Oé28 a29

over Faio2a. Considering A(z) = Is + A1z such that A H, = —H,, where, a possible choice is

100
A(z) = (0 1 0|+
0 0 1
e Q242 2042 Q22T 22t et et 20420 |
0 0 0

and B(z) = By + Bz such that By = Hy and By = Hy + A1 Hy, we have that
C = kerp( [A(z) B(2)]

is a (5,2,3) MDP convolutional code.

4. Conclusions

There is a type of superregular matrices that are essential for the construction of MDP convoluti-
onal codes. However, very little is understood about how to construct these matrices and how large
a finite field must be, so that a superregular matrix of a given order can exist over that field. In this
paper, we have presented a new class of MDP (n, k,d) convolutional codes, such that (n — k)|d , by
means of the construction of a novel type of superregular matrices over a field of any characteristic.
We also established a bound for the size of the field needed for these matrices to be superregular.
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