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resumo  

As doenças cardiovasculares são a principal causa de morte em todo o 

mundo. De entre estas, o enfarte do miocárdio é uma das doenças mais 

comuns, sendo caracterizado por isquemia que leva a morte de células 

cardíacas. A isquemia ocorre em consequência da privação simultânea de 

nutrientes e oxigénio. Enquanto a isquemia representa um dano celular, a 

privação de nutrientes está relacionada com efeitos cardioprotetores. A 

resposta das células a estes estímulos pode ser por indução de autofagia ou de 

apoptose, dependendo da sua capacidade de adaptação e resposta aos fatores 

indutores de isquemia. A autofagia é um processo auto-degradativo que 

permite à célula adaptar-se ao stresse e é, portanto, um processo associado à 

sobrevivência celular. A libertação de exossomas pelas células é também um 

mecanismo de adaptação cujas funções estão relacionadas com a 

comunicação intercelular. Por outro lado, a apoptose é um processo de morte 

celular programada. A regulação destes processos é de extrema importância 

para a sobrevivência e recuperação nos episódios de enfarte do miocárdio.  

     Hoje em dia sabe-se que os lípidos têm um papel importante no 

desenvolvimento de doenças cardiovasculares embora o seu papel ainda não 

esteja completamente esclarecido. Os lípidos são os componentes maioritários 

da membrana celular e desempenham funções a nível estrutural e de 

sinalização. Quando exposto a diversas condições fisiopatológicas, o 

conteúdo lipídico das células e dos exossomas é modificado. No entanto, 

existem ainda poucas publicações sobre a avaliação do lipidoma de 

cardiomiócitos em patologias cardiovasculares. Assim, o objetivo principal 

deste trabalho é identificar alterações no perfil lipídico de cardiomiócitos e 

exossomas libertados por estes sob privação de nutrientes e de oxigénio, de 

forma a melhor compreender o enfarte do miocárdio e se possível identificar 

novos biomarcadores para esta patologia.  

    

apoptose, autofagia, biomarcadores, cardiomiócitos, doenças 

cardiovasculares, espectrometria de massa, exossomas, fosfolípidos, infarte 

do miocárdio, isquémia, lipidómica 



Nas células cardíacas verificamos que algumas espécies moleculares de 

fosfatidilcolina (PC34:1 e PC36:2), fosfatidiletanolamina (PE34:1), 

fosfatidilserina (PS36:1), fosfatidilinositol (PI36:2, PI38:3 e PI38:5) e 

esfingomielina (SM34:1) variam em isquemia e em privação de nutrientes em 

comparação com o controlo. Algumas variações foram específicas da 

privação de nutrientes como a diminuição de SM(34:1) e o aumento de 

PS(36:1) e outras foram específicas da isquemia como a diminuição de 

PC(36:2) e de LPC(16:0). A espécie molecular PC(34:1) foi a que se mostrou 

alterada de forma diferente em cada condição sendo que aumenta em caso de 

isquemia e diminui em caso da privação de nutrientes. 

No caso dos exossomas, os resultados obtidos permitiram verificar que houve 

um maior desvio entre o lipidoma de exossomas libertado em isquemia e 

privação de nutrientes em todas as classes de lípidos. Algumas alterações 

foram coincidentes com as observadas para as células, por exemplo a 

diminuição PC(34:1) em starvation mas outras foram diferentes. Uma vez que 

apenas se realizaram análises lipdómicas para uma dimensão reduzida de 

amostra de exossomas, serão necessários estudos futuros para a validação dos 

resultados obtidos. 

Em conclusão, a privação de nutrientes e a isquemia induzem alterações na 

homeostasia dos lípidos. Este trabalho sugere que os lípidos são potenciais 

ferramentas para avaliar se os cardiomiócitos estão a optar pela morte celular 

ou pela recuperação, que serão úteis para melhorar o diagnóstico e 

prognóstico de doenças cardiovasculares. 
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Abstract              
Cardiovascular Diseases are the most significant cause of death. Myocardium 

infarction is one of the most common of this type of diseases and it is 

characterized by myocardium ischemia. Ischemia occurs in consequence of 

simultaneous starvation and hypoxia. While ischemia represents a cellular 

damage, starvation is associated with a cardioprotective effect. The cell 

response to this injury includes either autophagy or apoptosis depending on 

the ability to adapt and respond to the injury and is very important for the 

evolution and recovery of the myocardium infarction. Autophagy is a self-

degradative process that allows cell to adapt to stress and so it is associated 

with cell survival. The exosomes release by cardiomyocytes is also an 

adaptive process which functions are related with intercellular 

communication. On the other hand, apoptosis is a process of programmed cell 

death.  
     It is well known that lipids play an important role in cardiovascular disease 

although their role is not completely understood. Lipids are the major 

component of a cell membrane and play structural and signaling roles. Under 

several physiopathological conditions, the cell and exosomes lipid content 

can be modified. However reports on lipidome of cardiomyocytes under 

cardiovascular diseases are scarce. Thus, the primary aim of this work is to 

identify lipid profile changes in cardiomyocytes and exosomes released by 

them under starvation and ischemia, in order to better understand myocardial 

infarction and if possible to recognize new biomarkers for myocardial 

infarction. 

Cardiac cells showed that molecular species alterations in 

phosphatidylcholine (PC34:1 and PC36:2), phosphatidylethanolamine 

(PE34:1), phosphatidylserine (PS36:1), phosphatidylinositol (PI36:2, PI38:3 

and PI38:5) and sphingomyelin (SM34:1) were changed in ischemia and in 

starvation in comparison with control group. Some differences were specific 

of starvation as  the decrease in SM(34:1) and the increase in PS(36:1) while 

apoptosis, autophagy, biomarkers, cardiomyocytes, cardiovascular diseases, 

exosomes, ischemia, lipidomics,  mass spectrometry, myocardial infarction, 

phospholipids, starvation 



others were specific of ischemia as the decrease in PC(36:2) and LPC(16:0). 

The molecular specie PC(34:1) showed different alterations in each condition 

increasing in case of ischemia and decreasing in case of starvation.  

 For exosomes, our results showed a deviation between the lipidome of 

exosomes released upon ischemia and starvation for all lipid classes. Some 

differences matched the ones observed in cells, for example the decrease in 

PC(34:1) in starvation, but others were different. Since we have only 

performed lipidomic analysis for a smaller sample of exosomes, it requires 

further studies to validate the results. 

In conclusion, ischemia and starvation induced changes in lipid homeostasis. 

Our work suggests that lipids are potential tools for evaluation of cell fate, 

either cell death or recovery, that will be useful to improve diagnosis and 

prognostic of cardiovascular diseases. 
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Introduction 

 Cardiovascular Diseases 
Cardiovascular diseases are the most significant cause of death all over the world. 

An accurate diagnosis is essential to early therapeutic intervention and to prevent further 

complications. Due to the lack of specific and sensitive tests, it is somehow difficult to 

do an early diagnosis to be beneficial to those presenting this debilitating condition.  

The mortality rate of cardiovascular diseases has decreased in the last two decades 

(Figure 1) due to contribution of three conjugated factors [1]. First is the adoption of 

preventive strategies such as reduced smoke tobacco, exercise and a healthy diet. 

Second is the improvement of diagnosis and adjustment of modifiable risk factors [4]. 

The third is the significant advance in treatment not only by the increased availability of 

drugs but also by the upgrade of administrative conditions allowing better target 

locations where treatment can be administered [1]. Even though the morbidity and 

mortality associated to this group of disease is still very high and need to be reverted. 

 
Figure 1. Cardiovascular Disease Mortality Rate in Europe and Portugal (INE). 

 

Cardiovascular diseases include two major groups of diseases: cerebrovascular 

disease and ischemic heart diseases (IDH). IDH are the most prevalent in world 

population and myocardial infarction is the most relevant disease among this category 

(Figure 2).  

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Europe

Portugal



 

18 
 

Introduction 

 
Figure 2. Prevalence of different cardiovascular diseases in the world (WHO). 

 

Myocardium infarction is one of the most common IHD, which are characterized by 

ischemia. Ischemia is described as the reduced blood, and thus in a shortage of oxygen 

and nutrients, supply to the heart due to narrowing of the arteries. The narrowing of the 

arteries is a characteristic of atherosclerosis which is described as the thickening and 

hardening of the artery walls caused by deposits of cholesterol-lipid-calcium plaque. 

Therefore, atherosclerosis is a major cause of ischemia and consequently ischemic heart 

diseases [2]. The atherosclerosis is an inflammatory chronic disorder wherein 

endothelial lesions and accumulation of fat and cells obstruct the vascular lumen and 

weaken the underlying smooth muscle causing severe damages. Ischemia can be the 

cause of angina pectoris, chronic heart failure (CHF), hypertensive heart disease (HHD) 

and myocardial infarction (MI) (Scheme 1) [3]. 

 
Scheme 1. Different ischemic heart diseases with atherosclerosis as a cause. 
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Angina Pectoris, referred as cardiac chest pain, is not simply one type of pain but a 

group of symptoms related to cardiac ischemia. It usually begins gradually and last only 

a few minutes. Angina can either occur in rest or be brought by effort [4]. Chronic Heart 

Failure (CHF) is referred to some structural or functional cardiac disorders that impair 

the ability of the ventricle to fill with or eject blood. CHF may result from disorders of 

the heart walls, such as myocardium, or from disorders of the great vessels. However, 

most of the cases are due to left ventricular dysfunction. Hypertensive Heart Disease is 

a term referring to heart diseases caused by direct or indirect effects of elevated blood 

pressure. It increases the amount of work of the ventricle resulting in hypertrophy and 

dilatation, increasing the arterial pressure and enhancing hypertension. Myocardial 

Infarction (MI) is defined as necrosis of myocardium due to prolonged ischemia. 

Pathologically it includes acute, healing and healed myocardial infarction [2]. 

The diagnostic of the IHD related diseases, including myocardial infarction, the 

most common IHD and thus will be considered herein,  are associated with difficult 

early diagnostic due to the inexistence of very sensitive and specific markers in the first 

hours of the events. Several enzymes are released from the injured tissues that lead to 

increased serum levels. Thus, it can be used as markers for this pathology. Despite the 

lack of tissue specificity, few proteins have clinical significance in the cardiac muscle 

and thus in MI,  such as  lactate dehydrogenase (LDH), aspartate transaminase (AST), 

creatine kinase (CK) and troponin (Tn) [5]. These marks only show up hours after the 

cardiac event and allow confirming MI diagnosis and evaluate it prognosis. Sometimes 

this prevent to perform a correct diagnosis and to implement a correct therapeutics. 

Thus, there is a need for searching new cellular markers to improve the early diagnosis 

of IHD. Lipids have emerged as a plausible hypothesis to this lack of primary markers. 

It is therefore necessary understand the alterations in cardiomyocytes at a molecular 

level and the underlying signaling process. 

1.1.  Myocardial Infarction: Physiopathology 
The myocardial infarction is a major cause of death and disability worldwide. 

Formerly, there was a consensus for the syndrome myocardial infarction. The World 

Health Organization (WHO) defined MI based on symptoms, ECG changes and cardiac 

enzymes. However, with the improvement of more sensitive cardiac markers and more 

sensitive imaging techniques it was possible to detect small amounts of myocardial 
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injury. For that reason, it was required an updated definition of MI. In 2000, the First 

Global MI Task Force presented a new definition of MI suggesting that any necrosis in 

the setting of myocardial ischemia should be considered MI [6]. In 2007, these 

principles were refined by the Second Global MI Task Force. The universal definition 

of myocardial infarction consensus document highlighted the different conditions which 

might lead to a MI. This document was well accepted by the medical community and 

was adopted by the WHO [7]. Though, the development of even more sensitive markers 

mandates additional revision, particularly when necrosis occurs in the setting of the 

critically ill, after coronary procedures or after cardiac surgery. Thus in 2012, the Third 

Global MI Task Force integrate this new insights and recognize that very small amounts 

of myocardial injury can be detected by biochemical markers, preferentially troponin, 

and imaging [8]. 

Nowadays, the MI diagnosis is based on clinical features, including symptoms, 

electrocardiographic (ECG) deviations, and elevated values of biochemical markers and 

by imaging. The symptomatology of MI includes chest pain, at effort or at rest, dyspnea, 

fatigue, and usually takes less than twenty minutes. Frequently, the discomfort is diffuse 

and it may be accompanied by diaphoresis, nausea or syncope. MI may even occur 

without symptoms, called silent myocardial infarction. Dynamic changes in the ECG 

waveforms occur during acute myocardial ischemic episodes and often require the 

acquisition of multiple ECG performed at fifteen to thirty minutes intervals, but these 

changes are not always easily perceptible, making difficult the MI diagnosis [8]. The 

serum biomarkers in acute cardiac diseases can be classified as established, outdated 

and developing. Among these, troponin (cTn) has been established as fundamental for 

diagnosis and also provides strong prognostic information [9]. This protein is 

responsible for the regulation of muscle contraction. Whether cTnI or cTnT, both are 

highly specific to myocardial muscle and so sensitive for cardiac injury. The cTn 

elevations begin two to four hours after onset of symptoms. There are novel data 

suggesting that re-elevations of cTn and an increasing pattern can be used to estimate 

whether a given MI event is acute or is chronic. Other markers are creatine kinase-MB 

(CK-MB), myoglobin and aspartate transaminase (AST). CK-MB is a protein that could 

be used to define infarct timing although clinicians become more comfortable with cTn. 

