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Sign changes of error terms related to
arithmetical functions

par PAurLo J. ALMEIDA

RESUME. Soit H(z) = Y, . % — 2. Motivé par une con-
jecture de Erdos, Lau a développé une nouvelle méthode et il a
démontré que #{n < T : H(n)H(n+ 1) < 0} > T. Nous consi-
dérons des fonctions arithmétiques f(n) =3, , b dont I'addition
peut étre exprimée comme ) __ f(n) = ax + P(log(z)) + E(x).
Iei P(z) est un polynome, E(z) = — 3, <, bu gy (2) 4 0(1) avec
Y(x) = z — |x| — 1/2. Nous généralisons la méthode de Lau et
démontrons des résultats sur le nombre de changements de signe
pour ces termes d’erreur.

ABSTRACT. Let H(z) =5 _ ¢ _ 5 2. Motivated by a con-

n<x n
jecture of Erdos, Lau developed a new method and proved that

#{n <T:HMnH(n+1) <0} > T. We consider arithmetical
functions f(n) = >_ dln %" whose summation can be expressed as
Y nes f(n) = ax+ P(log(z)) + E(x), where P(x) is a polynomial,
E(z) == <y buyy (2) +0(1) and p(z) =z — 2| — 1/2. We
generalize Lau’s method and prove results about the number of
sign changes for these error terms.

1. Introduction

We say that an arithmetical function f(x) has a sign change on integers
at © = n, if f(n)f(n+ 1) < 0. The number of sign changes on integers of
f(z) on the interval [1,7T] is defined as

N{(T) = #{n < T,n integer : f(n)f(n+1) <0}.

We also define z;(T') = #{n < T, n integer : f(n) = 0}. Throughout this
work, ¥(x) =z — |x| —1/2 and f(n) will be an arithmetical function such
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that

b
f(n) = Z “4 for some sequence of real numbers by,.
dln

The motivation for our work was a paper by Y.-K. Lau [5], where he
proves that the error term, H(z), given by

Zgbsf)—gaz—i-f](w)

n<x

has a positive proportion of sign changes on integers solving a conjecture
stated by P. Erdos in 1967.

An important tool that Lau used to prove his theorem, was that the
error term H(z) can be expressed as

M) Hw=- Y “gl)@z;(i%o(@), (S. Chowla [3])

- log5 T

We generalize Lau’s result in the following way

Theorem 1.1. Suppose H(x) is a function that can be expressed as

@) Hw == ¥ 20 (2)+0 (1)

n<y(z)

where each b, is a real number and

x

(i) y(z) increasing, zi <ylr) < W, for some D > 0, and
ogx)’ T2

(3) Z b} < xlogl

n<x

(ii) k(x) is an increasing function, satisfying lim,_ k() = oo.

(i) H(z) = H(|z]) — a{z} + 0(z), where a # 0 and 6(z) = o(1).
Let <€ {<,=,<}. If #{1 < n < T :aH(n) < 0} > T then there ezists
a positive constant ¢y and coT disjoint subintervals of [1,T], with each of
them having at least two integers, m and n, such that aH(m) > 0 and
aH(n) < 0. In particular,

(1) #{n<T:aH(n) >0} > T;
(2) if #{n<T:aH(n)<0}>T, then Ng(T)>T or zg(T) > T.

We consider arithmetical functions f(n) for which, the error term of the
summation function satisfies the conditions of Theorem 1.1. A first class is
described in the following result
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Theorem 1.2. Let f(n) be an arithmetical function and suppose the se-
quence by, satisfies condition (3) and

(4) an:Bx—i—O(l a8 )

v og”x

for some B real, D >0 and A > 6 + %, respectively. Let a = °° by

n=1 n2>
Blog2mx
Blog2m v

Y = lim (Zb—"—Blogx) and H(a:):Zf(n)—aa:—i— > 5"

T—00 n

n<lx n<lx
If a« # 0, then Theorem 1.1 is valid for the error term H(x). Moreover, if
f(n) is a rational function, then, except when o = 0, or B = 0 and « is

rational, we have
Ny(T)>T ifand only if #{n <T:aH(n) <0} >T.

