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palavras-chave 

 
Resistência a antibióticos, ecosistemas aquáticos, beta-lactamases, elementos 
genéticos móveis 
 

resumo 
 

 

Antibióticos de último recurso são usados no tratamento de infecções graves 
causadas por estirpes multiresistentes. A prevalência de bactérias resistentes 
a estes antibióticos tem aumentado. Os ambientes naturais, influenciados pela 
actividade humana, são reservatórios de bactérias resistentes e de genes de 
resistência. Vários genes de resistência com grande impacto na clínica têm 
presumivelmente origem em estirpes ubíquas em sistemas aquáticos, o que 
realça a importância destes ambientes na evolução de resistência. Este estudo 
assenta nas seguintes hipóteses: a) os rios são reservatórios e 
disseminadores de resistência a antibióticos; b) as atividades antropogénicas 
potenciam a disseminação de resistência a antibióticos de último recurso 
nestes ambientes. Assim, foi estabelecido como objectivo comparar o 
resistoma ambiental referente a antibióticos de último recurso, em rios poluídos 
e não poluídos. Foram amostrados rios na Bacia Hidrográfica do Vouga, 
expostos a diferentes impactos antropogénicos. Os rios foram classificados 
como poluídos e não poluídos de acordo com parâmetros de qualidade da 
água. Duas colecções foram estabelecidas: bactérias resistentes a cefotaxima 
(cefalosporina de 3ª geração) e a imipenemo (carbapenemo). Cada colecção 
foi caracterizada em termos de diversidade filogenética, susceptibilidade a 
antibióticos, mecanismos de resistência e elementos genéticos móveis. A 
prevalência de bactérias resistentes foi superior em águas poluídas. Os 
resultados sugerem que nestes ambientes Enterobacteriaceae, Pseudomonas 
e Aeromonas têm um papel importante na disseminação de resistência. Os 
níveis de resistência a não beta-lactâmicos foram superiores em águas 
poluídas, assim como o número de estirpes multiresistentes. Detectaram-se 
genes de beta-lactamases de espectro alargado, associados a elementos 
genéticos móveis previamente descritos em isolados clínicos. Métodos 
independentes do cultivo revelaram diferenças claras entre a diversidade de 
sequências do tipo blaCTX-M em rios poluídos (idênticas às encontradas em 
isolados clínicos) e não poluídos (similares a genes ancestrais). A resistência a 
carbapenemos foi maioritariamente relacionada com a presença de bactérias 
intrinsecamente resistentes. No entanto, foram identificados genes de 
carbapenemases relevantes tais como blaOXA-48 em Shewanella spp. (origem 
putativa destes genes) e blaVIM-2 em Pseudomonas spp. de rios poluídos. 
Métodos independentes do cultivo mostraram que, nestes rios, a diversidade 
de genes similares a blaOXA-48 é superior ao que tem sido relatado. Detectaram-
se diferenças evidentes entre rios poluídos e não poluídos, em termos de 
prevalência, diversidade filogenética e susceptibilidade a antibióticos em 
bactérias resistentes e ocorrência de genes de resistência clinicamente 
relevantes. Estes dados validam as hipóteses colocadas. Assim, estes 
sistemas aquáticos actuam como reservatórios de genes de resistência. As 
actividades antropogénicas potenciam a disseminação destes genes e a 
constituição de plataformas genéticas complexas, originando fenótipos de 
multiresistência que poderão persistir mesmo na ausência de antibióticos. 
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abstract 

 
Last-resort antibiotics are the final line of action for treating serious infections 
caused by multiresistant strains. Over the years the prevalence of resistant 
bacteria has been increasing. Natural environments are reservoirs of antibiotic 
resistance, highly influenced by human-driven activities. The importance of 
aquatic systems on the evolution of antibiotic resistance is highlighted from the 
assumption that clinically-relevant resistance genes have originated in strains 
ubiquitous in these environments. We hypothesize that: a) rivers are reservoirs 
and disseminators of antibiotic resistance; b) anthropogenic activities potentiate 
dissemination of resistance to last-resort antibiotics. Hence, the main goal of 
the work is to compare the last-resort antibiotics resistome, in polluted and 
unpolluted water. Rivers from the Vouga basin, exposed to different 
anthropogenic impacts, were sampled. Water quality parameters were 
determined to classify rivers as unpolluted or polluted. Two bacterial collections 
were established enclosing bacteria resistant to cefotaxime (3

rd
 generation 

cephalosporin) and to imipenem (carbapenem). Each collection was 
characterized regarding: phylogenetic diversity, antibiotic susceptibility, 
resistance mechanisms and mobile genetic elements. The prevalence of 
cefotaxime- and imipenem-resistant bacteria was higher in polluted water. 
Results suggested an important role in the dissemination of antibiotic 
resistance for Enterobacteriaceae, Pseudomonas and Aeromonas. The 
occurrence of bacteria resistant to non-beta-lactams was higher among isolates 
from polluted water as also the number of multiresistant strains. Among strains 
resistant to cefotaxime, extended-spectrum beta-lactamase (ESBL) genes were 
detected (predominantly blaCTX-M-like) associated to mobile genetic elements 
previously described in clinical strains. ESBL-producers were often 
multiresistant as a result of co-selection mechanisms. Culture-independent 
methods showed clear differences between blaCTX-M-like sequences found in 
unpolluted water (similar to ancestral genes) and polluted water (sequences 
identical to those reported in clinical settings). Carbapenem resistance was 
mostly related to the presence of intrinsically resistant bacteria. Yet, relevant 
carbapenemase genes were detected as blaOXA-48-like in Shewanella spp. (the 
putative origin of these genes), and blaVIM-2 in Pseudomonas spp. isolated from 
polluted rivers. Culture-independent methods showed an higher than the 
previously reported diversity of blaOXA-48-like genes in rivers. Overall, clear 
differences between polluted and unpolluted systems were observed, regarding 
prevalence, phylogenetic diversity and susceptibility profiles of resistant 
bacteria and occurrence of clinically relevant antibiotic resistance genes, thus 
validating our hypotheses. In this way, rivers act as disseminators of resistance 
genes, and anthropogenic activities potentiate horizontal gene transfer and 
promote the constitution of genetic platforms that combine several resistance 
determinants, leading to multiresistance phenotypes that may persist even in 
the absence of antibiotics. 
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GENERAL INTRODUCTION 
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General introduction - 1 

3 

 

1.1 ANTIBIOTICS AND ANTIBIOTIC RESISTANCE 

 

An antibiotic can be defined as an organic molecule, of synthetic or natural origin, that 

inhibits or kills microorganisms by specific interactions with the microbial targets, and that 

is used for the treatment of infectious diseases in humans and/or other animals (Davies and 

Davies 2010). Although this definition includes compounds with activity against other 

microorganisms, the term antibiotics is most often used to define antibacterial substances 

and will be used in this sense in the context of this thesis. Antibiotics that are used in a 

clinical context act selectively in central cell processes or structures, distinctive of bacterial 

cells. Antibiotics can be either bactericidal (induce cell death) or bacteriostatic (inhibit cell 

growth). Their modes of action include for example the inhibition of processes like 

peptidoglycan biosynthesis, DNA replication or protein synthesis, or by interfering with 

the energy metabolism of the cell. The discovery of these substances and their use in 

medical practice has been one of the major advances of the last century, with great health 

impact by reducing morbidity and saving countless lives. 

On an opposite way, bacterial cells may have the ability to overcome the inhibitory or 

deleterious effects of antibiotics. In a clinical context, antibiotic resistance leads to 

prolonged and unsuccessful treatments, augmented costs and ultimately, increased death 

records (Paul et al. 2010, Stokes and Gillings 2011, van Hoek et al. 2011). The World 

Health Organization (WHO) estimates that antimicrobial resistance is the cause of over 15 

million deaths per year (WHO 2014a). Infectious diseases remain listed in the 10 leading 

causes of death in the world (WHO 2014b).  

Some key facts recognized by the WHO include: i) infections caused by resistant 

bacteria fail to respond to conventional treatment, resulting in prolonged illness, greater 

risk of death and higher costs; ii) a high percentage of hospital-acquired infections are 

caused by highly resistant bacteria such as methicillin-resistant Staphylococcus aureus 

(MRSA) or multidrug-resistant Gram-negative bacteria and iii) new resistance mechanisms 

have emerged, making the latest generation of antibiotics virtually ineffective (WHO 

2014a). Hence, the WHO has declared the control of dissemination of antibiotic resistance 

as one of the top health priorities worldwide (WHO 2014c).  
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The overuse and misprescription of antibiotics have been pointed out has the main 

reasons for the increasing of antibiotic resistance. The latest data on the trends of antibiotic 

consumption in Europe highlights that antibiotics are mostly used outside clinical settings 

and that intake in the community has been increasing (ECDC 2014).  

In Europe, penicillins are the group of antibiotics most frequently used in the 

community (ECDC 2014). Critical antibiotics as 3
rd

 generation cephalosporins are 

consumed in higher amounts in hospital settings than in the community (ECDC 2014). The 

total intake of these antibiotics has increased significantly throughout Europe (ECDC 

2014). The treatment of infections caused by bacteria resistant to 3
rd

 generation 

cephalosporins implies the use of more efficient antibiotics such as carbapenems, which 

are more expensive and may not be accessible in all clinical settings worldwide (Livermore 

2009, Papp-Wallace et al. 2011, WHO 2014c). Moreover, the total consumption of 

carbapenems has also increased in Europe (ECDC 2014). 

The recent global report on surveillance of antibiotic resistance presented by WHO 

(WHO 2014c), emphasizes the high proportion of resistance to extended-spectrum 

antibiotics, namely 3
rd

 generation cephalosporins, that has been reported worldwide. 

Furthermore, the same report highlights the upsurge of the proportion of carbapenem-

resistant strains among clinically-relevant bacterial groups such as Acinetobacter spp., 

Pseudomonas spp. and Enterobacteriaceae, commonly presenting multiresistant traits 

(resistant to 3 or more classes of antibiotics) and thus limiting the therapeutic options.  

Also problematic is the tendency of most pharmaceutical companies to invest in the 

development of other drugs that are either less regulated and consequently launched faster 

in the market, or used for long periods of treatment with higher economic retributions (e.g. 

for the treatment of chronic diseases as diabetes or anti-hypertensive drugs) (Butler et al. 

2013, Spellberg et al. 2004). Thus pharmaceutical companies reduced the investment in 

antibiotic research and development, since the return on investment in this area was lower.   

Antibiotic resistance is a multifactorial problem (FIG. 1). Besides the abusive use and 

misuse of antibiotics in human and veterinary medicine, several other aspects can 

contribute to the emergence and spread of antibiotic resistance.  
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FIG.1: Factors influencing the increasing emergence of antibiotic resistance. 

 

Over the years numerous changes have occurred on a global scale and in diverse 

segments that contributed for the increase of resistance levels registered worldwide. From 

a social perspective, migration and population growth added for the widespread of 

antibiotic resistance. Countries that are overpopulated, and consequently have in general 

poor hygiene and sanitary conditions, are dealing with serious infections caused by the 

most problematic multiresistant strains (Nordmann et al. 2011, Poirel et al. 2012a). The 

transfer of patients from these to other countries contributes to the spread of antibiotic 

resistance (Poirel et al. 2012a). The intensification of traveling events, the increasing 

number of travelers and medical tourism enhance this problem too (Rogers et al. 2011). 

Other factors that have been also contributing for this problematic scenario are the new 

commercial routes that promote the worldwide distribution of a variety of food products 

(Cabello et al. 2013, Durso and Cook 2014). Finally the abusive use of antibiotics in farms 

and aquacultures as food additives to promote animal growth and/or to prevent diseases 

contribute for the increasing prevalence of antibiotic resistance (Cabello et al. 2013, Durso 

and Cook 2014, Rolain 2013). 

