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Abstract. Let Γ be a fractal h-set and Bσ
p,q(Γ) be a trace space of Besov

type de�ned on Γ. While we dealt in [9] with growth envelopes of such spaces
mainly and investigated the existence of traces in detail in [12], we now study
continuous embeddings between di�erent spaces of that type on Γ. We obtain
necessary and su�cient conditions for such an embedding to hold, and can
prove in some cases complete characterisations. It also includes the situation
when the target space is of type Lr(Γ) and, as a by-product, under mild as-
sumptions on the h-set Γ we obtain the exact conditions on σ, p and q for which
the trace space Bσ

p,q(Γ) exists. We can also re�ne some embedding results for
spaces of generalised smoothness on Rn.

Introduction

We study in this paper continuous embeddings of trace spaces on a fractal
h-set Γ. It is the natural continuation and so far �nal step of our project to
characterise traces taken on some h-set Γ, which led to the papers [9,12] already.
Questions of that type are of particular interest in view of boundary value prob-
lems of elliptic operators, where the solutions belong to some appropriate Besov
(or Sobolev) space. One standard method is to start with assertions about traces
on hyperplanes and then to transfer these results to bounded domains with suf-
�ciently smooth boundary afterwards. Further studies may concern compactness
or regularity results, leading to the investigation of spectral properties. However,
when it comes to irregular (or fractal) boundaries, one has to circumvent a lot
of di�culties following that way, such that another method turned out to be
more appropriate. This approach was proposed by Edmunds and Triebel in con-
nection with smooth boundaries �rst in [21] and then extended to fractal d-sets
in [22,23,47]. Later the setting of d-sets was extended to (d,Ψ)-sets by Moura [40]
and �nally to the more general h-sets by Bricchi [6].
The idea is rather simple to describe, but the details are much more complicated:
at �rst one determines the trace spaces of certain Besov (or Sobolev) spaces as pre-
cisely as possible, studies (compact) embeddings of such spaces into appropriate
target spaces together with their entropy and approximation numbers afterwards,
and �nally applies Carl's or Weyl's inequalities to link eigenvalues and entropy or
approximation numbers. If one is in the lucky situation that, on one hand, one
has atomic or wavelet decomposition results for the corresponding spaces, and,
on the other hand, the irregularity of the fractal can be characterised by its local
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behaviour (within `small' cubes or balls), then there is some chance to shift all
the arguments to appropriate sequence spaces which are usually easier to handle.
This explains our preference for fractal h-sets and Besov spaces. But still the
problem is not so simple and little is known so far.
Dealing with spaces on h-sets we refer to [14,15,34,36], and, probably closest to
our approach here, [49, Ch. 7]. There it turns out that one �rst needs a sound
knowledge about the existence and quality of the corresponding trace spaces. Re-
turning to the �rst results in that respect in [6], see also [5,7,8], we found that the
approach can (and should) be extended for later applications. More precisely, for
a positive continuous and non-decreasing function h : (0, 1] → R (a gauge func-
tion) with limr→0 h(r) = 0, a non-empty compact set Γ ⊂ Rn is called h-set if
there exists a �nite Radon measure µ in Rn with supp µ = Γ and

µ(B(γ, r)) ∼ h(r), r ∈ (0, 1], γ ∈ Γ,

see also [43, Ch. 2] and [37, p. 60]. In the special case h(r) = rd, 0 < d < n,
Γ is called d-set (in the sense of [47, Def. 3.1], see also [31, 37] � be aware that
this is di�erent from the sense used in [24]). Recall that some self-similar fractals
are outstanding examples of d-sets; for instance, the usual (middle-third) Cantor
set in R1 is a d-set for d = ln 2/ ln 3, and the Koch curve in R2 is a d-set for
d = ln 4/ ln 3.
The trace is de�ned by completion of pointwise traces of ϕ ∈ S(Rn), assuming
that for 0 < p <∞ we have in addition ‖ϕ∣∣

Γ
|Lp(Γ)‖ . ‖ϕ|Bt

p,q(Rn)‖ for suitable
parameters t ∈ R and 0 < q <∞. In case of a compact d-set Γ, 0 < d < n, this
results in

trΓB
n−d
p

p,q (Rn) = Lp(Γ) if 0 < q ≤ min(p, 1) (0.1)

and, for s > n−d
p
,

trΓB
s
p,q(Rn) = B

s−n−d
p

p,q (Γ),

see [47] with some later additions in [48, 49]. Here Bs
p,q(Rn) are the usual Besov

spaces de�ned on Rn. In the classical case d = n − 1, 0 < p < ∞, 0 < q ≤
min(p, 1), (0.1) reproduces � up to our compactness requirement � the well-known

trace result trRn−1B
1
p
p,q(Rn) = Lp(Rn−1).

In case of h-sets Γ one needs to consider Besov spaces of generalised smoothness
Bσp,q(Rn) which naturally extend Bs

p,q(Rn): instead of the smoothness parameter
s ∈ R one now admits sequences σ = (σj)j∈N0 of positive numbers which satisfy
σj ∼ σj+1, j ∈ N0. Such spaces are special cases of the scale Bσ,Np,q (Rn) which
is well studied by di�erent approaches, namely the interpolation one [18,38] and
the theory developed independently by Gol'dman and Kalyabin in the late 70's
and early 80's of the last century, see the survey [33] and the appendix [35] which
cover the extensive (Russian) literature at that time. We shall rely on the Fourier-
analytical approach as presented in [25]. It turns out that the classical smoothness
s ∈ R has to be replaced by certain regularity indices s (σ), s (σ) of σ. In case
of σ = (2js)j the spaces B

σ
p,q(Rn) and Bs

p,q(Rn) coincide and s (σ) = s (σ) = s.
Dealing with traces on h-sets Γ in a similar way as for d-sets, one obtains

trΓB
τ
p,q(Rn) = Bσp,q(Γ),
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where the sequence τ (representing smoothness) depends on σ, h (representing
the geometry of Γ) and the underlying Rn; in particular, with h := (h(2−j))j,

hp =
(
h(2−j)

1
p 2j

n
p

)
j
, the counterpart of (0.1) reads as

trΓB
hp
p,q(Rn) = Lp(Γ), 0 < q ≤ min(p, 1).

These results were already obtained in [8] under some additional restrictions.
In [9] we studied su�cient conditions for the existence of such traces again (in
the course of dealing with growth envelopes, characterising some singularity be-
haviour) and returned in [12] to the subject to obtain `necessary' conditions, or,
more precisely, conditions for the non-existence of traces. This problem is closely
connected with the so-called dichotomy; we refer to [12] for further details.

In the present paper we study embeddings of type

idΓ : Bσp1,q1
(Γ)→ Bτp2,q2

(Γ) (0.2)

in some detail. But before we concentrate on these trace spaces we �rst inspect
and slightly improve the related embedding results for spaces on Rn. In Theo-
rem 3.1 we can show that for two admissible sequences σ and τ , 0 < p1, p2 <∞,

0 < q1, q2,≤ ∞, and q∗ given by 1
q∗

= max
(

1
q2
− 1

q1
, 0
)
,

idRn : Bσp1,q1
(Rn)→ Bτp2,q2

(Rn)

exists and is bounded if, and only if, p1 ≤ p2 and
(
σ−1
j τj2

jn( 1
p1
− 1
p2

)
)
j
∈ `q∗ . Next

we study embeddings similar to (0.2), but where the target space is a Lebesgue
space Lr(Γ). The corresponding results are of the following type: Assume that
Γ is an h-set satisfying some additional conditions, such that the correspond-
ing trace spaces exist, σ is an admissible sequence, 0 < p ≤ r < ∞ and
0 < q ≤ min(r, 1). Then idΓ : Bσp,q(Γ) → Lr(Γ) exists and is bounded if,

and only if,
(
σ−1
j h(2−j)

1
r
− 1
p

)
j
∈ `∞, cf. Proposition 3.12. There are further sim-

ilar characterisations referring to di�erent parameter settings. When r = p, the
outcome reads as idΓ : Bσp,q(Γ)→ Lp(Γ) exists and is bounded if, and only if,

σ−1 ∈

{
`q′ , if 1 ≤ p <∞ or 0 < q ≤ p < 1,

`vp , if 0 < p < 1 and 0 < p < q <∞,
(0.3)

where the number q′ is given by 1
q′

= max
(

1− 1
q
, 0
)
and vp is given by 1

vp
= 1

p
− 1

q
;

cf. Corollary 3.17. Actually, such a Corollary shows that, under mild assumptions
on the h-set Γ, (0.3) gives the exact conditions on σ, p and q for which the trace
spaces Bσp,q(Γ) exist.
Our other main results can be found in Theorems 3.23 and 3.28, where we

prove necessary and su�cient conditions for the embedding (0.2) to hold. Apart
from some more technical assumptions, ensuring, in particular, the existence of
the related trace spaces, the main requirement for the continuity of (0.2) reads
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as (
σ−1
j τjh(2−j)

−max
(

1
p1
− 1
p2
,0
))

j

∈ `q∗ . (0.4)

This condition clearly re�ects the expected interplay between smoothness and
regularity parameters of the spaces, as well as the underlying geometry of the
h-set Γ where the traces are taken. Moreover, we can show that an assumption
like (0.4) is also necessary for the embedding (0.2), at least when p1 ≤ p2.
The paper is organised as follows. In Section 1 we collect some fundamentals

about h-sets and admissible sequences. In Section 2 we start by recalling the
de�nition of Besov spaces of generalised smoothness and their wavelet and atomic
characterisations. Then we describe the corresponding trace spaces in some detail
and present the results on growth envelopes that we shall use afterwards. Our
main embedding results are contained in Section 3, �rst concerning spaces of
generalised smoothness on Rn, then for spaces de�ned on Γ. Throughout the
paper we add remarks, discussions and examples to illustrate the (sometimes
technically involved) arguments and results.

1. Preliminaries

1.1. General notation. As usual, Rn denotes the n-dimensional real Euclidean
space, N the collection of all natural numbers and N0 = N ∪ {0}. We use the
equivalence `∼' in

ak ∼ bk or ϕ(x) ∼ ψ(x)

always to mean that there are two positive numbers c1 and c2 such that

c1 ak ≤ bk ≤ c2 ak or c1 ϕ(x) ≤ ψ(x) ≤ c2 ϕ(x)

for all admitted values of the discrete variable k or the continuous variable x,
where (ak)k, (bk)k are non-negative sequences and ϕ, ψ are non-negative func-
tions. Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and
the natural embedding of X into Y is continuous.
All unimportant positive constants will be denoted by c, occasionally with ad-
ditional subscripts within the same formula. If not otherwise indicated, log is
always taken with respect to base 2. For some κ ∈ R let

κ+ = max(κ, 0) and bκc = max{k ∈ Z : k ≤ κ} .

Moreover, for 0 < r ≤ ∞ the number r′ is given by 1
r′

:=
(
1− 1

r

)
+
.

For convenience, let both dx and | · | stand for the (n-dimensional) Lebesgue
measure in the sequel. For x ∈ Rn and r > 0, let B(x, r) be the closed ball

B(x, r) = {y ∈ Rn : |y − x| ≤ r} .

Let Zn stand for the lattice of all points in Rn with integer-valued components,
Qjm denote a cube in Rn with sides parallel to the axes of coordinates, centred
at 2−jm = (2−jm1, . . . , 2

−jmn), and with side length 2−j, where m ∈ Zn and
j ∈ N0. If Q is a cube in Rn and r > 0, then rQ is the cube in Rn concentric with
Q and with side length r times the side length of Q. For 0 < p <∞, j ∈ N0, and
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m ∈ Zn we denote by χ
(p)
j,m the p-normalised characteristic function of the cube

Qj,m,

χ
(p)
j,m(x) = 2

jn
p χj,m(x) =

{
2
jn
p for x ∈ Qj,m,

0 for x /∈ Qj,m,

hence ‖χ(p)
j,m|Lp‖ = 1.

Let C(Rn) be the space of all complex-valued bounded uniformly continuous
functions on Rn, equipped with the sup-norm as usual.

1.2. h-sets Γ. A central concept for us is the theory of so-called h-sets and
corresponding measures. We refer to [43] for a comprehensive treatment of this
concept.