Notice that this class of arithmetical functions is closed for addition, i.e.,
if f(n) and g(n) are members of the class then also is (f + g)(n). In the
case considered by Lau, it was known that H(x) has a positive proportion
of negative values (Y.-F. S. Pétermann [6]), so the second part of Theorem
1.2 generalizes Lau’s result. Another example is f(n) = %

Using a result of U. Balakrishnan and Y.-F. S. Pétermann [2] we are able
to apply Theorem 1.1 to more general arithmetical functions:

Theorem 1.3. Let f(n) be an arithmetical function and suppose the se-
quence by, satisfies condition (3) and

b
(5) >

n=1
for some (8 real, D > 0, and a function g(s) with a Dirichlet series expan-

sion absolutely convergent for o > 1—\, for some A > 0. Let o = ¢5(2)g(2)
and

E

© = (P(s)g(s)

3

ey | Snee F0) - if B <0,
T Saes f(0) —az — 1 Bi(log2)PTif 5> 0,

where the constants B; are well defined. If o # 0, then Theorem 1.1 is
valid for the error term H(x).

Theorem 1.3 is valid for the following examples, where r # 0 is real:

SR CS R
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2. Main Lemma

The main tool used by Y.-K. Lau was his Main Lemma, where he proved
that if H(z) =) ¢ln) _ %x then

n<r n

2T t+h 2
/ ( H(u) du) dt < Th,
t

T

for sufficiently large T and any 1 < h < log* 7. Lau’s argument depends
essentially on the formula (1). In this section, we obtain a generalization
of Lau’s Main Lemma.

Main Lemma. Suppose H(x) is a function that can be expressed as (2)
and satisfies conditions (i) and (ii) of Theorem 1.1. Then, for all large T
and h < min (log T, k*(T)), we have

2T t+h 2 .
(6) / ( H(u) du) dt < Thz.
T t
For any positive integer N, define
by T
(7) Hy(@) ==Y 2 (%),
d<N

The Main Lemma will follow from the next result.

Lemma 2.1. Assume the conditions of the Main Lemma and take D > 0
satisfying condition (i). Let E =4 + %, then
(a) For any 6 >0, large T, any Y < T and N < y(T), we have
T+Y 9 Y Y 5
| ) — v (@)? du s s + i + 0T+ V) (o)
(b) For all large T, N < y(T) and 1 < h < min (log T, k*(T)), we have
2

2T t+h 3
/ < Hy (u) du> dt < Th2 + N3(log N)¥.
T t

Now we prove the Main Lemma:

Proof. Take N = T% and 6 > 0 small. Cauchy’s inequality gives us

( t”hmu) du)2 <2 t”h Hi(u) du>2

+2 ( /t " (H(u) — Hy(u)) du>

2
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Since N = T then, for sufficiently large T', N3log? N <« T. So, using
part (b) of Lemma 2.1 we have
2

2T t+h 3 3
/ ( Hy (u) du) dt < Th? + N3log? N <« Th>.
T t

Using Cauchy’s inequality and interchanging the integrals,
2

/TQT</:M(H(“) — Hy(u)) du) dt

< h/;T (/tm (H(u) — Hy(u))? du) dt

2T+h min(u,27")
<h / / (H(w) — Hy(u))? dt | du
T max(u—h,T)

2T+h
< h? /T (H(u) — Hy(w))? du

e (T+h T+h
NT=0 " 12(T)

< T+Th < Th?
since y(27 + h) < (LEH and h < min(log T, k%(T)). Hence

+y(2T + h) (log T)E>

logT)
2T t+h 2 5
/ ( H(u) du> dt < Thz.
T ¢
O
3. Step 1

In this section, we will prove part (a) of Lemma 2.1. Using expression
(2) and Cauchy’s inequality, we obtain
2

/T‘*'Y(H(u) — HN(U))Qdu < 2/T+Y Z’% %@ZJ (%) du+0O <k’2}(/T)> .

T T m=N+1
Let (T, m,n) = max (T,y~*(m),y*(n)), then
2 y(T+Y

y(u) )
o[ 5t () a2 S e T ()0 (2

T m=N+1 m,n=N-+1 (Tym,n)
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1

— 5, when u is not an integer, is

The Fourier series of ¥(u) = u — |u]
given by
>, sin(27ku
0 wu) = — L 3 TR,

k=1

1
T
so we obtain

9 y(T+Y) oo

bimbn 1 Ty ku\ . lu
2 Z " Z kl/n )sm (27rm> sin (27Tn> du.

mn=N-+1 k=1 (T,m,n

Now, the integral above is equal to

/ cos (27ru ( + >> — cos <27ru ( — >> du.
2 n(T,m,n) m n m n

For the first term we get
T+Y k l 1
n(T;m,n) m.on (i +3)
k _ 1
If m then
T+Y k l
/ cos <27ru (—)) du <Y,
n(T,m,n) m.on

T+Y k l 1
/ cos (27ru < — )) du <« 17
n(T,m,n) mon m n

m n

otherwise

Part (a) of Lemma 2.1 will now follow from the next three lemmas.