ANTIBIOTICS

ANTIBIOTIC RESISTANCE

← Abusive use in human and veterinary medicine

← Self-medication/ Easy access

← Inadequate prescription

← Inadequate dose/ duration of treatment

← Medical tourism/ Transfer of patients

← Nº of travelers/travel destinations

← Food products circulation

← Overpopulation

← Poor sanitary conditions

← Use in animal feed/ crops spray

← Water pollution

← Contaminated sludge used as fertilizer
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Alexander Fleming, who discovered penicillin, in his 1945 Nobel Lecture alerted to 

the consequences of the abusive use of antibiotics and foretold “the time may come when 

penicillin can be bought by anyone in the shops. Then, there is the danger that the ignorant 

man may easily under-dose himself and by exposing his microbes to non-lethal-quantities 

of the drug educate them to resist” (Fleming 1945). In fact, by this time it had already been 

identified a bacterial penicillinase, conferring resistance to penicillins (Abraham and Chain 

1940).  

In the above statement, Fleming also acknowledged the importance of antimicrobial 

stewardship, and emphasized other two important aspects that still contribute to the 

emergence and prevalence of antimicrobial resistance nowadays: self-medication and drug 

regimen disregard (both dose and duration of treatment).  

If we look at the antibiotic resistance timeline, that is the time between the 

introduction of an antibiotic in clinical practice and the first report of antibiotic resistance 

towards it (FIG. 2), we observe that for some antibiotics the emergence of resistance is 

quite fast, since in few years the antibiotic therapeutic potential is compromised. From the 

beginning of the antibiotic era we have been witnessing a successional chain of events that 

start with the inclusion of a new antibiotic followed by the emergence of resistant 

organisms and in a next step a new antibiotic is launched to deal with the resistant bacteria. 

This cycle is constantly repeated, although the disinvestment in the development of new 

drugs slowed it down in recent years. 

In 2008, L.B. Rice recognized as most worrisome pathogens, increasingly prevalent 

and multiresistant, both Gram-positive and Gram-negative bacteria that he defined as the 

(no) ESKAPE bugs. These include Enterococcus faecium, Staphylococcus aureus, 

Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and 

Enterobacter species (Rice 2008).  
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FIG. 2: Timeline displaying the introduction of some of the antibiotics commonly used in clinical 

settings and the first report of resistance to those antibiotics. MRSA - methicillin-resistant 

Staphylococcus aureus, VRE - vancomycin-resistant Enterococcus; VRSA - vancomycin-resistant 

Staphylococcus aureus (adapted from CDC 2013). 
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Although there has been a decline on the discovery and development of new 

antimicrobials, there are a number of rather new drugs still available to treat infections 

caused by Gram-positive bacteria, such as ceftaroline, daptomycin, linezolid and 

tigecycline (Bush 2010, Kauffman 2003, Patterson 2000, Steenbergen et al. 2005, Zhanel 

et al. 2009). In opposition, drug development for the treatment of infections caused by 

Gram-negative bacteria has stagnated and no new class of antibiotics has been proposed 

for over 50 years (Bush 2012). Noteworthy, 4 out of 6 of the ESKAPE bugs are 

Enterobacteriaceae or non-fermenters Gram-negatives. Thus the study of resistance to 

antibiotics that are critically important to treat infections caused by Gram-negative bacteria 

is of maximum priority.  

Mostly, new antibiotics offered to treat infections caused by Gram-negative bacteria 

are analogues of former existing drugs with improved and/or broader spectrum of activity 

or new combinational therapies such as beta-lactam/beta-lactamase inhibitors (Bush 2012, 

Butler et al. 2013, Page and Heim 2009, Silver 2011). Recently, a potent metallo-beta-

lactamase inhibitor was identified in a strain of Aspergillus versicolor, named 

aspergillomarasmine A (AMA). This fungal natural product when combined with 

meropenem allowed to fully restore the activity of the antibiotic, against 

Enterobacteriaceae members, Acinetobacter spp. and Pseudomonas spp. producing the 

clinically-relevant NDM-1 or VIM-2 enzymes. These enzymes confer resistance to 

meropenem and other carbapenems and present a broad range of hydrolytic activity (King 

et al. 2014). 

Additionally, older drugs such as colistin, previously rejected due to their toxic 

properties, are currently being used in the absence of therapeutic alternatives for treatment 

of severe infections caused by highly resistant Gram-negative pathogens (Falagas et al. 

2005). 
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1.2 ANTIBIOTIC RESISTANCE MECHANISMS AND DISSEMINATION 

 

Several antibiotics are produced by naturally-occurring microorganisms most probably 

to inhibit competitors, and thus, it would be expected that antibiotic resistance mechanisms 

in nearby microorganisms would have the purpose of escaping antibiotics action (Baquero 

et al. 2009, Davies and Davies 2010, D’Costa et al. 2011).  

Years before the beginning of the antibiotic era, that is, when large-scale production 

and introduction of antibiotics into medical practice started, antibiotic resistance had 

already been acknowledged. Actually, prior to the use of penicillin in medical practice, the 

first natural antibiotic discovered, a bacterial penicillinase was identified (Abraham and 

Chain 1940). More recently, studies developed using ancient DNA from archeological 

findings proved that antibiotic resistance genes were present in the bacterial flora of 

humans at least 1000 years before the start of the antibiotic era (Appelt et al. 2014, 

Warinner et al. 2014). Also it has been discussed that currently known genetic 

determinants of resistance presented originally other functions in the cell (including 

antibiotic biosynthesis), that later turned useful for dealing with these drugs (Baquero et al. 

2009, Martinez 2009a).  

Resistance mechanisms include target substitution and modification, membrane 

permeability alterations, production of enzymes that inactivate the antibiotic and efflux 

pumps to expel the antibiotic from the cell or reduce its concentration below an efficient 

level. Table 1 shows the most commonly used antibiotics for the treatment of infections 

caused by Gram-negatives, their mode of action/target and resistance mechanisms. 
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TABLE 1: Common resistance mechanisms and modes of action in most used antibiotics for the 

treatment of infections caused by Gram-negative bacteria. 

Antibiotic class Examples Mode of action (target) Resistance mechanisms 

Beta-lactams penicillins (ampicillin, 

amoxicillin), cephalosporins 

(cefotaxime, ceftazidime), 

carbapenems (imipenem, 

ertapenem, meropenem), 

monobactam (aztreonam) 

Inhibit the synthesis of 

the bacterial cell wall 

(peptidoglycan 

biosynthesis) 

Hydrolysis, efflux 

pumps, target 

modification, loss or 

alteration in outer 

membrane porins 

Quinolones ciprofloxacin 

 nalidixic acid 

Interact with the 

synthesis of DNA 

(DNA replication) 

Acetylation, efflux 

pumps, target 

modification 

Aminoglycosides kanamycin  

gentamicin 

Inhibit protein synthesis 

(translation) 

Phosphorylation, 

acetylation, efflux 

pumps, target 

modification 

Sulfonamides sulfonamide Modify the energy 

metabolism of the cell 

(C1 metabolism) 

Hydrolysis, efflux 

pumps, target 

modification 

Phenicols chloramphenicol Inhibit protein synthesis 

(translation) 

Acetylation, efflux 

pumps, target 

modification 

Tetracyclines tetracycline 

 tigecycline 

Inhibit protein synthesis 

(translation) 

Monooxygenation, 

efflux pumps, target 

modification 

Pyrimidines trimethoprim Modify the energy 

metabolism of the cell 

(C1 metabolism) 

Efflux pumps, target 

modification 

 

Besides the traditionally referred antibiotic resistance mechanisms, bacterial 

communities have developed other strategies for overcoming the antibiotics action. For 

example it has been shown that the formation of biofilms increases the bacterial ability to 

survive in the presence of these compounds (HØiby et al. 2010). Biofilms are particularly 

problematic when associated for example to medical implants (HØiby et al. 2010, Mah and 

Toole 2001). It has been reported that bacterial cells when in community, attached to a 

solid surface and embedded in an exopolysaccharide matrix can become 10–1000 times 
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more resistant to the effects of antimicrobial drugs (Mah and Toole 2001). The matrix 

provides protection and security against not only antibiotics but also against the immune 

and inflammatory responses of the host (HØiby et al. 2010). Another example of 

mechanism contributing to increase resistance levels is the heteroresistance phenomenon 

that has been already associated to antibiotic treatment failures (Wang et al. 2014). 

Heteroresistance is observed when within a clonal population there are sub-populations of 

antibiotic-resistant and antibiotic-sensitive cells. It has already been described in some 

clinically-relevant microorganisms as for example S. aureus (Nunes et al. 2006, Rinder et 

al. 2001, Ryffel et al. 1994), A. baumannii (Hung et al. 2012) or K. pneumoniae (Tato et 

al. 2010). 

Resistance to an antibiotic is a characteristic that can either be inherent or acquired. 

Intrinsic features can be the expression of genes encoding hydrolyzing enzymes: for 

example, blaCphA in some Aeromonas spp. or blaL1 in Stenotrophomonas maltophilia, 

coding respectively for the CphA and L1 metallo-beta-lactamases, which confer resistance 

to carbapenems (Avison et al. 2001, Walsh et al. 2005). Another intrinsic characteristic is 

the impermeability of the outer membrane in Gram-negative bacteria towards many 

molecules such as macrolides (Cox and Wright 2013). Intrinsic resistance may also be 

mediated by active efflux pumps that decrease the intracellular concentration of the 

antibiotic. Examples of this later resistance mechanism are the multidrug-efflux pumps 

chromosomally-encoded in P. aeruginosa, which confer resistance to at least 3 classes of 

antibiotics: beta-lactams, fluoroquinolones and aminoglycosides (Cox and Wright 2013, 

Livermore 2001, Mesaros et al. 2007, Strateva and Yordanov 2009). 

On the other hand, to build resistance the main genetic mechanisms are mutation, and 

horizontal gene transfer (HGT). The rate by which a resistant microorganism appears is 

determined by the combined frequency of “de novo” mutation within the bacterial genome 

and lateral transfer events (Andersson and Hughes 2010).  

There are three main processes that promote horizontal gene transfer: conjugation 

(cell-to-cell transfer), transformation (DNA-to-cell transfer) and transduction (phage-

mediated transfer). These mechanisms involve the mobilization of diverse genetic 

platforms such as plasmids, transposons and integrons, all of which play an important role 

on the spread of resistance to antibiotics but also of resistance towards other compounds 
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such as heavy metals (Carattoli 2013, Rodriguez-Rojas et al. 2013). For centuries, heavy 

metals were used for the treatment of several diseases before the use of antibiotics in 

clinical settings and this practice may have contributed for the selection of genetic 

platforms encoding both heavy metals and antibiotic resistance (Baker-Austin et al. 2006). 

By capturing one single mobile element, one microorganism can acquire multiresistant 

traits to a wide range of compounds. 

Also to take into account when discussing antibiotic resistance dissemination is the 

fact that there are highly effective strains, that is, strains that are quite successful on 

spreading genetic determinants of resistance both vertical and horizontally, with great 

propensity to acquire foreign genes. Hence, these high risk clones show a great 

epidemiological success, being found widely distributed (Woodford et al. 2011). Examples 

include the ST131 Escherichia coli clone that usually carries a blaCTX-M (Nicolas-Chanoine 

et al. 2008) and the ST258 K. pneumoniae with blaKPC (Kitchel et al. 2009). These 

multidrug resistant clones that have been identified in multiple locations (Woodford et al. 

2011). blaCTX-M genes are a paradigmatic example of success in terms of dissemination 

(Cantón et al. 2012, Davies and Davies 2010). Their huge success is due not only to their 

association to genetic platforms responsible for their mobilization and dissemination 

(insertion sequences, integrons, transposons, plasmids), but also to the fact that these 

platforms might be carried by multiple successful clones (Cantón and Coque 2006) (FIG. 

3).  
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FIG.3: Spread and mobilization of blaCTX-M-like genes (Cantón et al. 2012). 