Myoglobin has been used with the intent of shortening the time to a more definitive 
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diagnosis in patients with chest pain, but it lacks specificity, since it is also abundant in 

muscle and can be elevated in muscle lesions or other myopathies. AST levels begin to 

rise within six to eight hours, peak at twenty-four hours and return to normal within 5 

days. However, because of the extensive tissue distribution, these levels are not useful 

in diagnosis of myocardial infarction. The c-reactive protein (CRP) and the B-type 

natriuretic peptide (BNP) are two developing markers. Some authors argue that, in the 

absence of acute illness, including myocardial injury, levels of CRP are stable. BNP is a 

peptide released in response to cardiac stretch. It is helpful for the detection of 

congestive heart failure in patients with uncertain cause of dyspnea. The routine use of 

this to developing markers is not supported [10]. Commonly used imaging techniques in 

acute and chronic infarction are echocardiography, radionuclide ventrilography, 

myocardial perfusion scintigraphy (MPS) using single proton emission computed 

tomography (SPECT) and magnetic resonance imaging (MRI). Positron emission 

tomography (PET) and x-ray computed tomography (CT) are less common. Each of the 

techniques can assess myocardial viability, perfusion and function [11]. 

Pathologically MI is categorized as acute, healing and healed. Acute MI is 

characterized by the presence of polymorphonuclear leukocytes. Healing MI is 

characterized by the presence of mononuclear cells and fibroblasts and absence of 

polymorphonuclear leukocytes. Healed MI is characterized by scar tissue without 

cellular infiltration [2].  

According to pathological and clinical features, and prognostic differences, along 

with different treatment strategies, myocardial infarction is classified into five types. 

Type 1 is spontaneous myocardial infarction which is related to atherosclerotic plaque 

with resulting thrombus leading to decreased myocardial blood flow. Type 2 is 

myocardial infarction secondary to an ischemic imbalance. There is an imbalance 

between myocardial oxygen supply and demand. Type 3 is myocardial infarction 

resulting in cardiac death but when biomarker values are unavailable. There are 

symptoms suggestive of myocardial ischemia and ECG changes but death occurred 

before blood samples could be obtained, before cardiac markers could rise or cardiac 

markers were not collected. Type 4 and type 5 are related to myocardial infarction 

associated with revascularization procedures. Periprocedural myocardial injury or 

infarction may occur at some stages in the instrumentation of the heart that is required 



 

22 
 

Introduction 

during mechanical revascularization procedures. Following this procedures are elevated 

troponin values since various insults may occur that can lead to myocardial injury with 

necrosis [8].  

Myocardium infarction is one of the most common IHD. These diseases are 

characterized by ischemia, a biological conditions that includes starvation and hypoxia. 

Cells exposed to these conditions have two alternatives: survive, and for that initiates 

the autophagy process; or die and in this case initiates apoptosis. 

 
Scheme 2. Adaptative and non-adapatative cell response to an ischemic event. 
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stress, and increase of reactive oxygen species (ROS) production may occur being one 

of the plausible mechanism that underlie cell apoptosis [16]. 

Starvation of specific nutrient triggers different responses in tissues [12]. Cell 

detects levels of energy by sensing ATP and aminoacids levels. ATP is mainly produced 

by mitochondrial oxidative phosphorylation and during starvation, with the intention of 

meet cellular energy requirement. It is reported an increase in mitochondrial 

proliferation along with decrease in maturation. This indicates that mitochondrial defect 

cannot be compensated by the increase in mitochondrial number [17]. So the lack of 

glucose, that is necessary to maintain ATP levels, leads to the activation of AMPK, 

which is sensitive to AMP:ATP ratio. This activation increases the translocation of 

glucose transporter to the plasma membrane and inhibits promoters of glucose-repressed 

genes. Additionally it activates p53 in order to inhibit cell proliferation [18]. The lack of 

aminoacids such as glutamine and leucine leads to the inhibition of mTORC resulting in 

inhibition of protein synthesis. Moreover, it leads to the decrease of cdc2 activity 

stopping cell cycle and inducing autophagy, a way to help the cell survive. In 

conclusion, cell response when confronted with lack of nutrients by shifting to 

catabolism in hope to survive [12]. 

 Autophagy as a way of cell survival 
Autophagy is seen as a self-degradative process important not only for 

housekeeping but for balancing sources of energy in response to nutrient stress. It 

initiates with a phagophore derived from lipid bilayer that expands to engulf intra-

cellular cargo. The loaded double-membrane autophagosome matures through fusion 

with the lysosome, leading to the degradation of autophagosomal contents by acid 

proteases. This process promotes cellular senescence, protects against genome 

instability and prevents necrosis, giving it a key role in preventing diseases such as 

neurodegeneration, cardiomyopathy and diabetes [13].  

Two hypotheses have emerged: is autophagy assisting in the death of cells or is it 

protecting the cell from it? Since autophagy promotes cell survival during nutrient 

starvation and it may also indirectly promote cell survival by retarding or preventing 

apoptosis, and it seems that the correct hypothesis in these circumstances is the second 

one. In the heart, autophagy is low under normal conditions but it is enhanced in 
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pathophysiological conditions, such as in the case of ischemia that is associated with 

ATP depletion and increased ROS and permeability transition pore opening [19].   

Autophagy can be classified as micro-autophagy, macro-autophagy and chaperone-

mediated autophagy. In micro-autophagy the lysosome itself directly take up the cargo. 

In chaperone-mediated autophagy the cargo makes a complex with a chaperone and this 

complex is recognized by the lysosomal membrane. In macro-autophagy an 

autophagosome delivers cargo to the lysosome and it will be referred as autophagy only 

[13].  

This process appears to randomly degrade cargo but there is evidence that the 

phagophore can recognize proteins in the target cargo. It acts as a receptor interacting 

with an adaptor promoting a selective degradation. Selective autophagy is significant for 

diseases and it seems to be correlated with normal growth conditions and not associated 

with disease while non-selective autophagy is associated with starvation.  

Autophagy plays a housekeeping role removing damaged organelles such as 

mitochondria. The oxidative phosphorylation occurs in mitochondria generating ATP by 

transfer electron to oxygen. The reactive oxygen species (ROS) production is inevitable 

in this metabolism and it can cause mitochondrial damage [20]. The removal of 

mitochondria results in a decrease of these species. The damage caused by ROS 

production can induce the opening of pores with high permeability leading to ATP 

depletion and promoting apoptosis [21]. So, mitophagy is a term used to refer to 

autophagy-dependent degradation of mitochondria and it is a mechanism of self-defense 

of the cell. It is relevant to limit ROS production and prevent the oxidation of 

biomolecules such as lipids and proteins. Starvation is also a mitophagy inducing factor 

[22]. It causes depolarization of mitochondria that move into vacuoles where they are 

subjected to acidic conditions. The membrane that surrounds and sequesters 

mitochondria after nutrient deprivation is LC3-containing [21]. Several molecules are 

implicated in yeast mitophagy, which are Uth1 a protein required to mitochondrial 

clearance and Atg32 that interacts with Atg8 and Atg11, all LC3 proteins, that act as a 

receptor, but there are no known homologues in mammals [23,24]. Although there is an 

amino acid motif required for the interaction that is conserved in p62. The existence of 

Parkin, an E3 ubiquitin ligase, in the mitochondria outer membrane and ability of the 
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UBA domain of p62 to bind to ubiquitin chains suggests that ubiquitinated molecules 

are required to promote selective autophagy [25]. 

2.1.1. Lipids in Autophagic Signaling  
Lipids and particularly phospholipids have been also considered key players in 

autophagy. Phosphoinositides (PI) and their derivatives of PIPS formed by 

phosphorylation/desphosphorylation of the inositol group, have important role in cell 

signaling and also in autophagy. Phosphatidylinositol-3-phosphate (PI3P) for example 

is required for autophagy [26]. It is localized in autophagic structures and promotes 

negative curvature and thus controls autophagosome (AP) size. It is also highly enriched 

on the inner surface of phagophores and coordinate specific effectors necessary for 

downstream transduction [27]. However, PI(3,4,5)P3 and class I phosphatidylinositol 3-

kinase (PI3K) have been shown to inhibit autophagy through activation of Akt pathway. 

Akt activates Rheb which in turn promotes mTOR that suppresses autophagy [28]. By 

contrast, in starvation, mTOR is inactivated and autophagy is positively regulated by 

PI(3,4,5)P3 phosphatase [29]. Class I PI3K, however, was recently shown to positively 

regulate autophagy by association with class III PI3K, independently of the Akt-TOR 

pathway, leading to increase in PI3P production [30]. So, different PI3Ks tightly 

regulate autophagy. 

Apart from being the main precursor for most phospholipids, the phosphatidic acid 

(PA) has also important signaling functions. Its cone-shape is thought to directly affect 

membrane dynamics inducing negatively curvature, facilitating the budding or fusion of 

vesicles [31]. PA has been shown to activate mTOR signaling and thus inhibit 

autophagy by direct interaction. It was reported that the PX domain containing 

phospholipase D1 (PLD1), which makes PA from PC, is part of an aminoacid-sensing 

mTOR pathway. PLD1 binds primarily to PI3P and PI(3,4,5)P3 on lysosomes thereby 

stimulating PLD1 activity. This binding occurs in lysosomes to ensure that PA is made 

in the proximity of mTOR [32]. On the contrary, it was reported that starvation induces 

PLD1 activity, increasing PA that activates mTOR and inhibits autophagy. It was also 

found that PLD1, under starvation, relocalize to autophagosome membrane suggesting 

that PA would be generated on autophagosomal membrane [33]. Additional 

investigations are required to find out if the role of PA is through its conversion in other 



 

26 
 

Introduction 

lipids, if it is required for membrane curvature or if PA recruits proteins involved in 

autophagy [26]. 

PA acts as mTOR activator and for that inhibits autophagy. But on the other hand, 

PLD1 produces PA and it is required for autophagy. These contradictory facts could be 

explained by a rapid turnover of PA to other lipids. Diacylglycerol (DAG) for example 

has been shown to induce autophagy [34]. DAG activates protein kinase C δ (PKCδ), 

which in turn activates c-Jun N-terminal kinase (JNK). JNK phosphorylates Beclin1 

inhibitor Bcl-2 to cause Bcl-2 dissociation resulting in activation of autophagy by the 

class III PI3K [35]. 

Ceramide (Cer) and Sphingosine-1-phosphate (S1P) that can be formed by 

hydrolysis of sphingomyelin both induce autophagy [36]. They inhibit mTOR but at 

distinct steps resulting in different outcomes. Ceramide induces cell death with 

autophagic features [37], while S1P induces autophagy that protects from cell death 

[38]. Ceramide acts upstream of S1P and triggers a stronger autophagic response not 

affected by starvation. It inhibits class I PI3K/Akt pathway causing Bcl2 to dissociate 

from Beclin1 by JNK [39]. Several autophagy genes are regulated by transcription 

factor FOXO3, which is inhibited by Akt. Ceramide relieves this inhibition promoting 

autophagy [40]. The role of ceramide could also be structural since it favors negatively 

membrane curvature [27]. Sphingosine kinase 1 (SK1) produces S1P which increases 

autophagy by inhibition of mTOR, independently of Akt [38]. The activity of SK1 

increases during starvation. This leads to starvation-induced autophagy. Depletion of 

sphingosine-1-phosphate phosphohydrolase (SPP1) was also shown to increase S1P 

levels and induce autophagy independently of mTOR [41]. 

   Cardiolipin (CL) is mainly found in the inner membrane of mitochondria being 

important not only for its normal function but also to apoptosis [42]. The BH3-only 

protein ApoL1 causes cell death by sequestering PA, which activates mTOR, and CL, 

which activates mitochondria-mediated apoptosis. This alters the balance between 

survival and death leading to autophagic cell death [43]. Apoptosis will be discussed 

later. The human immunity-related GTPase M (IRGM) is another CL-binding protein. 

IRGM affects mitochondrial fission to induce autophagy. It can either confer autophagic 

protection or cell death. It is known that knockdown of IRGM causes abnormal 
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elongation of mitochondria thus inhibiting autophagy [44]. However, a recent study 

reports that mitochondria are elongated in the course of starvation [45]. 

2.1.2. Lipid alteration related to autophagy 
Lipids are also targets for autophagic degradation, a process called lipophagy. 

Lipids are stored in the cell in the form of lipid droplets (LDs) that consist of cholesterol 

and triglycerides (TG) surrounded by a phospholipid monolayer. These lipids stored in 

LDs can be mobilized to generate energy when needed. In fact, LDs tend to be 

accumulated as a cause of disruption of autophagy. The degradation of LDs through 

lipophagy can also be stimulated by starvation. It is known that lipid metabolism is 

affected in the course of starvation but it is yet to know if lipophagy depends on a LD-

specific cargo receptor as in other selective autophagy processes [46]. A study using 

hepatocyte-specific Atg7-knockout mice revealed that high lipid loads seem to inhibit 

autophagy resulting in a further lipid accumulation. Since these mice have a very similar 

phenotype to that of human fatty liver disease, this negative feedback contributes to 

diet-induced fatty liver disease [47]. The accumulation of LDs is also associated with 

several other metabolic diseases including diabetes [48].  

LDs are the major site of cholesterol storage that in the form of cholesteryl esters are 

associated with atherosclerosis. Recent studies show that autophagy is activated upon 

exposure to oxidized LDL. This stimulates delivery of cholesterol to lysosomes where it 

is degraded thereby generating free cholesterol for efflux and transport to the liver. 

Autophagy is important in cholesterol efflux because Atg5 macrophages have a reduced 

ability to clear accumulated cholesterol [49]. 

In contrast to the liver, inhibition of autophagy in adipocytes prevents the 

accumulation of TG. Mice with adipocyte-specific knock-out of Atg7 have decreased 

white adipose tissue mass and a switch to production of brown adipocytes. The 

increased brown adipocytes prevent accumulation of lipids in other organs such as the 

heart. Thus, inhibition of autophagy in adipocytes may be beneficial. However, the dual 

role need more studied before autophagy can be targeted as a potential therapy for 

disorders such as atherosclerosis [50,51].  