Lemma 3.1. Let E =4+ % as in Lemma 2.1. Then

o0
1 E
bimbn —— < X (log X)".
2 [bubal 3 F Tk — i <X (g X)
mn<X k=1
kn#lm

Lemma 3.2. If D > 0 satisfies condition (3), then
> Jbmbl i b X (e x) R
kl (kn+1m)
mn<X k=1
Lemma 3.3. For any 6 > 0,

|bmbn| ~—= 1 1
N<mn<X k,l=1

kn=Im
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In order to finish the proof of part (a) of Lemma 2.1 we just need to take
X =y(T+Y) in the previous lemmas. Hence

T+Y 9 Y E Y
A‘ (H (u) = Hy(w))* du < 5 +y(T +Y) (l0T)" + 1.

O
Before we prove the three lemmas above, we need the following technical
result

Lemma 3.4. Let b, be a sequence satisfying condition (3) Then

ZbQ <<Nlog2N Z|b|<<Nlog4N Z 10gN)1+2,
n<N n<N n<N
b D b 1
Z ’;' < (log N)'*7 | Z n—gr(n) < Nise’ for any § > 0.
n<N n>N

Proof. Follows from Cauchy’s inequality, partial summations and the fact

that, for any € > 0, 7(n) = O(n¢). O
Remark. If H(x) can be expressed in the form (2), then
[n| 1 +Z2
9 H < — 4+ 0| ——= 1 4.
Q @i 32 B0 (g5) < Goes
n<y(x

Proof of Lemma 3.2 : Since the arithmetical mean is greater or equal to
the geometrical mean, we have

1
Z ‘bbyzklknﬂm =2 Z ’bb|zkl\/m

mon< X k=1 mn<X =1
b
<(é%¢m)
bis
<(2;0(%;Aﬁ

< X(log X)*3
U

Proof of Lemma 3.3 : For the second sum, take d = (m,n), m = da and
n = df. Since kn = Im, then «a|k and g|l. Taking k = oy, we also have
= 0v. As

2

k=1
kn=lm
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bibn| = 1 72 |bmbr| (1, m)?
Z mn kKl 6 Z m2n?

IN

‘ 3

]
VR

Q

g
sw\g
SN——

N<m<X
dlm

The next step is to estimate the inner sum using Hélder inequality

2 1 3
b b\ ? 1\°
( 2 ) sl 2 ) |2 e
N<m<X N<m<X N<M<X
dim dlm d|M
Set M = 3d, then
01\t
1 1 1 1 d
(11) < Z 2) :3< Z 2) < 3(min{1,3}> .
N<M<X M d N <X 5 d N
d|M d —d

To complete the proof of Lemma 3.3 we use Cauchy’s inequality and
Lemma 3.4. For any 6 > 0,

> s gy (Gem{mh i B))

N<m,n<X d<X N<m<X
kn=Im dim
therefore
2
bbn| o= 1 1. d3 i
(x Bl ) ex i) (T 5
N<mmn<X k,l=1 d<X D<X \ N<m<X
kn=Im D|m
1 J 1 bt
<(wXd+Xz) > (53
d<N d>N N<m<X D|m
1 b} 1
N<m<X

g

Proof of Lemma 3.1 : This lemma is a generalization of Hilfssatz 6 in [9] of
A. Walfisz. Notice first that

Z(’”'£M><QZ(’”'ZM)

m,n<X m<n<X
kn;élm kn;élm
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Like in [9] we begin by separating the interior sum into four terms:

k,l=1

kn%élm lmgl%" %1<lm<kn
> 1 > 1
+ 1;1 (k:l\k:n—lm|>+kzl:1 <kl\k‘n—lm|>'
En<lm<2kn Im>2kn

For the first term, we use Lemma 3.4,

= 1 =1
bmbn, <2 bmbn,
2 lbmbal D G S22 Pwbal D gy
m<n<X k=1 <n<X k=1
Im<kn Im<
bp| o= 1 1
=9 | il -
> balZ > 5 2 g
m<n<X k=17 j<kn
bp| o= [logk logX
< D bl (Gt
m<n<X k=1
by 1+2
log X — bm X (log X) "=,
< log 7;(”,;1‘ | < X (log X)

From the forth inequality of Lemma 3.4, we get

> 1 1+L
2. | ’MZ_I R —m] < & (log X)

m<n<X
kng%"