 

1.3 BETA-LACTAMS AND BETA-LACTAMASES 

 

Due to their high efficiency and low toxicity for the host, beta lactams are the most 

widely used antibiotics for the treatment of infections caused by Gram-negative bacteria 

(Bush 1999). Beta-lactams act by inhibiting the peptidoglycan synthesis and contain a 

beta-lactam ring in their chemical structure. The most common mechanism of resistance to 

these antibiotics in Gram-negative bacteria consists in the production of beta-lactamases, 

which are enzymes that hydrolyze the amide bond of the beta-lactam ring and by doing so, 

inactivate the antibiotic. Table 2 presents relevant beta-lactamase families, with their 

classification according to their functional (Bush-Jacoby groups) (Bush et al. 1995) and 

molecular characteristics (Ambler classes) (Ambler 1980), the hydrolytic spectrum, current 

approximate number and representative enzymes. 
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1.3.1 Last-resort beta-lactams  

 

At the turn of the century, the resistance mechanisms that put in peril the use of most 

successful and potent beta-lactam antibiotics were identified as major threats for the 21
st
 

century, from a clinical viewpoint (Bush 1999). These mechanisms confer resistance to 

antibiotics referred nowadays as last-resort antibiotics, that is, the last therapeutic options 

for serious bacterial infections. Carbapenems are last-resort antibiotics for the treatment of 

a wide range of serious infections caused by gram-negative bacteria. Extended-spectrum 

cephalosporins (3
rd

 and 4
th

 generation) are frequently used in hospitals to treat serious life-

threatening diseases. These are also considered last-resort antibiotics in specific cases as 

for example for the treatment of gonorrhea and some types of meningitis (WHO 2014). 

Third generation cephalosporins and carbapenems were first introduced in medical 

practice during the 80’s. The Food and Drug Administration (FDA) approved the first 3
rd

 

generation cephalosporin early in the 80s, the cefotaxime (Todd and Brogden 1990), and in 

1985 the first carbapenems (imipenem) for the treatment of serious infections (Papp-

Wallace et al. 2011). Short after their introduction in medical practices resistance 

mechanisms were detected.  
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TABLE 2: Beta-lactamase families with clinical relevance (PEN-penicillins; Ecep- early cephalosporins; Bcep- broad-spectrum cephalosporins; CAR- 

carbapenems; MON - monobactams). 

Enzyme 

family 

Molecular 
class  

Functional 
group  

Inhibited by Representative enzymes Nº of 
enzymes* 

Hydrolytic substrate spectrum 

CA or 

TZB 
EDTA 

PEN   ECep BCep CAR    MON 

AmpC/ 

CMY-

like 

C 1 No No 

CMY-1 to CMY-120, ACC-1 to ACC-6,  

ACT-1 to ACT-34, DHA-1 to DHA-22,  
FOX-1 to FOX-12, MIR-1 to MIR-15,  

MOX-1 to MOX-9 

over 200 

     

     

TEM-1 

SHV-1 
A 2b Yes No 

 

TEM-1, TEM-2 

SHV-1 

 

over 15 

over 30 

     

     

TEM A 2be Yes No 

TEM-3 to TEM-12 

TEM-15 to TEM-29 

TEM-130, TEM-211 
 

over 80 

     

     

SHV A 2be Yes No 

SHV-2 to SHV-9 

SHV-45, SHV-55 

SHV-70, SHV-90 
 

over 45 

     

     

     

CTX-M 

VEB 

PER 

A 2be Yes No 

CTX-M-1 to CTX-M-152 

VEB-1 to VEB-9 

PER-1 to PER-7 

152 

9 
7 

     

     

GES A 2be Yes No GES-1, GES-9, GES-11 5      

OXA-

ESBLs 
D 2de variable No 

OXA-11, OXA-14, 

OXA-15, OXA-16 

OXA-28, OXA-35 
 

over 20 

     

     

IMI 

KPC 

GES 

SME 

A 2f variable No 

IMI-1 to IMI-5 

KPC-2 to KPC-18 

GES-2 to GES-6, GES-14 
SME-1 to SME-5 

5 

17 

10 
5 

     

     

IMP 

VIM 

NDM 

IND 

B 3a No Yes 

IMP-1 to IMP-48 
VIM-1 to VIM-41 

NDM-1 to NDM-10 

IND-1 to IND-15 

48 

41 

10 

15 

     

     

     

OXA-

Carbap. 
D 2df variable No 

OXA-23, OXA-48, OXA-58, 

OXA-181, OXA-199, OXA-204, 

OXA-232, OXA-162, OXA-163 
 

over 50 

     

     

* www.lahey.org/studies/; last accession June 2014
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The hydrolysis of these antibiotics by enzymes as extended-spectrum beta-lactamases 

(ESBLs) and carbapenemases is the most common bacterial resistance mechanism. While 

ESBLs hydrolyze penicillins, cephalosporins and monobactams, carbapenemases are 

diverse in terms of resulting phenotype but some might neutralize all beta-lactams.  

 

1.3.1.1 Resistance to 3
rd

 generation cephalosporins 

 

In Gram-negative bacteria resistance to 3
rd

 generation cephalosporins is mainly 

attributed to: i) high-level expression of an intrinsic ampC gene (through mutations in the 

promoter region) ii) plasmid-encoded ampC genes and iii) production of extended-

spectrum beta-lactamases (ESBLs) (Patel and Bonomo 2013, Pfeifer et al. 2010).  

 

1.3.1.1.1 AmpC and extended-spectrum beta-lactamases 

 

AmpC cephalosporinases are included in Ambler class C and Bush-Jacoby functional 

group 1. The first beta-lactamase described was in fact an AmpC beta-lactamase, identified 

in an E. coli isolate (Abraham and Chain 1940). AmpC cephalosporinases expression is 

inducible by certain beta-lactams as ampicillin and clavulanic acid (Jacoby 2009). 

Furthermore hyperproduction of these enzymes can convey resistance also to carbapenems, 

even if the bacteria lack other resistance mechanisms (Harris and Ferguson 2012, Patel and 

Bonomo 2013, Pfeifer et al. 2010). In this way, the hydrolytic spectrum of activity includes 

penicillins and early and extended spectrum cephalosporins, but also carbapenems if 

induced.  

AmpC beta-lactamases are commonly found in the chromosome of Enterobacteriaceae 

and also Pseudomonas spp. Although less frequent, AmpC cephalosporinases have also 

been detected in plasmids. Most of those plasmid-encoded genes, like ACC, ACT, DHA, 

FOX, MOX or the most widespread CMY, seem to be derived from chromosomal variants 
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(Table 2). Moreover, isolates that present plasmidic AmpC enzymes usually produce other 

penicillinases or cephalosporinases (Jacoby 2009). 

Extended-spectrum beta-lactamases (ESBLs) are included in Ambler class A and 

Bush-Jacoby functional group 2be. These beta-lactamases encompass in their hydrolytic 

spectrum penicillins, early and extended-spectrum cephalosporins, monobactams but not 

carbapenems. For a long time, the most prevalent ESBLs detected in clinical Gram-

negative bacteria were variants of SHV and TEM families that by single or multiple 

mutations on initial SHV-1 and TEM-1 penicillinases, had expanded their hydrolytic 

spectrum to enclose also extended-spectrum cephalosporins and monobactams (Bush et al. 

1995, Bush 2010, Paterson and Bonomo 2005). Over the last decade CTX-M-type 

prevalence increased and rapidly became the most commonly reported ESBL (Cantón and 

Coque 2006, Livermore et al. 2007, Perez et al. 2007). In fact, its fast dissemination has 

been referred by some authors as the “CTX-M pandemic” (Cantón and Coque 2008) (FIG. 

4). As stated previously, the increasing number of blaCTX-M-like genes detected worldwide is 

due mainly to efficient mobilization promoted by highly successful clones (Cantón and 

Coque 2008, Cantón et al. 2012, Davies and Davies 2010, Woodford et al. 2011).  

The association of blaCTX-M-like genes to mobilizable genetic structures contributes to 

the maintenance of ESBL-producing strains under different selective pressures since most 

carry other genetic determinants that encode resistance to other compounds or classes of 

antibiotics. In fact antibiotic multiresistant traits among ESBL-producers are common. 

Usually, these strains present co-resistance to aminoglycosides, quinolones and 

tetracyclines (Coque et al. 2008, Cantón et al. 2012, Perez et al. 2007). 
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FIG.4: Global distribution of different families of CTX-M beta-lactamases (Davies and 

Davies 2010). 

 

Different genetic elements have been associated to blaCTX-M genes. Particularly 

common on the genomic environment of these genes are insertion sequences such as 

ISEcp1 and IS26 (Bush and Fisher 2011, Cantón and Coque 2006, Coque et al. 2008). 

Also blaCTX-M genes have been linked to both narrow- and broad-host range plasmids, 

belonging to IncA/C, IncF, IncHI2, IncI1, IncK, IncL/M and IncN groups, that often carry 

other antibiotic resistance genes (Cantón and Coque 2006; Carattoli 2009, Carattoli 2011). 

There are over 150 CTX-M-like ESBLs described so far (www.lahey.org/studies/; last 

accession June 2014), and mostly were found in clinical Enterobacteriaceae, but also 

Pseudomonas spp., Acinetobacter spp, Vibrio spp. and Aeromonas spp. (Cantón et al. 

2012, Chen et al. 2010, Coque et al. 2008, Novais et al. 2010, Picão et al. 2009, Woodford 

et al. 2011). As stated before, the association of blaCTX-M genes to successful clones has 

contributed to their rapid dissemination, as for example the E. coli ST131 clone mainly 

responsible for the worldwide spread of the blaCTX-M-15 gene (Nicolas-Chanoine et al. 

2008, Poirel et al. 2012c, Rogers et al. 2011a). 
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Although TEM, SHV or CTX-M variants are prevalent, other unrelated class A ESBL 

families have been detected such as GES, PER, VEB, BES, BEL and TLA types (Naas et 

al. 2008, Poirel et al. 2012c). Whereas some are still regionally constrained (e.g. BES, 

BEL and TLA types) and rarely detected (Naas et al. 2008), others have spread in severall 

continents (e.g. PER and VEB types). PER-like ESBLs have been identified mostly in P. 

aeruginosa and Acinetobacter spp. but also in Enterobacteriaceae members (Naas et al. 

2008), Aeromonas caviae (Girlich et al. 2010b, Maravić et al. 2013) and Vibrio cholerae 

(Petroni et al. 2002). VEB-like ESBLs have been identified also in Acinetobacter spp., P. 

aeruginosa and Enterobacteriaceae members (Naas et al. 2008). Co-resistance to 

quinolones and extended-spectrum beta-lactams is frequently reported in VEB-like-

producers (2005b). GES-like ESBLS vary in their hydrolysis profile as unlike most ESBLs 

some do not hydrolyze monobactams (Table 2). These have been characterized in clinical 

Pseudomonas spp., A. baumannii and Enterobacteriaceae members (Poirel et al. 2012c), 

but also in environmental Aeromonas spp. (Girlich et al. 2011). 

Due to the high homology with chromosomal beta-lactamase genes of the non-clinical 

genus Kluyvera (Poirel et al. 2002), the CTX-M-like ESBLs are thought to have KLUC 

from Kluyvera cryocrescens as ancestor of CTX-M-1 (Decousser et al. 2001), KLUA from 

Kluyvera ascorbata of CTX-M-2 (Humeniuk et al. 2002), KLUG from Kluyvera 

georgiana of CTX-M-8 (Poirel et al. 2002) and KLUY from K. georgiana of CTX-M-9 

(Olson et al. 2005). Several other chromosomal class A ESBLs have been described: 

examples are RAHN-1 and RAHN-2 in Rahnella spp. (Bellais et al. 2001, Ruimy et al. 

2010), and FONA in Serratia fonticola, which is the putative progenitor of SFO-1 enzyme 

(Peduzzi et al. 1997).  

Besides class A ESBLs, there are also class D enzymes often referred as OXA-ESBLs. 

These beta-lactamases are poorly inhibited by clavulanic acid and weakly hydrolyze broad-

spectrum cephalosporins (Patel and Bonomo 2013). OXA-ESBLs are mostly prevalent in 

non-fermenters as Pseudomonas spp. and Acinetobacter spp. (Bush and Fisher 2011, Evans 

and Amyes 2014, Patel and Bonomo 2013). 

As the occurrence of infections caused by AmpC/ESBL-producing bacteria continues 

rising, with the majority presenting a multiresistant phenotype, treatment options are 

decreasing and so the use of carbapenems is more frequent (Livermore 2009).  
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1.3.1.2 Resistance to carbapenems 

 

Resistance towards carbapenems is often mediated by intrinsic or acquired 

carbapenemases. But also, as for example in some Pseudomonas spp., carbapenem 

resistance results from the concerted action of high level expression of AmpC 

cephalosporinases, non-enzymatic mechanisms such as reduced outer membrane 

permeability and overexpression of efflux pumps (Harris and Ferguson 2012, Livermore 

2001, Mesaros et al. 2007, Strateva and Yordanov 2009). 