De�nition 1.1.
(i) Let H denote the class of all positive continuous and non-decreasing functions

h : (0, 1]→ R (gauge functions) with limr→0 h(r) = 0.
(ii) Let h ∈ H. A non-empty compact set Γ ⊂ Rn is called h-set if there exists

a �nite Radon measure µ with

supp µ = Γ, (1.1)

µ(B(γ, r)) ∼ h(r), r ∈ (0, 1], γ ∈ Γ. (1.2)

If for a given h ∈ H there exists an h-set Γ ⊂ Rn, we call h a measure
function (in Rn) and any related measure µ with (1.1) and (1.2) will be
called h-measure (related to Γ).

Certainly one of the most prominent examples of these sets are the famous
d-sets, see also Example 1.6 below, but it is also well-known that in many cases
more general approaches are necessary, cf. [37, p. 60]. Here we essentially follow
the presentation in [5�8], see also [37] for basic notions and concepts. For conve-
nience we quote some results on h-sets and give examples afterwards; we refer to
the literature for a more detailed account on geometric properties of h-sets.

In view of (ii) the question arises which h ∈ H are measure functions. The
complete characterisation is given in [7].

Proposition 1.2. Let h ∈ H. There is a compact set Γ and a Radon measure µ
with (1.1) and (1.2) if, and only if, there are constants 0 < c1 ≤ c2 < ∞ and a

function h̃ ∈ H such that

c1h̃(t) ≤ h(t) ≤ c2h̃(t), t ∈ (0, 1],

and
h̃(2−j) ≤ 2knh̃(2−k−j), for all j, k ∈ N0.

Remark 1.3. As a consequence of the above proposition we have that for a measure
function h ∈ H there is some c > 0 such that for all j, k ∈ N0,

h(2−k−j)

h(2−j)
≥ c 2−kn. (1.3)
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Note that every h-set Γ satis�es the doubling condition, i.e., there is some c > 0
such that

µ(B(γ, 2r)) ≤ c µ(B(γ, r)), r ∈ (0, 1], γ ∈ Γ. (1.4)

Obviously one can regard (1.3) as a re�ned version of (1.4) for the function h,
in which the dimension n of the underlying space Rn is taken into account (as
expected).

Proposition 1.4. Let Γ be an h-set in Rn. All h-measures µ related to Γ are
equivalent to Hh|Γ, where the latter stands for the restriction to Γ of the gener-
alised Hausdor� measure with respect to the gauge function h.

Remark 1.5. A proof of this result is given in [6, Thm. 1.7.6]. Concerning the
theory of generalised Hausdor� measures Hh we refer to [43, Ch. 2] and [37,
p. 60]; in particular, if h(r) = rd, then Hh coincides with the usual d-dimensional
Hausdor� measure.

Example 1.6. We restrict ourselves to a few examples only and refer to [8, Ex. 3.8]
for further results. All functions are de�ned for r ∈ (0, ε), suitably extended on
(0, 1] afterwards.
Let Ψ be a continuous admissible function or a continuous slowly varying function,
respectively. An admissible function Ψ in the sense of [22], [40] is a positive
monotone function on (0, 1] such that Ψ (2−2j) ∼ Ψ (2−j), j ∈ N. A positive and
measurable function Ψ de�ned on the interval (0, 1] is said to be slowly varying
(in Karamata's sense) if

lim
t→0

Ψ(st)

Ψ(t)
= 1, s ∈ (0, 1].

For such functions it is known, for instance, that for each ε > 0 there is a
decreasing function φ and an increasing function ϕ with t−ε Ψ(t) ∼ φ(t), and
tε Ψ(t) ∼ ϕ(t); we refer to the monograph [3] for details and further properties;
see also [50, Ch. V], [20], and [41,42]. In particular,

Ψb(x) = (1 + | log x|)b , x ∈ (0, 1], b ∈ R, (1.5)

may be considered as a prototype both for an admissible function and a slowly
varying function.
Let 0 < d < n. Then

h(r) = rd Ψ(r), r ∈ (0, 1], (1.6)

is a typical example of h ∈ H. The limiting cases d = 0 and d = n can be
included, assuming additional properties of Ψ in view of (1.3) and h(r) → 0 for
r → 0, e.g.

h(r) = (1 + | log r|)b, b < 0, r ∈ (0, 1], (1.7)

referring to (1.5). Such functions h given by (1.6) are related to so-called (d,Ψ)-
sets studied in [22], [40], whereas the special setting Ψ ≡ 1 leads to

h(r) = rd, r ∈ (0, 1], 0 < d < n, (1.8)

connected with the famous d-sets. Apart from (1.6) also functions of type h(r) =
exp (b| log r|κ), b < 0, 0 < κ < 1, are admitted, for example.
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We shall need another feature of some h-sets, namely the so-called `porosity'
condition, see also [37, p. 156] and [48, Sects. 9.16-9.19].

De�nition 1.7. A Borel set Γ 6= ∅ satis�es the porosity condition if there exists
a number 0 < η < 1 such that for any ball B(γ, r) centred at γ ∈ Γ and with
radius 0 < r ≤ 1 there is a ball B(x, ηr) centred at some x ∈ Rn satisfying

B(γ, r) ⊃ B(x, ηr), B(x, ηr) ∩ Γ = ∅. (1.9)

Replacing, if necessary, η by η
2
, we can complement (1.9) by

dist
(
B(x, ηr),Γ

)
≥ ηr, 0 < r ≤ 1.

This de�nition coincides with [47, Def. 18.10]. There is a complete charac-
terisation of measure functions h such that the corresponding h-sets Γ satisfy
the porosity condition; this can be found in [48, Prop. 9.18]. We recall it for
convenience.

Proposition 1.8. Let Γ ⊂ Rn be an h-set. Then Γ satis�es the porosity condition
if, and only if, there exist constants c > 0 and ε > 0 such that

h
(
2−j−k

)
h (2−j)

≥ c 2−(n−ε)k, j, k ∈ N0. (1.10)

Note that an h-set Γ satisfying the porosity condition has Lebesgue measure
|Γ| = 0, but the converse is not true. This can be seen from (1.10) and the
result [49, Prop. 1.153],

|Γ| = 0 if, and only if, lim
r→0

rn

h(r)
= 0

for all h-sets Γ.

Remark 1.9. In view of our above examples and (1.10) it is obvious that h from
(1.6) and (1.8) with d = n does not satisfy the porosity condition, unlike in case
of d < n.

Remark 1.10. Later it will turn out that some additional property of h is desirable;
it is in some sense `converse' to the porosity criterion (1.10): Triebel calls the
measure µ corresponding to h and Γ with |Γ| = 0 strongly isotropic if h ∈ H is
strictly increasing (with h(1) = 1) and there exists some k ∈ N such that, for all
j ∈ N0,

2h
(
2−j−k

)
≤ h

(
2−j
)
. (1.11)

It is known that µ is strongly isotropic if, and only if,
∞∑
j=l

h
(
2−j
)
∼ h

(
2−l
)

(1.12)

for all l ∈ N0, and this is equivalent to
m∑
j=0

h
(
2−j
)−1 ∼ h

(
2−m

)−1
(1.13)
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for m ∈ N0, see [49, Def. 7.18, Prop. 7.20]. Plainly, h(r) = rd, 0 < d < n, satis�es
this condition, unlike, e.g., h(r) = (1 + | log r|)b, b < 0, from (1.7).

1.3. Admissible sequences and regularity indices. We collect some basic
concepts and notions for later use when we introduce function spaces of gener-
alised smoothness and their trace spaces on an h-set Γ.

De�nition 1.11. A sequence σ = (σj)j∈N0 of positive numbers is called admis-
sible if there are two positive constants d0, d1 such that

d0 σj ≤ σj+1 ≤ d1 σj, j ∈ N0. (1.14)

Remark 1.12. If σ and τ are admissible sequences, then στ := (σjτj)j and

σr :=
(
σrj
)
j
, r ∈ R, are admissible, too. For convenience, let us further introduce

the notation
(a) :=

(
2ja
)
j∈N0

where a ∈ R.
Obviously, for a, b ∈ R, r > 0, and σ admissible, (a)(b) = (a + b), (a

r
) = (a)1/r,

and (a)σ = (2jaσj)j∈N0
.

Example 1.13. We restrict ourselves to the sequence σ = (2jsΨ (2−j))j, s ∈ R,
Ψ an admissible function in the sense of Example 1.6 above. This includes, in
particular, σ = (s), s ∈ R. We refer to [25] for a more general approach and
further examples.

We introduce some `regularity' indices for σ.

De�nition 1.14. Let σ be an admissible sequence, and

s (σ) := lim inf
j→∞

log

(
σj+1

σj

)
(1.15)

and

s (σ) := lim sup
j→∞

log

(
σj+1

σj

)
. (1.16)

Remark 1.15. These indices were introduced and used in [6]. For admissible
sequences σ according to (1.14) we have log d0 ≤ s (σ) ≤ s (σ) ≤ log d1. One
easily veri�es that

s (σ) = s (σ) = s in case of σ =
(
2jsΨ

(
2−j
))
j

(1.17)

for all admissible functions Ψ and s ∈ R. In contrast to this one can �nd examples
in [25], due to Kalyabin, showing that an admissible sequence has not necessarily
a �xed main order. Moreover, it is known that for any 0 < a ≤ b < ∞ there is
an admissible sequence σ with s (σ) = a and s (σ) = b, that is, with prescribed
upper and lower indices.
It is more or less obvious from the de�nitions (1.15), (1.16) that for admissi-

ble sequences σ, τ one obtains s (σ) = −s (σ−1), s (σr) = rs (σ), r ≥ 0, and
s (στ ) ≤ s (σ) + s (τ ), s (στ ) ≥ s (σ) + s (τ ). In particular, for σ = (a), a ∈ R,
this can be sharpened by s (τ (a)) = a+s (τ ), s (τ (a)) = a+s (τ ). Observe that,
given ε > 0, there are two positive constants c1 = c1(ε) and c2 = c2(ε) such that

c1 2(s(σ)−ε)j ≤ σj ≤ c2 2(s(σ)+ε)j, j ∈ N0. (1.18)
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Plainly this implies that whenever s (σ) > 0, then σ−1 belongs to any space `u,
0 < u ≤ ∞, whereas s (σ) < 0 leads to σ−1 6∈ `∞.

Remark 1.16. Note that in some later papers, cf. [5], instead of (1.15) and (1.16)
the so-called upper and lower Boyd indices of σ are considered, given by

ασ = lim
j→∞

1

j
log

(
sup
k∈N0

σj+k
σk

)
= inf

j∈N

1

j
log

(
sup
k∈N0

σj+k
σk

)
and

βσ = lim
j→∞

1

j
log

(
inf
k∈N0

σj+k
σk

)
= sup

j∈N

1

j
log

(
inf
k∈N0

σj+k
σk

)
respectively. In general we have

s (σ) ≤ βσ ≤ ασ ≤ s (σ) ,

but one can construct admissible sequences with s (σ) < βσ and ασ < s (σ).

Remark 1.17. We brie�y mention some convenient feature of admissible sequences
that will be used later several times. Assume that γ is some admissible sequence
with the property that for some (�xed) ι0 ∈ N and some u ∈ (0,∞] the special
subsequence (γkι0)k ⊂ γ satis�es (γkι0)k ∈ `u. This already implies γ ∈ `u, since,
for arbitrary m ∈ N,

mι0∑
j=1

γuj =
m∑
k=1

γukι0 +

ι0−1∑
l=1

m−1∑
k=0

γul+kι0 ∼
m∑
k=1

γukι0

with constants depending on γ, u and ι0, but not on m ∈ N. Thus γ ∈ `u if, and
only if, (γkι0)k ∈ `u. The modi�cations for u =∞ are obvious.

We shall need the following short lemma several times below and insert it
here. It mainly relies on an inequality of Landau, see [26, Thm. 161, p. 120], see
also [13, Prop. 4.1].

Lemma 1.18. Let α = (αk)k∈N0, β = (βk)k∈N0 be sequences of non-negative
numbers, let 0 < q1, q2 ≤ ∞, and q∗ be given by

1

q∗
:=

(
1

q2

− 1

q1

)
+

. (1.19)

Then

α ∈ `q∗ if, and only if, αβ ∈ `q2 whenever β ∈ `q1 .