The estimation of the third term is more complicated and we have to use
a different approach. In this case, % < 2m 5o that

kn
Nt 1
b b —_
Z [bmbn Z El|kn — Im|
m<n<X k=1
k7"<lm<kn

|bn‘001 m
<2 ) BalSEdm X im

<n<X =1 kn kn
msns k T <l< -
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<2 Y |bm IH)‘Z,€2 > (,m_)

m<n<X k=1 1<k kn _q

Now, taking L = [%" — l],
bn] o= 1 1 bn| o= 1 1
> Sy m 2w ) S X el X T
m<n<X k=1 lg%,l <n<
<X (logX)H% ,

as in the first term. If there exists an integer [ with %" -1<i< %", then

m 1 kn. In this case, kn —Im = m{%”} and m < n. So, we have to
estimate

12) > S e

m<n<X k=1
mtkn
Notice that the fractional part of ]:n—” is at least % So, when k£ > m,
bn| = m ] n| D
> |bm\7 > < > Jbml = < X (log X) 7 .
m<n<X k=m m<n<X

We are left with the estimation of

Joul i
[bm 2y
S &

Since m { kn, given k and n, we can take aj p, such that 1 < ay, < m and
ak,n = kn mod m. Then,

b i bul < _m
B By iy e D DL DY

m<n<X k<m <n<X k<m
mtkn

1 |bn|
<D w2 mbal > S
ak? (O] n
a,k<X max(a,k)<m<X m<n<X
kn=a
mod m

We need to estimate the inner sums. In order to do that, we partition
the interval [1, X] in intervals of the form [M,2M) and apply Cauchy’s
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inequality. Take 1 < P < @ < X, then,

\ g

by, |

> ombal Y M
P<m<2P Q<n<2Q
kn=a mod m

Z bl D> [bal.

> Q<In<2Q
kn=a mod m

Next, we apply Cauchy’s inequality twice, first to the first sum on the right
and afterwards to the second sum:

(2,02, =)

kn=a mod m

2
2
< E by E ( E |bn|>
P<M<2P P<m<2P Q<n<2Q
kn=a mod m

P<m<2P QR<n<2Q QRIN<2Q
kn=a mod m kN=a mod m

< Plog% P Z
P<m<2P

<PlogzP Y ( 3y 1)
(GF

2
Y bn>.
Q<n<2Q

kn=a mod m

Since m < 2P < 2@Q, we have % > % Using also (k,m) < k, we obtain

k
149 1 9 Qg <39
o) m m m
Therefore,
2 Qk
D
( 3 (\bm] 3 bn|)> < Plog7P Y. <3m 3 bi)
P<m<2P Q<n<2Q P<m<2P Q<n<2Q
kn=amod m kn=amod m
3kQ. b
<P=Tlogz P Y (bi > 1)
Q<n<2Q P<m<2P
mlkn—a

<kQogP)? S b2 7(kn—a).
Q<n<2q
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By a theorem of S. Ramanujan [7], >, - x 72(n) ~ X log® X and by another
application of Cauchy inequality and condition (3), we get

Sowg kn—a)2§< 3 b;ﬁ)( 3 TQ(kn—a))

Q<n<2Q Q<n<2Q Q<n<2Q
<Qlg”Q Y N)
kQ—a<N<2kQ—a
< kQ%logPt3 X.

Therefore,
3 (m|bm\ 3 M) (kQ logP)? S b7 n—a))é
n Q
P<m<2P Q<n<2Q Q<n<2Q

kn=a mod m

N

P D 1
< 0 (kQ(log X) 2 (kQ*logP ™3 X)§>

< Pk1 (log X)H%

The number of pairs of intervals of the form ([P,2P),[Q,2Q)) to be con-
sidered is at most < log? X, hence

SIPEED SIS DI DS S kgzPlongz

a,k<X a<m<X m<n<X a,k<X
kn=amod m

< X (log X)**

The fourth term is treated as the third, hence

o0

g bmb E —— K X (log X) "2
b F Tk =] <~ (log X)
mn<X k=1
kn<im<2kn
This completes the proof of Lemma 3.1. U

4. Step II

In this section we prove part (b) of Lemma 2.1. From equation (8), we

get
b 1 X [cos(2mkb)  cos(2mka)
/a @Z)(u)dU—W;( k‘2 — k2 )
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Using the definition of Hy stated in (7), we obtain

t+h Z /t—i-h

t m<N

m

- 27T2 Z mz k2

m<N k=1

> cos (27‘(‘M) — cos (27?%)