Over the last 10 to 15 years the prevalence of carbapenem-resistant Gram-negative 

bacteria has been increasing worldwide, largely related to the production and spread of 

carbapenemases (Nordmann et al. 2011, Queenan and Bush 2007). While some are still 

geographically constrained, others have spread on a much wider scale (Patel and Bonomo 

2013). Moreover, the carbapenemases epidemiology is particularly worrying in countries 

facing serious outbreaks like for example the Indian subcontinent with NDM 

carbapenemases or USA and Greece with KPC carbapenemases (Nordmann and Poirel 

2014). In Europe, carbapenem resistance among clinically-relevant Enterobacteriaceae has 

increased during the last decade but there are still few countries where only sporadic cases 

have been reported (FIG. 5) (ECDC 2013a, Glasner et al. 2013).  

Carbapenemases diverge in terms of host diversity, enzyme activity and substrate 

specificity, varying from narrow to extended ranges (Bush 2013, Cornaglia et al. 2011, 

Nordmann et al. 2011). Carbapenemases include metallo-beta-lactamases with one or two 

zinc ions on the active site (Ambler class B) and serine carbapenemases with serine at the 

active site (Ambler classes A and D) (Queenan and Bush 2007).  
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FIG. 5: Occurrence of carbapenemase-producing Enterobacteriaceae in 38 European countries 

based on self-assessment by the national experts, March 2013 (ECDC 2013a). 

 

Until the recognition of the first plasmid-encoded carbapenemases (e.g. IMP-1 in P. 

aeruginosa and OXA-23 in A. baumannii), it was though that all carbapenemases 

identified were chromosomally-encoded and species-specific (Queenan and Bush 2007). 

Examples of chromosomally-encoded carbapenemases include the class A SME-1 first 

identified in a Serratia marcescens isolate (Naas et al. 1994), IMI and NMC-A in clinical 

Enterobacter cloacae isolates (Nordmann et al. 1993, Rasmussen et al. 1996), SFC-1 in a 

S. fonticola strain (Henriques et al. 2004), but also class B carbapenemase CphA in 

Aeromonas spp. (Massidaa et al. 1991, Walsh et al. 2005) and Sfh-I in S. fonticola 

(Saavedra et al. 2003).  

Strains of Gram-negative bacteria that acquire carbapenemases by horizontal gene 

transfer pose an extra concern when they are the cause of infections: carbapenemases 

carried by mobile genetic elements are often associated to other resistance determinants 
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(Bush 2013, Patel and Bonomo 2013). This results in strains displaying multiresistance 

traits, as is the case of bacteria carrying plasmid-encoded ESBLs.  

 

1.3.1.2.1 Metallo-beta-lactamases 

 

All metallo-enzymes show strong carbapenemase activity, are inhibited by 

monobactams but not by beta-lactamase inhibitors. Although these enzymes do not 

hydrolyze monobactams as aztreonam, hosts often co-produce an ESBL which has the 

ability to inactivate these antibiotics (Bush 2010, Cornaglia et al. 2011). 

The first plasmid-encoded metallo-beta-lactamases (IMP-1) was reported in Japan in 

the early 1990s (Ito et al. 1995). Although it was expected a rapid dispersal of these 

enzymes, only several years later metallo-beta-lactamases observations increased as 

carbapenems use was promoted by the augmented prevalence of infections caused by 

ESBL-producers. Currently, the most relevant enzyme families in terms of medical 

importance are those belonging to the IMP-, VIM- and most recently the NDM-families 

(Patel and Bonomo 2013).  

As has occurred with other beta-lactamases, initially metallo-enzymes were 

geographically constrained but nowadays the majority of these carbapenemases have been 

detected worldwide, mostly in Enterobacteriaceae and non-fermenters as Pseudomonas 

spp. and Acinetobacter spp. (Cornaglia et al. 2011, Nordmann et al. 20011, Patel and 

Bonomo 2013, Walsh et al. 2005).  

blaVIM and blaIMP are often present as gene cassettes in class 1 integrons 

(http://integrall.bio.ua.pt; Moura et al. 2009). These genetic platforms might accumulate 

genes encoding resistance towards other classes of antibiotics or even other compounds, 

conferring an extra advantage to their hosts. IMP and VIM were the most frequently 

detected metallo-enzymes, of which IMP-1 and VIM-2 are the most prevalent. Presently, 

there are 48 and 41 variants described of VIM and IMP, respectively 

(www.lahey.org/studies/; last accession June 2014) that have been described mostly in 
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clinically relevant Gram-negatives as Pseudomonas spp., Acinetobacter spp. and 

Enterobacteriaceae members (Nordmann et al. 2011).  

NDM-1 was first identified in a K. pneumoniae isolate in 2008, from a patient who 

had recently traveled from India (Yong et al. 2009). In fact, following studies performed 

with isolates collected years before NDM first report showed that most probably this 

enzyme had been circulating in India long before its first observation (Castanheira et al. 

2011). Moreover, the first NDM-related cases reported epidemiological links to that 

country, thus, international travel and medical tourism were pointed has main causes for its 

dispersion (Johnson and Woodford 2013, Patel and Bonomo 2013). Nowadays it has been 

detected in all continents and there are 10 variants described (www.lahey.org/studies/; last 

accession June 2014) but still NDM-1 is predominant (Nordmann et al. 2011b). Due to 

their association to a wide range of hosts (Acinetobacter spp., Aeromonas spp., V. 

cholerae, Stenotrophomonas spp., Enterobacteriaceae members) and different plasmids 

(IncA/C, IncL/M, IncF), it is expected NDM-producers to become commonly isolated 

(Nordmann et al. 2011b). No dominant clone among blaNDM-carrying isolates has been 

identified, in contrast with what was observed for other carbapenemase genes (Nordmann 

et al. 2011, Nordmann et al. 2011b). Far more disturbing is the fact that, in similar way as 

other carbapenemase- and ESBL-producers, also NDM-carrying isolates present 

multiresistance traits, carrying genetic determinants of resistance to other classes of 

antibiotics as for example, aminoglycosides, quinolones or tetracyclines (Nordmann et al. 

2011a, Nordmann et al. 2011b).  

Most frequently, metallo-enzymes are identified together with other beta-lactamases, 

usually TEM-1, as also SHV and CTX-M enzymes, and CMY-like cephalosporinases. By 

producing multiple beta-lactamases, even though sometimes with coinciding substrate 

profiles, these strains are resistant to all beta-lactams. For example, a clinical K. 

pneumoniae strain isolated in Greece co-produced TEM-1, CMY-2, CTX-M-15, VIM-19 

and KPC-2 (Pournaras et al. 2010). Examples of carbapenem-intrinsically-resistant strains 

that carry additional beta-lactamases are the S. maltophilia strains that co-produce the L1 

carbapenemase and the L2 cephalosporinase (Avison et al. 2001) as also Aeromonas 

hydrophila strains that co-produce the carbapenemase CphA, but also the penicillinase 

ampH and the cephalosporinase cepH (Massidda et al. 1991, Walsh et al. 1997). 
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1.3.1.2.2 Serine carbapenemases 

 

Serine carbapenemases include both class A and class D enzymes, varying also in host 

range and distribution. Chromosomally-encoded class A serine carbapenemases are rarely 

isolated and geographically restrained. These include the NMC-A identified so far only in 

clinical E. cloacae isolates (Nordmann et al. 1993), SME-1 and SME-2 in S. marcescens 

isolates (Naas et al. 1994), SFC-1 in an environmental isolate of S. fonticola (Henriques et 

al. 2004), BIC-1 in an environmental Pseudomonas fluorescens strain (Girlich et al. 2010) 

and IMI-1 in E. cloacae (Rasmussen et al. 1996). 

The KPC family of enzymes is the most clinically-relevant group of class A 

carbapenemases. These plasmid-encoded enzymes were first detected in 1996 in a K. 

pneumoniae clinical isolate in the USA (Yigit et al. 2001), and for many years it was 

thought to be geographically restrained. Nowadays there are over 15 variants 

(www.lahey.org/studies/; last accession June 2014) that have been detected worldwide in 

several Enterobacteriaceae, Pseudomonas spp and Acinetobacter spp. (Patel and Bonomo 

2013). 

As other beta-lactamases that have successfully disseminated at a world scale, also 

KPC carbapenemases owe their dispersion record to their association to diverse genetic 

platforms with great mobilization potential but also to successful clones (Woodford et al. 

2011). Moreover, despite the fact that these enzymes are able to virtually hydrolyze all 

beta-lactams, KPC carbapenemases have never been detected alone, that is, as a single 

resistance mechanism. Often, KPC enzymes are found together with penicillinases such as 

TEM-1 and also with ESBLs, most commonly of the SHV-family or with OXA-ESBLs 

(Patel and Bonomo 2013, Queenan and Bush 2007). Additionally, blaKPC genes have been 

rarely detected in the chromosome (Patel and Bonomo 2013), but frequently mapped to 

plasmids that carry supplementary genetic determinants of resistance to other classes of 

antibiotics as aminoglycosides and quinolones, posing an extra concern for the treatment of 

infections caused by these KPC-producers (Castanheira et al. 2009, Patel and Bonomo 

2013).  
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Finally, the class D carbapenemases comprise a very diverse group of enzymes, 

mapped both plasmidic- and chromosomally. These OXA carbapenemases have been 

identified mostly in outbreaks of carbapenems-resistant Acinetobacter spp. (e.g. OXA-23, 

OXA-24, OXA-40, OXA-58), but also in Pseudomonas spp. (OXA-50) and 

Enterobacteriaceae (OXA-48) (Evans and Amyes 2014). Others have been considered as 

species-specific like the OXA-60 family, naturally present in the genome of Ralstonia 

pickettii (Girlich et al., 2004) and OXA-62 in Pandoraea pnomenusa (Schneider et al., 

2006). 

The emergence of blaOXA-48-like in Enterobacteriaceae is an example of current 

antibiotic resistance evolution and dissemination in clinical settings. The carbapenemase 

OXA-48 was identified for the first time in 2001 in Turkey, in a clinical K. pneumoniae 

isolate (Poirel et al. 2004). Initially the dissemination of blaOXA-48 gene was constrained to 

the Mediterranean region; however, these genes rapidly disseminated to other geographic 

regions and have now been detected in many European countries, in America, Asia and 

Australia (Castanheira et al. 201, Espedido et al. 2013, Mathers et al. 2012, Patel and 

Bonomo 2013, Poirel et al. 2012a) (FIG. 6). 

OXA-48-like enzymes hydrolyse penicillins and carbapenems, but not extended 

spectrum cephalosporins. Yet, there are numerous reports on isolates carrying these 

enzymes that co-produce extended-spectrum-beta-lactamases, and so, in these cases, 

strains show resistance towards all beta-lactams (Poirel et al. 2012a). A recent study 

performed with OXA-48 carrying Enterobacteriaceae from European and north-Africa 

countries, showed that 75% of isolates harboured an ESBL-encoding gene (Potron et al. 

2013b). OXA-48-like-producers were implicated in large death-causing hospital outbreaks 

in several countries (Cantón et al. 2012a, Voulgari et al. 2012). 
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FIG. 6: Worldwide distribution of OXA-48-like carbapenemases. 

 

 

Several studies underline that OXA-48-like enzymes contribute significantly to 

carbapenem resistance in Enterobacteriaceae, including some of the most dangerous 

human pathogens (Castanheira et al. 201, Espedido et al. 2013, Mathers et al. 2012, Patel 

and Bonomo 2013, Poirel et al. 2012a). The water-borne Shewanella spp. are the putative 

origin and reservoir of blaOXA-48-like (Poirel et al. 2004a). There are few reports on blaOXA-

48-like genes outside clinical settings. So far, these genes have been detected in two Serratia 

strains isolated from a river in Morocco (Potron et al. 2011), E. coli and K. pneumoniae 

from wastewater effluents in Austria (Galler et al. 2014), and in Portuguese river waters in 

Shewanella xiamenensis (Tacão et al. 2013, chapter 3.2). 

