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Abstract. Working in the framework of (T,V)-categories, for a symmetric monoidal closed

category V and a (not necessarily cartesian) monad T, we present a common account to the

study of ordered compact Hausdorff spaces and stably compact spaces on one side and monoidal

categories and representable multicategories on the other one. In this setting we introduce the

notion of dual for (T,V)-categories.
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1. Introduction

The principal objective of this paper is to present a common account to the study of ordered

compact Hausdorff spaces and stably compact spaces on one side and monoidal categories and

representable multicategories on the other one. Both theories have similar features but were

developed independently.

On the topological side, the starting point is the work of Stone on the representation of

Boolean algebras [29] and distributive lattices [30]. In the latter paper, Stone proves that (in

modern language) the category of distributive lattices and homomorphisms is dually equivalent

to the category of spectral topological spaces and spectral maps. Here a topological space is

spectral whenever it is sober and the compact open subsets form a basis for the topology which

is closed under finite intersections; and a continuous map is called spectral whenever the inverse

image of a compact open subset is compact. Later Hochster [14] showed that spectral spaces are,

up to homeomorphism, the prime spectra of commutative rings with unit, and in the same paper

he also introduced a notion of dual spectral space. A different perspective on duality theory

for distributive lattices was given by Priestley in [26]: the category of distributive lattices and

homomorphisms is also dually equivalent to the category of certain ordered compact Hausdorff

spaces (introduced by Nachbin in [25]) and continuous monotone maps. In particular, this full

subcategory of the category of ordered compact Hausdorff spaces is equivalent to the category of

spectral spaces. In fact, this equivalence generalises to all ordered compact Hausdorff spaces: the

category OrdCompHaus of ordered compact Hausdorff spaces and continuous monotone maps

is equivalent to the category StablyComp of stably compact spaces and spectral maps (see [10]).

Furthermore, as shown in [28] (see also [8]), stably compact spaces can be recognised among

all topological spaces by a universal property; namely, as the algebras for a Kock-Zöberlein

monad (or lax idempotent monad, or simply KZ; see [22]) on Top. Finally, Flagg [9] proved

that OrdCompHaus is also monadic over ordered sets.

Independently, a very similar scenario was developed by Hermida in [12, 13] in the context

of higher-dimensional category theory, now with monoidal categories and multicategories in lieu

of ordered compact Hausdorff spaces and topological spaces. More specifically, he introduced

in [12] the notion of representable multicategory and constructed a 2-equivalence between the

2-category of representable multicategories and the 2-category of monoidal categories; that is,

representable multicategories can be seen as a higher-dimensional counterpart of stably compact

topological spaces. More in detail, we have the following analogies:
1
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topological space multicategory,

ordered compact Hausdorff space monoidal category,

stably compact space representable multicategory;

and there are KZ-monadic 2-adjunctions

OrdCompHaus >
((

hh Top MonCat >
((

hh MultiCat,

which restrict to 2-equivalences

OrdCompHaus ' StablyComp MonCat ' RepMultiCat.

To bring both theories under one roof, we consider here the setting used in [7] to introduce

(T,V)-categories; that is, a symmetric monoidal closed category V together with a (not nec-

essarily cartesian) monad T on Set laxly extended to the bicategory V-Rel of V-relations.

After recalling the notions of (T,V)-categories and (T,V)-functors, we proceed showing that

the above-mentioned results hold in this setting: the Set-monad T extends naturally to V-Cat,

and its Eilenberg–Moore category admits an adjunction

(V-Cat)T >
((

hh (T,V)-Cat,

so that the induced monad is of Kock-Zöberlein type. Following the terminology of [12], we

call the pseudo-algebras for the induced monad on (T,V)-Cat representable (T,V)-categories.

We explain in more detail how this notion captures both theories mentioned above. Finally, we

introduce a notion of dual (T,V)-category. We recall that this concept turned out to be crucial

in the development of a completeness theory for (T,V)-categories when V is a quantale, i.e. a

small symmetric monoidal closed complete category (see [5]).

From a more formal point of view, (T,V)-categories are monads within a certain bicategory-

like structure. Some of the theory presented in this paper is “formal monad theoretical” in

character. This perspective will be developed in an upcoming paper [4].

2. Basic assumptions

Throughout the paper V is a complete, cocomplete, symmetric monoidal-closed category,

with tensor product ⊗ and unit I. Normally we avoid explicit reference to the natural unit,

associativity and symmetry isomorphisms.

The bicategory V-Rel of V-relations (also called Mat(V): see [2, 27]) has as

– objects sets, denoted by X, Y , . . . , also considered as (small) discrete categories,

– arrows (=1-cells) r : X −→7 Y are families of V-objects r(x, y) (x ∈ X, y ∈ Y ),

– 2-cells ϕ : r → r′ are families of morphisms ϕx,y : r(x, y) → r′(x, y) (x ∈ X, y ∈ Y ) in

V, i.e., natural transformations ϕ : r → r′; hence, their (vertical) composition is computed

componentwise in V:

(ϕ′ · ϕ)x,y = ϕ′x,yϕx,y.

The (horizontal) composition of arrows r : X −→7 Y and s : Y −→7 Z is given by relational

multiplication:

(sr)(x, z) =
∑
y∈Y

r(x, y)⊗ s(y, z),

which is extended naturally to 2-cells; that is, for ϕ : r → r′, ψ : s→ s′,

(ψϕ)x,z =
∑
y∈Y

ϕx,y ⊗ ψy,z : (sr)(x, z)→ (s′r′)(x, z).
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There is a pseudofunctor Set −→ V-Rel which maps objects identically and treats a Set-

map f : X → Y as a V-relation f : X−→7 Y in V-Rel, with f(x, y) = I if f(x) = y and

f(x, y) = ⊥ otherwise, where ⊥ is a fixed initial object of V. If an arrow r : X−→7 Y is given by

a Set-map, we shall indicate this by writing r : X → Y , and by normally using f, g, . . . , rather

than r, s, . . . .

Like for V, in order to simplify formulae and diagrams, we disregard the unity and associa-

tivity isomorphisms in the bicategory V-Rel when convenient.

V-Rel has a pseudo-involution, given by transposition: the transpose r◦ : Y −→7 X of r :

X −→7 Y is defined by r◦(y, x) = r(x, y); likewise for 2-cells. In particular, there are natural and

coherent isomorphisms

(sr)◦ ∼= r◦s◦

involving the symmetry isomorphisms of V. The transpose f◦ of a Set-map f : X → Y is a

right adjoint to f in the bicategory V-Rel, so that f is really a “map” in Lawvere’s sense; hence,

there are 2-cells

1X
λf // f◦f and ff◦

ρf // 1Y

satisfying the triangular identities.