Proof. The `only if '-part is a consequence of Hölder's inequality (when q∗ <∞) or
the monotonicity of the `u-scale (when q

∗ =∞). Moreover, the `if '-part in case of
q∗ < ∞ is covered by the above-mentioned result of Landau, see [26, Thm. 161,
p. 120]. So we are left to show the necessity of α ∈ `∞ when assuming that
αβ ∈ `q2 whenever β ∈ `q1 , where in particular we have now that q1 ≤ q2. This
is surely well-known, but for the sake of completeness we insert a short argument
here. The case q1 = ∞ being obvious, we need to deal with the case q1 < ∞
merely.
Assume, to the contrary, that α is unbounded. Then we can �nd a subsequence
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(αkj)j ⊂ α which is strictly increasing and satis�es αkj −−−→
j→∞

∞. We re�ne

this subsequence further by the following procedure: let αt1 = αk1 and choose
consecutively the index tj+1, j ∈ N, such that

αtj+1−1

αtj
< 2 and

αtj+1

αtj
≥ 2, j ∈ N,

that is, tj+1 is the smallest index larger than tj such that αtj+1
≥ 2αtj . Now

consider the sequence β = (βk)k given by

βk =

{
j

1
q1α−1

tj , k = tj, j ∈ N,
0, otherwise.

Then

‖β|`q1‖ =
( ∞∑
j=1

jα−q1tj

) 1
q1 =

( ∞∑
j=1

j
( αtj
αtj−1

· · · αt2
αt1

)−q1
α−q1t1

) 1
q1

≤ α−1
k1

( ∞∑
j=1

j2−(j−1)q1
) 1
q1 <∞,

whereas

‖αβ|`q2‖ =
( ∞∑
j=1

αq2tj j
q2
q1α−q2tj

) 1
q2 =

( ∞∑
j=1

j
q2
q1

) 1
q2 =∞

(modi�cation if q2 =∞), which disproves αβ ∈ `q2 . �

We return to the notion of strongly isotropic measures given in Remark 1.10
and will from now on use the following abbreviations introduced in [8]: Let Γ be
some h-set, h ∈ H a measure function. Then we denote

h := (hj)j∈N0
with hj := h(2−j), j ∈ N0, (1.20)

for the sequence connected with h ∈ H.

Remark 1.19. It is easy to verify that the hypothesis s (h) < 0 implies that there
exists κ0 > 1 such that hj+1 ≤ κ−1

0 hj for j ≥ j0 and some appropriately chosen
j0 ∈ N0. Therefore h ∈ `1 and we can also say that the measure µ corresponding
to h is strongly isotropic (at least if we relax, for convenience, the assumptions
h(1) = 1 and |Γ| = 0 and also admit that (1.11) holds for all j ∈ N with j ≥ j0

for some �xed starting term j0 ∈ N only), cf. Remark 1.10. More precisely, for
arbitrary admissible sequences σ the assumption s (σ) < 0 leads to σ ∈ `1 and
also to the equivalences (1.12), (1.13) with h replaced by σ .

2. Besov spaces

The main object of the paper are embeddings of Besov spaces de�ned (as trace
spaces) on some h-set Γ. We approach this concept now.
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2.1. Besov spaces of generalised smoothness. First we want to introduce
function spaces of generalised smoothness and need to recall some notation. By
S(Rn) we denote the Schwartz space of all complex-valued, in�nitely di�eren-
tiable and rapidly decreasing functions on Rn and by S ′(Rn) the dual space of all
tempered distributions on Rn. If ϕ ∈ S(Rn), then

ϕ̂(ξ) ≡ (Fϕ)(ξ) := (2π)−n/2
∫
Rn
e−ixξϕ(x)dx, ξ ∈ Rn, (2.1)

denotes the Fourier transform of ϕ. As usual, F−1ϕ or ϕ∨ stands for the inverse
Fourier transform, given by the right-hand side of (2.1) with i in place of −i.
Here xξ denotes the scalar product in Rn. Both F and F−1 are extended to
S ′(Rn) in the standard way. Let ϕ0 ∈ S(Rn) be such that

ϕ0(x) = 1 if |x| ≤ 1 and supp ϕ0 ⊂ {x ∈ Rn : |x| ≤ 2},

and for each j ∈ N let

ϕj(x) := ϕ0(2−jx)− ϕ0(2−j+1x), x ∈ Rn.

Then the sequence (ϕj)
∞
j=0 forms a smooth dyadic resolution of unity.

De�nition 2.1. Let σ be an admissible sequence, 0 < p, q ≤ ∞, and (ϕj)
∞
j=0 a

smooth dyadic resolution of unity as described above. Then

Bσp,q(Rn) =

{
f ∈ S ′(Rn) :

( ∞∑
j=0

σqj
∥∥F−1ϕjFf |Lp(Rn)

∥∥q)1/q

<∞

}
(with the usual modi�cation if q =∞).

Remark 2.2. These spaces are quasi-Banach spaces, independent of the chosen
resolution of unity, and S(Rn) is dense in Bσp,q(Rn) when p < ∞ and q < ∞.
Taking σ = (s), s ∈ R, we obtain the classical Besov spaces Bs

p,q(Rn), whereas

σ = (2jsΨ(2−j))j, s ∈ R, Ψ an admissible function, leads to spaces B
(s,Ψ)
p,q (Rn),

studied in [39, 40] in detail. Moreover, the above spaces Bσp,q(Rn) are special
cases of the more general approach investigated in [25]. For the theory of spaces
Bs
p,q(Rn) we refer to the series of monographs [45�49].

For later use, we brie�y describe the wavelet and atomic characterisation of
Besov spaces with generalised smoothness obtained in [1] and [25], respectively.

Let φ̃ be a scaling function on R with compact support and of su�ciently high

regularity. Let ψ̃ be an associated compactly supported wavelet. Then the tensor-
product ansatz yields a scaling function φ and associated wavelets ψ1, . . . , ψ2n−1,

all de�ned now on Rn. We suppose φ̃ ∈ CN1(R) and supp φ̃, supp ψ̃ ⊂ [−N2, N2]
for certain natural numbers N1 and N2. This implies

φ, ψl ∈ CN1(Rn) and supp φ, supp ψl ⊂ [−N3, N3]n, (2.2)

for l = 1, . . . , 2n − 1. We use the standard abbreviations

φj,m(x) = φ(2jx−m) and ψlj,m(x) = ψl(2
jx−m).
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To formulate the result we introduce some suitable sequence spaces. For 0 < p <
∞, 0 < q ≤ ∞, and σ an admissible sequence, let

bσp,q :=

{
λ = {λj,m}j,m : λj,m ∈ C ,

‖λ |bσp,q‖ =
∥∥∥{σj2−j np ∥∥∥ ∑

m∈Zn
λj,m χ

(p)
j,m|Lp(Rn)

∥∥∥}
j∈N0

|`q
∥∥∥ <∞}.

In view of the de�nition of Qj,m and χ
(p)
j,m one can easily verify that∥∥λ|bσp,q∥∥ ∼ ∥∥∥∥{σj2−j np( ∑
m∈Zn

|λj,m|p
)1/p}

j∈N0

|`q
∥∥∥∥.

Theorem 2.3. Let 0 < p < ∞, 0 < q ≤ ∞ and σ be an admissible sequence.
Then there exists a number N0 = N0(σ, p, n) and for any N1 > N0 a scaling
function φ and wavelets ψl, l = 1, . . . , 2n− 1, as above satisfying (2.2), such that
the following holds: A distribution f ∈ S ′(Rn) belongs to Bσp,q(Rn) if, and only if,
it can be represented by

f =
∑
m∈Zn

µmφ0,m +
2n−1∑
l=1

∞∑
j=0

∑
m∈Zn

λlj,mψ
l
j,m with µ ∈ `p and λl ∈ bσp,q,

l = 1, . . . , 2n−1 (unconditional convergence in S ′(Rn)). Moreover, the coe�cients
can be uniquely determined by

µm = 2jn〈f, φ0,m〉 and λlj,m = 2jn〈f, ψlj,m〉, m ∈ Zn, j ∈ N0, l = 1, . . . , 2n−1,

and

‖ f |Bσp,q(Rn)‖? =
∥∥∥ {〈f, φ0,m〉}m∈Zn |`p

∥∥∥+
2n−1∑
l=1

∥∥∥{〈f, ψlj,m〉}j∈N0,m∈Zn
|bσ̃p,q

∥∥∥
is an equivalent (quasi-) norm in Bσp,q(Rn), where σ̃ = σ(n).

Remark 2.4. It follows from Theorem 2.3 that, under the conditions given, the
mapping

T : f 7→
(
{〈f, φ0,m〉}m∈Zn ,

{
〈f, ψlj,m〉

}
j∈N0,m∈Zn,l=1,...,2n−1

)
is an isomorphism of Bσp,q(Rn) onto `p ⊕

(
⊕2n−1
l=1 bσ̃p,q

)
, σ̃ = σ(n), cf. [1, Cor. 17].

Moreover, if q <∞ and N1 is chosen large enough, then the wavelet system forms
an unconditional Schauder basis in Bσp,q(Rn), [1, Cor. 16].

De�nition 2.5. Let K ∈ N0 and c > 1.

(i) A K times di�erentiable complex-valued function a(x) in Rn (continuous if
K = 0) is called an 1K-atom if

supp a ⊂ cQ0m for some m ∈ Zn,
and

|Dαa(x)| ≤ 1 for |α| ≤ K.
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(ii) Let L+ 1 ∈ N0, and σ admissible. A K times di�erentiable complex-valued
function a(x) in Rn (continuous if K = 0) is called an (σ, p)K,L-atom if, for
some j ∈ N0,

supp a ⊂ cQjm for some m ∈ Zn,

|Dαa(x)| ≤ σ−1
j 2j(

n
p

+|α|) for |α| ≤ K, x ∈ Rn,

and ∫
Rn

xβa(x)dx = 0 if |β| ≤ L.

We adopt the usual convention to denote atoms located at Qjm as above by

aj,m, j ∈ N0, m ∈ Zn. Let bp,q = b
(n/p)
p,q , 0 < p < ∞, 0 < q ≤ ∞. The atomic

decomposition theorem for Bσp,q(Rn) reads as follows, see [25, Thm. 4.4.3, Rem.
4.4.8].

Proposition 2.6. Let σ be admissible, 0 < p, q ≤ ∞, c > 1, K ∈ N0 and
L+ 1 ∈ N0 with

K > s (σ) and L > −1 + n

(
1

min(1, p)
− 1

)
− s (σ)

be �xed. Then f ∈ S ′(Rn) belongs to Bσp,q(Rn) if, and only if, it can be represented
as

f =
∞∑
j=0

∑
m∈Zn

λj,m aj,m(x), convergence being in S ′(Rn), (2.3)

where λ ∈ bp,q and aj,m(x) are 1K-atoms (j = 0) or (σ, p)K,L-atoms (j ∈ N)
according to De�nition 2.5. Furthermore

inf ‖λ | bp,q‖,
where the in�mum is taken over all admissible representations (2.3), is an equiv-
alent quasi-norm in Bσp,q(Rn).

2.2. Trace spaces. Let Γ be some h-set, h ∈ H, and recall the notation (1.20)
for the sequence connected with h ∈ H. Given 0 < p ≤ ∞, and similarly as in
Lp(Rn), but now with respect to the measure µ ∼ Hh|Γ related to the h-set Γ,
Lp(Γ) = Lp(Γ, µ) stands for the quasi-Banach space of p-integrable (measurable,
essentially bounded if p = ∞) functions on Γ with respect to the measure µ,
quasi-normed in the obvious way. Suppose there exists some c > 0 such that, for
all ϕ ∈ S(Rn), ∥∥ϕ|Γ |Lp(Γ)

∥∥ ≤ c
∥∥ϕ|Bτp,q(Rn)

∥∥ , (2.4)

where the trace on Γ is taken pointwise. By the density of S(Rn) in Bτp,q(Rn) for
p, q < ∞ and the completeness of Lp(Γ) one can thus de�ne for f ∈ Bτp,q(Rn) in
those cases its trace trΓf = f |Γ on Γ by completion of pointwise restrictions.

Remark 2.7. In this way, trΓ : Bτp,q(Rn) → Lp(Γ) will be uniquely determined
by the fact that it is linear, continuous and coincides with the pointwise re-
striction when restricted to S(Rn). The de�nition of Bσp,q(Γ) as the trace space of
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B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ) means to take Bσp,q(Γ) = trΓB
τ
p,q(Rn) for τ = σh1/p(n)1/p

for which the above approach works.