So far, 11 sequence variants of OXA-48 like enzymes have been found, with the 

majority presenting different hydrolytic activity towards carbapenems and differing in 1 to 

5 amino acids: OXA-48, OXA-162, OXA-163, OXA-181, OXA-199, OXA-204, OXA-
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232, OXA-244, OXA-245, OXA-247 and recently OXA-370 (Poirel et al 2012a, Gomez et 

al 2013, Sampaio et al., 2014). 

While the majority of class D carbapenemases have been recognized as gene cassettes 

in class 1 integrons, in Enterobacteriaceae the analysis of the genetic context of blaOXA-48-

like genes has shown their association to insertion sequences such as ISEcp1 and IS1999. 

The fact that different gene variants have been associated to different genetic contexts 

suggests independent mobilization events, probably from different Shewanella species. 

Also, in Enterobacteriaceae, blaOXA-48-like genes have frequently been found to be plasmid 

borne. The blaOXA-48 gene has been mapped to IncL/M plasmids carrying no additional 

antibiotic resistance genes (Poirel et al. 2012a) and blaOXA-204 to IncA/C plasmids (Potron 

et al. 2013). blaOXA-181 genes have been associated to IncT plasmids (Villa et al. 2013) but 

also to ColE-type plasmids which are non-conjugative but mobilizable plasmids (Poirel et 

al. 2012a, Sidjabat et al. 2013). Also blaOXA-232 has been associated to ColE-type plasmids 

(Potron et al. 2013a). Recently it was detected a new variant, in an E. cloacae strain 

isolated in Brazil, designated as OXA-370 (Sampaio et al. 2014). The blaOXA-370 presented 

a different genomic context than those reported so far, and it was mapped in an IncF-like 

plasmid (Sampaio et al. 2014). 

 

1.4 THE ENVIRONMENTAL ANTIBIOTIC RESISTOME 

 

The concept of antibiotic resistome has been defined by Wright as the assemblage of 

all antibiotic resistance genes found in pathogenic or non-pathogenic bacteria and/or 

antibiotic producers, either free-living in the environment or as commensals of other 

organisms (Wright 2007). Outside clinical institutions, the detection of antibiotic resistant 

bacteria and/or antibiotic resistance genes has been reported in a wide range of settings, 

even in extreme environments or remote locations where no anthropogenic pressure has 

been exerted (Batt et al. 2006, De Souza et al. 2006, Miteva et al. 2004). Some examples 

of non-clinical settings where antibiotic resistance has been detected are shown in Table 3.  
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TABLE 3: Examples of non-clinical settings where antibiotic resistance genes and/or antibiotic 

resistant bacteria have been detected worldwide.  

SETTING REFERENCES 

Hospital sewages and 

urban wastewaters 

Galler et al. 2014, Korzeniewska and Harnisz 2013,  

Moura et al. 2012, Novo et al. 2013,  

Ojer-Usoz et al. 2014, Rizzo et al. 2013 

River water and 

sediment 

Aubron et al. 2005, Chen et al. 2010, Chouchani et al. 2013, 

 Girlich et al. 2010, Liang et al. 2013, Lu et al. 2010, Potron et al. 2011,  

Tacão et al. 2012, Tacão et al. 2013, Tacão et al. 2014 

Soils Heuer et al. 2011 

Estuarine water Azevedo et al. 2013, Henriques et al. 2006, Pereira et al. 2013 

Fountains and wells Carvalho et al. 2012, Henriques et al. 2004, Henriques et al. 2012 

Drinking water Falcone-Dias et al. 2012, Vaz-Moreira et al. 2011 

Food products Campos et al. 2013, Marti et al. 2013, Raphael et al. 2011 

Farm animals Fischer et al. 2012, Poirel et al. 2012b, Poirel et al. 2012d,  

Smet et al. 2012, Su et al. 2011, Zhu et al. 2013 

Wild animals Fischer et al. 2013, Poeta et al. 2008,  

Sousa et al. 2014, Vredenburg et al. 2014 

Companion animals Lloyd 2007, Schmiedel et al. 2014, Shaheen et al. 2013, Stolle et al. 2013 

 

It has been estimated that there are around 5x10
30

 bacteria on Earth and the vast 

majority are inhabitants of soil and water habitats (Whitman et al. 1998). As globally 

environmental bacteria are much more numerous and diverse than human pathogens, there 

is a growing interest on studying these microorganisms and their habitats. Moreover, 

increasing evidences on their relevance in much of the resistance mechanisms found in 

clinical settings has been already emphasized. 

A recent study by D’Costa and coworkers has shown that antibiotic resistance 

mechanisms are ancient and naturally occur in the environment, predating the antibiotic era 

(D’Costa et al. 2011). Most antibiotics used nowadays derived from environmental 

microorganisms. It is therefore not surprising that neighboring microorganisms and the 

antibiotic producer itself have developed mechanisms to resist the drugs action (Allen et al. 

2010, Baquero et al. 2009, Davies and Davies 2010, D’Costa et al. 2011). These genetic 



General introduction - 1 

29 

 

determinants of resistance could be present in the same gene cluster as the antibiotic 

biosynthesis pathway gene (Allen et al. 2010). In some cases these genes may encode for 

multifunctional resistance proteins, as for example efflux pumps that allow tolerance to 

several toxic compounds present in the surrounding environment, including heavy metals 

and antibiotics (Martinez et al. 2009). 

For some clinically-relevant resistance mechanisms it has been found an 

environmental origin. These include for example the widely disseminated blaCTX-M and 

blaOXA-48 genes which have their putative origin in environmental Kluyvera spp. (Poirel et 

al. 2002) and Shewanella spp. (Poirel et al. 2004a), respectively, as described above. Also 

the putative origin of genetic determinants of resistance to quinolones (Qnr-like) has been 

associated to environmental Shewanella and Vibrionaceae members (Poirel et al. 2005, 

Poirel et al. 2005a). 

Human and veterinary medical institutions are well known hotspots for the acquisition 

and dissemination of resistance genes and resistant bacteria, due to the high selective 

pressure resulting from the use of antibiotics. However, the elimination of antibiotics and 

drug-resistant bacteria or drug resistance genes in subsequent wastes in natural settings as 

aquatic systems, originates environmental antibiotic resistance hotspots (FIG. 7).  

The majority of the antibiotics is soluble in water and can be excreted in urine and 

faecal matter (Halling-Sørensen 1998, Sarmah et al. 2006). Moreover, it has been shown 

that a significant number of the administered antibiotics may be excreted into the 

environment still in the active form (Andersson and Hughes 2012, Kümmerer 2009).  

Although the concentrations reported for several antibiotics in soil, sediments, surface 

and ground water are generally low, generally below minimum inhibitory concentrations 

(Kümmerer 2009), some antibiotics persist in the environment long after their disposal 

(Heberer 2002, Kay et al. 2004, Monteiro and Boxall 2010). Thus, the presence of these 

not metabolized substances in low concentrations constitutes a selective pressure that, 

exerted on the resident bacterial population, favors multiplication of resistant strains and 

promotes processes like horizontal transfer of resistance genes. 
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FIG. 7: Schematic representation of flows of resistant bacteria (red) and antibiotics (orange) 

between settings where antibiotics exert strong (clinical and agricultural) and weak selective 

pressure (environment) (adapted from Andersson and Hughes 2012). 

 

Antibiotics have been applied not only for the treatment of human and animal 

infections, but also as food additives in agricultural settings (animal farms, aquacultures, 

and plantation crops) to promote growth and/or prevent diseases (Cabello et al. 2013, 

Kümmerer 2009, Martinez 2009a, Martinez 2009b, McManus et al. 2002). Most antibiotics 

used as growth promoters are identical to those prescribed in human medicine. In the 

European Union, the use of antibiotics as food additives in animal farms is banned since 

2006 (Regulation no. 1831/2003). Nevertheless these practices went on since the early 

1950’s, and so contributing to the selection of resistant microorganisms (Jukes and 

Williams 1953).  
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A major concern is the fact that subtherapeutic dosage of antibiotics in animal feeds is 

contributing to the prevalence of antibiotic resistant commensal and pathogenic bacteria. 

As Alexander Fleming already had observed in 1945 “…it is not difficult to make microbes 

resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to 

kill them” (Fleming 1945). Recent investigations by Gullberg and coworkers have shown 

that very low concentrations of clinically relevant antibiotics, as present in many natural 

environments, are relevant for the enrichment and maintenance of resistance as well as for 

the selection and dissemination of new resistant microorganisms (Gullberg et al. 2011).  

Although susceptible bacteria are killed or their growth is inhibited by the antibiotic, 

some few resistant cells succeed to survive and reproduce. Thus, a resistant bacterial 

population prevails and can transfer resistance determinants to other pathogenic or non-

pathogenic bacteria that may be associated to food products, to farm soil often fertilized 

with wastewater or manure, to farm workers, or irrigation water (Heuer et al. 2011, 

Wellington et al. 2013).  

Overall, antibiotics and other pollutants (e.g. disinfectants and heavy metals), 

antibiotic resistant bacteria and antibiotic resistance genes are discharged in the 

environment from industrial, agricultural or domestic sources, through wastewater 

treatment plants, hospital sewage or agricultural run-offs. These continuous discharges in 

the environment, especially in aquatic systems, potentiate the mix of contaminants and 

bacteria and even accelerate the horizontal transfer of genetic determinants of resistance 

between indigenous and incoming bacterial populations, thus altering the ecosystem 

stability (Allen et al. 2010, Baquero et al. 2009, Marti et al. 2014, Taylor et al. 2011, 

Wellington et al. 2013, Zhang et al. 2009).  

Humans are exposed to resistance environmental hotspots through diverse pathways: 

from the ingestion of food products that have been exposed to contaminated water or soil 

(for example through consumption of raw vegetables and fruits grown on soils fertilized 

with contaminated manure or wastewater), to contact with contaminated water or soil 

through occupational or recreational activities (Wellington et al. 2013, Zhang et al. 2009).  

Aquatic systems such as rivers, streams and lakes are exposed continuously to 

different anthropogenic impacts of industrial, domestic and agricultural origins. Thus, 
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these environmental niches constitute important reservoirs of pathogenic and non-

pathogenic bacteria, resistant bacteria and resistance genes, antibiotics, metals, 

disinfectants. This environmental mixture summons ideal conditions for the rapid spread, 

maintenance and dissemination of antibiotic resistance. Several investigations have been 

reporting the presence of antibiotic resistant bacteria and antibiotic resistance genes on 

diverse environmental compartments, including water habitats. These studies have focused 

mostly in the study of pathogenic organisms present in aquatic compartments or on the 

analysis of particular spots where an environmental threat has been identified as for 

example domestic wastewater or hospital sewage discharges (Allen et al. 2010, Baquero et 

al. 2008, Wright 2007).  

 

1.4.1 Resistance to last-resort antibiotics in aquatic environments 

 

Over time, the importance of natural aquatic systems as relevant resistance reservoirs 

has been overlooked, competing with attention given towards the alarming increasing 

levels of resistance in clinical settings worldwide. Nevertheless, in the last few years, 

research focused on the environmental resistome has increased as there are growing 

evidences that pathogenic resistant bacteria and antibiotic resistant genes are not restricted 

to medical institutions. There are strong indications that the putative origins of relevant 

resistance mechanism towards last-resort antibiotics reside in environmental isolates 

(Martinez 2009a, Martinez 2009b, Wright 2007, Zhang et al. 2009).  

Although there are still few studies available focused in river and lake habitats, the 

presence of clinically important ESBL genes has been reported in water and river 

sediment, including the widely disseminated blaCTX-M genes (Table 4). For example, in a 

study performed by Zurfluh and colleagues, it was found a high prevalence of ESBL 

producers among Enterobacteriaceae members isolated from lakes and river water in 

Sweden, a country that has very strict prescription policies (Zurfluh et al. 2013).In 

Portuguese river water, high prevalence of ESBL producers was detected in polluted 

environments (Tacão et al. 2012), mostly carrying also blaCTX-M-like genes. Moreover, a 

high diversity of ESBL producing bacteria and of these ESBL genes was found also in 
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urban river sediment as described by Lu and coworkers (Lu et al. 2010). The most 

frequently identified blaCTX-M-like genes in these environments are identical to those found 

in clinical settings. 