We fix a monad T = (T, e,m) on Set with a lax extension to V-Rel, again denoted by T, so

that:

– There is a lax functor T : V-Rel → V-Rel which extends the given Set-functor; hence, for

an arrow r : X −→7 Y we are given Tr : TX −→7 TY , with Tr a Set-map if r is one, and T

extends to 2-cells functorially:

T (ϕ′ · ϕ) = Tϕ′ · Tϕ, T1r = 1Tr;

furthermore, for all r : X −→7 Y and s : Y −→7 Z there are natural and coherent 2-cells

κ = κs,r : TsTr −→ T (sr),

so that the following diagrams commute:

(lax) TsTr
κs,r //

(Tψ)(Tϕ)
��

T (sr)

T (ψϕ)
��

TtT (sr)
κt,sr // T (tsr)

Ts′Tr′
κs′,r′ // T (s′r′) TtTsTr

κt,s− //

−κs,r

OO

T (ts)Tr

κts,r

OO

(also: κr,1X = 1Tr = κ1Y ,r; all unity and associativity isomorphisms are suppressed).

Furthermore, we assume that T (f◦) = (Tf)◦ for every map f .

It follows that whenever f is a set map κs,f is invertible. Its inverse is the composite

T (sf)
−λTf−−−→ T (sf)Tf◦Tf

κsf,f◦−−−−−−→ T (sff◦)Tf
T (sρf )−−−−−−→ TsTf.

Also, κf◦,t is invertible, for t : Z −→7 Y . Its inverse is the composite

T (f◦t)
λTf−−−−→ Tf◦TfT (f◦t)

−κf,f◦t−−−−−→ Tf◦T (ff◦t)
−T (ρf t)−−−−−→ Tf◦Tt.

– The natural transformations e : 1 → T , m : T 2 → T of Set are op-lax in V-Rel, so that for

every r : X −→7 Y one has natural and coherent 2-cells

α = αr : eY r → TreX , β = βr : mY T
2r → TrmX , as in
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(oplax) X �r //

eX
��

Y

eY
��

α⇐

T 2X �T 2r //

mX

��

T 2Y

β⇐ mY

��
TX �

Tr
// TY TX �

Tr
// TY

such that αf = 1eY f , βf = 1mY T 2f whenever r = f is a Set-map.

– The following diagrams commute (where again we disregard associativity isomorphisms):

(mon)

mY TeY Tr
−κeY ,r

//

1

��

mY T (eY r)
−Tαr// mY T (TreX)

−κ−1
Tr,eX��

mY eTY Tr
−αTr //

1 ��

mY T
2reTX

βr−��

mY T
2rTeX

βr−��
Tr

1 // TrmXeTX Tr
1 // TrmXTeX

mY TmY T
3r

1 ��

−κmY ,T2r
// mY T (mY T

2r)
−Tβr // mY T (TrmX)

−κ−1
Tr,mX��

mYmTY T
3r

−βTr ��

mY T
2rTmX

βr−��
mY T

2rmTX
βr−

// TrmXmTX
1
// TrmXTmX .

– One also needs the coherence conditions

(coh) eZsr
αs− //

1
��

TseY r
−αr // TsTreX

κs,r−��
eZsr

αsr // T (sr)eX

mZT
2sT 2r

βs− //

−κTs,Tr ��

TsmY T
2r

−βr // TsTrmX

κs,r−

��

mZT (TsTr)

−Tκs,r ��
mZT

2(sr)
βsr // T (sr)mX .

– And the following naturality conditions, for all ϕ : r → r′,

(nat) TϕeX · αr = αr′ · eY ϕ and TϕmX · βr = βr′ ·mY T
2ϕ.

The op-lax natural transformations e and m induce two lax natural transformations

(e◦, α̂) : T → IdV-Rel and (m◦, β̂) : T → T 2

on V-Rel: for each r : X−→7 Y we have

TX �Tr //

_e◦X
��

α̂⇒

TY

_ e◦Y
��

TX �Tr //

_m◦X
��

β̂⇒

TY

_m◦Y
��

X �
r
// Y T 2X �

T 2r

// T 2Y
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where α̂r : re◦X → e◦Y Tr and β̂r : T 2rm◦X → m◦Y Tr, are mates of αr and βr respectively, i.e.

they are defined by the composites:

re◦X
λeY − // e◦Y eY re

◦
X

−αr− // e◦Y TreXe
◦
X

−ρeX // e◦Y Tr

T 2rm◦X
λmY

−
// m◦YmY T

2rm◦X
−βr− // m◦Y TrmXm

◦
X

−ρmX // m◦Y Tr.

3. (T,V)-categories

Now we define the 2-category (T,V)-Cat of (T,V)-categories, (T,V)-functors and transfor-

mations between these:

– (T,V)-categories are defined as (X, a, ηa, µa), with X a set, a : TX −→7 X a V-relation, and

ηa and µa 2-cells as in the following diagrams:

X

1X !!

eX // TX

_ a
��

TX

_a
��

T 2X�Taoo

mX

��

ηa⇒

X X

µa⇒
TX;�

a
oo

furthermore, ηa, µa provide a generalized monad structure on a, i.e., the following diagrams

must commute (modulo associativity isomorphisms):

(cat) aeXa
−αa // aTaeTX

µa−
��

aT (aeX)
−κ−1

a,eX // aTaTeX

µa−
��

a

ηa−

OO

1 // amXeTX a

−Tηa

OO

1 // amXTeX

aTaT 2a
−κa,Ta //

µa−
��

aT (aTa)
−Tµa // aT (amX)

−κ−1
a,mX

��
amXT

2a

−βa
��

aTaTmX

µa−
��

aTamTX
µa− // amXmTX

1 // amXTmX .

We will sometimes denote a (T,V)-category (X, a, ηa, µa) simply by (X, a).

– A (T,V)-functor (f, ϕf ) : (X, a, ηa, µa) → (Y, b, ηb, µb) between (T,V)-categories is given by

a Set-map f : X → Y equipped with a 2-cell ϕf : fa→ bTf

TX
Tf
//

_a
��

TY

_ b
��

X
f
//

ϕf⇒
Y
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making the following diagrams commute:

(fun) f
−ηa //

ηb−

��

faeX

ϕf−

��
beY f

1 // bTfeX

faTa
−µa //

ϕf−

��

famX

ϕf−

��
bTfTa

−κf,a
��

bTfmX

1

��

bT (fa)

−Tϕf

��
bT (bTf)

−κ−1
b,Tf// bTbT 2f

µb− // bmY T
2f.