The starting point for us was the trace result of Bricchi [8, Thm. 5.9],

trΓB
h1/p(n)1/p

p,q (Rn) = Lp(Γ), (2.5)

where 0 < p < ∞, 0 < q ≤ min(p, 1), and Γ is an h-set satisfying the porosity
condition (1.9) (this condition not being required in the proof of the embedding
↪→) . Based on this result Bricchi proposes in [6, Def. 3.3.5] the approach to de�ne
spaces Bσp,q(Γ) as trace spaces, conjugating general embedding results for Besov
spaces on Rn (as seen for example in [10, Thm. 3.7] or [6, Prop. 2.2.16]) with the
fact that (2.4) above holds for τ = h1/p(n)1/p, 0 < p <∞, 0 < q ≤ min(p, 1) (cf.
[6, Thm. 3.3.1(i)]. Then we have, following [6, Def. 3.3.5], that for 0 < p, q <∞
and σ admissible with s (σ) > 0, Besov spaces Bσp,q(Γ) on Γ are de�ned as

Bσp,q(Γ) := trΓB
σh1/p(n)1/p

p,q (Rn), (2.6)

more precisely,

Bσp,q(Γ) :=
{
f ∈ Lp(Γ) : ∃ g ∈ Bσh1/p(n)1/p

p,q (Rn), trΓg = f
}
, (2.7)

equipped with the quasi-norm∥∥f |Bσp,q(Γ)
∥∥ = inf

{∥∥∥g|Bσh1/p(n)1/p

p,q (Rn)
∥∥∥ : trΓg = f, g ∈ Bσh1/p(n)1/p

p,q (Rn)
}
. (2.8)

This was extended in the following way in [9, Def. 3.7]:

De�nition 2.8. Let 0 < p, q < ∞, σ be an admissible sequence, and Γ be an
h-set. Assume that

(i) in case of p ≥ 1 or q ≤ p < 1,

σ−1 ∈ `q′ ,
(ii) in case of 0 < p < 1 and p < q,

σ−1h
1
r
− 1
p ∈ `vr for some r ∈ [p,min(q, 1)] and

1

vr
=

1

r
− 1

q
,

is satis�ed. Then (it makes sense to) de�ne Bσp,q(Γ) as in (2.6), (2.7), that is, as

the trace space of B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ), again with the quasi-norm given by
(2.8).

Remark 2.9. Note that the � in (2.6) implicitly given � correspondence of smooth-
ness (1) (that is, 0, in classical notation) on Γ and smoothness h1/p(n)1/p on Rn

is in good agreement with (2.5).

Remark 2.10. For simplicity we restrict ourselves to the case p <∞ and q <∞
in the above de�nition and also in our results below, though both in [6] and in [9]
the de�nition of Besov spaces on Γ also covers the cases when p or q can be ∞.
Then the above approach has to be modi�ed appropriately. Moreover, we refer
to [9] (and also [12]) for some argument to what extent our de�nition extends the
former approach by Bricchi.



EMBEDDINGS OF BESOV SPACES ON FRACTAL h-SETS 15

Remark 2.11. For h(r) = rd, 0 < d < n, Γ a d-set, and σ = (s), s ∈ R, the
above de�nition (2.6) can be rewritten as

Bsp,q(Γ) = trΓB
s+n−d

p
p,q (Rn),

assuming 0 < p, q <∞, s > 0, and

B0
p,q(Γ) = trΓB

n−d
p

p,q (Rn) = Lp(Γ),

if 0 < p < ∞, 0 < q ≤ min(p, 1). This coincides with [47, Def. 20.2]. There is
a parallel result for (d,Ψ)-sets Γ studied by Moura in [39, 40], which yields for
0 < p, q <∞, s > 0, and admissible Ψ,

B(s,Ψ)
p,q (Γ) = trΓB

(s+n−d
p
,Ψ

1+ 1
p )

p,q (Rn),

see [40, Def. 2.2.7].

In Section 3.2 we brie�y return to our above approach (2.4) and ask what
happens if we replace the target space Lp by some possibly larger or smaller
space Lr.

2.3. Growth envelopes. We want to apply some result on growth envelopes
obtained in [9] later and thus brie�y recall this concept and the result for spaces
Bσp,q(Γ). Therefore we concentrate on this speci�c setting mainly and refer for
further details to [28] as well as [9].
Let Γ be an h-set according to De�nition 1.1 with the corresponding Radon

measure µ ∼ Hh|Γ and f be a µ−measurable function on Γ, �nite µ−a.e. Its
decreasing (i.e., non-increasing) rearrangement f ∗,µ is the function f ∗,µ de�ned
on [0,∞) by

f ∗,µ(t) = inf {s ≥ 0 : µ ({γ ∈ Γ : |f(γ)| > s}) ≤ t} , t ≥ 0 .

We put inf ∅ = ∞, as usual. Note that f ∗,µ is non-negative, decreasing and
right-continuous on [0,∞), and f and f ∗,µ are equi-measurable. Furthermore,
f ∗,µ(0) = ‖f |L∞(Γ)‖, and f ∗,µ(t) = 0 for t > µ(Γ).

Remark 2.12. There is plenty of literature on the topic of non-increasing rear-
rangements in general measure spaces; we refer to [2, Ch. 2, Prop. 1.7] and [19,
Ch. 2, �2], for instance. We decided to indicate the measure µ here since when
dealing with functions on Rn and their trace trΓf = f |Γ on a set Γ ⊂ Rn, typically
with |Γ| = 0, then it naturally matters which measure ν (on Rn or Γ) is taken for
the decreasing rearrangements f ∗,ν . But we want to avoid any further discussion
here and stick to the above situation.

De�nition 2.13. Let [Ω, ν] be some measure space and X a quasi-normed space
of ν-measurable functions on Ω, �nite a.e. in Ω. A non-negative function EXG
de�ned on some interval (0, ε], ε ∈ (0, 1), is called the (local) growth envelope
function of X if

EXG (t) ∼ sup
‖f |X‖≤1

f ∗,ν(t) , t ∈ (0, ε].
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Remark 2.14. For a more general approach, appropriate interpretations as well as
a detailed account on basic properties of EXG we refer to [27] and [28]. Note that
there exist function spaces X which do not possess a growth envelope function in
the sense that EXG is not �nite for any t > 0. It is well-known that X ↪→ L∞ if,
and only if, EXG is bounded. Let us �nally mention the convenient `monotonicity'
feature:

X1 ↪→ X2 implies EX1
G (t) ≤ c EX2

G (t) for some c > 0 and all t ∈ (0, ε),
(2.9)

where ε = ε(X1, X2) > 0 has to be chosen su�ciently small.

We re�ne the characterisation of X provided by the growth envelope func-
tion and introduce some `characteristic' index uXG , which gives a �ner measure of
the (local) integrability of functions belonging to X. By µG we mean the Borel
measure associated with the non-decreasing function − log EXG , where the growth
envelope function EXG of X is assumed to be positive, non-increasing and contin-
uous on some interval (0, ε], with ε > 0, and X 6↪→ L∞. This approach essentially
coincides with the one presented by Triebel in [48, Sect. 12.1] and [48, Sect. 12.8],
see also [28] and [9] for further details.

De�nition 2.15. Let [Ω, ν] be some measure space and X 6↪→ L∞ some quasi-
normed space of ν-measurable functions, �nite a.e. on Ω. Let EXG be a positive,
non-increasing and continuous growth envelope function de�ned on (0, ε] for some
su�ciently small ε > 0. The index uXG , 0 < uXG ≤ ∞, is de�ned as the in�mum
of all numbers v, 0 < v ≤ ∞, such that ε∫

0

[
f ∗(t)

EXG (t)

]v
µG(dt)

1/v

≤ c ‖f |X‖ (2.10)

(meaning sup0<t<ε
f∗(t)

EXG (t)
≤ c ‖f |X‖ when v =∞) holds for some c > 0 and

all f ∈ X. Then
EG

(
X
)

=
(
EXG (·), uXG

)
is called the (local) growth envelope for the function space X.

Remark 2.16. Since (2.10) holds with v = ∞ in any case and the corresponding
expressions on the left-hand side are, up to multiplicative (positive) constants,
non-increasing in v by [48, Prop. 12.2], it is reasonable to ask for the small-
est parameter v satisfying (2.10). Note that parallel to (2.9) there is a similar
`monotonicity' feature for corresponding indices that can be found in [28].

Example 2.17. Let Γ ⊂ Rn be an h-set in the sense of De�nition 1.1 and 0 < p <
∞. Then

EG (Lp(Γ)) =
(
t−

1
p , p

)
.

This result can be found in [9, Prop. 2.11] (as a special case of a corresponding
result for the more general Lorentz spaces Lp,q(Γ)). In case of d-sets, h(r) = rd,
0 < d < n, the result remains unchanged and coincides with the usual Rn-
situation as well as more abstract settings, cf. [28, Sect. 4].
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Before we can present our results for spaces Bσp,q(Γ) we need some preparation.
We shall use a convenient notation introduced in [16] and adapted in [10]. A
function Λ : (0,∞) → (0,∞) is called admissible if it is continuous and satis�es
for any b > 0 that Λ(y) ∼ Λ(by), y > 0, with equivalence constants independent of
y. Let τ be an admissible sequence according to De�nition 1.11, and N = (Nj)j
a sequence of positive numbers such that for some λ0 > 1 it holds λ0Nj ≤ Nj+1,
j ∈ N0. In [10, Ex. 2.3] a construction of an admissible function Λ = Λτ ,N is
given, that satis�es

Λτ ,N (y) ∼ τj, y ∈ [Nj, Nj+1] , j ∈ N0. (2.11)

Let σ be an admissible sequence and, for h ∈ H, let Nj = h−1
j , j ∈ N0, satisfy

λ0Nj ≤ Nj+1, j ∈ N0, for some λ0 > 1. We denote Σσ,h := Λσ,h−1 . It satis�es, in
particular,

Σσ,h(y) ∼ σj, y ∈
[
h−1
j , h−1

j+1

]
, j ∈ N0. (2.12)

Let J0 ∈ N be chosen such that hJ0 < 1. For 0 < r, u ≤ ∞ and Σσ,h we
introduce the function Ψr,u : (0, hJ0 ]→ R by

Ψr,u(t) :=

 1∫
t

y−
u
r Σσ,h(y−1)−u

dy

y

1/u

, (2.13)

with the usual modi�cation for u =∞,

Ψr,∞(t) := sup
t≤y≤1

y−
1
r Σσ,h(y−1)−1. (2.14)

In particular, Ψr,u is positive, monotonically decreasing and continuous, being
also di�erentiable when u 6= ∞ � cf. [10, Lemma 2.5]. The main result on
growth envelopes in Besov spaces Bσp,q(Γ) was obtained in [9].

Theorem 2.18. Let 0 < p, q <∞, σ be admissible, Γ be an h-set satisfying the
porosity condition. Assume

− n ≤ s (h) ≤ s (h) < 0, (2.15)

σ−1h−
1
p 6∈ `q′ (2.16)

and

s (σ) > −s (h)

(
1

p
− 1

)
+

. (2.17)

Let Ψr,u be given by (2.13). Then

EGBσp,q(Γ) = (Ψp,q′ , q). (2.18)

Remark 2.19. Observe that the hypotheses that Γ satis�es the porosity condition,
s (h) ≥ −n and (2.17) are not needed for the proof of the optimality of the

exponent q, as long as we assume that Bσp,q(Γ) exists as the trace ofB
σh1/p(n)1/p

p,q (Rn)
in Lp(Γ). Moreover, (2.16) ensures that Bσp,q(Γ) is not contained in L∞(Γ); see
also (3.4) below.
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Remark 2.20. In some applications it will be enough to use a sharp estimate
from below for the growth envelope function, in which case we can also dispense
with most of the hypotheses considered in the Theorem above, as follows from [9,
Prop. 4.4]: up to a multiplicative constant factor, Ψp,q′ from (2.18) is a lower
bound for the local growth envelope function of Bσp,q(Γ) near 0 as long as this

space is assumed to exist as the trace of B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ) and the h-set
Γ satis�es the condition s (h) < 0.

Example 2.21. If Γ is a d-set, h(r) = rd, 0 < d < n, and 0 < p, q < ∞,

d
(

1
p
− 1
)

+
< s < d

p
, then Theorem 2.18 reads as

EGBsp,q(Γ) =
(
t
s
d
− 1
p , q
)
. (2.19)

In the limiting case s = d
p
, now with 1 < q <∞, we obtain

EGBsp,q(Γ) =
(
| log t|1/q′ , q

)
.