  Apoptosis: a programmed cell death 
Apoptosis was first described in the twenty century as a mechanism of controlled 

cell deletion, which appears to be complementary but opposite to mitosis in the 
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regulation of cell population [52]. In current days we know apoptosis as the most 

meticulously form of programmed cell death. It is considered a central component of 

various processes including normal cell turnover, proper development and functioning 

of the immune system, hormone-dependent atrophy, embryonic development and 

chemical-induced cell death [16]. 

There are two major apoptotic signaling pathways: the intrinsic pathway and the 

extrinsic pathway. The main difference between them is the involvement of Bcl-2 

protein family that only regulates the intrinsic pathway. The Bcl-2 family have been 

gathered in three classes: the first inhibits apoptosis as Bcl-2, Bcl-x and Mcl-1; the 

second induces apoptosis as Bax and Bak; the third is BH3-protein as Bad and Bid, 

which enhances apoptosis by regulation the anti-apoptotic class relieving the inhibition 

of Bcl-2 leading to the promotion of apoptosis [53]. 

A wide variety of signals, including hypoxia, activate the intrinsic apoptotic 

pathway [16]. The signal starts to activate p53 which binds to DNA promoting the 

transcriptional upregulation of target genes, for instance apoptotic gene Bax. Bax 

oligomerization in the outer mitochondrial membrane (OMM) leads to mitochondrial 

outer membrane permeabilization (MOMP) and release of proteins from intermembrane 

space to the cytoplasm [54]. Several pro-apoptotic proteins are released such as AIF 

neutralizing inhibitors of apoptosis proteins (IAP). AIF translocate to the nucleus and 

causes DNA fragmentation and condensation of chromatin [55]. Another protein 

released is cytochrome c that is able to bind to apoptotic protease in the presence of 

ATP and activate factor-1 [53]. This process develops a complex named apoptosome 

which recruits procaspase 9 that after being activated to caspase 9 by cleavage of the 

prodomain recruits in turn the procaspase 3. Caspases (cysteine-utilizing aspartate-

cleaving proteases), as described by their designation, are proteases with cysteine in the 

active site. Caspase 3 activated is the straight responsible for cell death. It activates 

others proteins which produce the characteristic changes in an apoptotic cell. Some of 

these changes are plasma membrane blebbing, cell shrinkage, DNA fragmentation, 

chromatin condensation and apoptotic body formation [56]. 

The activation of the extrinsic apoptotic pathway is the responsibility of death 

ligands with no involvement of Bcl-2 family. The death ligands interact with the 

respective receptor and trigger a cascade of events. Fas ligand and TNF-α  are  the  death  
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ligands that interact with two different receptors on the plasma membrane. Although the 

ligand and the receptor are different, both recruit procaspase 8 that is autocatalytic 

activated. Caspase 8 in turn recruits procaspase 9 that is activated to caspase 9 which 

recruits procaspase 3. Caspase 3 activated produces the same results as in the intrinsic 

pathway resulting in characteristic changes in the apoptotic cell [56]. 

2.2.1. Apoptotic-induced Changes in Lipids 
The apoptotic machinery is based on proteins. Additionally, it has been suggested 

crucial functions for lipids in apoptosis and cooperation between lipid metabolism and 

BCL-2 proteins [57]. It is reported a membrane important role in propagation of the cell 

death response [58]. The two key cases are cardiolipin and sphingolipid metabolism. 

 Ceramide is the hub of sphingolipid metabolism. The major pathways of ceramide 

biosynthesis are de novo synthesis, sphingomyelin hydrolysis and sphingosine salvage 

[59]. In order to know how sphingolipid metabolism accommodates key factors in 

apoptosis, it is important to exam the enzymes surrounding ceramide metabolism. The 

three fundamental enzymes are sphingomyelinase (SMase), dihydroceramide synthase 

(CerS) and sphingosine kinase (SPK), highlighted in Scheme 3. 
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Scheme 3. Sphingolipid biosynthesis. Ceramide is generated via three major pathways 
including SM hydrolysis by sphingomyelinase (SMase). Ceramidase (CDase) degrade 
ceramide to sphingosine, which can be irreversibly degraded by sphingosine lyase to 
ethanolamine phosphate and hexadecenal, phosphorylated by sphingosine kinase (SPK) 
to sphingosine-1-phosphate (S1P) or acylated by dihydroceramide synthase (CerS) to 
regenerate ceramide. 

Bcl2 family-dependent apoptosis via endogenous SMase-mediated ceramide 

elevation has been observed in different cell types in response to diverse set of signals 

[57]. The antibiotic minocycline protected rat cortical neurons against bacterial 

sphingomyelinase (bSMase) by up-regulating BCL-2 expression [60]. Ceramide 

elevation and BAX translocation were also observed upon hypoxia/reoxygenation (H/R) 

of NT-2 human neuronal precursor cells [61]. Treatment of leukemia cells with the 

anticancer agent led to an increase in ceramide level where the first peak corresponded 

to SM hydrolysis and the second peak was attributable to CerS [62]. Mitochondria-

specific ceramide pool is necessary for mediating the TNFα apoptotic response in MCF-

7 cells [63]. SMase was also indispensable for UV-induced BAX conformational 

change at the mitochondria of several cell types. It was not observed any UV-induced 

BAX conformational change neither cyt c released in cells with SMase compromised 

activity [64]. 
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Ceramidases (CDases) degrade ceramide to sphingosine, which can be irreversibly 

degraded by sphingosine lyase to ethanolamine phosphate and hexadecenal. This is 

phosphorylated by sphingosine kinase (SPK) to sphingosine-1-phosphate (S1P) or 

acylated by dihydroceramide synthase (CerS) to regenerate ceramide. There are six 

mammalian CersSs. BCL-2 family-regulated apoptosis via endogenous CerS-mediated 

ceramide elevation has been observed in multiple cell types in response to a wide range 

of stimuli. A requirement for CerS in BCL-2 protein-dependent caspase activation was 

also observed [65]. Ceramide elevation preceded BAX activation, and inhibition of 

CerS led to reduced BAX insertion, oligomerization and cyt c release, implying UV-

induced ceramide synthesis is required for BAX-dependent apoptosis [66]. SPK has two 

known mammalian isoforms. SPK1 and 2 have opposing cellular functions. While 

SPK1 activation leads to pro-survival phenotypes, SPK2 enhances apoptosis in multiple 

cell types. Down-regulation of SPK2 lead to decreased sphingosine conversion to 

ceramide while down-regulation of SPK1 has the opposite effect. In endoplasmic 

reticulum (ER) SPK1 promoted apoptosis suggesting that S1P role depends on its 

localization [67]. 

Changes in the expression of BCL-2 proteins, particularly Bax, can alter apoptotic 

sensitivity by modulation of sphingolipid metabolism. BCL-2 overexpression inhibited 

SMase activity, ceramide production, cyt c release and caspase activation [68]. It was 

reported the assembly of ceramides into channels to facilitate protein release in the 

apoptotic program. Ceramide channels can interact with BCL-2 proteins demonstrating 

that ceramides and BAX acted synergistically to promote membrane permeabilization 

[69].  

Cardiolipin is found exclusively in mitochondrial membrane. CL exerts control over 

the mitochondrial apoptotic pathway primarily through the BH3 domain-only 

messenger BID. An intact BID is necessary for interaction with the BH1 domain of 

either BAX or BCL-2, and induced BID expression promoted apoptosis. BID was 

identified as caspase-8-dependent cyt c releasing factor. BID can be cleaved in response 

to Fas and TNF signaling. The resulting fragment cooperates with Bax to promote 

membrane permeabilization and cyt c release [70]. Among several roles, CL acts as a 

docking site for Bcl-2 proteins and caspase-8 [71]. Additionally, CL acts as an anchor 

for cytochrome c. Cyt c is anchored to the inner mitochondrial membrane (IMM) 
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between complex III and IV of respiration chain [72]. CL peroxidation allows cyt c 

release from IMM and may occur due to ROS, for example. The superoxide generation 

is an essential step towards cyt c release and depends on Bcl-2 proteins [73]. 

  Exosomes 
Exosomes are becoming popular since they have been recognized as important 

mediators in cell-cell signaling events. First it was though that extracellular vesicle (EV) 

bud directly from the plasma membrane but in the early 80s a study described a more 

complex mode of EV secretion. It was shown that small vesicles were formed inside an 

intracellular endosome, leading to multivesicular body (MVB) formation with 

subsequent fusion with the plasma membrane [74].  In  1987s  the  word  “exosomes”  was  

proposed for these EVs of endosomal origin. The term exosomes will be used as defined 

by Rose Johnstone and not the more general use for any vesicle released by cells [75].  

Secreted exosomes are biologically active entities that play specific biologic roles 

[76]. Exosomes are an alternative to lysosomal degradation of proteins that are resistant 

to degradation by lysosomal proteases since they are secreted to discard membrane 

proteins useless in the cell [14]. They play an immunological mediator role, for 

example, exosomes secreted by Eppstein-Barr virus (EBV)-transformed B cells 

stimulate human CD4+ T-cell clones in an antigen-specific manner [77]. Meanwhile, 

exosomes produced by dendritic cells (DC) have also an immunological role. After the 

pathogen uptake, immature and mature DC, generate MHC complexes and some of 

these complexes could be secreted on exosomes [78]. These exosomes sensitize others 

DC that have not encountered the pathogen directly, increasing the number of DC that 

bear the relevant MHC complexes and thereby amplify the magnitude of immune 

response [14,78]. Exosomes are capable of intercellular transport of functional DNA 

and RNA. The horizontal transference of genetic material between cells induces 

exogenous expression and mediates RNA silencing [14,76,79]. 

Proteomic studies revealed that exosomes contain a specific subset of proteins from 

endosomes, the plasma membrane and the cytosol [80]. Different cell origin results in 

different composition. So, exosomes do not contain a random set of protein but 

represent a specific subcellular compartment [80]. Although investigations of the lipid 

composition of exosomes were not as recurrent as proteomic analyses, the few studies 

published so far revealed that exosomes have differences in lipid composition when 
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compared to the cell membranes. Thus, the lipid profile of exosomes were studied and 

reported to be constituted mainly by glycosphingolipids, sphingomyelin, cholesterol, 

ceramide and phosphatidylserine [81]. Some of these lipids and proteins are enriched in 

lipid rafts and, indeed, there is a link between endocytosis of lipid rafts and secretion 

into exosomes [82,83]. 

The exosomes biogenesis process is divided into MVB formation mechanisms, 

transportation of MVB to the plasma membrane and fusion of these MVB with the 

membrane (Scheme 4). The intraluminal vesicles (ILV) are formed by inward budding 

from the limiting membrane. The molecular mechanism involved in biogenesis includes 

endosomal sorting complex required for transport (ESCRT) machinery, lipids and 

tetraspanin. It is not known if act simultaneously on the same or on different MVBs. 

The ESCRT consists of four complexes in which ESCRT-0 is responsible for cargo 

clustering, ESCRT-I and II induce bud formation and ESCRT-III drives vesicle 

scission. The VPS4 ATPase, an accessory protein, allows the dissociation and recycling 

of the ESCRT machinery [82]. Several studies have showed that cells with depletion of 

ESCRT key component still form MVBs, thus this suggests an ESCRT-independent 

mechanism [84]. Lipids are key players in the molecular mechanism to exosomes 

biogenesis. Ceramide was proposed to induce inward curvature of the limiting 

membrane of MVBs to form ILVs. Cholesterol is an important component of MVBs 

and it accumulation was shown to increase the secretion of vesicles. Phospholipase D2, 

enriched in exosomes, is involved in hydrolysis of phosphatidylcholine (PC) to 

phosphatidic acid (PA). PA, as described for ceramide, induces inward curvature and 

thus formation of ILV. Proteins are also involved in the molecular mechanism of 

exosomes biogenesis. Tetraspanins are four-transmembrane domain proteins enriched in 

ILVs of MVBs and exosomes, and are responsible for select cargos for exosome 

secretion. TSPAN8 is an example that modifies both the mRNA content and the protein 

composition of exosomes. The HSC70, a heat shock protein, allow the recruitment of 

the transferrin receptor (TFR) to exosomes [82].The RAB family of small GTPase 

protein controls different steps of intracellular vesicular trafficking such as vesicle 

budding and docking of vesicles to their target compartment ultimately leading to 

membrane fusion. These RAB proteins function is docking MVB to the plasma 

membrane, which is a required process for eventual fusion. After docking, soluble NSF-
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attachment protein receptor (SNARE) complexes are instrumental in allowing fusion of 

the lipid bilayers. However, SNAREs do not necessarily mediate the fusion of MVBs 

with the plasma membrane during exosome secretion [82].  

 
Scheme 4. Schematic representation of the machineries of exosomes biogenesis and 
secretion. 

During stress conditions, the cell tends to segregate exosomes in order to protect the 

cell from apoptosis. A high level of exosomes is detected in cardiovascular diseases 

which make them potential indicators for early diagnostics [85]. While protein 

modulation in exosomes under cellular stress is known, the role of phospholipids is still 

overlooked and deserves to be explored.  

2.3.1. Molecular Lipidomic of Exosomes 
The molecular lipid composition of exosomes is largely unknown. Recent studies 

have been shown lipid profile of exosomes released from some cells, for example 

prostate cancer cells [81]. In this study, it was quantified approximately 280 molecular 

lipid species. Exosomes showed enrichment in distinct lipids such as 

glycosphingolipids, sphingomyelin, cholesterol and phosphatidylserine. Additionally, 

this study also shows that cholesterol, long-chain sphingolipids, and PS 18:0/18:1 are 
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enriched to a similar extent in exosome membranes. The analysis of lipid species helps 

to understand the biogenesis of exosomes, their stability in the extracellular 

environment and/or the interaction of exosomes with other cells. Thereby, the high 

content in glycosphingolipids, for example, is related to exosome role in cell-to-cell 

communication since it confers exosomes with the stability needed for extracellular 

environments [86]. The great enrichment of specific glycosphingolipids such as HexCer 

and LacCer in exosomes suggests that these lipids could potentially be used as cancer 

biomarkers [81]. 