As commonly found in clinical settings, also environmental ESBL-producers isolated 

in aquatic settings are usually multiresistant (Ojer-Usoz et al. 2014, Tacão et al. 2012, 

Tacão et al. 2013). Furthermore, the majority of ESBL genes is detected in diverse 

mobilizable genetic structures, carrying additional resistance genes (Chen et al. 2010, 

Tacão et al. 2014).  

 

TABLE 4: Extended-spectrum-beta-lactamases reported in water habitats. 

Enzyme Species Source Country Reference 

TEM 

 

Escherichia coli river South Korea Kim et al. 2008 

Escherichia coli wastewater, river The Netherlands Blaak et al. 2014 

Escherichia coli, Klebsiella pneumoniae river/lake Switzerland Zurfluh et al. 2013 

multiple genera wastewater Poland Korzeniewska et al.2013 

multiple genera hospital sewage Poland Korzeniewska et al.2013a 

SHV 

 

Aeromonas spp. river France Girlich et al. 2010 

Escherichia coli wastewater Spain Ojer-Usoz et al. 2014 

multiple genera wastewater Poland Korzeniewska et al.2013 

Escherichia coli, Klebsiella pneumoniae river/lake Switzerland Zurfluh et al. 2013 

Escherichia coli wastewater, river The Netherlands Blaak et al. 2014 

Escherichia coli river Poland Korzeniewska et al.2013 

multiple genera hospital sewage Poland Korzeniewska et al.2013a 

Escherichia coli river China Chen et al. 2010 

CTX-M 

 

Escherichia coli sewage Austria Reinthaler et al. 2010 

Escherichia coli river South Korea Kim et al. 2008 

Escherichia coli river UK Dhanji et al. 2011 

Escherichia coli river China Chen et al. 2010 

Escherichia coli wastewater, river The Netherlands Blaak et al. 2014 

Escherichia coli, Pseudomonas sp. river Portugal Tacão et al. 2012  

Escherichia coli wastewater, river The Netherlands Blaak et al. 2014 

Escherichia coli, Klebsiella pneumoniae river/lake Switzerland Zurfluh et al. 2013 

multiple genera wastewater Poland Korzeniewska et al.2013 

Escherichia coli river Poland Korzeniewska et al.2013 

Escherichia coli domestic sewage Austria Zarfel et al. 2013 

Escherichia coli wastewater Spain Ojer-Usoz et al. 2014 

multiple genera hospital sewage Poland Korzeniewska et al.2013a 

VEB 

 

Aeromonas media lake Switzerland Picão et al. 2008 

Aeromonas spp. river France Girlich et al. 2011 

PER 

 

Aeromonas spp. river France Girlich et al. 2011 

Aeromonas allosaccharophila river France Girlich et al. 2010b 
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Carbapenemase genes have also been reported in diverse water habitats (Table 5). In 

fact there are some cases of carbapenemase genes that have only been identified in 

environmental strains. Examples are Sfh-I and SFC-1 in S. fonticola (Henriques et al. 

2004, Saavedra et al. 2003) and carbapenemase BIC-1 in P. fluorescens (Girlich et al. 

2010). Also, intrinsic resistance towards carbapenems is well documented in Gram-

negatives ubiquitous in aquatic environments such as Aeromonas spp. and S. maltophilia 

(Lupo et al. 2012, Patel and Bonomo 2013). In S. maltophilia resistance results from the 

expression of blaL1, considered intrinsic to this species (Avison et al. 2001) while the 

majority of members of the genus Aeromonas show resistance towards carbapenems due to 

the expression of chromosomal class B metallo-beta-lactamase genes like blaCphA 

(Massidaa et al. 1991, Walsh et al. 2005).  

Moreover, for several carbapenems-hydrolyzing beta-lactamases the putative origin 

has been acknowledged to species that are commonly found in natural settings, as for 

example the class D carbapenemases OXA-23 in Acinetobacter radioreducens (Poirel et 

al. 2008) and OXA-48 in Shewanella spp. (Poirel et al. 2004, Tacão et al. 2013).  

Clinically-relevant carbapenemases that are currently causing serious health concerns 

in clinical settings worldwide have also been identified in different aquatic habitats (Table 

5). These include the metallo-beta-lactamases IMP, VIM, NDM, and the serine 

carbapenemases KPC and OXA-48-like (see Table 5 for references). Particularly in river 

and lake habitats, carbapenemase genes have been identified mostly in Enterobacteriaceae 

members and Pseudomonas spp..  
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TABLE 5: Carbapenemases reported in water habitats. 

 
Ambler 

class 

Enzyme Species Source Country Reference 

A 

BIC-1 Pseudomonas fluorescens river France Girlich et al. 2010 

SFC-1 Serratia fonticola water Portugal Henriques et al. 2004 

KPC Multiple genera hospital sewage Brazil Chagas et al. 2011  

Multiple genera hospital sewage Brazil Picão et al. 2013 

Escherichia coli river Portugal Poirel et al. 2012 

Klebsiella pneumoniae wastewater Austria Galler et al. 2013 

Citrobacter freundii, Enterobacter cloacae hospital sewage China Zhang et al. 2012 

GES Klebsiella pneumoniae wastewater Portugal Manageiro et al. 2014 

IMI Enterobacter asburiae rivers USA Aubron et al. 2005 

B 

Sfh-I Serratia fonticola water Portugal Saavedra et al. 2003 

VIM 

 

Pseudomonas pseudoalcaligenes, P. aeruginosa river, wastewater Portugal Quinteira et al. 2005, 2006 

Klebsiella pneumoniae, Helicobacter pylori river Tunisia Chouchani et al. 2013 

Klebsiella pneumoniae river/lake Switzerland Zurfluh et al. 2013 

Pseudomonas spp. rivers Portugal Chapter 3.3 

multiple genera hospital sewage Spain Scotta et al. 2011 

IMP 

 

Pseudomonas fluorescens wastewater Italy Pellegrini et al. 2009 

PCR amplicons  wastewater, effluent Germany Szczepanowski et al. 2009 

Klebsiella pneumoniae river Tunisia Chouchani et al. 2013 

NDM 

 

multiple genera water India Walsh et al. 2011 

Klebsiella pneumoniae river Vietnam Isozumi et al. 2012 

Acinetobacter baumannii water, hospital sewage China Zhang et al. 2013 

D 

OXA-23 Acinetobacter baumannii river France Girlich et al. 2010a 

OXA-48 

 

PCR  amplicons wastewater, effluent Germany Szczepanowski et al. 2009 

Serratia marcescens river Morocco Potron et al. 2011 

Escherichia coli, Klebsiella pneumoniae wastewater Austria Galler et al. 2013 

Shewanella xiamenensis rivers Portugal Tacão et al. 2014 

PCR  amplicons rivers, estuary Portugal Chapter 3.5 
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Studies so far have shown that the prevalence of carbapenem-resistant bacteria in 

aquatic environments from countries with restrictive prescription policies is still low 

(Henriques et al. 2012, Chapter 3.3). Moreover it is mostly related to the presence of 

intrinsically resistant bacteria.  

Broad-range cephalosporins and carbapenems are crucial antibiotics for the treatment 

of serious infections caused by multiresistant strains, and it is imperative to preserve their 

purpose. The occurrence and diversity of bacteria resistant to these antibiotics in 

environmental settings, as of the genes encoding this resistance, has been poorly addressed. 

However, the studies conducted until now suggest that ESBL genes are becoming frequent 

in the environment. On the other hand the environmental dissemination of genes encoding 

for resistance to carbapenems may be at an initial stage. To identify and minimize the 

human-derived impacts that may promote resistance to these antibiotics it is essential to 

conduct extensive research on this topic. These studies are also essential to design 

surveillance programs and measures focused on environmental compartments to limit the 

occurrence and dissemination of ESBL- and carbapenemase producers.   
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2.1 HYPOTHESIS AND GOALS OF THE THESIS 

 

Dissemination of antibiotic resistance represents a major risk to human health, and is 

not limited to clinical settings. Although, for a long time, the study of the environmental 

resistome was undervalued, there have been growing evidences on the role of natural 

environments in the dissemination of antibiotic resistance.  

Aquatic environments, such as rivers or lakes, are reservoirs of indigenous resistant 

bacteria and resistance genes and at the same time, receive those incoming from different 

human sources. Environmental and pathogenic bacteria are mixed together, and horizontal 

gene transfer may occur. Also, the same environmental compartments accumulate the 

disposals of compounds such as antibiotics, disinfectants or metals. Moreover, aquatic 

systems are extensively used for leisure activities but also to capture water for human or 

animal consumption or crops irrigation. Thus water promotes the transfer of 

microorganisms between different compartments, such as hospitals, farms, and 

aquacultures, thus facilitating the transmission to humans or other animals. 

Nowadays antibiotics and antimicrobial resistance genes are seen as emerging 

contaminants in the environment vigilance and control. Hence, in the last few years, the 

environmental resistome and mobilome have received increased attention by the scientific 

community. The majority of studies reported so far have focused on resistance to widely 

used antibiotics or extremely disseminated resistances. Further research is needed in order 

to understand the real extent of the problem, with focus on resistance to critically important 

antibiotics, such as those used for treatment of serious infections. The study of resistance to 

antibiotics that are last-resort drugs to treat life-threatening infections caused by Gram-

negative bacteria is imperative, since the range of therapeutic options is becoming 

exceptionally reduced.  

In what concerns last-resort antibiotics, it is of major interest to address issues such as, 

origin, evolution and persistence of antibiotic resistance genes and antibiotic resistant 

bacteria in the environment. Furthermore, it is quite relevant to understand the role of 

human activities in the dissemination of antibiotic resistance in environmental settings.  
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Considering the above, the hypotheses of this thesis are: 

- Rivers are reservoirs and disseminators  of antibiotic resistance; 

- Anthropogenic activities potentiate the dissemination of bacterial resistance to last-

resort antibiotics in these environments. 

 

And the main goal is: 

- to characterize and compare the environmental last-resort antibiotic resistome in 

polluted and unpolluted rivers. 

 

Specific goals are: 

1) to determine the prevalence and diversity of last-resort antibiotics resistant bacteria 

in polluted and unpolluted rivers; 

2) to characterize clinically-relevant antibiotic resistance mechanisms in these 

environments; 

3) to identify antibiotic resistance dissemination mechanisms in polluted and 

unpolluted rivers; 
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2.2 STUDY SITE 

 

The Portuguese hydrographic net is quite vast, and includes aquatic systems that 

present a wide range of water quality status. For this study we have selected the 

hydrographic basin of Vouga River, located on the central region of Portugal (FIG. 1). The 

area covered by this hydrographic basin is around 3645 Km
2
, encompassing the totality of 

14 municipalities and partially 16. Besides Vouga River, its affluents and sub-tributary 

streams, this hydrographic basin includes also the multi-estuarine ecosystem Ria de 

Aveiro. Moreover, this hydrographic area comprises from highly populated urban centers 

as Viseu and Aveiro (around 52000 and 60000 inhabitants, respectively), to sparsely 

populated regions (http://www.ine.pt/).  

Water from this basin is used for different purposes: occupational such as water 

capture for human consumption, fishing, aquaculture and agriculture, and recreational as 

for example the use of several fluvial beaches throughout the basin for leisure activities. 

There are also important industrial units located in this area, which carry out direct 

discharges in this aquatic system. Major contributors for the pollution load in this basin are 

paper pulp factories (located next to Vouga River and also its tributary Caima River), and 

the industries located at the Estarreja industrial complex that produce diverse chemical 

products and fertilizers (close to a major tributary of Vouga River, the Antuã River). In 

fact, the Estarreja industrial complex is the second largest chemical industry complex in 

Portugal, producing mostly chloride, ammonium sulfate, ammonium nitrate, chloridric and 

nitric acid, and also synthetic resins. In activity since the 1950’s, this industrial complex 

has produced a large volume of solid and liquid toxic residues that for many years were 

discharged in the surrounding regions with no regulation enforced 

(http://www.apambiente.pt/). 