– A (T,V)-natural transformation (or simply a natural transformation) between (T,V)-functors

(f, ϕf )→ (g, ϕg) is defined as a 2-cell ζ : ga→ bTf

TX
Tf
//

_a
��

TY

_ b
��

X
g
//

ζ⇒
Y

such that the two sides of the following diagram commute

gaeXa
ζ−
ww

ga
−ηa−oo

ζ

��

1 // ga
ϕg

((
bTfeXa

1��

bTg

−T (gηa) ��
beY fa

−ϕf��

bT (gaeX)

−T (ζeX) ��
beY bTf

−αb− &&

bT (bTfeX)

−κ−1
b,eY f

vv
bTbeTY Tf

µb−
// bTf bTbTeY Tf

µb−
oo

Such a 2-cell ζ is determined by the 2-cell

(ζ0) (g
ζ0 // beY f) = (g

−ηa // gaeX
ζ−
// bTfeX = beY f),

from which it can be reconstructed by either side of the above diagram.

The composite of (T,V)-functors (f, ϕf ) and (g, ϕg) is defined by the picture

TX
Tf
//

_a
��

TY

_ b
��

Tg
// TZ

_ c
��

X
f
//

ϕf⇒
Y

g
//

ϕg⇒
Z,
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that is as (gf, ϕgf ), with ϕgf = (ϕgTf)(gϕf ). The identity (T,V)-functor on (X, a) is (1X , 1a).

The horizontal composition of (T,V)-natural transformations ζ : (f, ϕf ) → (g, ϕg) and ζ ′ :

(f ′, ϕf ′)→ (g′, ϕg′) is defined by a picture obtained from the above one by replacing ϕf and ϕg

with ζ and ζ ′. The vertical composition of (T,V)-natural transformations ζ : (f, ϕf )→ (g, ϕg)

and ζ ′ : (g, ϕg)→ (h, ϕh) is defined by the diagram

TX

1TX
Tηa⇒

$$

TeX
��

Tf
// TY

TeY
��

_ bmY TeY =bµb−⇒

~~

T 2X

Tζ⇒_Ta
��

T 2f
// T 2Y

_Tb
��

TX

ζ′⇒

Tg
//

_a
��

TY

_ b
��

X
h // Y.

The identity natural transformation on a (T,V)-functor (f, ϕf ) is the 2-cell ϕf itself.

The definitions of horizontal and vertical compositions can be naturally stated in terms of the

alternative definition (ζ0) of (T,V)-natural transformation too.

When T is the identity monad, identically extended to V-Rel, the category (T,V)-Cat is

exactly the 2-category V-Cat of V-categories, V-functors and V-natural transformations.

Next we summarize briefly our two main examples. In the first example, V = 2 and T is the

ultrafilter monad together with a suitable extension to 2-Rel = Rel. In this case (T,V)-Cat

is the category of topological spaces and continuous maps. In the second example, V = Set

and T is the free-monoid monad with a suitable extension to Set-Rel = Span. In this case

(T,V)-Cat is the category of multicategories and multifunctors. For details on these examples,

as well as for other examples, see [7, 18].

For any T there is an adjunction of 2-functors:

(adj) (T,V)-Cat >

Ae

((

A◦

hh V-Cat.

Ae is the algebraic functor associated with e, that is, for any (T,V)-category (X, a, ηa, µa),

(T,V)-functor (f, ϕf ) and (T,V)-natural transformation ζ : (f, ϕf )→ (g, ϕg), Ae(X, a, ηa, µa) =

(X, aeX , ηa, µa), where

(aeXaeX
µa // aeX) = (aeXaeX

−αa− // aTaeTXeX
µa− // amXeTXeX = aeX),

Ae(f, ϕf ) = (f, ϕfeX) and Ae(ζ) = ζeX (see [7] for details).

A◦ is defined as follows. For a V-category (Z, c, ηc, µc), A
◦(Z, c, ηc, µc) is the (T,V)-category

(Z, c], ηc] , µc]) where c] = e◦ZTc, while ηc] : 1→ e◦ZTceZ and µc] : e◦ZTcT (e◦ZTc)→ e◦ZTcmZ are

defined by the composites

1
λeZ // e◦ZeZ

−Tηc−// e◦ZTceZ
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T 2Z

mZ

��

�T 2c //

βc⇐

�T (e◦ZTc)

κ−1
e◦
Z
,Tc

⇐ $$
T 2Z �Te◦Z //

1T2Z ��
ρTeZ⇐

TZ
_Tc ��

TeZ
ooT 2Z

mZ ��

TZ
_e◦Z ��

TZ �
Tc
//

�
Tc

Tµcκc,c⇐
<<TZ �

Tc
// TZ �

e◦Z

// Z.

For a V-functor (f, ϕf ) : (Z, c)→ (Z ′, c′), A◦(f, ϕf ) is defined by the diagram

TZ �Tc //

Tf
��

TZ �e
◦
Z //

Tf
��

Z

f
��

TZ ′ �
Tc′
//

Tϕf⇐
TZ ′ �

e◦
Z′

//

⇐
Z ′,

wherein the right 2-cell is the mate of the identity 2-cell 1TfeZ=eZ′f . On V-natural transforma-

tions A◦ is defined by a similar diagram. By direct verifications A◦ is indeed a 2-functor, and

as already stated we have:

Proposition 3.1. A◦ is a left 2-adjoint to Ae.

Proof. The unit of the adjunction has the component at a V-category (Z, c) given by a V-functor

consisting of 1Z and the 2-cell

c
λeZ− // e◦ZeZc

−αc // e◦ZTceZ .

The counit of the adjunction has the component at a (T,V)-category (X, a) given by a (T,V)-

functor consisting of 1X and the 2-cell

e◦XT (aeX)
−κ−1

a,eX// e◦XTaTeX
ηa− // aeXe

◦
XTaTeX

−ρeX−// aTaTeX
µa− // amXTeX = a.

The triangle identities are then directly verified. �

The next proposition is a (T,V)-categorical analogue of the ordinary- and enriched-categorical

fact that an adjunction between functors induces isomorphisms between hom-sets/-objects.

Proposition 3.2. Given an adjunction (f, ϕf ) a (g, ϕg) : (X, a) → (Y, b) in the 2-category

(T,V)-Cat, there is an isomorphism:

g◦a ∼= bTf.