It has also been shown that exosomes from mast cells have the ability to induce 

phenotypic and functional maturation of DCs [87]. Since the mechanisms underlying 

these immunological properties are not clearly understood, the characterization of lipids 

present on exosomes could help to elucidate them. Exosomes released from DC have 

phospholipids and cholesterol as major components of the membrane. It was also 

showed an increase in SM content in exosome compared to the cell. Molecular species 

of the major phospholipids, PC and PE, were analyzed. The results showed an increase 

in saturated species. The high content of SM and the di-saturated molecular species are 

known to affect lipid packing in membranes. In terms of cholesterol, it was identical 

with that of presented in cells [88]. It has also been observed in this study that the 

proportion of LPC is relatively high in exosomes. The presence of LPC might be 

essential for the activity in vivo, since LPC trigger DC maturation [89]. 

2.3.2. Exosome as an Agent in Cardiac Repair 
It is known that myocardial infarction is a leading cause of death. Even though there 

are some therapeutically approaches to cardiac damage, there is a need for novel 

treatments to reduce subsequent cardiac remodeling that can adversely affect heart 

function. How the myocardium initiates the local repair process post-MI or how it 

manipulates the bone marrow (BM) environment to induce stem cell mobilization are 

question yet to respond. The exosomes seems to come as a possible response to the 

questions above [85]. 

A major component of the healing response is scar formation, rather than muscle 

regeneration. This is due to the limited ability of the heart to rapidly response [90]. 

However, the limited endogenous reparative mechanisms seem to depend more on the 

replenishment by progenitor cells than on replacement by cardiomyocytes proliferation 
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[91]. It was suggested that the release of stem and progenitor cells by BM could help in 

the turnover of vascular endothelium and myocardial repair response after MI [92]. MI 

induces rapid mobilization of BM-derived stem cells (BM-SCs). These are related to 

reparatory response and it was already reported an important role of BM-SCs in cardiac 

repair [92]. In MI, the levels of soluble inflammatory mediators, cytokines, and growth 

factors are significantly increased. They are release by ischemic tissue to mobilize BM-

SCs to them. So, these molecules act as chemoattractants [92]. The complete 

mechanism of BM-SC mobilization is much more complicated because other signaling 

pathways and mechanisms, including exosomes and miRNAs, could promote trafficking 

and engraftment of BM and cardiac SCs. 

Cardiomyocytes are generally not considered a typical secretory cell but in addition 

to several factors can release exosomes. This exosomes may provide the underlying 

mechanisms by which the damaged heart communicates with other tissues to initiate the 

repair process, and how stem/progenitor cells repair and regenerate the myocardium 

[93]. Once secreted, exosomes either interact with surrounding cells or can be released 

to the systemic circulation [94]. Exosomes from a specific cell of origin can selectively 

bind and be internalized by certain target cell types. However, the cellular and 

molecular basis for this targeting is still undetermined. After endocytosis, exosomes can 

fuse with the endosomal membrane or can be targeted to lysosomes for degradation. 

They mediate communication through transfer of proteins, mRNA, miRNA [95]. 

It is suitable to propose that exosomes can be important communicators of ischemic 

signaling and myocardial repair. Few reports have suggested that cardiomyocytes 

secrete exosomes under healthy and ischemic conditions and that they are involved in 

communication in the heart [96]. For the first time, it was provided evidence that 

exosomes are secreted by progenitor cells. Moreover, it was also shown that 

cardiomyocytes are able to uptake exosomes [96]. An in vivo study [85] suggested that 

exosome secretion from the cardiomyocytes was significantly increased under hypoxic 

stress. Exosomes are known to target via the transfer of proteins or genetic materials 

such as mRNA and miRNAs. This suggests that exosomes generated by cardiomyocytes 

are able to transfer proteins and genetic material to other cells. However, it is not clear 

whether exosomes have any physiological function for example, in heart remodeling 

and repair [85]. 
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Recent studies demonstrate that cardiac and circulating miRNAs are markedly 

altered after MI [97]. The muscle-specific miR-1 and miR-133, for example, are 

increased in the serum of patients with acute coronary syndrome. These miRNA levels 

correlate with serum cardiac troponin T levels. They have shown that the origin of this 

miRNA is the infarct zone and that this miRNA released in exosomes from H9C2 cells 

[98]. Additionally, a cardioprotective miR-214 has been shown to be upregulated in the 

heart after ischemia and to be secreted via exosomes from human endothelial cells [99]. 

As these miRNAs are released even before the release of cardiac troponin T, these could 

function as biomarkers for the early detection of acute MI [85]. Interestingly, several 

reports suggest circulating miR-126 to be an important miRNA to indicate the damage 

and repair mechanisms in acute MI patients [100]. Circulating human CD34+ stem cell–

derived exosomes are enriched with miR-126 [101]. The miR-126 is reported to induce 

the expression of CXCL12, promoting the recruitment of progenitor cells by a feedback 

mechanism [102]. Further experimental studies are necessary to explore the mechanism 

behind of which MI affect circulating exosomal miRNA levels. 

Recent study proposed a novel mechanism by which circulating exosomes from a 

tumor could crosstalk, reprogram, and permanently educate the BM progenitor cell to 

mobilize out of the BM [103]. This shows the complexity of the cargo carried by 

exosomes and its enormous potential to directly influence the biology of distant 

microenvironments. Although this work relies on cancer, it has obvious potential 

implications in cardiology. Several recent reports demonstrate that acute MI modulates 

the miRNA expression of BM cells both in humans and in mice [104]. Other reports 

suggest that cardiac ischemia mobilizes BM mononuclear cells via downregulating the 

expression of miR-150 activating CXCR4 in BM mononuclear cells [105]. Collectively, 

this evidence strongly supports that cardiac exosomes released after ischemic insults 

affect the BM microenvironment to reprogram the BM cells and initiate a repair process 

[89]. 

Exosomes are vesicles recognized as an important intercellular system of 

communication between cells and tissues. The biological role of exosomes seems to be 

dependent not only on the protein and RNA content, but also on the bioactive lipid 

content. They have been reported in all biological fluids and can be associated with 

specific pathophysiological situations [106]. Thus, it is important to recognized lipid 
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profile of exosomes and it variations depending on the environmental and 

pathophysiological conditions. 

 Lipid profile and Lipid Oxidation in Cardiovascular Diseases 
Lipids are a group of biomolecules that embraces a diversity of molecules with 

different structural features and different functions. The International Lipid 

Classification and Nomenclature Committee describes   lipids   as   “hydrophobic   or 

amphipathic small molecules that may originate entirely or in part by carbanion based 

condensation of thioester (fatty acyls, glycerolipids, glycerophospholipids, 

sphingolipids, saccharolipids, and polyketides) and/or by carbocation-based 

condensations of isoprene   units   (prenol   lipids   and   sterol   lipids)”.  These eight lipid 

categories are further subdivided on the basis of chemical structures (Figure 3) [107]. 
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Figure 3.  Lipid categories according to the LIPID MAPS lipid-classification system. 

Lipids, namely phospholipids (PL), are the major component of a cell membrane. In 

addition to that structural function, lipids play multiple crucial roles within cells, such as 

energy storage and as substrates for the synthesis of signaling mediators. Several studies 

reported an importance of a specific lipid environment to a proper function of 

membrane protein [108]. Different types of assemblies have been described for the 

interaction of membrane proteins with lipids. Although some proteins depend on being 
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surrounded by a specific lipid shell, some multimeric proteins specifically bind 

individual lipids that are important for the structure of these protein complexes [109]. 

Recent studies suggest that lipids can also act as protein co-factors modulating their 

activity [110].  

However under several physiopathological conditions, lipids can be modified by 

reactive oxygen species (ROS) that are generated from life processes and can cause 

disturbance of pro and antioxidant systems. This oxidative stress is responsible for basic 

oxidation reaction mechanisms. Lipids are primary targets of ROS attack [111]. Lipid 

peroxidation leads to the formation of a variety of oxidized products mainly due to the 

modifications of polyunsaturated fatty acyl chains. When the oxidation is nonenzymatic 

it is expected as the result several new products with new bioactivities, some deleterious 

to cells and tissues. On the contrary, when the oxidation is enzymatic it is a highly 

regulated physiological event involving receptors and intracellular signaling. These 

oxidized products are generated by proteins such as lipoxygenases (LOX) and 

cyclooxygenases (COX) existing in all mammalian species. In this case lipids have a 

role in immunity and homeostasis [112]. 

Oxidative stress, which is associated with lipid peroxidation, is a key factor in 

atherosclerosis. Oxidized phospholipids (OxPL) play a significant role in atherosclerosis 

[113]. An important marker of oxidative stress is the association of oxidized 

phospholipids with the apolipoprotein B-100. Increased levels of OxPL/apoB are 

implicated in coronary artery disease, progression of atherosclerosis and prediction of 

new cardiovascular events [114]. Other studies have demonstrated increased levels of 

auto-antibodies against oxPL in patients with hypertension and myocardial infarction 

[115]. Thus, oxPL could be used as a biomarker for cardiovascular diseases. 

Biologically active oxidized phospholipids can initiate and modulate many cellular 

events. In aortic endothelial cells, OxPL modulate the expression of a variety of genes 

related to angiogenesis, atherosclerosis and inflammation [116]. Additionally, oxPL can 

activate platelets, inducing differentiation of monocytes and de-differentiation of 

smooth muscle cells. These are all processes related to atherosclerotic plaque formation.  

They also can modulate the fate of an inflammatory response by intervening in the 

processes by removing apoptotic cells [117]. Nowadays it is recognized the importance 
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of oxidized lipids as a key players in the onset of cardiovascular diseases and oxidized 

lipids have been considered as possible biomarkers for cardiovascular disease [115]. 

 Lipidomic Approach in Diagnosis of Cardiovascular Diseases 
Lipidomic is the analysis of molecular lipid species, including their quantitation and 

metabolic pathways [118]. It may be used to risk assessment and therapeutic monitoring 

due to the diversity of roles that lipids play in distinct cellular functions. Lipid 

imbalance or dysregulation result in consequences for multiple biological functions, 

culminating in the development of disease. Since lipids are involved in the 

pathophysiology of several diseases, lipidomics has the potential to improve prediction 

of future disease risk, inform on mechanisms of disease pathogenesis, identify patient 

groups responsive to particular therapies and more closely monitor response to therapy 

[119]. Lipidomic came as an alternative to genetic, epigenetic and gene expression 

measures which are further upstream in disease aetiology. The method of choice for 

identification of lipidomic biomarkers is mass spectrometry, either by direct infusion or 

coupled with liquid chromatography [118]. In what concern cardiovascular disease, the 

majority of studies reported alteration in lipids from plasma as toll for the identification 

of biomarkers of CVD [120]. Plasma lipidomics provide a detailed picture of the 

dysregulation of lipid metabolism. It has been used to identify lipidomic biomarkers 

associated with a variety of diseases including type 2 diabetes and cardiovascular 

diseases [120]. However the work concerning lipid changes in cardiomyocytes and 

exosomes released by them are absent.  

Dysfunctional lipid metabolism is associated with atherosclerotic cardiovascular 

diseases. The stability of atherosclerotic plaque is important since its disruption is an 

important cause of vascular events. Lipids may act to promote plaque instability and 

rupture and whether plasma lipid analysis may provide insight into this process [119]. A 

plaque at risk of rupture has a marked abundance of both extra- and intra-cellular lipid, 

mainly cholesterol either esterified (CE) or unesterified (UC). The phospholipid content 

is similar to stable plaques and include essentially PC, PI, LPC and SM. The total 

classes of lipids observed are quite different as it were observed in unstable plaques 

approximately half of the classes observed in stable plaques [121]. 

Most of the published works are concerned with finding new plasmatic biomarkers 

associated with cardiovascular disease. However there are few who report changes at 
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the cellular level, including cardiomyocytes, and there are no studies on the lipid 

signaling carried by exosomes.  

 Aims 
Phospholipids and phospholipid oxidation products have been considered important 

players in cardiovascular diseases that are associated with ischemia, which occurs in 

consequence of hypoxia and deprivation of nutrient to the cardiomyocytes. However, 

there is a lack of knowledge on complete picture of the physiopathological process that 

underlies ischemia and also how recovery occurs, by selected processes such as 

autophagy. Since lipids, and particularly phospholipids, are important components of 

cells membranes involved in cell death and survival and as signaling molecules, it is 

important to understand lipid profile alterations in cell during starvation and hypoxia. 

The possible role of phospholipids in cardiomyocytes under these conditions 

encouraged us to explore and thus the major aims of this work will be:  

a) to identify the change in lipid profile of a myoblast cell line H9c2 under 

starvation and under ischemic conditions;  

b) to identify the changes in lipid profile of exosomes, released by myoblast 

cell line H9c2, under starvation and under ischemic conditions. 

Mass spectrometry based approaches are becoming increasingly important in lipid 

research allowing us to assess the changes on phospholipids caused by stress or 

pathological conditions. It will be used a lipidomic approach to identify the above 

reported variation in lipid profiling. The results that will be achieved intend to clarify 

the mechanism of modulation of lipid profile during starvation and ischemia and to 

evaluate the cell fate under such conditions. This will allow us to recognize new lipid 

biomarkers for ischemia and starvation associated with disease such as myocardium 

infraction. 
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  Chemicals 
Phospholipid internal standards (1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-

glycerol (CL), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (dMPC), 1-nonadecanoyl-

2-hydroxy-sn-glycero-3-phosphocholine (LPC), 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine (dMPE), 1,2-dimyristoyl-sn-glycero-3-phosphate (dMPA), 1,2-

dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (dMPG), 1,2-dimyristoyl-sn-

glycero-3-phospho-L-serine (dMPS) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-

myo-inositol) (dPPI)) were purchased to Avanti polar lipids, Inc (Alabaster, AL, USA). 