Remark 2.22. Note that in this last example in case (2.19) the growth envelope

function EXG (t) ∼ t
s
d
− 1
p does not distinguish between spaces Bs1p1,q1

(Γ) and Bs2p2,q2
(Γ)

whenever s1 − d
p1

= s2 − d
p2
, not even in case of s1 = s2, p1 = p2, but q1 6= q2.

Therefore the introduction of the additional �ne index is justi�ed.

Remark 2.23. We would like to emphasise the resemblance of the above results
in Example 2.21 with those obtained for spaces Bs

p,q(Rn), see [48, Thms. 13.2,
15.2]: apparently one just had to replace n by d to get the right expressions in
the context of d-sets. But, as already remarked in [9], this obvious similarity has
indeed some geometrical meaning, as it is now easy to see that, for all possible
relations between parameters given above, and for small positive t,

EB
s
p,q(Γ)

G

(
td
)
∼ EB

s+n−d
p

p,q (Rn)
G (tn) , (2.20)

with coincidence of the corresponding indices. In particular, the argument on the
left-hand side of (2.20) represents the geometry of the d-set Γ on which the trace
space is de�ned, whereas the argument on the right-hand side corresponds to the

geometry of the underlying Rn for the space B
s+(n−d)/p
p,q (Rn) from which the trace

(on Γ) is taken.

Example 2.24. For the convenience of the reader we brie�y return to the study

of (d,Ψ)-sets Γ and corresponding trace spaces B(s,Ψ)
p,q (Γ), recall Remark 2.11. In

this case the assumptions in Theorem 2.18 are satis�ed whenever 0 < d < n,
0 < p, q <∞, s > d(1

p
− 1)+, Ψ is admissible and(

2j(
d
p
−s)Ψ(2−j)−

1
p
−1
)
j
/∈ `q′ ,

that is, when s <
d
p

or

s = d
p

and
(

Ψ(2−j)−
1
p
−1
)
j
/∈ `q′ .
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This simply follows from the setting hj ∼ 2−jdΨ (2−j) and σj = 2jsΨ (2−j),

j ∈ N, in this special case of (d,Ψ)-sets and spaces of type B
(s,Ψ)
p,q . This implies

Σσ,h
(
2jdΨ(2−j)−1

)
∼ 2jsΨ(2−j), in view of (2.12), and straightforward calcula-

tions taking advantage of the admissibility of Ψ � cf. also Remark 2.25 below
� lead to

EGB(s,Ψ)
p,q (Γ) =

(
t
s
d
− 1
pΨ(t)−1− s

d , q
)

(2.21)

if s < d
p
, and to

EGB(s,Ψ)
p,q (Γ) =

((∫ 1

t1/d
Ψ(y)−q

′( 1
p

+1) dy

y

)1/q′

, q

)

if s = d
p
and

(
Ψ(2−j)−

1
p
−1
)
j
/∈ `q′ . In case of 0 < q ≤ 1, that is, q′ = ∞, this

last expression has to be understood as

EGB(s,Ψ)
p,q (Γ) =

(
sup

t1/d≤y≤1

Ψ(y)−( 1
p

+1), q

)
, (2.22)

assuming now that
(

Ψ(2−j)−
1
p
−1
)
j
/∈ `∞ and s = d

p
. Actually, with this assump-

tion, and recalling the de�nition of Ψ, the growth envelope function in (2.22) can

simply be written as Ψ(t)−( 1
p

+1).

Remark 2.25. In the spirit of Remark 2.23 we would like to compare the outcome

in Example 2.24 with its counterpart for growth envelopes of spaces B
(s,Ψ)
p,q (Rn)

obtained in [16, 17]. In the sub-critical case n(1
p
− 1)+ < s < n

p
that result reads

as

EG

(
B(s,Ψ)
p,q (Rn)

)
=
(
t
s
n
− 1
pΨ(t)−1, q

)
,

whereas in the limiting case s = n
p
with the additional assumption (Ψ(2−j)−1)j 6∈

`q′ it is

EG

(
B(s,Ψ)
p,q (Rn)

)
=
(

Φ̃p,q′(t), q
)

with Φ̃p,q′(t) =

(∫ 1

t1/n
Ψ(y)−q

′ dy

y

)1/q′

(modi�ed similarly as in (2.22) when q′ =∞). We claim that

EB
(s,Ψ)
p,q (Γ)

G

(
tdΨ(t)

)
∼ EB

(s+n−d
p ,Ψ

1+ 1
p )

p,q (Rn)
G (tn) , (2.23)

parallel to (2.20) in case of d-sets (i.e., with Ψ ≡ 1).
We �rst deal with the sub-limiting case. Plainly, (2.21) leads to

EB
(s,Ψ)
p,q (Γ)

G

(
tdΨ(t)

)
∼
(
tdΨ(t)

) s
d
− 1
p Ψ
(
tdΨ(t)

)− s
d
−1 ∼ ts−

d
pΨ(t)−

1
p
−1

∼ (tn)
1
n

(s+n−d
p

)− 1
p Ψ (tn)−

1
p
−1 ∼ EB

(s+n−d
p ,Ψ

1+ 1
p )

p,q (Rn)
G (tn) ,

where we used twice the admissibility of Ψ, which implies Ψ(t) ∼ Ψ(taΦ(t)),
a > 0, Φ admissible, for small t > 0. As to the critical case, the correspondence
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between the additional assumptions on Ψ when s = d
p
(on the side of the trace

spaces on Γ) and when s = n
p
(on the side of the corresponding spaces on Rn) are

obvious, whereas (2.23) follows again from the admissibility of Ψ.

3. Embeddings

3.1. Sharp embeddings for spaces on Rn. First we study criteria for em-
beddings of spaces of type Bσp,q(Rn) and slightly extend corresponding results
in [10, Thm. 3.7] with fore-runners in [40] and [8, Prop. 4.12].

Theorem 3.1. Let σ and τ be two admissible sequences, 0 < p1, p2 < ∞, 0 <
q1, q2 ≤ ∞, and q∗ be given by (1.19).

(i) The embedding
id : Bσp1,q1

(Rn) −→ Bτp2,q2
(Rn) (3.1)

exists and is bounded if, and only if,

p1 ≤ p2 and σ−1τ (n)
1
p1
− 1
p2 ∈ `q∗ . (3.2)

(ii) The embedding (3.1) is never compact.

Proof. We begin with (i). The su�ciency of (3.2) for the existence and bounded-
ness of the embedding (3.1) is covered by [10, Thm. 3.7] already. So it remains to
show the necessity. Here we use the wavelet characterisation in Theorem 2.3, see
also Remark 2.4, and assume to choose the wavelet system in such a way that it
is applicable for both spaces simultaneously. Hence the existence and continuity
of the embedding (3.1) implies that `p1 ↪→ `p2 and

bσ̃p1,q1
↪→ bτ̃p2,q2

. (3.3)

Obviously, the �rst embedding immediately yields p1 ≤ p2. As for (3.3), note �rst

that σ̃−1τ̃ (n)
1
p1
− 1
p2 = σ−1τ (n)

1
p1
− 1
p2 . We consider the sequence λ = {λj,m}j∈N0,m∈Zn ,

de�ned by

λj,m =

{
σ−1
j 2

jn( 1
p1
− 1

2
)
βj, m = 0, j ∈ N0,

0, otherwise,

where β ∈ `q1 is arbitrary. Then by straightforward calculation,

‖λ|bσ̃p1,q1
‖ = ‖β|`q1‖ and ‖λ|bτ̃p2,q2

‖ =
∥∥∥τσ−1(n)

1
p1
− 1
p2β|`q2

∥∥∥ .
Application of Lemma 1.18 with α = τσ−1(n)

1
p1
− 1
p2 leads to the desired result

(3.2).

We deal with (ii) and bene�t from the fact that embeddings between clas-
sical spaces of type Bs

p,q(Rn) are never compact independently of the choice of
the parameters. We proceed by contradiction. Assume that (3.1) was com-
pact. Choose s > s (σ) and t < s (τ ), such that Bs

p1,q1
(Rn) ↪→ Bσp1,q1

(Rn) and
Bτp2,q2

(Rn) ↪→ Bt
p2,q2

(Rn) in view of (i) and Remark 1.15, in particular (1.18).
Hence we obtain the compactness of Bs

p1,q1
(Rn) ↪→ Bt

p2,q2
(Rn) which can never

happen. So we have proved (ii). �
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Remark 3.2. Note that there is an extension in [29] to spaces of type Bσ,Np,q (Rn).

Example 3.3. We return to the setting of (d,Ψ)-sets, 0 < d < n, Ψ admissible,
as described in Example 1.6, in particular in (1.6), and the corresponding spaces

B
(s,Ψ)
p,q (Rn) discussed in Remark 2.2, with σ = (2jsΨ(2−j))j, s ∈ R, 0 < p, q ≤ ∞,

studied in [39, 40] in detail. Let si ∈ R, Ψi admissible, 0 < pi <∞, 0 < qi ≤ ∞,
i = 1, 2. Using the well-known abbreviation for the di�erence of the corresponding
di�erential smoothnesses,

δ = s1 −
n

p1

−
(
s2 −

n

p2

)
,

Theorem 3.1(i) reads as

B(s1,Ψ1)
p1,q1

(Rn) ↪→ B(s2,Ψ2)
p2,q2

(Rn)

if, and only if,

p1 ≤ p2 and

(
2−jδ

Ψ2 (2−j)

Ψ1 (2−j)

)
j

∈ `q∗.

This coincides (in the limiting case δ = 0) with our earlier result [11, Prop. 4.3]
which already re�ned an outcome of Moura in [40, Prop. 1.1.13].

For matter of comparison we recall the result for target spaces Lp, see [10,
Cor. 3.18] and the slightly weaker version [8, Prop. 4.13]. Here we rely on the re-
cently obtained characterisation (in the more general setting of spaces Bσ,Np,q (Rn))
in [13, Thm. 4.3, Cor. 4.6(i)].

Proposition 3.4. Let 0 < p <∞, 0 < q ≤ ∞, σ be admissible. Then

Bσp,q(Rn) ↪→ Lmax(p,1)(Rn)

if, and only if,
σ−1(n)(

1
p
−1) ∈ `q′ , if 0 < p ≤ 1, 0 < q ≤ ∞,

σ−1 ∈ `∞, if 1 < p <∞, 0 < q ≤ min(p, 2),

σ−1 ∈ ` pq
q−p
, if 1 < p ≤ 2, min(p, 2) < q ≤ ∞,

σ−1 ∈ ` 2q
q−2
, if 2 < p <∞, min(p, 2) < q ≤ ∞.

We come to the target space L∞(Rn) now.

Proposition 3.5. Let σ be an admissible sequence, 0 < p, q ≤ ∞. Then

Bσp,q(Rn) ↪→ C(Rn) if, and only if, σ−1(n)
1
p ∈ `q′ ,

where C(Rn) can be replaced by L∞(Rn).

This characterisation was proved in [10, Cors. 3.10, 4.9] in full generality; it

has a fore-runner in [32], restricted to 1 < p, q <∞. In case of spaces B
(s,Ψ)
p,q (Rn),

that is, when σ = (2jsΨ(2−j))j, s ∈ R, the result was already obtained in [16,
Prop. 3.11].
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Remark 3.6. The case p =∞ missing in Proposition 3.4 can be read from Propo-
sition 3.5 with p =∞.

3.2. Sharp embeddings for spaces on Γ. We now study embedding assertions
of type

Bσp,q(Γ) ↪→ Lr(Γ) and Bσp1,q1
(Γ) ↪→ Bτp2,q2

(Γ) .

In contrast to previous considerations in [6], see also [4], we are especially inter-
ested in `sharp' embeddings, that is, to give necessary and su�cient conditions
for the existence of such embeddings, whereas in the above-mentioned papers the
focus was rather on the compactness of related embeddings.