Proof. The unit and the counit of the given adjunction are (T,V)-natural transformations

(1X , 1a)→ (g, ϕg)(f, ϕf ) and (f, ϕf )(g, ϕg)→ (1Y , 1b). These are given by 2-cells υ0 : gf → aeX

and ε0 : 1Y → beY fg respectively. Define a 2-cell bTf → g◦a by

TX
Tf

//

TeX
��

1TX

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y //

λg⇐

Y,

T 2X

mX

��

�Ta //

µa⇐

TX �a // X
g◦

88

TX
'
a

99
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wherein the blank symbols stand for the obvious instances of κ or κ−1. In the opposite direction

define a 2-cell g◦a→ bTf by

Y

g
��

ρg⇐

1Y
ε0⇐

��

TX �
a

//

Tf
��

ϕf⇐

X

f
��

1X //

g◦
77

X

f
��

TY �b //

eTY
��

1TY

//

αb⇐

Y

eY
��

Y

eY
��

T 2Y �
Tb

//

mY

��
µb⇐

TY

_b
��

TY

_ b
��

TY �
b

// Y
1Y

// Y.

These two 2-cells are inverses to each other. The following calculation shows that the equality

(bTf → g◦a → bTf) = 1bTf holds. The remaining equation is proved using analogous argu-

ments. Pasting the first diagram on top of the second, and using the equation (ρgg)(gλg) = 1g

we obtain

TX
Tf

//

TeX ��
1TX

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

mX

��

�Ta //

µa⇐

TX �a // X

f

��

TX
'
a

99

Tf
��

ϕf⇐
TY �b //

eTY
��

1TY

//

αb⇐

Y

eY
��

T 2Y �
Tb

//

mY

��
µb⇐

TY

_b
��

TY �
b

// Y ;

using (fun) for (f, ϕf ) we get

TX
Tf

//

TeX ��1TX

��

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐
mX

{{

TX �a //

Tf
��

ϕf⇐

X

f
��

TX

Tf ##

T 2Y �Tb //

mY

��
µb⇐

TY �b // Y

eY

��

TY

eTY
��

'
b

99

1TY

//

αb⇐
T 2Y �

Tb
//

mY

��
µb⇐

TY

_b
��

TY �
b

// Y.
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Then, using naturality of α we obtain

TX
Tf

//

TeX ��1TX

��

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐
mX

{{

TX �a //

Tf
��

ϕf⇐

X

f
��

TX

Tf
��

T 2Y
mY

{{

�Tb //

eT2Y
��

αTb⇐

TY

eTY
��

�b //

αb⇐

Y

eY
��

TY

1TY

''

eTY ##

T 3Y �T 2b //

TmY
��

−Tµb−⇐

T 2Y �Tb // TY

_b

��

T 2Y

mY

��

'
Tb

88

µb⇐
TY �

b
// Y,

and using the associativity axiom in (cat) for µb we get

TX
Tf

//

TeX ��

Tf

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX �a //

Tf
��

ϕf⇐

X

f
��

T 2Y �Tb //

eT2Y
��

αTb⇐

TY

eTY
��

�b //

αb⇐

Y

eY
��

T 3Y �T 2b //

TmY

		
mTY
��

−Tµb−⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y.

TY
&
b

88

mY ��

From (mon) we obtain

TX
Tf

//

TeX ��

Tf

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX �a //

Tf
��

ϕf⇐

X

f
��

T 2Y

1T2Y

��

�Tb //

eT2Y
��

TY

1T2Y

��

eTY
��

�b //

αb⇐

Y

eY
��

T 3Y

mTY
��

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y,

TY
'
b

99
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and the axiom of a (T,V)-natural transformation for ε0 gives

TX
Tf

//

TeX ��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

1T2Y

��

�Tb // TY

1T2Y

��

TeY
��

−Tε0−⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y.

TY
'
b

88

Using (mon) again we obtain

TX
Tf

//

TeX ��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

1T2Y

��

TeTY
��

�Tb //

−Tαb−⇐

TY

TeY
��

−Tε0−⇐

T 3Y

mTY
��

�T 2b //

βb⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y,

TY
'
b

99

and using associativity of µb again we get

TX
Tf

//

TeX ��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

TeTY
��

�Tb //

−Tαb−⇐

TY

TeY
��

−Tε0−⇐

T 3Y
mTY

		
TmY
��

�T 2b //

−Tµb−⇐

T 2Y �Tb // TY

_b
��

T 2Y T 2Y

mY

��

'Tb

88

µb⇐

Y.

TY

mY �� &
b

88
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Now, one of the triangle equations satisfied by the unit υ0 and the counit ε0 of our adjunction

gives us

TX
Tf

//

TeX ��

Tf

//

−Tηb−⇐

TY

TeY

��

1TY

��

T 2X

T 2f
��

T 2Y

TeTY
��

�
Tb

++
1TY

��

T 3Y

TmY
��

TY

_b
��

T 2Y

mY

��

'Tb

99

µb⇐

Y,

TY
'
b

99

and finally, by the unity axiom in (cat), this equals to

TX
Tf

//

Tf

��

TY
TeY
{{

_ b

��

T 2Y
mY

{{
TY �b // Y,

which is the identity map 1bTf .

We leave it to the reader to verify the equality (g◦a→ bTf → g◦a) = 1g◦a. �

4. T as a V-Cat monad

In this section we show that the properties of the lax extension of the Set-monad T to V-Rel

allow us to extend T to V-Cat. Straightforward calculations show that:

Lemma 4.1. (1) If (X, a, ηa, µa) is a V-category, then (TX, Ta, Tηa, Tµaκa,a) is a V-category.

(2) If (f, ϕf ) : (X, a, ηa, µa) → (Y, b, ηb, µb) is a V-functor, then (Tf, ϕTf ) : (TX, Ta) →
(TY, Tb), where ϕTf := κ−1b,f Tϕf κf,a, is a V-functor as well.

(3) If ζ : (f, ϕf ) → (g, ϕg) is a V-natural transformation, then so is κ−1b,fTζ κg,a : (Tf, ϕTf ) →
(g, ϕTg).

These assignments define an endo 2-functor on V-Cat that we denote again by T : V-Cat →
V-Cat. The 2-cells α, β of the oplax natural transformations e,m on V-Rel equip e and m so

that they become natural transformations in V-Cat, as we show next.

Lemma 4.2. For each V-category (X, a):

(1) (eX , αa) : (X, a)→ (TX, Ta) is a V-functor;

(2) (mX , βa) : (T 2X,T 2a)→ (TX, Ta) is a V-functor.