Primuline were purchased from Sigma (St Louis, MO, USA), triethylamine and 

potassium hydroxide were purchased from Merck (Darmstadt, Germany) and perchloric 

acid from Panreac (Barcelona, Spain). Acetonitrile; chloroform, methanol and hexane 

from Fisher Scientific (Leicestershire, UK) were of HPLC grade and were used without 

further purification. All other reagents and chemicals used were of highest grade of 

purity commercially available. Mili-QH2O used was filtered through a 0.22-mm filter 

and obtained using a Milli-Q Millipore system (Milli-Q plus 185). 

 Cell Culture 
The myoblast cell line H9c2 (Sigma-Aldrich, St. Louis, MO) were cultured in 

Dulbecco’s   Modified   Eagle   Medium   (DMEM)   (Life   Technologies,   Carlsbad,   CA),  

supplemented with 10% FBS, 1% Penicillin/Streptomycin (100 U/mL:100 μg/mL) and 

1% GlutaMAX (Life Technologies, Carlsbad, CA), at 37ºC under 5% CO2. Metabolic 

ischemia was induced by a buffer exchange to an ischemia-mimetic solution (in mM: 

118 NaCl, 4.7 KCl, 1.2 KH2PO4, 1.2 MgSO4, 1.2 CaCl2, 25 NaHCO3, 5 calcium 

lactate, 20 2-deoxy-D-glucose, 20 Na-HEPES, pH 6.6) and by placing the dishes in 

hypoxic pouches (GasPakTM EZ, BD Biosciences), equilibrated with 95% N2/5% 

CO2. Cells were stimulated with, unless otherwise stated, 2.5 μg/mL of exosomes in 

exosome-depleted medium, for the indicated time periods. Starvation was induced by 

growing cells during 24 hours in a complete medium without serum. 

 Exosomes Extraction 
The exosomes extraction was performed using an adaptation of two experimental 

protocols [122,123]. Serum was depleted of exosomes by ultracentrifugation at 154.000 

g, for 16 hours, in a 1:1 dilution to minimize serum proteins loss due to its viscosity. 
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Exosomes derived from cultured cells were isolated from conditioned medium after 

culture in either exosome-depleted medium or ischemia-mimetic solution, for x hours. 

Afterwards, the medium was collected and exosomes were isolated by 

ultracentrifugation64. In brief, the supernatants were subjected to differential 

centrifugation at 4°C, starting with a 300 g centrifugation, for 10 min followed by a 

16.500 g centrifugation for 20 min. To remove cellular debris and larger particles, the 

supernatants were filtered with a 0.22 μm filter unit, and then ultracentrifuged at 

120.000 g, for 70 min. The resultant pellet was washed with phosphate buffered saline 

(PBS) (1.5 mM KH2PO4, 155 mM NaCl and 2.7 mM Na2HPO4.7H2O pH 7.4) and, 

after a second ultracentrifugation, exosomes were ressuspended in PBS (sterile when 

used for biological assays). 

 Lipid Extraction 
The pellet of cells was re-suspended in 1 mL of Ultra-pure water (Mili-QH2O). 

Thereafter, total lipids were extracted using the Bligh and Dyer method [124]. Briefly, 

3.75 mL of a mixture of chloroform/methanol 1:2 (v/v) was added to the cell 

homogenate, vortexed very well and incubated on ice for 30 min. An additional volume 

of 1.25 mL chloroform was added followed by vortex. Then, 1.25 mL mili-QH2O were 

added also followed by strong vortex. The samples were centrifuged at 2000 rpm for 5 

min at room temperature to obtain a two-phase system: an aqueous top phase and an 

organic bottom phase. The lipid extract was recovered from the organic phase (bottom 

phase). In order to guarantee full extraction of lipid phase, 1.88 mL of chloroform were 

added to the aqueous phase followed by vortex and new centrifugation. The organic 

phase was recovered to the same tube as before and dried in the speedvac (UNIVAPO 

100H, Reagente5 – Química e Electrónica Lda.). After drying, the total lipid extracts 

were re-suspended in 300 µL of chloroform, transferred to a smaller tube, dried under 

nitrogen stream and stored at -20ºC. Three or different cultures were extracted and 

analyzed in order to verify the reproducibility of the results. 

 Quantification of Phospholipids 
In order to determine the PL amount in each extract, the phosphorus measurement 

was performed according to Bartlett and Lewi [125]. Briefly, 125 µL of percloric acid 

(70%) was added to standards and samples. Samples were incubated for 1h at 170°C in 
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a heating block (Stuart, U.K.), followed by cooling to room temperature. Phosphate 

standards from 0.1 to 2 µg of phosphorous (P) were prepared from a phosphate standard 

solution of dihydrogenphosphate dihydrated (NaH2PO4.2H2O) with 100 µg/mL of P. 

Thereafter, 825 µL of MilliQ water, 125 µL of ammonium molybdate (2.5 g ammonium 

molybdate/ 100 mL MilliQ water) and 125 µL of ascorbic acid (10 g ascorbic acid/ 100 

mL MilliQ water) were added to samples and standards, vortexed well following the 

addition of each solution and incubated for 10 min at 100°C in a water bath. After cool 

in a cold water bath, the standards and samples absorbance were measured at 797 nm in 

a microplate reader (Multiscan 90, ThermoScientific). These experiments were 

performed at least in triplicate, from different cell culture extracts (at least n=3 

independent experiments). 

  Thin-Layer Chromatography (TLC) 
Separation of several PLs classes from the total lipid extracts was achieved by TLC. 

Prior to separation, TLC plates (silica gel 60 with concentration zone 2.5x20cm ) were 

washed in a methanol: chloroform mixture (1:1, v/v) and left in the safety hood for 15 

min, then plates were sprayed with 2.3% (m/v) boric acid and dried in an oven at 100ºC 

during 15 min. Then 30 µg of total lipid extract dissolved in chloroform was applied on 

the TLC plates. The plates were dried with a nitrogen flow and developed with a 

mixture chloroform/ethanol/water/triethylamine (30:35:7:35, v/v/v/v). Lipid spots on 

the silica plate were observed and identified by spraying the plate with 50µg/100mL 

primuline solution dissolved in a mixture of acetone and mili-QH2O (acetone:water; 

80:20(v/v)), and visualized with a UV lamp (λ=254nm). Identification of PL classes was 

carried out with the use of phospholipid standards (SM, PC, PI, PS, PE, and CL), which 

run side by side in the TLC plate. Following separation the spots were scraped from 

TLC plates and used for quantification by phosphorus assay as previously described. 

 High Performance Liquid Chromatography Mass Spectrometry (HPLC-MS) 
HPLC-MS was performed with an internal standard to confirm and quantify the ions 

variations observed in the spectra. The PL standards used were PC (14:0/14:0), LPC 

(19:0), PI (16:0/16:0), PE (14:0/14:0), PA (14:0/14:0), PG (14:0/14:0), PS (14:0/14:0), 

SM (17:0/d18:1) and CL (14:0/14:0/14:0/14:0). PL classes were separated by HPLC–

MS, performed on an HPLC system (Waters Alliance 2690) coupled to an electrospray 
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linear ion trap mass spectrometer LXQ (ThermoFisher, San Jose, CA, USA). The 

mobile phase A consisted of 10% water and 55% acetonitrile with 35% (v/v) methanol. 

The mobile phase B consisted of acetonitrile 60%, methanol 40% with 10mM 

ammonium acetate. Total lipid extract were diluted in the mobile phase B (90 µL) and 

10 µL of reaction mixture was introduced into an Ascentis Si HPLC Pore column (15 

cm×1.0 mm, 3 μm) (Sigma-Aldrich). The solvent gradient was programmed as follows: 

gradient started with 0% of A and 100% of B. It linearly increased to 60% of A and 

decreased to 40% of B during 15 min, and held isocratically for 22 min, returning, to the 

initial conditions in 3 min. The flow rate through the column was 60 μL/min and it was 

redirected to a LXQ linear ion trap mass spectrometer (ThermoFinningan, San Jose, 

CA, USA) by a capillary (0.350 × 0.150 mm) of 70 cm length using a home-made 

split. The LXQ linear ion trap mass spectrometer was operated in negative-ion mode. 

Typical ESI conditions were as follows: electrospray voltage, - 4.7 kV; capillary 

temperature, 275 ºC; and the sheath gas flow of 8 U. To obtain the product-ion  spectra  

of  the  major  components  during LC experiments, cycles  consisting  of  one  full  

scan  mass  spectrum and  three  data-dependent  MS/MS  scans  were  repeated  

continuously throughout  the  experiments with  the  following  dynamic  exclusion 

settings:  repeat  count  3;  repeat  duration  15  s;  exclusion  duration 45 s. Data 

acquisition was carried out on an Xcalibur data system (V2.0). Relative quantification 

of each individual phospholipid specie was obtained by the ratio between the area of 

reconstructed ion chromatogram of a given m/z value against the area of the 

reconstructed ion chromatogram of the respective standard. At least three independent 

samples were analyzed. 

  Gas Chromatography Mass Spectrometry (GC-MS) 
Fatty acid methyl esters (FAMEs) were obtained after transesterification of lipid 

extracts according to the method described by Aued-Pimentel et al. [126]. Briefly, dried 

lipid extracts (30   μg   of   total   phospholipid) were dissolved in 1 mL n-hexane. A 

methanolic KOH solution (2 M) was added (200   μL), followed by intense vortex-

mixing for 1-2 min. Saturated NaCl solution (2 mL) was added. After centrifugation at 

2000 rpm for 5 min, the organic phase was collected and dried under a nitrogen stream. 

The resulting FAMEs were dissolved in n-hexane and volumes  of  2.0  μL were analyzed 

by gas chromatography–mass spectrometry (GC–MS) on an Agilent Technologies 6890 
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N Network (Santa Clara, CA) equipped with a DB-FFAP column with 30 m of length, 

0.32 mm  of  internal  diameter,  and  0.25  μm  of  film  thickness  (J&W  Scientific,  Folsom, 

CA). The GC equipment was connected to an Agilent 5973 Network Mass Selective 

Detector operating with an electron impact mode at 70 eV and scanning the range m/z 

50–550 in a 1 s cycle in a full scan mode acquisition. The oven temperature was 

programmed from an initial temperature of 80 °C, a linear increase to 160 °C at 25 °C 

min−1, followed by linear increase at 2 °C min−1 to 210 °C, then at 30 °C min−1 to 250 

°C and stays here for 10 min. The injector and detector temperatures were 220 and 280 

°C, respectively. Helium was used as carrier gas at a flow rate of 0.5 mL min−1. The 

relative amounts of FAs were calculated by the percent area method with proper 

normalization considering the sum of all areas of the identified FAs. 

  Statistics 
The results are presented as mean values and their standard deviations (mean ± SD) for 

each experimental group. Two-way analysis of variance (ANOVA) was used with the 

Bonferroni pos-test to evaluate significant differences among samples. A value of 

p<0.05 were considered to be statistically significant. Statistical analysis were 

performed using GraphPad Prism 5 software.  
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Results 

 Unraveling the modifications of myoblast cell line H9c2 lipidome towards 
starvation and ischemia  

In this work the changes in the phospholipid (PL) profile of myoblast cells cultured 

with deprivation of nutrients (starvation) and in conditions mimicking ischemia were 

evaluated, as physiopathological conditions associated with myocardium infarction. 

Comparison with control group allowed us to observe changes in the phospholipid 

profile that can be important to unravel cardiac cells death or recovery. 

In order to evaluate the alterations in PL profile, total lipid extracts were fractionated 

by thin layer chromatography (TLC) and each PL class was identified by comparison 

with PL standards applied into the TLC plate. The relative amount of each PL class was 

determined by phosphorous quantification of each spot attribute to each PL class and 

results obtained are shown in Figure 4.  

 
Figure 4. Thin-layer chromatography of total lipid extract obtained from untreated 
myoblast cells (control) and ischemic and starved cells. A- TLC plaque with the 
signalized spots for each PL class. Phospholipid standards were also applied: (PC) - 
Phosphatidylcholine; (PS) - Phosphatidylserine; (PE) - Phosphatidylethanolamine; 
(SM)- Sphingomyelin; (PG) - Phosphatidylglycerol; (PI)-phosphatidylinositol; (CL) - 
Cardiolipin. B-Relative phospholipid content of myoblast cells (control) and for 
ischemic and starved cells. The phospholipid classes were separated by thin-layer 
chromatography and the phosphorous content of each spot was calculated taking in 
account the amount of phosphorous in the total lipid extract. Phospholipid classes were 
separated and quantified. 

The most abundant class in all conditions was phosphatidylcholines (PC) followed 

by phosphatidylethanolamines (PE), phosphatidylserines (PS), sphingomyelins (SM) 

and cardiolipins (CL) and phosphatidylinositols (PI). We have identified significant 

alterations in the relative amount of PC and PS classes. It was observed a decrease in 

PC content in starved cells and a decrease of PS in ischemic cells, in comparison with 

control group. 
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The identification of the fatty acid profile of the total lipid extract in all conditions 

and the quantification of the relative content of fatty acid composition were performed 

by GC–MS analysis of fatty acid methyl esters. In the total lipid extracts, the major fatty 

acids identified were: C14:0, C16:0, C16:1n-9, C18:0, C18:1n-9, C18:2n-6, C20:3n-9, 

C20:3n-6 and C20:4n-6 (Figure 5). An increase in the fatty acid C16:0 and C18:0 and a 

decrease in the fatty acid C18:1 was observed in ischemia while a decrease in fatty acid 

C20:4 was observed in starvation. 