As usual, let us write e(t) for €2, then

t+h (Bh) — 1) e (Et) (e (k@) 4
Hn(u 4#2% gj ;( ) )

t

Therefore,

1672 / -
T t

o7 oo (o (ER) — 1) e (k) (o (—p2EnY 1) [
[ Z%Zuwlumukm)odt

T <N k=1

t+h

2 (e (Br) —1) (e(=t) —1
B TS AR CEE

L) )2

After multiplying the terms inside the integral above, we obtain the follow-
ing four terms that we will estimate below:

Tkt It Ih  kh Tt kt
el—=—=)dt+e|— -2 el = — =) dt
T m n n m T n o m
kh 2T It kt Ih T /1t kt
—e|l—— el———|dt—el| — el —+—) dt
m T n m n T n m
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e2mirt qt| < |r|, for any 7 # 0. We begin with the last
term and use |e( ) —1)] <2 and Lemma 3.2. Then

e ) /;Te <: ’ :j) &

S
3
S
3
8
—~
®
—
I
~—
|
—_
~—
—
o
|
=
~—
|
[
SN—
o
—~
3|

< S [bwbil i (%) (%) M < N3 (log N)'*

The third term is treated similarly to obtain

5 00,55 BN ) el (0 i,

mn<N k,l=1

Now, if kn = Im, then

/2T <k:t lt)
el —=—=)dt+e
T m n

2T
(B (Y o
n m) Jr n o m
If kn # Im then,

Tkt It Ih  kh T /1t kt 1
el———)dt+e| ——— el - —— | <777
TN R neem/j e \nom | =

Let us study first the case when kn # Im,

o L ()

m,n<N k,l=1
kn#lm
< D |bmbnl Z WIET]
m,n<N k,l=1
kn;ﬁlm
1
m,n<N k,l=1

kn;élm
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by Lemma 3.1. Similarly,
o0 khY _ _lhy _ th _ kh\ p2T
mebnz (e(m) 1)(6( n) 1)€(n m)/ €<lt—kt>dt

2
m,n<N k,l=1 (kl) T " m
kn#lm

< N3logP N.

If kn = ml, we will use |e(t) — 1| < min(1, |¢|) instead. The expression
obtained has some similarities with Lemma 3.3. We are going to use the
same argument to prove:

> 1 . kh . lh 3
(13) Z |bim.bn| Z Wmln <1, m) min <1, n> < hZ.

mn<N k,l=1
kn=Ilm

As in Lemma 3.3, take d = (m,n), a =", B =75 and 7 = g Sol = B

and then

> 1 kh lh 1 &1 v\ \ 2
— min(1,— |min(1,— ) =——> — (min(1,-2)) .
3 i (15 ) min (150) = 2 2o e (min (1 7))

kn=Im

If d < h, we obtain %, & <min (1,’%))2 — ™ andifh<d<N,

y=1 4% 907
21 m\\2  [h)? 1 1
i (mn (17) - (3) Z s
=1 y<g v>4
<(i) +(2) < ()
Therefore,

e N izt
(m, n) <1 . hy ’
bmbn o) 1 h 2
< Z d' Z ’m2n2’ 74 [mln <17J>]
a=N di?n%,];rl) !
bl 2 o
<<Z(d22 *2) DY (dz W)
d<h = m<N hedslV me
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2
Since d|m we have m > h and so, h? Y h<d<N <dzm<N b";) < WM. To
d|

estimate the first term we begin with Holder inequality:

b, bm, 1\3
S (S D) < (S h) (X am)
d<h m<N m<N M<N
djm dim d|M
The third sum is O (45) (similar to (11)). Then

S ) <2 T )

d<h m<N M<N d<h d<m<N
d|m d|M djm

(T (T b))
- - Dim

[S%

The last part of Lemma 3.4 implies )y “:;1”2' 7(m) = O(1), where the
underlying constant doesn’t depend on N. Therefore, we obtain inequality
(13) and part (b) of Lemma 2.1, follows. O

5. A general Theorem

In this section, we prove Theorem 1.1, from which the main Theorems
1.2 and 1.3, will be deduced.