Proof. To check that the diagrams

eX
−ηa //

Tηa−
��

eXa

αavv

mX

−ηT2a //

ηTa−
��

mXT
2a

βavv
TaeX TamX
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commute one uses the naturality conditions (nat) with respectively ϕ = η and ϕ = β. For the

diagrams

eXaa
−µa //

αa−
�� αa,a

$$

eXa

αa

��

TaeXa

−αa

��
TaTaeX

1
2

κa,a− // T (aa)eX
Tµa− // TaeX

mXT
2aT 2a

−κTa,Ta //

βa−
��

mXT (TaTa)
−Tκa,a // mXT

2(aa)
−T 2µa //

βaa

��

mXT
2a

βa

��

TamXT
2a

−βa
��

TaTamX

3

κa,a− // T (aa)mX

4

Tµa− // TamX ,

commutativity of 1 and 3 follows from the coherence conditions (coh), while commutativity

of 2 and 4 follows from the naturality conditions (nat). �

Lemma 4.3. For each V-category (X, a), let e(X,a) = (eX , αa) and m(X,a) = (mX , βa).

(1) e = (e(X,a))(X,a)∈V-Cat : IdV-Cat → T is a 2-natural transformation.

(2) m = (m(X,a))(X,a)∈V-Cat : T 2 → T is a 2-natural transformation.

Proof. To check that, in the diagrams

X
eX //

>a

��

f

��

TX

9
Ta||

Tf

��

T 2X
mX //

7T 2a

{{

T 2f

��

TX

9
Ta||

Tf

��

X

⇓ϕf

αa⇒
eX //

f

��

TX

⇓ϕTf

Tf

��

T 2X

⇓ϕT2f

βa⇒

T 2f

��

mX // TX

⇓ϕTf

Tf

��

Y
eY //

>b

��

TY

9
Tb||

T 2Y
mY //

7T 2b

{{

TY

9
Tb||

Y

αb⇒
eY // TY T 2Y

βb⇒
mY // TY

the composition of the 2-cells commute, one uses again diagrams (nat) and (coh). To prove

2-naturality just take in these diagrams a 2-cell ζ giving a transformation of (T,V)-functors

instead of ϕf . �

Theorem 4.4. (T, e,m) is a 2-monad on V-Cat.

Proof. It remains to check the commutativity of the diagrams, for each category (X, a),

(TX, Ta)
(eTX ,αTa) //

(1,1)

$$

(T 2X,T 2a)

(mX ,βa)

��

(TX, Ta)
(TeX ,κ

−1Tαaκ)oo

(1,1)

zz

(T 3X,T 3a)
(mTX ,βTa) //

(TmX ,κ
−1Tβaκ)

��

(T 2X,T 2a)

(mX ,βa)

��
(TX, Ta) (T 2X,T 2a)

(mX ,βa) // (TX, Ta),
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which follows again from diagrams (nat) and (coh). �

Denoting the 2-category of algebras of this 2-monad by (V-Cat)T, we get a commutative

diagram

(T-alg) SetT

a UT

��

//> (V-Cat)T

a UT

��

oo

Set

FT

OO

//> V-Cat.
oo

FT

OO

5. The fundamental adjunction

From now on we assume that β̂r : Trm◦X → m◦Y Tr is an isomorphism for each V-relation

r : X−→7 Y , so that m◦ : T → T 2 becomes a pseudo-natural transformation on V-Rel.

In this section we will build an adjunction

(ADJ) (V-Cat)T >

K
((

M

hh (T,V)-Cat.

Let ((Z, c, ηc, µc), (h, ϕh)) be an object of (V-Cat)T. The V-category unit ηc is a 2-cell

1Z → c = cheZ . Let µ̃c be the 2-cell defined by:

(µ̃c) chT (ch)
−κ−1

c,h // chTcTh
−ϕh− // cchTh = cchmZ

µc− // chmZ .

Lemma 5.1. The data (Z, ch, ηc, µ̃c) gives a (T,V)-category.

Proof. Each of the three (T,V)-category axioms follows from the corresponding V-category

axiom for (Z, c, ηc, µc), using (mon) and the fact that (h, ϕh) is an algebra structure. �

We set

K((Z, c, ηc, µc), (h, ϕh)) = (Z, ch, ηc, µ̃c).

K extends to a 2-functor in the following way. For a morphism of T-algebras (f, ϕf ) : ((Z, c), h)→
((W,d), k), we set K(f, ϕf ) = (f, ϕfh), where ϕfh is regarded as a morphism fch −→ dfh =

dkTf . For a natural transformation of T-algebras ζ : (f, ϕf ) → (g, ϕg) we define K(ζ) = ζh.

By straightforward calculations these indeed define a 2-functor.

Let now (X, a, ηa, µa) be a (T,V)-category. Let â = Tam◦X . Define a 2-cell ηâ : 1TX → â by

the composite

(ηâ) 1TX = T1X
Tηa // T (aeX)

κ−1
a,eX // TaTeX

−λmX
−
// Tam◦XmXTeX = Tam◦X ,

and define µâ : ââ→ â by

TX �m
◦
X //

_m◦X
��

T 2X �Ta //

_m◦TX
��

β̂−1

⇐

TX

_m◦X
��

T 2X �Tm◦X //

ρTm◦
X⇐

1T2X
00

T 3X �T 2a //

TmX
��

−Tµa−⇐

T 2X

_Ta
��

T 2X �Ta // TX.

Lemma 5.2. The data (TX, â, ηâ, µâ) determines a V-category.
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Proof. The three V-category axioms follow from the corresponding (T,V)-category axioms for

(X, a, ηa, µa). �

Let ϕâ : mXT â→ âmX be the composite 2-cell

T 2X

mX
��

�Tm◦X //

⇐

�T (Tam◦X)

κ−1
Ta,m◦

X⇐ $$
T 3X �T 2a //

mTX ��
βa⇐

T 2X

mX
��

TX �
m◦X

// T 2X �
Ta

// TX.

Wherein the left 2-cell is the mate of the identity map 1mXmTX=mXTmX
. Direct calculations

yield:

Lemma 5.3. The pair (mX , ϕâ) is a V-functor T (TX, â) → (TX, â); moreover, it defines a

T-algebra structure on the V-category (TX, â).

We set

M(X, a) = ((TX, â), (mX , ϕâ)).

We extend this construction to a 2-functor as follows. For a (T,V)-functor (f, ϕf ) : (X, a) →
(Y, b), M(f, ϕf ) = (Tf, ϕ̃Tf ), where ϕ̃Tf is given by

TX

Tf
��

�m
◦
X //

β̂f⇐

T 2X �Ta //

T 2f ��
−Tϕf−⇐

TX

Tf
��

TY �
m◦Y

// T 2Y �
Tb

// TY.

For a natural transformation of (T,V)-functors ζ : (f, ϕf ) → (g, ϕg), M(ζ) is defined by a

similar diagram. By direct verification M is a 2-functor.

Theorem 5.4. M is a left 2-adjoint to K.