First we collect what is already known. Note that whenever 0 < p, q < ∞, σ
is an admissible sequence, and Γ is an h-set, then

Bσp,q(Γ) ↪→ Lmax(p,1)(Γ) if σ−1h
−( 1

p
−1)

+ ∈ `q′ ,
see [9, Prop. 3.9]. We can sharpen this assertion below in Corollary 3.13. More-
over, in [9, Prop. 3.11, Cor. 4.5] there is also a complete characterisation of
embeddings in L∞(Γ):

Corollary 3.7. Let 0 < p, q < ∞ and σ be an admissible sequence. Let Γ be
an h-set with s (h) < 0 and assume there exists the space Bσp,q(Γ) as the trace of

B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ). Then

Bσp,q(Γ) ↪→ L∞(Γ) if, and only if, σ−1h−
1
p ∈ `q′ , (3.4)

where L∞(Γ) can be replaced by C(Γ).

Remark 3.8. We would like to mention that for the `if '-part in (3.4) we do not
need to assume a priori the existence of Bσp,q(Γ) (this comes as a consequence
then). For that part we also do not need the assumption s (h) < 0.

Example 3.9. For d-sets Γ and the special choice σ = (s) we obtain Bsp,q(Γ) ↪→
C(Γ) if, and only if, s > d

p
, or (in the limiting case) s = d

p
and 0 < q ≤ 1;

this is in perfect coincidence with the results in [47, Thm. 20.6, Sect. 21.1], and
compares well with the classical situation on Rn, see [44, Thm. 3.3.1(ii)].

Now we return to the problem of `sharp' embeddings into spaces Lr with r <∞.
First we deal with the question what happens if we replace the target space Lp in
(2.4) by some possibly larger or smaller space Lr. More precisely, we study the
boundedness of the trace operator

trΓ : Bσh
1/p(n)1/p

p,q (Rn)→ Lr(Γ), f 7→ trΓf, (3.5)

de�ned �rst pointwise for smooth functions ϕ ∈ S(Rn) and then extended by
completion in such spaces where S(Rn) is dense. Therefore we require max(p, q) <
∞ again. We recall that this trace is well-de�ned if we assume (2.4) to hold (with
τ = σh1/p(n)1/p and Lp replaced by Lr). It will turn out that, in all cases we
shall study, (3.5) exists and is continuous if, and only if, the trace space Bσp,q(Γ)
exists and

Bσp,q(Γ) ↪→ Lr(Γ) (3.6)
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holds. We begin with the case r ≤ p.

Proposition 3.10. Let Γ be an h-set satisfying the porosity condition, σ be an
admissible sequence and either

(a): 1 ≤ p <∞, 0 < q <∞, 0 < r ≤ p or
(b): 0 < q, r ≤ p < 1.

Then

trΓ : Bσh
1/p(n)1/p

p,q (Rn) −→ Lr(Γ) (3.7)

exists and is bounded if, and only if,

σ−1 ∈ `q′ .

Proof. Note that the su�ciency is already covered by our considerations in Sec-
tion 2.2, together with the embeddings Lp(Γ) ↪→ Lr(Γ) for 0 < r ≤ p and the
compacity of Γ. It remains to show the necessity. But this comes as an easy conse-
quence of the density results which we have obtained in [12, Rem. 3.20,Thm. 3.18],

namely that when σ−1 /∈ `q′ , then D(Rn \ Γ) is dense in B
σh1/p(n)1/p

p,q (Rn). For
the convenience of the reader, we essentially repeat the argument presented in
the beginning of Section 3.2 in [12], which shows that, in the presence of the just
mentioned density, the trace (3.7) cannot exist:
Assume that D(Rn \ Γ) is dense in Bτp,q(Rn). Let ϕ ∈ C∞0 (Rn) with ϕ ≡ 1 on

a neighbourhood of Γ. Clearly, ϕ ∈ S(Rn) ∩ Bτp,q(Rn) and therefore there exists
a sequence (ψk)k ⊂ D(Rn \ Γ) ⊂ S(Rn) with∥∥ϕ− ψk|Bτp,q(Rn)

∥∥ −−−→
k→∞

0.

If the trace trΓ : Bτp,q −→ Lr(Γ) were to exist, this would imply

0 = ψk|Γ = trΓψk −−−→
k→∞

trΓϕ = ϕ|Γ = 1 in Lr(Γ),

which is a contradiction. �

Remark 3.11. In view of De�nition 2.8(i) the above result states that, under the
given conditions, there is a trace in Lp(Γ) if, and only if, there is a trace in Lr(Γ).
Note that Triebel proved in [49, Cor. 7.21] a related result in case of 1 < p <∞,

1 ≤ q < ∞, 1 ≤ r ≤ p, and σ(n)
1
ph

1
p = (s) with s > 0: also in that case

the trace in Lr(Γ) exists if, and only if, σ−1 ∈ `q′ (the further restrictions on
the parameters are partly caused by the used argument, in particular, duality).
Moreover, when q > 1, then he can even show compactness of the trace operator
in that setting.

We return to (3.6) now in case of r ≥ p.

Proposition 3.12. Let Γ be an h-set such that s (h) < 0 and σ be an admissible
sequence.

(i) Let 0 < p ≤ r <∞ and 0 < q ≤ min(r, 1). Then

trΓ : Bσh
1/p(n)1/p

p,q (Rn) −→ Lr(Γ)
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exists and is bounded if, and only if,

σ−1h
1
r
− 1
p ∈ `∞.

(ii) Let 0 < q <∞ and 0 < p ≤ r ≤ min(q, 1) and denote 1
vr

:= 1
r
− 1

q
. Then

trΓ : Bσh
1/p(n)1/p

p,q (Rn) −→ Lr(Γ)

exists and is bounded if, and only if,

σ−1h
1
r
− 1
p ∈ `vr .

Proof. Step 1. We show the su�ciency of the conditions by applying Theo-
rem 3.1 to get

Bσh
1/p(n)1/p

p,q (Rn) ↪→ B
h1/r(n)1/r

r,min(r,1) (Rn),

so that, with the help of (2.5), we see that the required traces exist.

Step 2. We come to the necessity of the condition in (i). Assuming the ex-
istence of the trace in assertion (i), since p ≤ r and Γ is compact we have that

Lr(Γ) ↪→ Lp(Γ) and therefore Bσp,q(Γ) exists as the trace of B
σh1/p(n)1/p

p,q (Rn) in
Lp(Γ) and, moreover,

Bσp,q(Γ) ↪→ Lr(Γ). (3.8)

Then Remark 2.20 can be applied to get that

EB
σ
p,q(Γ)

G (hj) & sup
k=0,...,j

σ−1
k h

− 1
p

k ≥ σ−1
j h

− 1
p

j for j large enough. (3.9)

On the other hand, from (3.8) and (2.9) we can write

EB
σ
p,q(Γ)

G (t) . ELr(Γ)
G (t), t > 0.

From this, (3.9) and Example 2.17 it follows that

σ−1
j h

− 1
p

j . h
− 1
r

j for large enough j ∈ N,

that is, σ−1h
1
r
− 1
p ∈ `∞.

Step 3. It remains to deal with the necessity of the condition in (ii). Let L ∈ N
be such that L > −1 + n(1

p
− 1)+ − s(σh1/p(n)1/p) and consider a C∞-function

φ on Rn such that

• there exist C1, C2, C3 > 0 with C1 < C3 < 2C1, φ(x) ≥ C2 for |x|∞ ≤ C1

and φ(x) = 0 for |x|∞ ≥ C3,
•
∫
Rn x

βφ(x)dx = 0 whenever β = (βj)
n
j=1 ∈ Nn

0 with |β|1 ≤ L.

Such a function exists (cf. [10, Lemma 4.6]). Moreover,

σ−1
j h

− 1
p

j φ(2j(· − γ0)), j ∈ N, γ0 �xed in Γ,

are (up to multiplicative constants) (σh
1
p (n)

1
p , p)K,L-atoms located at Qj,m(j),

where K is a �xed natural number satisfying K > s
(
σh1/p(n)1/p

)
and m(j) ∈

Nn
0 is one of the possible n-tuples satisfying |γ0 − 2−jm(j)|∞ ≤ 2−j−1.
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Let b := (bj)j∈N ∈ `q be any sequence of non-negative numbers. For any given
T ∈ N consider the sequence bT formed by the terms of b until the order T and
by null terms afterwards and also consider

gb
T

(x) :=
T∑
j=1

bjσ
−1
jι0
h
− 1
p

jι0
φ(2jι0(x− γ0)), x ∈ Rn, (3.10)

for the γ0 �xed in Γ considered above and with ι0 ∈ N at our disposal.

From the atomic representation Proposition 2.6 applied to B
σh1/p(n)1/p

p,q (Rn) and
the above considerations, there exists c′ > 0 independent of b and T such that

‖gbT |Bσh1/p(n)1/p

p,q (Rn)‖ ≤ c′ ‖bT |`q‖ ≤ c′ ‖b|`q‖ <∞. (3.11)

From our existence hypothesis and the fact that gb
T ∈ C∞0 (Rn) ⊂ S(Rn), there

also exists c′′ > 0 independent of bT and T such that

‖gbT |Γ|Lr(Γ)‖ ≤ c′′ ‖gbT |Bσh1/p(n)1/p

p,q (Rn)‖

and therefore

‖gbT |Γ|Lr(Γ)‖ ≤ c′′c′ ‖b|`q‖ <∞. (3.12)

For each m ∈ N de�ne

Pm := {x ∈ Rn : C32−(m+1)ι0 < |x− γ0|∞ ≤ C12−mι0}.

Since C1 < C3 < 2C1 ≤ 2ι0C1, then C12−(m+1)ι0 < C32−(m+1)ι0 < C12−mι0 and
therefore Pm 6= ∅ and Pm+1 ∩ Pm = ∅. Observe that if x ∈ Pm, for some given
m ∈ N, then

φ(2j(x− γ0)) ≥ C2 if 1 ≤ j ≤ mι0 and

φ(2j(x− γ0)) = 0 if j ≥ (m+ 1)ι0.

We can then write that

‖gbT |Γ|Lr(Γ)‖ ≥

(
T∑

m=1

∫
Γ∩Pm

( m∑
j=1

bjσ
−1
jι0
h
− 1
p

jι0
C2

)r
dµ(γ)

) 1
r

≥ C2

(
T∑

m=1

brmσ
−r
mι0
h
− r
p

mι0µ(Γ ∩ Pm)

) 1
r

(3.13)

where, using the notation Qt(γ) := {x ∈ Rn : |x− γ|∞ ≤ t},

µ(Γ ∩ Pm) = µ(QC12−mι0 (γ0))− µ(QC32−(m+1)ι0 (γ0)).

Now we recall that Γ is an h-set and therefore, besides the use of balls in
De�nition 1.1(ii), we can also say that, given any t0 > 0, there exist constants
a0, a1 > 0 such that, for any γ ∈ Γ and t ∈ (0, t0], a0h(t) ≤ µ(Qt(γ)) ≤ a1h(t). By
using Remark 1.3, the fact that h is non-decreasing and the hypothesis s (h) < 0,
it is then possible to choose ι0 ∈ N large enough in order that

µ(Γ ∩ Pm) ≥ a0h(C12−mι0)− a1h(C32−(m+1)ι0)

≥ a2(ι0)hmι0 ,
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where a2(ι0) can be chosen positive and independent of m. Using this in (3.13)
and conjugating with (3.12) we get that

(bmσ
−1
mι0
h

1
r
− 1
p

mι0 )m∈N ∈ `r.

Let β = b, α = (σ−1
mι0
h

1
r
− 1
p

mι0 )m∈N. We apply Lemma 1.18 with q1 = q and

q2 = r and obtain that the subsequence (σ−1
mι0
h

1
r
− 1
p

mι0 )m ∈ `vr . The extension to

σ−1h
1
r
− 1
p ∈ `vr is a consequence of Remark 1.17. �

Corollary 3.13. Let 0 < p, q < ∞, σ be an admissible sequence and Γ be an
h-set satisfying the porosity condition and such that s (h) < 0. The following two
assertions are equivalent:

(i): Bσp,q(Γ) exists as the trace space of B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ) and

Bσp,q(Γ) ↪→ Lmax(p,1)(Γ);

(ii): σ−1h
−( 1

p
−1)

+ ∈ `q′.