Proof of Theorem 1.1 : From the Main Lemma, we have, for all large T
and h < min (log T, k:Z(T)),

2T t+h 2 5
/ < H(u) du) dt < Thz.
t

T
Assume #{n < T : aH(n) < 0} > T. Let ¢ > 0 be a constant and T
be sufficiently large, such that #{n < 2T : aH(n) < 0} > ¢T. Divide the
interval [1,27] into subintervals of length h, where h is a sufficiently large
integer satisfying h < logT. Then more than ¢T'/h of those subintervals
must have at least one integer n with aH(n) < 0. Let C be the set of the
subintervals which satisfy this property. Write C = {J, |1 < r < R}, where
the subintervals are indexed by their positions in the interval [1,27] and
where R > ¢I'/h. Define K = J35_9, for 1 < s < R/3, and let D be the
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set of these subintervals. We have #(D) > ¢T'/3h. Notice that any two
members of D are separated by a distance of at least 2h.

Let M be the number of subintervals K in D for which there exists an
integer n in K such that aH(n) < 0 and aH(m) < 0 for every integer
m € (n,n + 2h), and let S be the set of the corresponding values of n.

Lemma 5.1. For some absolute constant c1, we have M < 1L
h2

Proof. Since H(x) = H(|z]) — a{z} + 0(x), then
aH(z) — aH(|z]) = —a*{z} + ab(x).

So, if z is sufficiently large and not an integer then
5 o 3 9
(14) —2¢ {z} < aH(z) —aH(|z]) < —1¢ {z}.

Let nq be the smallest integer such that any non integer x > n satisfies
condition (14). If #{n € S:n > n1} =0 then M < ny, so, the lemma is
clearly true for sufficiently large T'. Otherwise,

#{neS:n>m}>M-—ny > M.
Take n € S with n > n; and ¢ € [n,n + h|. For any integer m € [t,t + h],
aH(m) < 0. Now, for any 1 < j < h,

[t]+5+1 [t]+5+1 [t]+j+1
/ H () du = / (H(w) — H({] + ) du + / H(lH] + ) du.
[t] +7 [t} +7 [t] +7

Therefore, by (14),
[t]+j+1 1/ 3
/ aH(u)du < / <—4a2:r> dz + aH([t] + 7)
[t 0

147

because aH ([t] + j) < 0. Since [t] > n, we also have

/t[t]+1aH(u)du</{l (—ia%) d + () (1 — 1)) < 0

t}
and
t+h {t} 3
/ aH(u)du < / (—a%) dz +aH([t] + h){t} <0.
[t]+h 0 4
Hence,
t+h 3
H(u)du| > §|oz](h —1).
t
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Take an integer r = r(7T') such that 2" > (log T)3+% Using (6) and (9), we
obtain

/ N ( t”h ()

2 2

=z t+h
dt:/ ( H(u) du> dt
0 t
L t+h 2
-l—Z/T < t H(u)du) dt
J=0"727

T, 04D ax~T
< ?h (logT)""2 + h2 ‘ 0§
J:

< Th3,
due to h < logT'. On the other hand,
2

/02T ( tH_hH(u)du>2 dt > g/nn—% < tt+hH(u)du) dt
n+h 2
=Y (:]a(h—l)) at

nes n
n>ny

> Mh3.

Hence M < cl% for some absolute constant c¢;. O
hi

Take ¢y = ¢/6h. If h is a suitably large integer such that ¢;7T < coTh%,
then there are at least ¢oT intervals K in D such that aH(n) < 0 for some
integer n € K and aH(m) > 0 for some integer m lying in (n,n + 2h).
Now, suppose #{n < T : aH(n) <0} > T. Take T sufficiently large and
take the order relation ‘ <’ to be ‘ <’. Therefore, we have cyT" integers m
in the interval [1,27], for which aH (m) is positive. In this case,

#{n<T:aH(n)>0}>T.
If we don’t have #{n < T : aH(n) <0} > T, then
#{n<T:aH(n)>0}=T(1+o0(1)).

Hence, part 1 of Theorem 1.1 is proved. Next, we prove part 2. Take
‘<’ to be ‘ <’. Then, there exists a positive constant ¢y and cyT" disjoint
subintervals of [1,T], with each of them having at least two integers, m and
n, such that H(m) > 0 and H(n) < 0. Therefore, in each of those intervals
we have at least one [ with either H(l) =0 or H(l)H(l + 1) < 0. Whence,
zu(T) > QT or Ny(T) > FT. O
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6. A class of arithmetical functions

In this section, we consider arithmetical functions f(n), such that the
sequence by, satisfies conditions (3) and (4). We begin with some elementary
results about this class of arithmetical functions. Using condition (4), we
immediately obtain the following lemmas:

Lemma 6.1. Let b, be a sequence of real numbers satisfying (4), for some
constants B and A > 1, then there exist constants vy, and o such that

by, 1
(15) ZnZBIng+7b+O<>,

—~ logA Ly
S b
n
(16) E w2 a,
n=1
by, B 1
17 b _B Lo () |
(17) nz:jg n? T a:logA_1 x

Next, we calculate the sum of f(n) and describe the error term H (z).