 
Figure 5. Fatty acid profile of untreated myoblast cells (control) and associated with 
ischemia and starvation. 

Specific molecular composition of each PL class and information about the 

alterations in their profile at molecular level were achieved by using HILIC-LC-MS and 

MS/MS lipidomic approaches. In the LC-MS run we were able to identify all the six PL 

classes previously identified after TLC analysis but also two more PL classes: 

phosphatidylglycerols (PGs) and lysophosphatidylcholines (LPCs) (Table A.1). To 

ensure the reproducibility of the results, data were obtained, at least in triplicate, from 

different cell culture passages (at least n = 3). 

PC were identified as [M+CH3COO]- in LC-MS spectra and  in all conditions the 

most abundant PC molecular specie identified was PC (34:1) at m/z 818.3, followed by 

PC molecular species including PC (32:1), PC (34:2), PC (36:2) and PC (36:1) (Figure 

S.1). Significant alterations in PC molecular profile were observed after comparing 

starvation and ischemia conditions with the control group and also between each other 

(Figure 6). A statistically significant increase of PC(34:1) and  a decrease in PC(36:2) 

were observed for ischemia in comparison with control while a higher decrease of 

PC(34:1) was observed in starvation. Interestingly dissimilar deviations were observed 

for PC molecular specie PC(34:1) when the effect of  ischemia and starvation are 
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compared. In fact, PC(34:1) decrease in ischemia and increase in starvation. Also the 

decrease in PC(36:2) was observed exclusively for ischemia. 

 
Figure 6. Phosphatidylcholine (PC) molecular species content of untreated myoblast 
cells (control) and associated with ischemia and starvation analyzed by HPLC-MS in 
negative mode. Identification of PC molecular species with the indication of the C:N 
(carbon:unsaturation). 

In the LC-MS spectra of all conditions, five LPC molecular species, identified by 

their [M+CH3COO] – ions, were observed. In all conditions, the most abundant LPC 

molecular specie was LPC(18:0) at m/z 582.1, followed by LPC (16:1), LPC(16:0), 

LPC(18:1), LPC(18:2) and an alkylacyl LPC molecular specie (LPC(O-18:0)) (Figure 

S.2).  Comparison of LPC profile between all conditions with control allowed us to 

identify a significant increase in LPC(18:0) and a decrease in the LPC(18:1) molecular 

species for ischemia and for starvation. LPC(16:0) only decrease in ischemia (Figure 7). 

No differences were observed in LPC profile between starvation and ischemia. 

 
Figure 7. Lysophosphatidylcholine (LPC) molecular species content of untreated 
myoblast cells (control) and associated with ischemia and starvation analyzed by 
HPLC-MS in negative mode. Identification of LPC molecular species with the 
indication of the C:N (carbon:unsaturation). 
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The molecular species of SM were also identified in negative mode as 

[M+CH3COO]– ions. The ion at m/z 761.2 corresponding to SM(34:1) is the major 

molecular specie identified in all conditions (Figure S.3). For starvation, a significant 

decrease in the SM(34:1) was observed in comparison with control and ischemic cells 

(Figure 8). 

 
Figure 8. Sphingomyelin (SM) molecular species content of untreated myoblast cells 
(control) and associated with ischemia and starvation analyzed by HPLC-MS in 
negative mode. Identification of SM molecular species with the indication of the C:N 
(carbon:unsaturation). 

The molecular species of PE were analyzed in negative mode and identified as [M-

H]– ions. The molecular specie at m/z 716.2 (PE(34:1)) was the most abundant 

molecular specie identified in all conditions (Figure S.4). We observed an increase of 

PE(34:1) for ischemia and starvation in comparison with control (Figure 9). 

 
Figure 9. Phosphatidylethanolamine (PE) molecular species content of untreated 
myoblast cells (control) and associated with ischemia and starvation analyzed by 
HPLC-MS in negative mode. Identification of PE molecular species with the indication 
of the C:N (carbon:unsaturation). 
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PS was identified in negative mode as [M-H] – ions. The most abundant PS in both 

conditions was PS(36:1) at m/z 788.4 (Figure S.5). An increase in the levels of PS(36:1) 

were found for starvation in comparison with control and with ischemia (Figure 10). 

 

 
Figure 10. Phosphatidylserine (PS) molecular species content of untreated myoblast 
cells (control) and associated with ischemia and starvation analyzed by HPLC-MS in 
negative mode. Identification of PS molecular species with the indication of the C:N 
(carbon:unsaturation). 

The PI molecular species were identified as [M-H]– ions and the major PI molecular 

specie were PI(38:4) at m/z 885.4 and PI(38:3) at m/z 887.4 (Figure S.6). A significant 

increase of PI (38:3) and a decrease of PI(38:5) were observed for ischemia and 

starvation in comparison with control. An increase of PI(36:2) was observed  for starved 

cells when compared with ischemic (Figure 11). 

 
Figure 11. Phosphatidylinositol (PI) molecular species content of untreated myoblast 
cells (control) and associated with ischemia and starvation analyzed by HPLC-MS in 
negative mode. Identification of PI molecular species with the indication of the C:N 
(carbon:unsaturation). 
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PGs were also analyzed in negative mode as [M-H]– ions. Analysis of the MS and 

MS/MS spectra allowed us to identified several PGs molecular species being the most 

abundant the PG(36:2) at m/z 773.4 followed by PG(34:1) at m/z 747.4 and PG(36:1) at 

m/z 775.4 (Figure S.7). No significant alterations in PG molecular species were 

observed between conditions (Figure 12). 

 
Figure 12. Phosphatidylglycerol (PG) molecular species content of untreated myoblast 
cells (control) and associated with ischemia and starvation analyzed by HPLC-MS in 
negative mode. Identification of PG molecular species with the indication of the C:N 
(carbon:unsaturation). 

Overall the same PL molecular species were found for each PL class in control and 

either in ischemia and starvation. Interestingly, significant differences in the relative 

amount of specific molecular species were establish for all PL classes - except for PE 

and PG - between control and ischemia or starvation, as is summarized in Table 1. 

Some deviations were common to starvation and ischemia, while others seems to be 

correlated exclusively to starvation or ischemia.  

Table 1. Resume of the alterations observed in the molecular species of PC, LPC, SM, 
PE, PS and PI comparing control with ischemia, control with starvation and starvation 
with ischemia. 

Class Molecular species Control vS Ischemia Control vS Starvation Starvation vS Ischemia 

PC 34:1    
36:2    

LPC 
16:0    
18:1    
18:0    

SM 34:1    
PE 34:1    
PS 36:1    

PI 
36:2    
38:5    
38:3    
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 New insights on the lipidome of the exosomes released by myoblast cell line 
H9c2 upon ischemia and starvation 

 

Identification of the phospholipid (PL) profile of exosomes released by myoblast 

cells was identified and the deviation in lipidome towards starvation and ischemia were 

also evaluated. Comparing conditions with control and between each other allowed us 

to observe changes in the phospholipid profile that can be important to unravel the role 

of exosomes in death or recovery. 

A lipidomic analysis was performed based on the results gathered by the HILIC-LC-

MS and LC-MS-MS to identify the specific molecular composition of each PL class and 

evaluate alterations in their profile at a molecular level. Due to the lower amount of 

lipid samples it was not possible to perform TLC or fatty acid analysis by GC-MS in 

these samples.  Analsyis of  LC-MS data allowed us to identify nine PL classes: 

phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), phosphatidylserines 

(PSs), lysophosphatidylserines (LPSs), phosphatidylethanolamines (PEs), 

lysophosphatidylethanolamines (LPEs), phosphatidylinositols (PIs), 

phosphatidylglycerols (PGs) and sphingomyelin (SM) (Table A.2).  

PC were identified as [M+CH3COO]- ions in LC-MS spectra of all conditions. The 

most abundant PC molecular specie identified was PC(34:1) at m/z 818.2 (Figure S.8). 

Interestingly this PC specie was also observed as the most abundant in the lipidome of 

myoblast cells. Significantly alterations in PC molecular profile were observed after 

comparing PC profile from exosomes of starvation and ischemia conditions, with 

control and also between both conditions (Figure 13). A significant increase of PC(30:1) 

and PC(32:1) and a decrease of PC(38:6) were observed for ischemia in comparison 

with control. Comparing exosomes released by starved cells with control we observed 

an increase of PC(32:5), PC(34:4), PC(38:6) and PC(38:2) and a decrease of PC(30:1), 

PC(34:1), PC(36:2) and PC(36:1). We have also observed alterations in alkylacyl PC 

molecular species namely an increase of PC(O-32:2and a decrease of PC(O-34:1) and 

PC(O-36:0). The alkylacyl PC molecular species PC(O-40:6) and PC(O-40:5) increase 

in exosomes from starved cell in comparison with exosomes from ischemic myoblast 

cells. 
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Figure 13. Phosphatidylcholine (PC) molecular species content of exosomes released 
by untreated myoblast cells (control) and associated with ischemia and starvation 
analyzed by HPLC-MS in negative mode. Identification of PC molecular species with 
the indication of the C:N (carbon:unsaturation). 

Seven LPC molecular species were identified as [M+CH3COO]- ions. For control 

and starvation groups the most abundant LPC molecular specie was LPC(18:0) at m/z 

582.2 while for starvation the most abundant LPC molecular specie was LPC(16:1) at 

m/z 552.2 (Figure S.9). Comparing LPC profile of exosomes release during starvation 

with control and with ischemia, it was possible to see a significant increase in 

LPC(16:1) and  a decrease in LPC(18:4) and LPC(18:0) (Figure 14). No differences 

were observed in LPC molecular profile between ischemia and control. 

 
Figure 14. Lysophosphatidylcholine (LPC) molecular species content of exosomes 
released by untreated myoblast cells (control) and associated with ischemia and 
starvation analyzed by HPLC-MS in negative mode. Identification of LPC molecular 
species with the indication of the C:N (carbon:unsaturation). 
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The SM were also identified by [M+CH3COO]- ions. The ion at m/z 761.2 

corresponding to SM(34:1) is the major molecular specie identified in all conditions 

(Figure S.10). An increase of SM(34:1) and a decrease of SM(42:1) were observed for 

ischemia in comparison with control and with starvation. We have also observed for 

ischemia a decrease in SM(40:1) and SM(42:2) only in comparison with control. For 

starvation, we observed an increase in SM(38:2) in comparison with control and with 

ischemia. We have also observed an increase in SM(36:1) together with a decrease in 

SM(34:0) for starvation in comparison with ischemia (Figure 15). 

 
Figure 15. Sphingomyelin (SM) molecular species content of exosomes released by 
untreated myoblast cells (control) and associated with ischemia and starvation analyzed 
by HPLC-MS in negative mode. Identification of SM molecular species with the 
indication of the C:N (carbon:unsaturation). 

The PI molecular species were analyzed in negative mode as [M-H]- ions. The major 

PI molecular specie identified for exosomes from control conditions was PI(40:7) while 

for exosomes released from starved cells the major PI molecular specie identified was 

PI(34:4) at m/z 829.8. For exosomes in ischemia, both ions presented the same 

abundance (Figure S.11) A significant increase of PI(34:4), PI(40:4) and a decrease in 

PI(38:4) and PI(40:7) were observed for exosomes in ischemia and starvation in 

comparison with control. Additionally, we observed an increase in PI(36:3) for ischemia 

and an increase in PI(34:3) together with a decrease in PI(38:1) for starvation in 

comparison with control. The molecular specie PI(34:5) showed a decrease in starvation 

in comparison with ischemia (Figure 16). 
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Figure 16. Phosphatidylinositol (PI) molecular species content of exosomes released by 
untreated myoblast cells (control) and associated with ischemia and starvation analyzed 
by HPLC-MS in negative mode. Identification of PI molecular species with the 
indication of the C:N (carbon:unsaturation). 

  The PG molecular species were  identified as [M-H]- ions and  PG(38:6) at m/z 

793.4 was the major PG molecular specie in exosomes from control while for ischemia 

and starvation the major PG was PG(36:2) at m/z 773.6 (Figure S.12). An increase in 

PG(34:2) and PG(36:4) and a decrease in PG(38:6) and PG(38:5) were observed for 

exosomes released by ischemic cells in comparison with exosomes from control and 

from starved cells. The molecular species PG(34:0) and PG(36:6) decrease for both 

conditions in comparison with control. An increase of PG(32:1), PG(34:2), PG(36:2) 

and PG(38:2) and a decrease of PG(34:1) and PG(36:3) were observed for exosomes 

from starved cells in comparison with control. Interestingly PG(34:3) showed opposite 

deviation, namely increasing for ischemia while decreasing for starvation (Figure 17). 

 
Figure 17. Phosphatidylglycerol (PG) molecular species content of exosomes released 
by untreated myoblast cells (control) and associated with ischemia and starvation 
analyzed by HPLC-MS in negative mode. Identification of PG molecular species with 
the indication of the C:N (carbon:unsaturation). 
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 The molecular species of PE and LPE were identified as [M-H]- ions, but 

quantification was umpired by the  low peak intensity in these classes identify some 

molecular species represented in Table A.2. 

The molecular species of PS and LPS were also identified as [M-H]- ions but for the 

same reason were not quantified. However they were identified and are showed in Table 

A.2. 

Overall, the same molecular species were found for each PL class from exosomes in 

control and either in ischemia and starvation. The differences identified so far are 

summarized in Table 2. It must be reported that data from exosomes need to be 

confirmed with more replicates. 

 

Table 2. Resume of the alterations observed for exosomes in the molecular species of 
PC, LPC, SM, PI and PG comparing control with ischemia, control with starvation and 
starvation with ischemia. 