Proof. Given a (T,V)-category (X, a, ηa, µa),

(eX , α̃a) : (X, a, ηa, µa) // KM(X, a, ηa, µa) = (TX, Tam◦XmX , ηâ, µ̃a),

is a (T,V)-functor, where α̃a is the composite

(unit) (eXa
αa // TaeTX

−λmX
−
// Tam◦XmXeTX = Tam◦XmXTeX),

These functors define a natural transformation 1→ KM . Given a T-algebra ((Z, c, ηc, µc), (h, ϕh)),

(h, ϕ̃h) : MK((Z, c, ηc, µc), (h, ϕh)) = (TZ, T (ch)m◦X , η̂ch, µĉh) // ((Z, c, ηc, µc), (h, ϕh)) ,

is a morphism of T-algebras, where ϕ̃h is defined as

hT (ch)m◦X
−κ−1

c,h−−−→ hTcThm◦X
ϕh−−−−→ chThm◦X = chmXm

◦
X

−ρmX−−−−→ ch,

These define a natural transformation MK → 1. These natural transformations serve as the

unit and the counit of our adjunction. The triangle identities are straightforwardly verified. �
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6. T as a (T,V)-Cat monad

Let us identify the 2-monad on (T,V)-Cat induced by the adjunction M a K, which we

denote again by T = (KM = T, e,m).

Thus, T = KM is a 2-endofunctor on (T,V)-Cat. To a (T,V)-category (X, a, ηa, µa) it

assigns the (T,V)-category (TX, âmX = Tam◦XmX , ηâ, µ̃â) with components defined in the

diagrams (ηâ) and (µ̃c) of the last section, to a (T,V)-functor (f, ϕf ) it assigns the (T,V)-

functor (Tf, ϕ̃f ) which can be diagrammatically specified by

T 2X

mX

��

T 2f
// T 2Y

mY

��
TX

_m◦X
��

Tf
// TY

_m◦Y
��

T 2X

β̂f⇒

_Ta
��

T 2f
// T 2Y

_Tb
��

TX

−Tϕf−⇒
Tf

// TY,

and the T-image of a (T,V)-natural transformation ζ : (f, ϕf ) → (g, ϕg) is computed by a

similar diagram.

The unit of the 2-monad is the unit (e, α̃) of the adjunction K a M defined in (unit). The

multiplication of the 2-monad is given by (m, β̃), the component of which at a (T,V)-category

(X, a), – which is a (T,V)-functor MKMK(X, a)→MK(X, a) –, is pictorially described by:

T 3X

_MKMK(a)

OO

mTX

��

TmX // T 2X

_MK(a)

oo

mX

��
T 2X

mX //

_m◦TX
��

TX

1
��

T 3X
mXmTX

//

−ρmTX⇒

TmX
��

TX

1
��

T 2X

_Tm◦X
��

mX // TX

_m◦X
��

T 3X
mTX //

(−ρTmX
)(λmX

−)
⇒

_
T 2a
��

T 2X

_Ta
��

T 2X
mX //

βa⇒
TX.

Theorem 6.1. The 2-monad (T, e,m) on (T,V)-Cat is a KZ monad.

Proof. One of the equivalent conditions expressing the KZ property is the existence of a modi-

fication δ : Te→ eT : T → TT such that

(mod) δe = 1ee and mδ = 11T .

For a (T,V)-category (X, a, µa, ηa), let δ(X,a) be the composite 2-cell

eTX
T 2ηa−// T 2(aeX)eTX

Tκa,eX−// T (TaTeX)eTX
κTa,TeX

−
// T 2aT 2eXeTX
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= T (Ta)eT 2XTeX
T (TaλmX

)λmTX
−
// T (Tam◦XmX)m◦TXmTXeT 2XTeX .

This defines a (T,V)-natural transformation

δ(X,a) : (TeX , T α̃a)→ (eTX , α̃âmX
).

The family of these natural transformations gives the required modification Te→ eT . The first

of the two required equalities (mod) is straightforward. The second one follows from (mon). �

7. Representable (T,V)-categories: from Nachbin spaces

to Hermida’s representable multicategories

Being a KZ monad, for the monad T on (T,V)-Cat a T-algebra structure on a (T,V)-category

(X, a) is, up to isomorphism, a reflective left adjoint to the unit e(X,a); hence, having a T-algebra

structure is a property, rather than an additional structure, for any (T,V)-category. As Hermida

in [12], we say that:

Definition 7.1. A (T,V)-category is representable if it has a pseudo-algebra structure for T.

In the diagram below ((T,V)-Cat)T is the 2-category of T-algebras, FT a GT is the corre-

sponding adjunction, and K̃ is the comparison 2-functor:

(V-Cat)T

>

K̃ //

K

''

((T,V)-Cat)T.

GTvv

⊥

(T,V)-Cat
M

gg FT
66

The composition of the adjunctions FT a GT and A◦ a Ae (see (adj) in Section 3) gives an

adjunction FT
e a GT

e that induces again the monad T on V-Cat. Let Ãe be the corresponding

comparison 2-functor as depicted in the following diagram:

(V-Cat)T

>

��

>
K̃

//
K

''

((T,V)-Cat)T.

GTvv

⊥

Ãeoo

GT
e

��

⊥

(T,V)-Cat
M

gg FT
66

Ae

��

a

V-Cat

ZZ

FT
e

BB

A◦

OO

Theorem 7.2. K̃ and Ãe define an adjoint 2-equivalence.

Proof. The isomorphism ÃeK̃ ∼= 1 can be directly verified. We will establish that K̃Ãe ∼= 1.

Suppose that a (T,V)-functor (f, ϕf ) : T (X, a)→ (X, a) is a T-algebra structure on a (T,V)-

category (X, a). Observe that the underlying V-relation of the representable (T,V)-category

K̃Ãe((X, a), (f, ϕf )) is aeXf : TX −→7 TX.

Since T is a KZ monad, following [21], (f, ϕf ) is a left adjoint to the unit (eX , α̃a) of T. By

Proposition 3.2 we get an isomorphism

ω : e◦XTam
◦
XmX → aTf.

Let ι denote the composite isomorphism

aeXf = aTfeTX
ω−1−−−−→ e◦XTam

◦
XmXeTX = e◦XTam

◦
XmXTeX

ω−−−→ aTfTeX = a.
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It can be verified that the pair (1X , ι) is an isomorphism K̃Ãe((X, a), (f, ϕf ))→ ((X, a), (f, ϕf ))

in ((T,V)-Cat)T. The family of these morphisms determine the required 2-natural isomorphism

K̃Ãe ∼= 1. �

We explain now how representable (T,V)-categories capture two important cases which were

developed independently.