Proof. (ii) ⇒ (i): This was already proved in [9, Prop. 3.9], even without special
restrictions on the h-set.
(i) ⇒ (ii): Consider �rst the case 1 ≤ p < ∞. Since Γ is compact and p ≥ 1,

the hypothesis implies that Bσp,q(Γ) ↪→ L1(Γ) and the result follows by applying
Proposition 3.10 with r = 1.
Consider now the case 0 < p < 1. Then the result follows from Proposition 3.12

with r = 1, using its part (i) in the subcase 0 < q ≤ 1 and its part (ii) in the
subcase 1 < q <∞. �

Remark 3.14. If we compare the above corollary with its Rn-counterpart Propo-
sition 3.4, the condition in case of 0 < p ≤ 1 is quite similar, unlike in the case
1 < p <∞; this might be surprising at �rst glance, but the reason is presumably
hidden in our assumption or conclusion, respectively, that the trace spaces should
exist.

Remark 3.15. Note that in the criterion (3.4) for Bσp,q(Γ) ↪→ C(Γ) only the
smoothness parameter σ and the underlying fractal geometry h are involved
(and not the underlying Rn-space) � as it should be; the same applies to Corol-
lary 3.13. For similar discussions concerning the independence of the dimension
of the underlying space we refer to [47, Sects. 18.9, 20.3].

Example 3.16. If Γ is a d-set, h(r) = rd, 0 < d < n, and σ = (s) with s > 0,
then Corollary 3.13 reads as Bsp,q(Γ) ↪→ Lmax(p,1)(Γ) if, and only if, s > d(1

p
− 1)+,

0 < q < ∞, or s = d(1
p
− 1)+ when 0 < q ≤ 1. This obviously goes well with

the classical situation in Rn, cf. [44, Thm. 3.3.2] for a complete characterisation,
and [47, Sect. 20.3] for the case of d-sets.

Corollary 3.17. Let 0 < p, q <∞, σ be an admissible sequence and Γ be an h-
set satisfying the porosity condition and such that s (h) < 0. Then Bσp,q(Γ) exists
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as the trace space of B
σh1/p(n)1/p

p,q (Rn) in Lp(Γ) if, and only if,

σ−1 ∈

{
`q′ , if 1 ≤ p <∞ or 0 < q ≤ p < 1,

`vp , if 0 < p < 1 and 0 < p < q <∞,

where 1
vp

:= 1
p
− 1

q
.

Proof. The su�ciency comes from De�nition 2.8 (which is backed up by the
discussion in [9, Sect. 3.1]), even without special restrictions on the h-set.
As to the necessity, for the �rst line of the brace it comes from Proposition 3.10

with r = p (and the assumption s (h) < 0 is not needed here), while for the second
line it comes from part (ii) of Proposition 3.12 with r = p (and the porosity
condition is not needed here). �

Remark 3.18. Recall that s (h) < 0 implies that µ is strongly isotropic in the sense
of Remark 1.19 and that h ∈ `1. In particular, this implies (cf. [9, Sect. 2.1]) that

if σ−1 /∈ `vp (with 0 < p < 1 and 0 < p < q < ∞), then σ−1h
1
r
− 1
p /∈ `vr for all

r ∈ [p,min(q, 1)] � which had to be, otherwise the above result would contradict
De�nition 2.8(ii).

Remark 3.19. In [12, Conj. 3.21] we conjectured that, instead of s (h) < 0, an
extra assumption like limj→∞ hjσ

vp
j = 0 would give the equivalence above in the

case 0 < p < 1 and 0 < p < q < ∞ together with a so-called dichotomy result.
We have nothing new to add here as far as the dichotomy is concerned, but we
would like to draw the attention of the reader to [12, Rem. 3.22], which shows
that a result like the one above for 0 < p < 1 and 0 < p < q < ∞ cannot hold
without extra assumptions. In particular, even if not knowing whether s (h) < 0
can be improved or not as an extra requirement, at least we know that something
extra must be required in the mentioned case of the result above.

Remark 3.20. Bricchi obtained in [6, Thm. 4.3.2] that for s (σ) > 0, 1 ≤ r ≤
p < ∞, 0 < q < ∞, and with some additional assumptions on Γ and h, the
embedding Bσp,q(Γ) ↪→ Lr(Γ) is compact and he estimated the corresponding
entropy numbers by

ebh−1
j c
(
Bσp,q(Γ) ↪→ Lr(Γ)

)
∼ σ−1

j , j ∈ N. (3.14)

As already pointed out in Remark 1.15, s (σ) > 0 implies σ−1 ∈ `v for arbitrary
v, but we conjecture that the embedding Bσp,q(Γ) ↪→ Lr(Γ) remains compact for

s (σ) = 0 as long as σ−1 ∈ `q′ and q > 1, that is, in particular, with σ−1
j → 0 for

j →∞, in good agreement with (3.14).

Remark 3.21. We return to Remark 3.11 and the special setting Triebel studied

in [49, Cor. 7.21]. For 1 < p = q < ∞, and σ(n)
1
ph

1
p = (s) with 0 < s ≤ n

p
, the

trace operator

trΓ : Bs
p,p(Rn)→ Lp(Γ)

is not only compact, but one can also determine the asymptotic behaviour of
its approximation numbers: Under the additional assumption that µ is strongly
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isotropic in the sense of Remark 1.10 and satis�es∑
j≥J

2−jp
′(s−n

p
)h

p′
p

j ∼ 2−Jp
′(s−n

p
)h

p′
p

J , J ∈ N,

then, denoting the inverse function of h by H, Triebel proved in [49, Thm. 7.22]
that

ak
(
trΓ : Bs

p,p(Rn)→ Lp(Γ)
)
∼ k−

1
pH(k−1)s−

n
p , k ∈ N.

Following the proof in [49, Thm. 7.22] and our di�erent notation this can be
rewritten as

abh−1
j c
(

trΓ : Bσh
1/p(n)1/p

p,p (Rn)→ Lp(Γ)
)
∼ σ−1

j , j ∈ N,

assuming that 1 < p < ∞, σ(n)
1
ph

1
p = (s) with 0 < s ≤ n

p
, and

∑
j≥J σ

−p′
j ∼

σ−p
′

J , J ∈ N. Though in a slightly di�erent setting, the similarity to (3.14) is
obvious.

Example 3.22. In case of 0 < p ≤ r ≤ 1, 0 < q < ∞, and s (h) < 0, we obtain
from Proposition 3.12 that

Bσp,q(Γ) ↪→ Lr(Γ)

if, and only if,

σ−1h
1
r
− 1
p ∈ `v+

r
with

1

v+
r

=

(
1

r
− 1

q

)
+

.

In particular, when Γ is a d-set with 0 < d < n, and σ = (s), then this result
reads as

Bsp,q(Γ) ↪→ Lr(Γ)

if, and only if, s − d
p
≥ −d

r
if q ≤ r, or s − d

p
> −d

r
if q > r. In other words, we

have for the limiting case s− d
p

= −d
r
that

B
d( 1
p
− 1
r

)
p,q (Γ) ↪→ Lr(Γ) if, and only if, q ≤ r.

This behaviour is well-known from the classical Rn-situation, see [44, Rem. 3.3.5]
or [48, Thm. 11.4] for the case r ≥ 1, and [30, Thm. 1.15] otherwise. There it is
proved by some interpolation argument involving Lorentz spaces. Note that one
has to be quite careful with the de�nition of Besov spaces when 0 < p < 1 and
0 < s ≤ n(1

p
− 1), that is, whether the corresponding spaces are de�ned as spaces

of tempered distributions or as subspaces of Lp.

We �nally come to embeddings between two such Besov spaces on some h-set
Γ. We begin with su�cient conditions for such an embedding.

Theorem 3.23. Let Γ be an h-set, 0 < p1, p2 <∞, 0 < q1, q2 <∞, σ and τ be
admissible sequences. Let q∗ be given by (1.19). If s (τ ) > 0 and

σ−1τh
−
(

1
p1
− 1
p2

)
+ ∈ `q∗ , (3.15)

then there exist the trace spaces Bσp1,q1
(Γ) and Bτp2,q2

(Γ) and

Bσp1,q1
(Γ) ↪→ Bτp2,q2

(Γ) . (3.16)
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Proof. Step 1. We consider the case p1 ≤ p2. Since in that case (3.15) ensures
that [

σh
1
p1 (n)

1
p1

]−1 [
τh

1
p2 (n)

1
p2

]
(n)

1
p1
− 1
p2 = σ−1τh

−
(

1
p1
− 1
p2

)
+ ∈ `q∗ ,

then, by Theorem 3.1, the embedding

id1 : Bσh
1/p1(n)1/p1

p1,q1
(Rn)→ Bτh

1/p2(n)1/p2

p2,q2
(Rn) (3.17)

exists and is bounded.
On the other hand, following our discussion in Section 2.2, the hypothesis s (τ ) >
0 guarantees the existence of the trace space Bτp2,q2

(Γ), that is, the existence and
boundedness of the trace operator

trΓ : Bτh
1/p2(n)1/p2

p2,q2
(Rn)→ Lp2(Γ)

such that trΓϕ = ϕ|Γ whenever ϕ ∈ S(Rn). Since p1 ≤ p2 and Γ is compact, we
also have that the embedding

id2 : Lp2(Γ)→ Lp1(Γ)

exists and is bounded. Therefore

id2 ◦trΓ ◦ id1 : Bσh
1/p1(n)1/p1

p1,q1
(Rn)→ Lp1(Γ)

is a bounded linear operator such that, given any ϕ ∈ S(Rn),

(id2 ◦trΓ ◦ id1)ϕ = ϕ|Γ .

By Remark 2.7 it must be the trace operator of B
σh1/p1(n)1/p1

p1,q1 (Rn) in Lp1(Γ), hence
there exists also

Bσp1,q1
(Γ) = (id2 ◦trΓ ◦ id1)Bσh

1/p1(n)1/p1

p1,q1
(Rn).

Moreover, given f ∈ Bσp1,q1
(Γ), there is some g ∈ B

σh1/p1(n)1/p1

p1,q1 (Rn) such that

f = (id2 ◦trΓ ◦ id1) g. But (3.17) implies also g ∈ B
τh1/p2(n)1/p2

p2,q2 (Rn), thus also
f ∈ Bτp2,q2

(Γ), and∥∥f |Bτp2,q2
(Γ)
∥∥ = inf

tr
Γ
g=f

∥∥∥g|Bτh1/p2(n)1/p2

p2,q2
(Rn)

∥∥∥
≤ c inf

(id2 ◦trΓ
◦id1)g=f

∥∥∥g|Bσh1/p1(n)1/p1

p1,q1
(Rn)

∥∥∥
= c

∥∥f |Bσp1,q1
(Γ)
∥∥ .

Step 2. We deal with the case p1 > p2. Applying the preceding step to p1 = p2,
we have

Bσp1,q1
(Γ) ↪→ Bτp1,q2

(Γ)

since (3.15) reads then as σ−1τ ∈ `q∗ . This also covers the existence of the trace
spaces. The hypothesis s (τ ) > 0 guarantees, as before, the existence of the trace
space Bτp2,q2

(Γ), and from the assumption p1 > p2 it follows that

Bτp1,q2
(Γ) ↪→ Bτp2,q2

(Γ).
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This can be proved by using atomic representations for the corresponding spaces
on Rn, thus extending a related result in [6, Step 2 of the proof of Thm. 4.3.2].
Putting the two previous embeddings together we arrive at Bσp1,q1

(Γ) ↪→ Bτp2,q2
(Γ),

as desired. �

Remark 3.24. From the above proof we see that the hypothesis s (τ ) > 0 was only
used to guarantee the existence of some trace spaces. We can dispense with it if
we, instead, assume that Bτp2,q2

(Γ) exists, and, in case p1 > p2, that also Bτp1,q2
(Γ)

exists.

Remark 3.25. Our result above extends a corresponding one by Bricchi in [6,
Thm. 4.3.1] as far as the existence of trace spaces is concerned, whereas Bricchi
obtained also compactness assertions there.

Example 3.26. Let 0 < d < n, Γ be a d-set, 0 < p1, p2 < ∞, 0 < q1, q2 < ∞,
s, t > 0. Then

Bsp1,q1
(Γ) ↪→ Btp2,q2

(Γ) if

s− t ≥ d
(

1
p1
− 1

p2

)
+

if q1 ≤ q2,

s− t > d
(

1
p1
− 1

p2

)
+

if q1 > q2 .

This is an immediate consequence of Theorem 3.23. We thus recover (part of) the
result of Triebel in [47, Thm. 20.6] where he also dealt with the asymptotic be-
haviour of the entropy numbers of the compact embedding Bsp1,q1

(Γ) ↪→ Btp2,q2
(Γ)

when s− t > d
(

1
p1
− 1

p2

)
+
(including further limiting cases of t = 0, pi, qi =∞).