Class Molecular species Control vS Ischemia Control vS Starvation Starvation vS Ischemia 

PC 

30:1    
32:5    
32:1    
34:4    
34:1    
36:2    
36:1    
38:6    
38:2    

O-32:2    
O-34:1    
O-36:0    
O-40:6    
O-40:5    

LPC 
16:1    
18:4    
18:0    

SM 

34:1    
34:0    
36:1    
38:2    
40:1    
42:2    
42:1    

PI 

34:5    
34:4    
34:3    
36:3    
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38:5    
38:4    
38:1    
40:7    
40:4    

PG 

32:1    
34:3    
34:2    
34:1    
34:0    
36:6    
36:4    
36:3    
36:2    
38:6    
38:5    
38:2    
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Discussion and Conclusion 

This study evaluated the alterations in PL profile of myoblast cells induced by 

starvation and ischemia conditions, using a modern lipidomic approach. Both conditions 

induced significant alterations in PLs classes levels namely decrease in PCs in ischemia 

and PS related content in starvation conditions. 

The fatty acid profile analysis of the studied myoblast cell line revealed an increase 

in FA 16:0 and 18:0 and a decrease in FA 18:1 in ischemic cells while in starved cells a 

decrease of FA 20:4 was observed. This dissimilar deviation of FA profile may reflect 

the different pathways adopted by the cells to cell death or cell survival namely to 

activate apoptotic pathway or autophagic pathways respectively. In fact an increase of 

serum FA 16:0 and 18:0 were reported in patients that have higher predisposition to 

have a coronary event in comparison with health volunteers [127]. Arachidonic acid FA 

20:4 is the main precursor of pro inflammatory mediators, prostaglandins and 

leukotrienes, and thus the observed decrease of fatty acid 20:4 in starved cells may be 

an adaptive response of cell in order to unpair the release of these pro inflammatory 

mediators and thus preventing the enhance of pro inflammatory that triggers apoptosis 

and cell death [128]. This could be one of the routes that can be modulated by starvation 

towards cell. Decrease of arachidonic pro inflammatory mediators will reduce the 

inflammation and will have a beneficial effect in CVD. In fact, inflammation is 

recognized to be a major underlying mechanism of cardiovascular diseases [129].  

In the case of ischemia, a severe form of starvation [12] due to simultaneous 

deprivation of oxygen and nutrients, we were not able to identify significant alterations 

in PC total content. However, a decrease in PC(36:2) - PC( 18:0/18:2) and  

PC(18:1/18:1) - and an increase in PC(34:1) - PC ( 16:0; 18:1) - were observed. This 

shift is in accordance with the data reported from GC-MS analysis that in ischemia also 

showed an increase in C16:0 and C18:0 fatty acyl chains and a decrease in C16:1 and 

C18:1 in comparison with the control. Since PC is the most abundant PL class in 

mammalian cells, this lowering in the degree of unsaturation suggests modifications in 

cell membrane. The membrane fluidity is determined by the van der Waals forces 

between fatty acids incorporated into cell membrane phospholipids. These forces 

depend on the structure of the fatty acid and thereby the longer and saturated the fatty 

acid chain is, the higher the van der Waals forces are and the lower the membrane 
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fluidity is [130]. The decrease in fluidity interferes with the function of receptors in the 

membrane, affecting signal transduction [131]. 

In starvation, a significant decrease in the PCs levels together with a decreased in the 

levels of the molecular specie PC(34:1) - PC( 16:0/18:1) - was observed in comparison 

with the control group. Under this condition, the cell tries to survive and adapts cellular 

lipid flow and storage to changing nutrient availability and metabolic need [132]. In 

starved cells, autophagy is strongly induced and represents the most important 

mechanism for survival and for maintenance of cardiac functions of the heart [133]. 

The molecular specie PC(34:1) – PC(16:0/18:1) - increased in ischemia and 

decreased in starvation. This is specific marker that could be used to accesses of the 

undergoing process in the cell. It was reported that a PC(16:0/18:1) is a physiologically 

relevant endogenous PPARα ligand [134]. This nuclear receptor is known for 

modulation of inflammatory pathways possessing relevant anti-inflammatory properties 

[135]. The decrease of PC(34:1) in starvation suggests that this molecular specie is 

being used to activate PPARα to promote cell survival.  

LPC are derived from phosphatidylcholine degradation by phospholipase A2 (PLA2), 

which removes the fatty acid linked to the sn2 position. LPCs are quickly metabolized 

and last shortly in vivo. They can insert into the plasmatic membrane and influence 

several pathways, namely as immunomodulatory agents [136]. In this study, it is 

possible to see an increase in LPC species bearing C18:0, in both conditions, and a 

decrease in LPC(18:1) and LPC(16:0) decreased only in ischemia. The decrease of the 

molecular species LPC(16:0) and LPC(18:1) in ischemia may be associated with the 

increase of the molecular specie PC(34:1) once it is assigned as PC(16:0/18:1).  

Since the activity of PLA2 is usually upregulated in inflammatory environments 

[137], we suppose that PLA2 acts upon PC(36:2) – PC(18:0/18:2) - releasing LPC(18:0) 

and contributing to the higher levels of this LPC molecular specie. This increase in 

LPC(18:0) as well as the increase in the molecular specie PC(34:1) are related with the 

reported anti-inflammatory role for PC and LPC [136].  

We have also identified a decrease in the levels of SM(34:1) in starvation. In fact 

sphingolipids have been reported as important player in autophagy and also in 

apoptosis. The decrease of SM may downregulate the enzymatically conversion to 

ceramide (Cer), a well-known pro apoptotic molecule and thus preventing cell death 
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[138]. Sphingolipid, particularly in lipid rafts, are implicated in signal transduction from 

cell surface receptors to intracellular signaling machinery [139]. Hence alterations in 

SM metabolism will affect survival signaling. 

PE is the second most abundant phospholipid in mammalian cell membranes and 

changes in PE may affect membrane structure and curvature [140]. PE plays an 

important role in the heart since a decrease in PE causes cell damage after periods of 

ischemia/reperfusion [141].While the decrease in PE accelerate cell death, the increase 

enhances autophagic flux and extends lifetime of mammalian cells in culture [142]. In 

our study, we observed an increase of PE(34:1) in ischemic and in starved myoblast 

cells.  

PS is the most abundant negatively charged phospholipid in eukaryotic membranes 

[143]. Its extracellular exposure is, among other functions, essential in the recognition 

and clearance of apoptotic cells [144]. During apoptosis and the oxidative stress 

resulting from the inflammation, there is the release of cytochrome c from mitochondria 

that promote PS peroxidation followed by PS externalization [145]. In this study, we 

have observed a decrease in PS content of myoblast cells associated with ischemia. The 

observed decrease could be due to the PS peroxidation which triggers apoptosis. On the 

other hand, in starvation the molecular specie PS(36:1) showed an increase in 

comparison with control. Recently PS is being associated with anti-inflammatory roles, 

and thus considered key players in controlling inflammatory response [146]. In addition 

PS anti-inflammatory were associated with beneficial impact in myocardial infarction 

by attenuating the consequences and improve prognostic and cardiac repair [147]. 

PIs are important precursors of signaling molecules that regulate metabolic process. 

In this study we observed a decrease of PI(38:5) in both conditions in comparison with 

control and a decrease of PI(36:2) in ischemia in comparison with starvation. PI is a 

precursor of phosphoinositides (PIPs), and their decrease may be due to the 

upregulation of PIPs. That play a fundamental role in regulation of cell survival 

controlling membrane traffic and permeability [148]. It is known that PI3P is required 

for autophagy and among other roles is involved in the biogenesis of autophagosome 

[149]. 

In our study, we were not able to identify significant alterations in PG amounts 

between control and either ischemia or starvation conditions.  
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A communication between different cell types plays a central role in adaptative 

responses of the heart to stress. Recently, exosomes released by myoblast cells have 

been implicated as a new tool for cardiac cell communication allowing them to 

exchange biological messages to other cell types of the heart such as endothelial cells 

and fibroblasts [150]. Till now only DNA, miRNA and proteins were studied to try to 

understand this intercellular communication [151,152]. However lipids are well known 

signaling molecules and for sure have an important role in cell exosomes cross talk. 

No study reported so far the lipid analysis of exosomes released by a myoblast cell 

line. Lipidomic analysis of exosomes were reported only for exosomes released by 

guinea-pig reticulocytes [153], by a B lymphocyte cell line [154], by human mast cells 

and dendritic cells [155], and by PC-3 prostate cancer cells [81]. 

In our work, we studied the lipidome of exosomes released by the myoblast cell line 

H9c2 and evaluated the alterations in PL profile of this exosomes associated with 

starvation and ischemia. 

Due to the difficulty in obtaining exosomes we only studied the lipid profile of only 

one sample and were performed analytical replicates. The lipid classes identified by LC-

MS for exosomes released by myoblast cells were SM, PC, PE, PS, PI, PG, LPC, LPE 

which is in agreement with what was already identified for exosomes released and 

isolated from other cell lines [81,155]. The analysis of LC-MS allowed us to identified 

alterations in specific phospholipid molecular species. It is noteworthy that these results 

are only preliminary and that the increase in the number of samples may change a bit 

the differences that we have seen so far. 

Our results on exosomes showed a decrease in PS and PE together with an increase 

in LPE and LPS in exosomes in comparison with cells. This suggests that lyso species 

are somehow associated with exosomes role namely in the intercellular communication. 

In fact, lysophospholipid such as LPC, LPE and LPS exert functions as lipid mediators 

through G protein-couple receptors specific to each lysophospholipid [156]. We have 

also observed a deviation between the lipidome of exosomes released upon ischemia 

and starvation for all lipid classes. Some differences matched the ones observed in cells, 

for example the decrease in PC(34:1) in starvation, but others were different. 

Differences in lipidome of exosomes released upon ischemia and released upon 

starvation may be associated with the different responses that each one of them is going 
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to enhance after release. Since we only performed lipidomic analysis for a smaller 

sample of exosomes, it requires further studies to validate the results already obtained 

and to identify PE and PS molecular species, quantify lipid classes and analyze the fatty 

acids profile as performed for myoblast cell line lipidomic analysis. 

In conclusion, our work showed changes of lipid homeostasis in ischemic and 

starved cells suggesting that lipids are key tools for evaluation of the cell fate, either cell 

death or recovery. This will be suitable to improve diagnosis and prognostic of 

cardiovascular diseases particularly acute myocardial infarction. 
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Figure S. 1. MS spectra of phosphatidylcholine (PC) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated myoblast cells (control) and after 
being subjected to ischemia and starvation. 

 

 
Figure S. 2. MS spectra of lysophosphatidylcholine (LPC) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated myoblast cells (control) and after 
being subjected to ischemia and starvation. 
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Figure S. 3. MS spectra of sphingomyelin (SM) molecular species obtained by HPLC-
MS analysis in negative mode for untreated myoblast cells (control) and after being 
subjected to ischemia and starvation. 

 
Figure S. 4. MS spectra of phosphatidylethanolamine (PE) molecular species obtained 
by HPLC-MS analysis in negative mode for untreated myoblast cells (control) and after 
being subjected to ischemia and starvation. 
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Figure S. 5. MS spectra of phosphatidylserine (PS) molecular species obtained by HPLC-
MS analysis in negative mode for untreated myoblast cells (control) and after being 
subjected to ischemia and starvation. 

 
Figure S. 6. MS spectra of phosphatidylinositol (PI) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated myoblast cells (control) and after 
being subjected to ischemia and starvation. 
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Figure S. 7. MS spectra of phosphatidylglycerol (PG) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated myoblast cells (control) and after 
being subjected to ischemia and starvation. 

 
Figure S. 8. MS spectra of phosphatidylcholine (PC) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated exosomes released by myoblast cells 
(control) and after being subjected to ischemia and starvation. 
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Figure S. 9. MS spectra of lysophosphatidylcholine (LPC) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated exosomes released by myoblast cells 
(control) and after being subjected to ischemia and starvation. 

 
Figure S. 10. MS spectra of sphingomyelin (SM) molecular species obtained by HPLC-
MS analysis in negative mode for untreated exosomes released by myoblast cells (control) 
and after being subjected to ischemia and starvation. 
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Figure S. 11. MS spectra of phosphatidylinositol (PI) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated exosomes released by myoblast cells 
(control) and after being subjected to ischemia and starvation. 

 
Figure S. 12. MS spectra of phosphatidylglycerol (PG) molecular species obtained by 
HPLC-MS analysis in negative mode for untreated exosomes released by myoblast cells 
(control) and after being subjected to ischemia and starvation. 
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Table A. 1 Lipid molecular species of PC, LPC, PE, PS, PI, PG and SM identified in 
myoblast cell line H9c2 submitted to ischemia and starvation and acquired using an 
automated HPLC-MS. Identification with m/z (mass/charge), corresponding C:N 
(carbon:unsaturation) and fatty acid composition. 
 