Nachbin’s ordered compact Hausdorff spaces. For V = 2 and T = U = (U, e,m) the

ultrafilter monad extended to 2-Rel = Rel as in [1], so that, for any relation r : X−→7 Y ,

Ur = Uq(Up)◦, where p : R → X, q : R → Y are the projections of R = {(x, y) | x r y}. Then

2-Cat ' Ord and the functor U : Ord→ Ord sends an ordered set (X,≤) to (UX,U≤) where

x (U≤) y whenever ∀A ∈ x, B ∈ y∃x ∈ A, y ∈ B . x ≤ y,

for all x, y ∈ UX. The algebras for the monad U on Ord are precisely the ordered compact

Hausdorff spaces as introduced in [25]:

Definition 7.3. An ordered compact Hausdorff space is an ordered set X equipped with a

compact Hausdorff topology so that the graph of the order relation is a closed subset of the

product space X ×X.

We denote the category of ordered compact Hausdorff spaces and monotone and continuous

maps by OrdCompHaus. It is shown in [32] that, for a compact Hausdorff space X with

ultrafilter convergence α : UX → X and an order relation ≤ on X, the set {(x, y) | x ≤ y} is

closed in X ×X if and only if α : UX → X is monotone; and this shows

OrdCompHaus ' OrdU,

and the diagram (T-alg) at the end of Section 4 becomes

CompHaus

a UT

��

//> OrdCompHaus

a UT

��

oo

Set

FT

OO

//> Ord.
oo

FT

OO

The functor K : OrdCompHaus → Top = (U, 2)-Cat of Section 5 can now be described

as sending ((X,≤), α : UX → X) to the space KX = (X, a) with ultrafilter convergence

a : UX−→7 X given by the composite

UX
α // X �≤ // X;

of the order relation ≤: X−→7 X of X with the ultrafilter convergence α : UX → X of the

compact Hausdorff topology of X. In terms of open subsets, the topology of KX is given

precisely by those open subsets of the compact Hausdorff topology of X which are down-closed

with respect to the order relation of X. On the other hand, for a topological space (X, a),

the ordered compact Hausdorff space MX is the set UX of all ultrafilters of X with the order

relation

UX �m◦X // UUX �Ua // UX,

and with the compact Hausdorff topology given by the convergence mX : UUX → UX; put

differently, the order relation on UX is defined by

x ≤ y ⇐⇒ ∀A ∈ x . A ∈ y,

and the compact Hausdorff topology on UX is generated by the sets

{x ∈ UX | A ∈ x} (A ⊆ X).



REPRESENTABLE (T,V)-CATEGORIES 19

The monad U = (U, e,m) on Top induced by the adjunction M a K assigns to each topological

space X the space UX with basic open sets

{x ∈ UX | A ∈ x} (A ⊆ X open).

By definition, a topological space X is called representable if X is a pseudo-algebra for U, that is,

whenever eX : X → UX has a (reflective) left adjoint. Note that a left adjoint of eX : X → UX

picks, for every ultrafilter x on X, a smallest convergence point of x. The following result provides

a characterisation of representable topological spaces.

Theorem 7.4. Let X be a topological space. The following assertions are equivalent.

(i) X is representable.

(ii) X is locally compact and every ultrafilter has a smallest convergence point.

(iii) X is locally compact, weakly sober and the way-below relation on the lattice of open subsets

is stable under finite intersection.

(iv) X is locally compact, weakly sober and finite intersections of compact down-sets are com-

pact.

Representable T0-spaces are known under the designation stably compact spaces, and are

extensively studied in [11, 19, 23] and [28] (called well-compact spaces there). One can also find

there the following characterisation of morphisms between representable spaces.

Theorem 7.5. Let f : X → Y be a continuous map between representable spaces. Then the

following are equivalent.

(i) f is a pseudo-homomorphism.

(ii) For every compact down-set K ⊆ Y , f−1(K) is compact.

(iii) The frame homomorphism f−1 : OY → OX preserves the way-below relation.

Hermida’s representable multicategories. We sketch now some of the main achievements

of [12, 13] which fit in our setting and can be seen as counterparts to the classical topological

results mentioned above. In [12, 13] Hermida is working in a finitely complete category B

admitting free monoids so that the free-monoid monad M = (M, e,m) is Cartesian; however, for

the sake of simplicity we consider only the case B = Set here. We write Span to denote the

bicategory of spans in Set, and recall that a category can be viewed as a span

C1

d

~~

c

  
C0 C0

which carries the structure of a monoid in the category Span(C0, C0). The 2-category of monoids

in Cat (aka strict monoidal categories) and strict monoidal functors is denoted by MonCat,

and the diagram (T-alg) becomes

Mon

a UT

��

//> MonCat

a UT

��

oo

Set

FT

OO

//> Cat.
oo

FT

OO
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A multicategory can be viewed as a span

C1

d

||

c

  
MC0 C0

in Set together with a monoid structure in an appropriate category. This amounts to the

following data:

– a set C0 of objects;

– a set C1 of arrows where the domain of an arrow f is a sequence (X1, X2, . . . , Xn) of objects

and the codomain is an object X, depicted as

f : (X1, X2, . . . , Xn)→ X;

– an identity 1X : (X)→ X;

– a composition operation.

The 2-category of multicategories, morphisms of multicategories and appropriate 2-cells is de-

noted by MultiCat. Keeping in mind that Span is equivalent to Set-Rel, for V = Set and

T = M, the fundamental adjunction (ADJ) of Section 5 specialises to:

Theorem 7.6. There is a 2-monadic 2-adjunction MultiCat >

K
((

M

hh MonCat.

Here, for a strict monoidal category

C1

d

~~

c

  
C0 C0

with monoid structure α : MC0 → C0 on C0, the corresponding multicategory is given by the

composite of

MC0

1

{{

α

""

C1

d

~~

c

  
MC0 C0 C0

in Span; and to a multicategory

C1

d

||

c

  
MC0 C0

one assigns the strict monoidal category

MC1

d

zz

c

##
MMC0

mC0

zz

MC0

MC0

where the objects in the span are free monoids.
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The induced 2-monad on MultiCat is of Kock-Zöberlein type, and a representable multicat-

egory is a pseudo-algebra for this monad. In elementary terms, a multicategory

C1

d

||

c

  
MC0 C0

is representable precisely if for every (x1, . . . , xn) ∈ MC0 there exists a morphism (called uni-

versal arrow)

(x1, . . . , xn)→ ⊗(x1, . . . , xn)

which induces a bijection

hom((x1, . . . , xn), y) ' hom(⊗(x1, . . . , xn), y),

natural in y, and universal arrows are closed under composition.