Lemma 6.2. Let b, be a sequence of real numbers as in Lemma 6.1, then

(18) Zf(n)zzx%:ax—w—¥+mx),

n<x n<z dln
where,
b x 1 1
0 Hw=- ¥ () ro( b )eo( it
(19) () <Z:z nw n logca: logA_C_lx
n_logc:c

forany 0 < C < A—1.
Proof. We have

Srm=Y Y= =% S

n<x n<z djn d<z n<w m<zx dg%
dn

We separate the double sum above in two parts. Let 0 < C < A — 1 and
y = log® z. Then

) IDIFEDIDITED I BEL

m<z d< L n<y d<Z A< 7 y<n<e
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In order to evaluate the first term on the right, we start with an application
of formula (15):

b 1
> S (s moen 0t )

n<y d<& n<ly]

= Bly|logz — B > logn +wly] + O (w%) .
n<|y] & Y

Recall that by Stirling formula, anl_y |logn = ly]logly| — |y] + % +
% + 0 (%) Hence,

2 2 %d = Bly] (logz —logly] +1) +wly] - w

Y 1
+O0(———)+0(—-|.
<logA1x> <y>

> bd bd bd x 1 bd
O RN SN LRI CEIT Do

- TR <
bq x Y + Blogx
RS OB S
dS%
Blogy Y
— Bly](logz —logy) + 5 —Wlyl +0O <A_1>
log z

Notice also that B|y|(logy —log|y|) = B|y] <— log (1 - %)) = B{y} +
O (%) . Joining everything together, we obtain

Hw) = 3 fm) (o - TRE2E )

n<x

. bd x 1 1
== 2 g <3> O (10gAClx> o <logcw> '

<_
d_ logc T
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Proof of Theorem 1.2 : We just have to show that H(x) satisfies the con-
ditions of Theorem 1.1. From Lemma 6.2, for any x

Hz)— H(|z]) = —afz} — g (log 27| 2] — log 272)
= —o{z}+ f{i} + O (;) .

In Lemma 6.2, we also obtained

bn, x 1 1
H)=— > 2 (;) +O <logcx> 1O <log‘4_c_1x) ,

n<—2%2

_logcx
for any 0 < C < A — 1. Take C:5+%, y(:::):logicaC and k(r) =
min (logcz/v,logA_C_1 x) Since A > 6 + D/2, then C < A — 1 and
A—C —1 > 0. The first part of Theorem 1.2 now follows from Theo-
rem 1.1.

Suppose that f(n) takes only rational values. In order to prove the
second part of Theorem 1.2, we use the following result of A. Baker [1].

Proposition. Let ay,...,a, and B, ..., B, denote nonzero algebraic num-
bers. Then By + f1logaq + -+ + Bnlogay, # 0.

Using the result above, we obtain the next lemma.

Lemma 6.3. Let f(n) be a rational valued arithmetical function and sup-
pose the sequence by, satisfies condition (4) for some real B and A > 1. Let
r be a real number and suppose H(x) is given by (18). Then

(1) If B =0 and « is irrational then #{n integer: H(n) =r} < 1;

(2) If B is a nonzero algebraic number then #{n integer : H(n) =r} < 2;

(3) If B is transcendental then there exists a constant C' that depends on
r and on the function f(n), such that

#{n < T,n integer: H(n) = r} < (logT) .

Proof. Suppose that B = 0 and « is irrational. Suppose also that there are
two integers, say M # N, such that H(M) = H(N). Then

Zf(n)—aM—i—%: Zf(n)—aN—l—%.
n<M n<N

But this implies that « is rational, a contradiction.
Next, suppose B # 0 is algebraic number and that there are M > N > @
integers, satisfying H(M) = H(N) = H(Q). We have
Blog2nM v Blog2nN
Zf(n) alM + > +2—Zf(n) aN + +2

2
n<M n<N
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which implies

B M 1
a:M—NIOg(N>+M—N Z f(n).