Class m/z C:N Fatty Acids 

PC 

DIACYL 

762.3 30:1 14:0/16:1 

764.3 30:0 14:0/16:0 

790.3 32:1 14:0/18:1 and 16:0/16:1 

792.2 32:0 14:0/18:0 and 16:0/16:0 

814.2 34:3 16:0/18:3 and 16:1/18:2 

816.2 34:2 16:0/18:2 and 16:1/18:1 

818.3 34:1 16:0/18:1 and 16:/18:0 

820.2 34:0 16:0/18:0 

836.2 36:6 16:2/20:4 

840.3 36:4 16:0/20.4 and 18:1/18:3 and 18:2/18:2 

842.3 36:3 16:0/20:3 and 18:0/18:3 and 18:1/18:2 

844.3 36:2 16:0/20:3 and 18:0/18:2 and 18:1/18:1 

846.3 36:1 16:0/20:1 and 18:0/18:1 

848.3 36:0 18:0/18:0 

864.3 38:6 18:2/20:4 

866.1 38:5 18:1/20:4 

868.3 38:4 
18:0/20:4 and 18:1/20:3 and 18:2/20:2 

and 18:3/20:1 and 18:4/20:0 

870.3 38:3 18:0/20:3 and 18:1/20:2 and 18:2/20:1 

872.3 38:2 18:0/20:2 and 18:1/20:1 

890.3 40:7 20:3/20:4 

892.2 40:6 20:2/20:4 and 20:3/20:3 

ALKYLACYL 

776.3 32:1 O-16:0/16:1 

802.2 34:2 O-16:0/18:2 and O-16:1/18:1 

804.3 34:1 O-16:0/18:1 and O-16:1/18:0 

828.3 36:3 
O-16:0/20:3 and O-16:1/20:2 and O-

18:0/18:3 and O-18:1/18:2 

830.3 36:2 
O-16:0/20:2 and O-16:1/20:1 and O-

18:0/18:2 and O-18:1/18:1 
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832.3 36:1 
O-16:0/20:1 and O-16:1/20:0 and O-

18:0/18:1 

LPC 

DIACYL 

552.0 16:1 16:1 

554.1 16:0 16:0 

578.2 18:2 18:2 

580.1 18:1 18:1 

582.1 18:0 18:0 

ALKYLACYL 

566.0 18:0 O-18:0 

PE 

 

DIACYL 

716.2 34:1 16:0/18:1 and 16:1/18:0 

736.4 36:5 16:0/20:5 and 16:1/20:4 

738.3 36:4 16:0/20:4 and 16:1/20:3 

740.4 36:3 
16:0/20:3 and 16:1/20:2 and 18:0/18:3 

and 18:1/18:2 

742.4 36:2 
18:0/18:2 and 18:1/18:1 and 16:0/20:2 

and 16:1/20:1 

744.3 36:1 
16:0/20:1 and 18:0/18:1 and 16:1/20:0 

and 14:0/22:1 

746.4 36:0 14:0/22:0 and 16:0/20:0 and 18:0/18:0 

762.3 38:6 18:1/20:5 and 18:2/20:4 

764.4 38:5 18:0/20:5 and 18:1/20.4 and 18:2/20:3 

766.4 38:4 16:0/22:4 and 18:0/20:4 and 18:1/20:3 

768.3 38:3 18:0/20:3 and 18:1/20:2 and 18:2/20:1 

772.4 38:1 18:0/20:1 

774.3 38:0 18:0/20:0 and 16:0/22:0 

792.4 40:5 
18:0/22:5 and 18:1/22.4 and 20:1/20:4 

and 20:2/20:3 

794.3 40:4 
18:0/22:4 and 18:1/22:3 and 20:0/20:4 

and 20:1/20:3 

796.2 40:3 
18:0/22:3 and 18:1/22:2 and 20:0/20:3 

and 20:1/20:2 

798.1 40:2 
18:0/22:2 and 18:1/22:1 and 20:0/20:2 

and 20:1/20:1 

ALKYLACYL 

700.4 34:2 O-16:0/18:2 and O-16:1/18:1 

702.4 34:1 O-16:0/18:1 and O-16:1/18:0 
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722.3 36:5 
O-16:0/20:5 and O-16:1/20:4 and O-

18:1/18:4 

724.4 36:4 
O-16:0/20:4 and O-16:1/20:3 and O-

18:0/18:4 and O-18:1/18:3 

726.4 36:3 
O-16:1/20:2 and O-18:0/18:3 and O-

18:1/18:2 

728.5 36:2 O-18:0/18:2 and O-18:1/18:1 

748.4 38:6 
O-16:0/22:6 and O-16:1/22:5 and O-

18:1/20:5 

750.4 38:5 
O-16:0/22:5 and O-16:1/22:4 and O-

18:0/20:5 and O-18:1/20:4 

752.4 38:4 
O-16:1/22:4 and O-18:0/20:4 and O-

18:1/20:3 

774.3 40:7 O-18:1/22:6 

776.3 40:6 O-18:0/22:6 and O-18:1/22:5 

778.4 40:5 O-18:1/22:4 

PS 

DIACYL 

758.3 34:2 16:0/18:2 and 16:1/18:1 

760.3 34:1 16:0/18:1 and 16:1/18:0 

782.3 36:4 16:0/20:4 and 16:1/20:3 

786.3 36:2 16:0/20:2 and 18:0/18:2 and 18:1/18:1 

788.4 36:1 16:0/20:1 and 16:1/20:0 and 18:0/18:1 

810.4 38:4 

16:0/22:4 and 18:0/20:4 and 18:1/20:3 

and 18:2/20:2 and 18:3/20:1 and 

18:4/20:0 

812.3 38:3 18:0/20:3 

814.1 38:2 16:1/22:1 and 18:0/20:2 and 18:1/20:1 

830.3 40:8 20:4/20:4 

834.3 40:6 

18:0/22:6 and 18:1/22:5 and 18:2/22:4 

and 20:1/20:5 and 20:2/20:4 and 

20:3/20:3 

836.3 40:5 
16:1/24:4 and 18:0/22:5 and 18:1/22:4 

and 20:1/20:4 and 20:2/20:3 

PI 

DIACYL 

833.4 34:2 16:0/18:2 and 16:1/18:1 

835.4 34:1 16:0/18:1 and 16:1/18:0 

837.4 34:0 16:0/18:0 

857.4 36:4 16:0/20:4 and 18:0/18:4 and 18:1/18:3 
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859.4 36:3 16:0/20:3 and 18:0/18:3 and 18:1/18:2 

861.5 36:2 16:0/20:2 and 18:0/18:2 and 18:1/18:1 

863.4 36:1 18:0/18:1 

883.4 38:5 16:0/22:5 and 18:0/20:5 and 18:1/20:4 

885.4 38:4 

16:0/22:4 and 18:0/20:4 and 18:1/20:3 

and 18:2/20:2 and 18:3/20:1 and 

18:4/20:0 

887.4 38:3 
18:0/20:3 and 18:1/20:2 and 18:2/20:1 

and 18:3/20:0 

889.5 38:2 18:0/20:2 and 18:1/20:1 

891.4 38:1 18:0/20:1 

907.0 40:7 18:1/22:6 and 18:2/22:5 and 18:3/22:4 

909.4 40:6 18:0/22:6 and 18:1/22:5 and 20:2/20:4 

911.3 40:5 
18:0/22:5 and 18:1/22:4 and 20:0/20:5 

and 20:1/20:4 and 20:2/20:3 

913.4 40:4 18:0/22:4 and 20:0/20:4 

ALKYLACYL 

819.3 34:2 O-16:0/18:2 and O-18:1/16:1 

821.3 34:1 O-16:0/18:1 and O-16:1/18:0 

907.0 40:0 O-18:0/22:0 

PG 

 

DIACYL 

745.4 34:2 16:0/18:2 and 16:1/18:1 

747.4 34:1 16:0/18:1 and 16:0/18:0 

771.3 36:3 18:1/18:2 

773.4 36:2 16:0/20:2 and 18:0/18:2 and 18:1/18:1 

775.4 36:1 16:0/20:1 and 18:0/18:1 

SM 

 

m/z C:N Sphingoid Base Fatty Acid 

761.2 34:1 d18:1 16:0 

763.2 34:0 d18:0 16:0 

789.3 

 

36:1 d18:0 18:1 

 d18:1 18:0 

791.3 36:0 d18:0 18:0 

815.3 38:2 d18:1 20:1 

817.3 38:1 d18:1 20:0 

871.3 42:2 d18:1 24:1 

873.3 

 

42:1 d18:0 24:1 

 d18:1 24:0 
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Table A. 2. Lipid molecular species of PC, LPC, PE, LPE, PS, LPS, PI, PG and SM 
identified in exosomes released by myoblast cell line H9c2 submitted to ischemia and 
starvation and acquired using an automated HPLC-MS. Identification with m/z 
(mass/charge), corresponding C:N (carbon:unsaturation) and fatty acid composition. 
 

Classes m/z C:N Fatty Acid 

PC 

DIACYL 

762.3 30:1 14:0/16:1 

782.4 32:5 14:1/18:4 

790.3 32:1 
16:0/16:1 and 14:0/18:1 and 

12:0/20:1 

812.3 34:4 
14:0/20:4 and 16:0/18:4 and 

16:1/18:3 

818.2 34:1 16:0/18:1 and 16:1/18:0 

844.3 36:2 
16:0/20:3 and 18:0/18:2 and 

18:1/18:1 

846.3 36:1 16:0/20:1 and 18:0/18:1 

864.3 38:6 18:2/20:4 and 18:4/20:2 

866.3 38:5 18:1/20:4 

868.3 38:4 18:0/20:4 and 18:1/20:3 

872.2 38:2 18:0/20:2 and 18:1/20:1 

ALKYLACYL 

774.3 32:2 O-16:1/16:1 

778.3 32:0 
O-14:0/18:0 and 

O-16:0/18:0 

804.2 34:1 
O-16:0/18:1 and 

O-16:1/18:0 

832.3 36:1 
O-16:0/20:1 and O-16:1/20:0 and 

O-18:0/18:1 

834.3 36:0 O—16:0/20:0 

878.3 40:6 
O-18:0/22:6 and 

O-18:1/22:5 

880.3 40:5 
O-18:0/22:5 and 

O-18:1/22:4 

886.1 40:2 
O-18:0/22:2 and 

O-18:1/22:1 

LPC 

DIACYL 

552.2 16:1 16:1 

554.2 16:0 16:0 

574.1 18:4 18:4 

580.2 18:1 18.1 

582.2 18:0 18:0 
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ALKYLACYL 

566.5 18:1 O-18:1 

568.3 18:0 O-18:0 

PE 

DIACYL 

736.7 36:5 
16:0/20:5 and 16:1/20:4 and 18:1/18:4 

and 18:2/18:3 

738.3 36:4 
16:0/20:4 and 16:1/20:3 and 18:0/18:4 

and 18:1/18:3 and 18:2/18:2 

744.4 36:1 16:0/20:1 and 18:0/18:1 

762.3 38:6 18:1/20:5 and 18:2/20:4 and 18:3/20:3 

766.4 38:4 18:0/20:4 and 18:1/20:3 and 18:2/20:2 

ALKYLACYL 

748.4 38:6 
O-16:0/22:6 and 

O-16:1/22:5 

LPE 

DIACYL 

424.1 14:0 14:0 

474.1 18:3 18:3 

500.1 20:4 20:4 

526.2 22:5 22:5 

532.1 22:2 22:2 

536.2 22:0 22:0 

PS 

DIACYL 

838.3 40:4 

18:0/22:4 and 18:2/22:2 and 18:3/22:1 

and 18:4/22:0 and 20:0/20:4 and 

20:1/20:3 and 20:2/20:2 

ALKYLACYL 

748.3 34:0 O-16:0/18:0 

LPS 

DIACYL 

468.3 14:0 14:0 

496.2 16:0 16:0 

518.2 18:3 18:3 

522.3 18:1 18:1 

PI 

DIACYL 

827.6 34:5 16:2/18:3 

829.8 34:4 16:0/18:4 and 16:1/18:3 

831.7 34:3 16:0/18:3 and 16:1/18:2 

833.8 34:2 16:0/18:2 and 16:1/18:1 

835.4 34:1 16:0/18:1 and 16:1/18:0 

837.2 34:0 16:0/18:0 

857.7 36:4 16:0/20:4 and 18:0/18:4 and 18:1/18:3 

859.8 36:3 16:0/20:3 and 18:0/18:3 and 18:1/18:2 

861.8 36:2 16:0/20:2 and 18:0/18:2 and 18:1/18:1 
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863.8 36:1 18:0/18:1 

881.4 38:6 16:0/22:6 

883.6 38:5 18:0/20:5 and 18:1/20:4 

885.6 38:4 18:0/20:4 and 18:1/20:3 

887.8 38:3 18:0/20:3 and 18:1/20:2 and 18:2/20:1 

891.5 38:1 18:0/20:1 

907.3 40:7 18:1/22:6 

911.7 40:5 
18:0/22:5 and 18:1/22:4 and 20:1/20:4 

and 20:2/20:3 

913.8 40:4 18:0/22:4 and 20:0/20:4 

915.8 40:3 18:0/22:3 and 20:1/20:2 

917.7 40:2 20:0/20:2 

PG 

DIACYL 

719.5 32:1 16:0/16:1 

721.3 32:0 16:0/16:0 

743.5 34:3 16:1/18:2 and 16:2/18:1 

745.6 34:2 16:0/18:2 and 16:1/18:1 

747.5 34:1 16:0/18:1 and 16:1/18:0 

749.5 34:0 16:0/18:0 

765.3 36:6 18:2/18:4 and 18:3/18:3 

767.4 36:5 16:1/20:4 and 18:1/18:4 and 18:2/18:3 

769.4 36:4 
16:0/20:4 and 16:1/20:3 and 18:1/18:3 

and 18:2/18:2 

771.3 36:3 16:0/20:3 and 16:1/20:2 and 18:1/18:2 

773.6 36:2 16:0/20:2 and 18:0/18:2 and 18:1/18:1 

775.6 36:1 16:0/20:1 and 18:0/18:1 

793.4 38:6 18:2/20:4 and 18:3/20:3 

795.3 38:5 18:2/20:3 and 18:3/20:2 and 18:4/20:1 

801.7 38:2 18:0/20:2 and 18:1/20:1 

803.3 38:1 18:0/20:1 

SM 

 

 

 

 

 

 

 

 

m/z C:N Sphingoid Base Fatty Acid 

761.2 34:1 d18:1 16:0 

763.3 34:0 d18:0 16:0 

787.3 36:2 d18:1 18:1 

789.2 36:1 
d18:1 18:0 

d18:0 18:1 

815.1 38:2 d18:1 20:1 

845.3 40:1 d18:1 22:0 

871.3 42:2 d18:1 24:1 

873.4 42:1 
d18:1 24:0 

d18:0 24:1 
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