For this study twelve rivers from the hydrographic basin of Vouga River were 

selected. Sampling sites were chosen taken into account information available from the 

entities responsible for managing hydrographic basins in central Portugal 

(http://www.apambiente.pt/). This data include for example the location of industries, 

animal farms and aquacultures in this region (FIG. 1).  
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FIG. 1: Map of Vouga River basin (Central Portugal) with the location of the 12 sampling sites 

included in this study (1- River Antuã, 2- River Úl, 3- River Ínsua, 4- River Caima, 5- River Zela, 

6- River Vouga, 7- River Alcofra, 8- River Alfusqueiro, 9- River Águeda, 10- River Águeda, 11- 

River Da Póvoa, 12- River Cértima).  Labels indicate industrial and agricultural activities in the 

region (available at http://www.apambiente.pt/). 
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3.1 

RESISTANCE TO BROAD-SPECTRUM ANTIBIOTICS IN AQUATIC SYSTEMS: 

ANTHROPOGENIC ACTIVITIES MODULATE THE                           

DISSEMINATION OF blaCTX-M-LIKE GENES 

 

Abstract 

We compared the resistome within polluted and unpolluted rivers, focusing on extended-spectrum beta-

lactamases (ESBL) genes, in particular blaCTX-M. Twelve rivers from a Portuguese hydrographic basin were 

sampled. Physicochemical and microbiological parameters of water quality were determined and results 

classified 9 rivers as unpolluted (UP) and 3 as polluted (P). Of the 225 cefotaxime-resistant strains isolated, 

39 were identified as ESBL producers, with 18 carrying a blaCTX-M gene (15 from P and 3 from UP). Analysis 

of CTX-M nucleotide sequences showed that 17 isolates produced CTX-M from group 1 (CTX-M-1, -3, -15 

and -32) and 1 gene belonged to group 9 (CTX-M-14). The genetic environment study revealed the presence 

of different genetic elements previously described in clinical strains. ISEcp1 was found in the upstream 

region of all isolates examined. Culture-independent blaCTX-M-like libraries comprised 16 CTX-M gene 

variants, 14 types in the P library and 4 types in UP library, varying from 68% to 99% similarity between 

them. Besides the much lower diversity among UP CTX-M-like genes, the majority were similar to 

chromosomal ESBLs such as blaRAHN-1. The results demonstrate that occurrence and diversity of blaCTX-M 

genes are clearly different between polluted and unpolluted lotic ecosystems; these findings favor the 

hypothesis that natural environments are reservoirs of resistant bacteria and resistance genes, where 

anthropogenic-driven selective pressures may be contributing to the persistence and dissemination of genes 

usually relevant in clinical environments. 
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3.1.1 INTRODUCTION  

 

Antibiotics are widely used not only to treat human and animal infections but also in 

farms and aquacultures as food additives to promote animal growth and prevent diseases. 

Consequently, antibiotics are released in large amounts in natural ecosystems where they 

can impact the structure and activity of environmental microbial populations (Martinez 

2009, 2009a). 

 Undoubtedly, the occurrence and dissemination of antibiotic resistant bacteria (ARB) 

and antibiotic resistance genes (ARGs) are recognized worldwide as a major public health 

concern. Efforts on prevention of ARGs and ARB spread focused on a clinical and human-

community level, being especially centered on infection control and restriction of antibiotic 

use (Taylor et al. 2011). However, considering the growing evidences that ARGs and 

pathogenic ARB are no longer restricted to clinical settings, it is quite clear that the 

research activities need to be expanded to include non-pathogenic environmental 

microorganisms that could be the potential source for these ARGs (Martinez 2009, 

Martinez 2009a, Wright 2010, Zhang et al. 2009). 

Aquatic systems can be highly impacted by human activities receiving contaminants 

and bacteria from different sources and thus encouraging the promiscuous exchange and 

mixture of genes and genetic platforms. Consequently these systems may promote the 

spread of ARB and ARGs and even the emergence of novel resistance mechanisms and 

pathogens (Ash et al. 2002, Baquero et al. 2008, Zhang et al. 2009). Considering the 

frequent detection of ARGs and ARB in aquatic systems and since their dissemination 

constitutes a serious public health problem, it has been suggested that ARGs should be 

considered as environmental emerging contaminants (Martiz 2009a, Pruden et al. 2006). 

Beta-lactam antibiotics are the most broadly used antibacterial agents. Extended-

spectrum beta-lactamases (ESBLs) mediate resistance to broad-spectrum beta-lactams such 

as cefotaxime and ceftazidime, and are widely disseminated among Gram-negative 

bacteria. Since first reported in 1983 (Kliebe et al. 1985), the occurrence of infections 

caused by ESBL-producing bacteria has been constantly rising and constitutes a serious 

threat to human health. CTX-M genes have rapidly become the most common ESBL genes 
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mainly because of the genetic platforms responsible for their mobilization and 

dissemination (insertion sequences, integrons, transposons, plasmids). Particularly 

common on the genomic environment of these genes are insertion sequences such as 

ISEcp1, IS26 and ISCR1 (Bush and Fisher 2011, Cantón and Coque 2006, Coque et al. 

2008). CTX-M-15 and CTX-M-14 are the most prevalent enzymes, over 110 CTX-M-like 

ESBLs described so far, mostly found in Enterobacteriaceae but also, for example, in 

Aeromonas spp., Pseudomonas spp. and Acinetobacter spp. (Chen et al. 2010, Coque et al. 

2008, Novais et al. 2010, Woodford et al. 2011). Interestingly, the CTX-M-like ESBLs are 

thought to have evolved from chromosomal genes of the non-clinical genus Kluyvera 

(Poirel et al. 2002). Few studies addressed the links between pollution and the dispersal of 

ARB and ARGs in natural environments. It is of major importance to understand how 

anthropogenic activities are modulating the resistance gene pool in order to anticipate 

future impacts and consequences for the environment and public health. Also, ARGs, and 

specifically those most frequently found in association with pathogenic bacteria such as 

CTX-M genes, may be key indicators of water quality and may be used to trace the 

dissemination of multiresistance in aquatic environments. 

In this study our goal was to compare the cefotaxime resistome within polluted and 

unpolluted lotic (flowing waters) ecosystems. Specific goals were: 1) to compare the 

occurrence and phylogenetic diversity of cefotaxime-resistant bacteria and ESBL 

producers; 2) to detect and characterize the ESBL genes responsible for the resistance 

phenotype; 3) to compare the diversity of CTX-M-like genes using culture-dependent and 

culture-independent approaches.  

 

3.1.2 MATERIAL AND METHODS 

 

3.1.2.1 Samples collection and water quality assessment 

 

Water samples were collected in 12 sites from 11 rivers integrated in the Vouga River 

basin, located in central Portugal (FIG. 1). Table S1 in the supplemental material indicates 
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the Global Positioning System (GPS) coordinates of all sampling locations. Throughout the 

basin, these water bodies are exposed to different anthropogenic impacts from agricultural, 

industrial and domestic origins, which results in different levels of superficial water quality 

from unpolluted to extremely polluted sites (DRA 1998). Sampling sites were selected in 

order to include from putative unpolluted to extremely polluted sites.  

 

FIG. 1: Map of Vouga River basin (Central Portugal) with the location of the 12 sampling sites 

under study. 

 

Water was collected in sterile bottles (7L) from 50 cm below the water surface and 

kept on ice for transportation. To infer as to the water quality, physical, chemical and 

microbiological parameters were determined according to Portuguese laws (Government of 

Portugal 1998), which included pH, color, smell, dissolved oxygen, conductivity, 

temperature, nitrates, chlorides, phosphates, ammonium, chemical oxygen demand, 

biological oxygen demand, total and fecal coliforms and fecal streptococci. Surface water 

quality classification was assigned according to regulations given by the national institute 

of water (www.inag.pt) which sorts water quality in 5 categories from unpolluted to 

extremely polluted water in accordance with parameters established by the Portuguese law. 
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3.1.2.2 Enumeration and selection of cefotaxime resistant bacteria 

 

Water samples were filtered in 0.45-μm-pore-size cellulose ester filters (Pall Life 

Sciences, MI, USA), and the membranes placed on MacConkey agar plates supplemented 

with 8 μg/ml of cefotaxime to select cefotaxime resistant isolates. Also, to determine the 

proportion of cefotaxime resistant bacteria among the total bacterial population, plates with 

no antibiotic supplement were used. Plates were then incubated at 37ºC for 16 h. Colony 

counting was done in triplicate. Individual cefotaxime-resistant colonies were purified and 

stored in 20% glycerol at −80ºC.  

 

3.1.2.3 Molecular typing and identification of cefotaxime resistant isolates 

 

Genomic DNA was isolated as previously described (Henriques et al. 2004). BOX-

PCR was used to type all isolates as previously described (Tacão et al. 2005). PCR 

products were loaded in 1.5% agarose gels for electrophoresis. The banding patterns were 

analyzed with the software GelCompar (Applied Maths, Belgium). Similarity matrices 

were calculated with the Dice coefficient. Cluster analysis of similarity matrices was 

performed by the unweighted pair group method using arithmetic averages 

(UPGMA).Isolates displaying different BOX profiles were identified by 16S rRNA gene 

sequencing analysis with primers and PCR conditions as previously described (Henriques 

et al. 2004). PCR products were purified with the JETQUICK PCR purification spin kit 

(GENOMED, Löhne, Germany) and used as template in the sequencing reactions. Online 

similarity searches were performed with the BLAST software at the National Center of 

Biotechnology Information website. 

 

3.1.2.4 Antibiotic susceptibility testing and ESBL detection  

 

Antimicrobial resistance patterns were determined by the agar disc diffusion method 

on Mueller–Hinton agar, against 16 antibiotics from 6 classes: beta-lactams (penicillins, 
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monobactams, carbapenems and 1
st
, 3

rd
 and 4

th
 generation cephalosporins), quinolones, 

aminoglycosides, phenicols, tetracyclines and the combination 

sulfamethoxazole/trimethoprim. Discs containing the following antibacterial agents were 

used: amoxicillin (10 μg), amoxicillin/clavulanic acid (20 μg/10 μg), ampicillin (10 μg), 

aztreonam (30 μg), cefepime (30 μg), cefotaxime (30 μg), ceftazidime (30 μg), cephalothin 

(30 μg), ciprofloxacin (5 μg), chloramphenicol (30 μg), gentamicin (10 μg), imipenem (10 

μg), kanamycin (30 μg), nalidixic acid (30 μg), sulfamethoxazole/trimethoprim (25 μg) and 

tetracycline (30 μg) (Oxoid, Basingstoke, UK). After 24 h of incubation at 37ºC, organisms 

were classified as sensitive, intermediate, or resistant according to the Clinical Laboratory 

Standards Institute guidelines (7). Detection of ESBL production was carried out by the 

double-disc synergy test (DDST) (18) and a clavulanic acid combination disc method, 

based on comparing the inhibition zones of cefpodoxime (10 μg) and cefpodoxime-plus-

clavulanate (10/1 μg) discs (Oxoid, UK). Statistical analysis was performed by two-

sample t-test with a critical P-value set at 0.05. 

 

3.1.2.5 ESBLs and integrase genes screening 

 

PCR screening was performed for ESBLs genes encoding SHV, TEM, OXA, CTX-M 

(group 1, 2, 8/25 and 9), GES, VEB and PER, with primer sets and PCR conditions as 

described elsewhere (Dallenne et al. 2010, Henriques et al. 2006). Integrase screening was 

performed for intI1, intI2 and intI3 genes (Dallenne et al. 2010, Henriques et al. 2006, 

Moura et al. 2012). Genomic DNA of positive control strains was used (16, 24). Each 

experiment included as negative control a PCR reaction containing water instead of DNA. 

Amplicons were analyzed by electrophoresis on a 1.5% agarose gel and stained with 

ethidium bromide.  
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3.1.2.6 Diversity and genetic environment of blaCTX-M  genes  

 

Sequencing was done for the blaCTX-M gene fragments amplified from the bacterial 

isolates. The presence of ISEcp1, IS26, IS5, orf477, IS903 and orf503 in the genetic 

environment of blaCTX-M was searched by PCR (Eckert et al. 2006, Fernandez et al. 2007, 

Saladin et al. 2002). 