8. Duals for (T,V)-categories

For a V-category (Z, c) = (Z, c, ηc, µc), the dual D(Z, c) of (Z, c) is defined to be the V-

category Zop = (Z, cop, ηcop , µcop), with cop = c◦, ηcop = η◦c and µcop = µ◦c . This construction

extends to a 2-functor

D : V-Cat→ V-Catco

as follows. For a V-functor (f, ϕf ) : (Z, c) → (W,d) set D(f, ϕf ) = fop = (f, ϕop
f ) : (Z, c◦) →

(W,d◦), where ϕop
f is defined by

fc◦
−λf // fc◦f◦f = f(fc)◦f

−(ϕf )
◦−
// f(df)◦f = ff◦d◦f

ρf− // d◦f.

On 2-cells ζ : (f, ϕf )→ (g, ϕg) of V-Cat, set D(ζ) = ζop, which is defined analogously by

fc◦
−λg // fc◦g◦g = f(gc)◦g

−ζ◦−
// f(df)◦g = ff◦d◦g

ρf− // d◦g.

The monad T on V-Cat of Section 4 gives rise to a monad T on V-Catco. From now on we

assume that T (c◦) = (Tc)◦ for every V-relation c. Let ((Z, c), (h, ϕh)) be a T-algebra. Then

(TZ, Tc◦)
D(h,ϕh) // (Z, c◦)

gives a T-algebra structure on (Z, c◦), which we write as ((Z, c◦), hop).

Definition 8.1. The dual of a T-algebra ((Z, c), h) is the T-algebra (Zop, hop) = ((Z, c◦), hop).

This construction extends to a 2-functor

(Dual) D : (V-Cat)T −→ ((V-Cat)T)co

as follows. If (f, ϕf ) : ((Z, c), h) → ((W,d), k) is a morphism of T-algebras, then D(f, ϕf ) =

fop : ((Z, c◦), hop)→ ((W,d◦), kop) is a morphism of T-algebras, and if ζ : (f, ϕf )→ (g, ϕg) is a

2-cell in (V-Cat)T, then D(ζ) = ζop : D(g, ϕg)→ D(f, ϕf ) is a 2-cell in V-CatT.

Using the adjunctionM a K we can define the dual of a (T,V)-category using the construction

of duals in (V-Cat)T via the composition:

(V-Cat)TD

%%
>

K ..
(T,V)-Cat.

M

mm
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Definition 8.2. The dual of a (T,V)-category (X, a) is the (T,V)-category KDM(X, a); that

is,

Xop = (TX,mXTa
◦mX).

For representable (T,V)-categories (X, a) we can use directly extensions of K̃ and Ãe to

pseudo-algebras, so that we can obtain a dual structure X õp on the same underlying set X via

the composition K̃DÃe:

(V-Cat)TD

%%
>

K̃ ..
((T,V)-Cat)T.

Ãe

mm

Then it is easily checked that, for any (T,V)-category X,

Xop = (TX)õp,

since TX, as a free T-algebra on (T,V)-Cat, is representable.

For V a quantale, duals of (T,V)-categories proved to be useful in the study of (co)completeness

(see [5, 6, 16]). Next we outline briefly the setting used and the role duals play there.

Let V be a quantale. When the lax extension of T : Set → Set to V-Rel is determined by

a map ξ : TV → V which is a T-algebra structure on V (for the Set-monad T) as outlined in

[5, Section 4.1], then, under suitable conditions, V itself has a natural (T,V)-category structure

homξ given by the composite

((T,V)-hom) TV
ξ
// V �hom // V,

where hom is the internal hom on V .1 Then the well-known equivalence:

Given V-categories (X, a), (Y, b), for a V-relation r : X−→7 Y ,

r : (X, a)−→7 (Y, b) is a V-module (or profunctor, or distributor)

⇐⇒ the map r : Xop ⊗ (Y, b)→ (V, hom) is a V-functor.

can be generalized to the (T,V)-setting. Here a (T,V)-relation r : X −⇀7 Y is a V-relation

TX−→7 Y , and (T,V)-relations X
r−⇀7 Y

s−⇀7 Z compose as V-relations as follows:

TX �m
◦
X // T 2X �Tr // TY �s // Z;

we denote this composition by s ◦ r. A (T,V)-module ϕ : (X, a)−⇀7 (Y, b) between (T,V)-

categories (X, a), (Y, b) is a (T,V)-relation such that

ϕ ◦ a = ϕ = b ◦ ϕ.

The next result can be found in [5] (see also [17, Remark 5.1 and Lemma 5.2]).

Theorem 8.3. Let (X, a) and (Y, b) be (T,V)-categories and ϕ : X −⇀7 Y be a (T,V)-relation.

The following assertions are equivalent.

(i) ϕ : (X, a)−⇀7 (Y, b) is a (T,V)-module.

(ii) The map ϕ : TX × Y → V is a (T,V)-functor ϕ : Xop ⊗ (Y, b)→ (V,homξ).

1This is the case when a topological theory in the sense of [15] is given; see [15] for details.
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In particular, the (T,V)-relation a : X −⇀7 X is a (T,V)-module from (X, a) to (X, a).

Although (T,V)-Cat is in general not monoidal closed for⊗, the functorXop⊗− : (T,V)-Cat→
(T,V)-Cat has a right adjoint (−)X

op
: (T,V)-Cat→ (T,V)-Cat for every (T,V)-category X,

and from the (T,V)-module a we obtain the Yoneda (T,V)-functor

yX : X → VXop
.

By Theorem 8.3, we can think of the elements of VXop
as (T,V)-modules from (X, a) to (1, e◦1).

The following result was proven in [5] and provides a Yoneda-type Lemma for (T,V)-categories.

Theorem 8.4. Let (X, a) be a (T,V)-category. Then, for all ψ in VXop
and all x ∈ TX,

JTyX(x), ψK = ψ(x),

with J−,−K the (T,V)-categorical structure on VXop
.

To generalise these results to the general setting studied in this paper, that is when V is

not necessarily a thin category, one faces a first obstacle: When can we equip the category V

with a canonical (although non-legitimate) (T,V)-category structure as in ((T,V)-hom)? The

obstacle seems removable when T = M is the free-monoid monad. In fact, as above, the monoidal

structure (X1, . . . , Xn) 7→ X1 ⊗ · · · ⊗ Xn defines a lax extension of M to V-Rel, a monoidal

structure on (M,V)-Cat ' V-MultiCat, and it turns V into a generalised multicategory. We

therefore conjecture that Theorems 8.3 and 8.4 hold also in this more general situation; however,

so far we were not able to prove this.

Acknowledgments

The first author acknowledges partial financial assistance by the Centro de Matemática
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