Example 3.27. Similarly, if we consider (d,Ψ)-sets Γ, 0 < d < n, Ψ an admissible

function, and corresponding trace spaces B(s,Ψ)
p,q (Γ), recall Remark 2.11, then we

can compare our result with a corresponding one of Moura in [40, Thm. 3.3.2]
where the focus was again on compactness assertions rather than on (limiting)
continuous embeddings. Explicating Theorem 3.23 in that setting we obtain for
0 < p1, p2 <∞, 0 < q1, q2 <∞, s, t > 0, that

B(s,Ψ)
p1,q1

(Γ) ↪→ B(t,Ψ)
p2,q2

(Γ) if
(

2
−j(s−t−d( 1

p1
− 1
p2

)+)
Ψ(2−j)

−( 1
p1
− 1
p2

)+

)
j
∈ `q∗ .

We study the necessity of the condition (3.15) for the embedding (3.16) now.

Theorem 3.28. Let Γ be an h-set satisfying the porosity condition with (2.15),
0 < p1, p2 <∞, 0 < q1, q2 <∞, σ and τ be admissible sequences with

s
(
τh1/p2

)
< 0 (3.18)

and

s (τ ) > −s (h)

(
1

p2

− 1

)
+

. (3.19)

Let q∗ be given by (1.19). If the trace spaces Bσp1,q1
(Γ) and Bτp2,q2

(Γ) exist and

Bσp1,q1
(Γ) ↪→ Bτp2,q2

(Γ), (3.20)

then

σ−1τh
−
(

1
p1
− 1
p2

)
∈ `q∗ . (3.21)
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Proof. Step 1. We would like to start by remarking that the assumption that
Bτp2,q2

(Γ) exists is not really necessary, as it comes as a consequence of (2.15)
and (3.19), due to Corollary 3.17 and (the end of) Remark 1.15. The latter also
guarantees, together with (3.18), that τ−1h−1/p2 6∈ `∞, therefore

τ−1h−1/p2 6∈ `q′2 . (3.22)

Hence, by Theorem 2.18, Bτp2,q2
(Γ) possesses a non-trivial growth envelope. We

return to the example gb
T
given by (3.10),

gb
T

(x) =
T∑
r=1

brσ
−1
rι0
h
− 1
p1

rι0 φ(2rι0(x− γ0)), x ∈ Rn,

where now the sequence b = (br)
∞
r=1 of non-negative numbers belongs to `q1 .

According to (2.8) and (3.11) we have

‖gbT | Bσp1,q1
(Γ)‖ ≤ c−1

1 ‖b | `q1‖

(recall that we assume that Bσp1,q1
(Γ) exists, see also the discussion in Section 2.2).

On the other hand, similarly as in Step 3 of the proof of Proposition 3.12 (or
directly from [9, Lemma 3.3]), if ι0 ∈ N is chosen large enough we have

(gb
T

)∗,µ(c2hkι0) ≥ c′
k∑
r=1

brσ
−1
rι0
h
− 1
p1

rι0 , k ∈ N, (3.23)

with c2 ∈ (0, 1]. We apply Theorem 2.18 to Bτp2,q2
(Γ) and can thus estimate, also

due to our hypothesis (3.20),

‖b|`q1‖ ≥ c1

∥∥∥gbT |Bσp1,q1
(Γ)
∥∥∥

≥ c3

∥∥∥gbT |Bτp2,q2
(Γ)
∥∥∥

≥ c4

(∫ ε

0

[
(gb

T
)∗,µ(t)

Ψτ
p2,q′2

(t)

]q2
µΨτ (dt)

)1/q2

(3.24)

where Ψτ
p2,q′2

is given by (2.13) or (2.14) with r = p2, u = q′2 and σ replaced by

τ , and µΨτ stands for the corresponding Borel measure µG as explained before
De�nition 2.15.

Step 2. We �rst deal with the case q2 > 1. We proceed from (3.24), where we
can write, equivalently, the last expression as(∫ ε

0

[
(gb

T
)∗,µ(t)

Ψτ
p2,q′2

(t)q
′
2

]q2
t
− q
′
2
p2
−1

Λτ (t−
1
n )−q

′
2dt

)1/q2

, (3.25)

where Λτ is the same as in (2.11) withN = h−1 (see also [10, Rem. 4.15]). Using
(3.23), the admissibility of the sequences τ and h, and discretising (2.13) (see
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also [10, Lemma 2.6, Prop. 2.7]), (3.25) is bounded from below by

( ∞∑
k=k0

( k∑
r=1

brσ
−1
rι0
h
− 1
p1

rι0

)q2( kι0∑
r=1

h
− q
′
2
p2

r τ−q
′
2

r

)−q2
h
− q
′
2
p2

kι0
τ
−q′2
kι0

) 1
q2 (3.26)

up to a constant factor, where k0 ∈ N is chosen su�ciently large (depending on
h, ι0 and ε). Observe now that (3.18) implies that there exists k1 > 1 and j0 ∈ N
such that

τ−1
j+1h

− 1
p2

j+1 ≥ k1 τ
−1
j h

− 1
p2

j , j ≥ j0, (3.27)

from which follows, using also the admissibility of τ and h, that( kι0∑
r=1

h
− q
′
2
p2

r τ−q
′
2

r

)−1

∼ h
q′2
p2
kι0
τ
q′2
kι0

(3.28)

(cf. also Remark 1.19). Therefore, putting together (3.24)-(3.26), we can write

‖b|`q1‖ ≥ c5

( ∞∑
k=k0

bq2k σ
−q2
kι0

h
− q2
p1

+
q′2
p2

(q2−1)

kι0
τ
q′2(q2−1)
kι0

) 1
q2

= c5

( ∞∑
k=k0

bq2k σ
−q2
kι0

h
q2( 1

p2
− 1
p1

)

kι0
τ q2kι0

) 1
q2 .

Let β = b, α =

(
σ−1
kι0
h

1
p2
− 1
p1

kι0
τkι0

)
k

. Then Lemma 1.18 yields

(
σ−1
kι0
h

1
p2
− 1
p1

kι0
τkι0

)
k

∈ `q∗

and the result (3.21) follows by Remark 1.17.

Step 3. We turn to the case 0 < q2 ≤ 1. Then Ψτ
p2,q′2

= Ψτ
p2,∞ and a discreti-

sation argument (see e.g. [10, Lemma 2.6, Prop. 2.7, Rem. 2.8]) gives us, with a
small enough positive constant C ≤ c2,

Ψτ
p2,∞(Chk) ∼ sup

1≤i≤k
τ−1
i h

− 1
p2

i , k ∈ N.

On the other hand, similarly to (3.27) and (3.28), assumption (3.18) and the
admissibility of τ and h implies that

sup
1≤i≤k

τ−1
i h

− 1
p2

i ∼ τ−1
k h

− 1
p2

k , k ∈ N.

Denote by C1 and C2 positive constants such that

C1τ
−1
k h

− 1
p2

k ≤ Ψτ
p2,∞(Chk) ≤ C2τ

−1
k h

− 1
p2

k , k ∈ N. (3.29)
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Now we should be careful that ι0 has been chosen large enough in such a way
that also

τ−1
(k+1)ι0

h
− 1
p2

(k+1)ι0

τ−1
kι0
h
− 1
p2

kι0

≥ 2
C2

C1

, k ∈ N. (3.30)

This is clearly possible, due again to (3.18). We now discretise the right-hand
side of (3.24) so that, up to a constant factor, it is bounded from below by( ∞∑

k=k0

( k∑
r=1

brσ
−1
rι0
h
− 1
p1

rι0

)q2
τ q2kι0h

q2
p2
kι0
µΨτ

([
Ch(k+1)ι0 , Chkι0

]) ) 1
q2 . (3.31)

Observing that

µΨτ
([
Ch(k+1)ι0 , Chkι0

])
= − log Ψτ

p2,∞(Chkι0) + log Ψτ
p2,∞(Ch(k+1)ι0)

= log
Ψτ
p2,∞(Ch(k+1)ι0)

Ψτ
p2,∞(Chkι0)

≥ log
C1τ

−1
(k+1)ι0

h
− 1
p2

(k+1)ι0

C2τ
−1
kι0
h
− 1
p2

kι0

≥ 1,

where we used �rst (3.29) and afterwards (3.30), we can further estimate (3.31)
from below by ( ∞∑

k=k0

bq2k σ
−q2
kι0

h
− q2
p1

kι0
τ q2kι0h

q2
p2
kι0

) 1
q2 ,

so that, returning to (3.24) we get

‖b|`q1‖ ≥ c5

( ∞∑
k=k0

bq2k σ
−q2
kι0

h
q2
(

1
p2
− 1
p1

)
kι0

τ q2kι0

) 1
q2 .

We are now in the same situation as at the end of Step 2, so the last part of the
proof follows as there. �

Remark 3.29. Analysing the proof we see that in the case q2 > 1 we could have
managed with weaker hypotheses, namely replacing s

(
τh1/p2

)
< 0, cf. (3.18),

by τ−1h−1/p2 6∈ `q′2 , cf. (3.22), and
kι0∑
r=1

h
− q
′
2
p2

r τ−q
′
2

r ∼ h
− q
′
2
p2

kι0
τ
−q′2
kι0

, k ∈ N0,

cf. (3.28). In the argument presented above these two assertions are consequences
of our assumption (3.18), but what is really needed in Step 2 are (3.22) and (3.28)
only. Note that (3.28) is connected with requirements of strong isotropicity for
the measure µ corresponding to h and Γ, as already pointed out in Remark 1.19.

In view of the fact that (3.19) and (2.15) immediately imply s (τ ) > 0, and
(3.15) and (3.21) coincide for p1 ≤ p2, we can combine Theorems 3.23 and 3.28
in that case.
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Corollary 3.30. Let Γ be an h-set satisfying the porosity condition with (2.15),
0 < p1 ≤ p2 < ∞, 0 < q1, q2 < ∞, and q∗ be given by (1.19). Let σ and τ
be admissible sequences with (3.18), (3.19). Then the trace spaces Bσp1,q1

(Γ) and
Bτp2,q2

(Γ) exist and

Bσp1,q1
(Γ) ↪→ Bτp2,q2

(Γ),

if, and only if,

σ−1τh
−
(

1
p1
− 1
p2

)
∈ `q∗ . (3.32)

Remark 3.31. Unlike in case of p1 ≤ p2, there is an obvious gap for p1 > p2

between the su�cient condition (3.15) in Theorem 3.23 and the necessary one
(3.21) in Theorem 3.28 in view of the embedding (3.16). We are not yet able
to close it. But in view of similar observations in the classical case (embeddings
of Besov spaces on a bounded domain Ω), or special cases studied before, we
claim that (3.15) is the right one, not (3.21). In other words, we conjecture that
Corollary 3.30 remains true irrespective of the relation between p1 and p2 if we
replace (3.32) by (3.15).

We end this paper with explicating Corollary 3.30 in case of d- and (d,Ψ)-sets,
recall also Remarks 1.9 and 2.11.

Example 3.32. Let 0 < d < n, Γ be a d-set, 0 < p1 ≤ p2 < ∞, 0 < q1, q2 < ∞,

s > 0, d
(

1
p2
− 1
)

+
< t < d

p2
. Then

Bsp1,q1
(Γ) ↪→ Btp2,q2

(Γ) if, and only if,

s− t ≥ d
(

1
p1
− 1

p2

)
if q1 ≤ q2,

s− t > d
(

1
p1
− 1

p2

)
if q1 > q2 .

Similarly, if we consider (d,Ψ)-sets Γ, 0 < d < n, Ψ an admissible function, and

corresponding trace spaces B(s,Ψ)
p,q (Γ), recall Remark 2.11, we get for 0 < p1 ≤

p2 <∞, 0 < q1, q2 <∞, s > 0, d
(

1
p2
− 1
)

+
< t < d

p2
, that

B(s,Ψ)
p1,q1

(Γ) ↪→ B(t,Ψ)
p2,q2

(Γ)

if, and only if, (
2
−j(s−t−d( 1

p1
− 1
p2

))
Ψ(2−j)

−( 1
p1
− 1
p2

)
)
j
∈ `q∗ .

Here we have also used (1.17) again.
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