N<n<M
Consequently
(%) e 1 3 1 3
Blog — | = fn) - f(n).
<%) M=Q M- Q<n<M M-N N<n<M

We are going to prove that

()™ ()"

Since B is a nonzero algebraic number and the values of f(n) are rational,
for any integer n, the proposition implies

_1
)J\/I—N

1 1
— | Fa—g 2 -y 2 ),

M-q Q<n<M N<n<M

Blog (

VN
o |2z
N—

and so we get a contradiction, which implies #{n integer : H(n) =r} < 2,
for any real number r. In fact, instead of proving (21), we are going to
prove that

(22) MN=QQM=N o NM-Q

for any positive integers M > N > Q. Clearly, this implies (21). The
inequality (22) is just a particular case of the geometric mean-analytic
mean inequality

1
(23) <H Uz> < %Zuu
i=1 i=1

where equality happens only if uy = ug = -+ = u,. In fact, if we take
n=M-Q,ui=Mforl<i<N—-Qandu; =Qfor N—-Q <i<M-Q,
we derive

1
M-Q
Hence, we obtain (22) and part 2 of the Lemma.

Finally we prove part 3. Suppose r is a real number such that

#{n<T:H(n)=r}>4.

(MN-QQM-Ny 2 < (N~ Q)M+ (M~ N)Q) = N.
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Let @ < N < M be the three smallest positive integers in the above set,
then

M)W 1 1
0 Blog [ =g > fm-y—x 2 o
% M-Q Q<n<M N<n<M

Suppose L is such that H(L) =r. Then L > N > @, and as in part 2:

L\T=N
0 Blog EJZ)LlQ e IR SO}
§> Q<n<L N<n<L

After we cross multiply the two expressions above, we obtain

1
M\ =~
(N) =7 10g N - ’

()" (5)7

for some rational ri. Therefore, there are four rational numbers ro,r3,74
and 75, such that

(5=

log

72 = M?"3N7’4Q7"5.

Now, any prime dividing L must divide M N@Q. Notice that, if p is a prime,
k is an integer and p* < z then k < }ZE;. Therefore, the number of integers
smaller than x, which have all prime divisors smaller than M is smaller

than (log x)W(M). This finishes the proof. O

Except when o = 0, or B = 0 and « is rational, we cannot have z (T') >
T. Hence, we obtain the second part of Theorem 1.2. O

Example. We finish this section by proving that Theorem 1.2 is valid for
the arithmetical function —

()

Notice that
no_ 1 A9
oo ~ 11 (+554) =25

Let b, = £ Z)((Z))", then f(n) = 3", % Tn [8], R. Sitaramachandrarao proved
that

=
/E
2
3
I
8
+
Q
—
8\
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so condition (4) is satisfied for any A and with B = 1. By Merten’s Theorem
-1 -1
[ (1 - %) <TIl<n <1 - %) ~ €7 logn, hence

>t = W)

n<x n<x

) = 20(10g4n) = O(:Ulog4a:),

and condition (3) is satisfied for D > 4. In this case,

_ ¢2)¢B) 10gp
B C IR

and

o n C2)XB) | loga  log2mty+ Y, otk
H0 =2 5oy~ "ce “F 2 2 |

Since B = 1 we can apply Theorem 6.3, and so z(T) < 2. Therefore, if
#{n <T:aH(n) <0} >T, then Ny(T)>T.

7. Second class of arithmetical functions

Given a sequence of real numbers b,,, and a complex number s, we define
the Dirichlet series B(s) = > 7, %. In this section, we consider arith-
metical functions f(n), such that the sequence b, satisfies conditions (3)
and (5) for some D > 0, [ real and a function g(s) with a Dirichlet series
expansion absolutely convergent for o > 1 — A, for some A\ > 0.

U. Balakrishnan and Y.-F. S. Pétermann [2] proved that:

Proposition. Let f(n) be a complex valued arithmetical function satisfying

Z

(s)CP(s+1)g(s + 1),

for a complex number 3, and g(s) having a Dirichlet series expansion

o0
Cn
s’

n=1

which is absolutely convergent in the half plane o > 1 — A for some A > 0.
Let By be the real part of 8. If
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then there is a real number b, 0 < b < 1/2, and constants Bj, such that,
taking y(z) = zexp (—(logz)?) and a = (°(2)g(2),
oz + YW Bj(log )79 7, <0 B (£) + 0(1) if o > 0,

The real version of the previous proposition allows us to prove Theo-
rem 1.3:

n<x

Proof. Notice that, for any ¢ > 0, log®|z| = log®xz — c% log¢ tz+0 (%) .
So, H(z) = H(|z|) — a{x} + o(1). From the previous proposition, there is
an increasing function k(x), with lim, .. k(z) = oo, such that

nw == % 0 (3)+0 ()

n<y(z)

where y(z) = zexp (—(logz)®), for some 0 < b < 1/2. Hence, the result
follows from Theorem 1.1. O
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