 

3.1.2.7 Construction of blaCTX-M  gene libraries 

 

To investigate further the diversity of the blaCTX-M genes in both polluted and 

unpolluted environments environmental DNA from water samples was isolated as 

previously described (Henriques et al. 2004). DNA isolated from all polluted sites was 

mixed, as also from unpolluted samples. Hence, two clone libraries of blaCTX-M were 

constructed using the TA Cloning Kit, according to the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA, USA). The blaCTX-M gene was amplified using the CTX-F and 

CTX-R primer set (Lu et al. 2010). Clones were screened by PCR for the presence of 

fragments with the expected size by using primers targeting the vector. PCR products were 

purified and sequenced. Similarity searches were performed using BLAST. A phylogenetic 

tree was obtained using MEGA version 5 (Tamura et al. 2011). The Shannon–Weaver 

index of diversity (H) was calculated for each library using the formula H = - (ni/N) 

log(ni/N), where ni is the abundance of each blaCTX type and N is the sum of analyzed 

clones in each library. 

 

3.1.2.8 Nucleotide sequence accession numbers 

 

All blaCTX-M genes nucleotide sequences reported in this work have been deposited in 

the GenBank database under the accession numbers JQ397652–JQ397669 (bacterial 

strains) and JQ397670–JQ397721 (clone libraries). Also 16S rRNA gene sequences are 

available with the accession numbers JQ781502-JQ781652. 
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3.1.3 RESULTS 

 

3.1.3.1 Water quality and occurrence of cefotaxime-resistant bacteria 

 

From the analysis of all physical, chemical and microbiological parameters (see Table 

S2 in the supplemental material) and according to Portuguese law (D.L. 236/98) and the 

surface water quality classification given by the national water institute, from the 12 sites 

under study, 3 sites were classified as polluted (P) and 9 as unpolluted (UP). All three 

rivers classified as polluted presented a mixed type of pollution, mainly related to 

exceptionally high values of phosphates and total coliforms (Table S2 in the supplemental 

material; D.L. 236/98). 

The total bacterial counts on MacConkey agar in polluted sites was on average 1.9 X 

10
5
 CFU/100mL of riverine water of which 8.8% grew on MacConkey agar supplemented 

with cefotaxime (1.7X10
4
 CFU/100mL), and in pristine rivers was on average 0.68 X 10

5
 

CFU/100mL of which 0.6% grew on MacConkey agar supplemented with cefotaxime (4.4 

X10
2
 CFU/100mL).  

 

3.1.3.2 Molecular typing and identification of bacterial isolates 

 

Clonal relationships among cefotaxime resistant isolates (n=225) were assessed by 

BOX-PCR, and 151 isolates displaying unique BOX profiles were selected for further 

analysis (see FIG. S1 in the supplemental material). Among strains isolated from polluted 

waters (n= 60), 41.7% were identified as Pseudomonas spp. (P. fluorescens, P. 

nitroreducens, P. plecoglossicida and P. putida), 35% affiliated with Enterobacteriaceae 

members and 21.7% with Aeromonas spp.. The Enterobacteriaceae members mostly 

affiliated with Escherichia coli (25%), followed by Enterobacter spp. (8.33%) and with 

only an isolate each  Alcaligens faecalis and Citrobacter freundii. 
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As of unpolluted waters isolates (n=91) Pseudomonas spp. (P. fluorescens, P. 

nitroreducens and P. putida) adds 63.7%, Enterobacteriaceae and Aeromonas spp. (A. 

media and A. hydrophila) with 8.8% and 1.1% respectively, and Acinetobacter sp. appears 

as the second most abundant genus in these samples, with 26.4% (all Acinetobacter 

calcoaceticus). Among Enterobacteriaceae members, Enterobacter sp. and E. coli were 

identified (5.5% and 3.3%, respectively). A 16S rRNA gene phylogenetic tree is presented 

in supplemental material FIG S2. 

 

3.1.3.3 Antimicrobial susceptibility and detection of ESBL producers  

 

As expected, since isolates were selected in agar plates supplemented with cefotaxime, 

higher numbers of antibiotic resistance were registered for beta-lactams (see FIG. S3 in the 

supplemental material). It was determined that 22.5 % of the isolates from P and UP 

samples were resistant to all cephalosporins tested and 52.3% resistant to both cefotaxime 

and ceftazidime. For beta-lactams, higher percentages (although not statistically 

significant; two-sample t test, P> 0.05) were always observed for isolates from polluted 

waters. For non-beta-lactam antibiotics higher resistance levels were observed against 

quinolones (in particular nalidixic acid with 78.1% resistants), sulfamethoxazole-

trimethoprim and chloramphenicol (55% and 51%, respectively). In isolates from polluted 

environments also resistance to tetracycline (36.7%) and to aminoglycosides (31.7%) was 

frequently detected. Besides imipenem (99.3% susceptible strains), gentamicin was the 

most effective, with only 3.3% resistance among isolates from UP and 21.7% from P sites. 

The less effective were the penicillins, the monobactam aztreonam and 1
st
 and 3

rd
 

generation cephalosporins. Significant differences were found among isolates from 

polluted and unpolluted waters in resistance frequencies towards aminoglycosides, 

quinolones, tetracycline and the combination sulfamethoxazole/trimethoprim (two-sample t 

test, P< 0.05). 

Multiresistance (defined as resistance to 3 or more classes of antibiotics, including 

beta-lactams) was found in 56.6% and 46.0% of the strains isolated from polluted and 

unpolluted sites, respectively.  
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Of the 151 isolates tested, 39 were positive for ESBL production by both used 

methods, with 27 isolates from polluted waters (13 E. coli, 8 Aeromonas spp. and 6 

Pseudomonas spp.) and 12 isolates from unpolluted sites (7 Pseudomonas spp., 2 

Acinetobacter sp., 2 E. coli and 1 Aeromonas spp.). 

  

3.1.3.4 Occurrence and diversity of integrases and ESBLs genes 

 

The ESBL-producing isolates were further analyzed by PCR screening for ESBLs and 

integrase genes. As for ESBL genes the most frequently detected was blaCTX-M (n=18) 

followed by blaTEM (n=10). In 6 strains it were identified both blaCTX-M and blaTEM. Two 

blaVEB were identified, both on Aeromonas sp., once in each environment. OXA-1-like 

genes were detected in 6 strains isolated from polluted sites. No blaGES, blaPER, blaSHV or 

blaOXA-2 and blaOXA -10-like were identified with the primer sets used in this study. 

Integrase genes intI1, intI2 and intI3 were screened by PCR among the 39 ESBL-

producers. On 22 out of 39 isolates it was detected intI1 (19 P and 3 UP), affiliated with 

Escherichia coli (11 P and 1 UP), Pseudomonas sp. (2 P and 1 UP) and Aeromonas sp. (6P 

and 1UP). The intI2 and intI3 genes were not detected. 

 

3.1.3.5 Diversity and genetic environment of blaCTX-M genes 

 

Since blaCTX-M was the most frequently detected among the 39 ESBL-producers, 

blaCTX-M genes were further characterized (Table 1). 
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TABLE 1: Characteristics of the blaCTX-M producers isolated from polluted (P) and unpolluted (UP) 

samples, regarding phylogenetic affiliation, sample origin, ESBL and integrase genes detected and 

antimicrobial resistance profile. 

 

Isolate 

 

Phylogenetic affiliation 

 

Sample 

(P/UP) 

 

ESBL genes 

detected by PCR 

 

 

Antibiotic resistance profile 

 

 

IntI 1  

E1 A. hidrophila. P blaTEM, blaCTX-M AML, AMP, AMC, KF, CTX, FEP, CIP, NA, CN, K, TE + 

E2 A. hydrophila P blaTEM, blaCTX-M AML, AMP, AMC, KF, CTX, FEP, NA, CN, K, TE + 

E3 A. hydrophila P blaTEM, blaCTX-M -M AML, AMP, AMC, ATM, KF, CTX, FEP, CIP, NA, K, TE + 

E4 E. coli P blaCTX-M AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, CIP, NA, C, CN, K, TE - 

E5 E. coli P blaCTX-M, blaOXA AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, CIP, NA, CN, K, SXT, TE + 

E6 E. coli P blaTEM, blaCTX-M AML, AMP, AMC, ATM, KF, CTX, NA, C, TE + 

E7 E. coli P blaTEM, blaCTX-M, blaOXA AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, CIP, NA, CN, K, SXT, TE + 

E8 E. coli P blaCTX-M, blaOXA AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, CIP, NA, CN, K, SXT, TE + 

E9 E. coli P blaCTX-M AML, AMP, ATM, KF, CTX, CAZ, FEP, CIP, NA, CN, K, SXT, TE + 

E10 E. coli P blaCTX-M AML, AMP, ATM, KF, CTX, CAZ, FEP, CIP, NA, K, SXT, TE + 

E11 E. coli P blaCTX-M AML, AMP, ATM, KF, CTX, CAZ, FEP, CIP, NA, K, SXT, TE + 

E12 E. coli P  blaCTX-M, blaOXA AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, CIP, NA, CN, K, SXT, TE + 

E13 E. coli P blaTEM, blaCTX-M AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, SXT + 

E14 E. coli P blaCTX-M AML, AMP, ATM, KF, CTX, FEP, SXT, TE + 

E15 E. coli P blaCTX-M AML, AMP, AMC, ATM, KF, CTX, CAZ, FEP, NA, SXT, TE + 

E16 E. coli UP blaCTX-M AML, AMP, ATM, KF, CTX, CAZ, FEP, CIP, NA, SXT + 

E17 E. coli UP blaTEM, blaCTX-M AML, AMP, AMC, ATM, KF, CTX, CAZ, TE - 

E18 Pseudomonas sp. UP  blaCTX-M AML, AMP, AMC, ATM, KF, CTX, NA, C, SXT + 

 

The CTX-M genes were detected in 18 isolates (15P and 3 UP). The nucleotide 

sequence of blaCTX-M genes was determined and their genomic environment was inspected 

by PCR and sequencing. Sequence analysis showed that isolates produced CTX-M from 

group 1 (CTX-M-1, -3, -15 and -32) and group 9 (CTX-M-14). The CTX-M-1 gene was 

found in 3 isolates (all from polluted water), CTX-M-3 gene in 3 isolates (all from polluted 

water), CTX-M-15 in 10 isolates (8P and 2UP) and CTX-M-32 was detected in only 1 

isolate from unpolluted water. From group 9 it was found CTX-M-14 gene in one strain 

isolated from polluted water. The genetic environment study revealed the presence of 6 

different genetic environments with elements previously described in clinical strains. A 
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schematic representation of the different genomic environments found in the 18 isolates is 

presented in figure 2. 

 

FIG. 2: Schematic representation of the genetic environment of CTX-M genes from the 18 isolates 

producing CTX-M from group 1 (CTX-M-1, -3, -15 and -32) and group 9 (CTX-M-14). The 

number of isolates from each polluted and unpolluted environment that carry each variant is 

indicated. 

 

ISEcp1 was found in the upstream region of all isolates examined in the present study, 

but disrupted in 8 isolates by IS26 and in 1 by IS5. The distance between ISEcp1 and the 

start codon of blaCTX-M genes was as previously described, varying from 32bp to 127bp. 

All blaCTX-M from group 1 presented downstream an Orf477. The only blaCTX-M from 

cluster 9 detected was blaCTX-M-14 (E6) which presented downstream an IS903-like 

element.  

 

3.1.3.6 Polluted and unpolluted blaCTX-M-like clone libraries 
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To compare the diversity of blaCTX-M genes in polluted and unpolluted environments, 

two clone libraries of blaCTX-M-like gene fragments were constructed and analyzed. Gene 

fragments were amplified using as template two environmental DNA pools corresponding 

each to P and UP samples. A total of 52 clones were obtained and all inserts were 

sequenced (27 P and 25 UP). Culture-independent blaCTX-M-like libraries comprised 16 gene 

variants (A-P), 14 types in the P library (H= 1.04) and 4 types in UP library (H= 0.23), 

with similarity values varying from 68% to 99% between them and from 97% to 100% 

with sequences from GenBank database. The majority (n=16) affiliated with nucleotide 

sequences of blaCTX-M variants from group 1 (CTX-M-1, -12. -15, -30, -37, -68 and -97) 

but also blaCTX-M from group 2 (CTX-M-97) (n=2), group 9 (CTX-M-14) (n=3) and group 

25 (CTX-M-78 and -100) (n=2) were identified.  

Besides the much lower diversity among UP CTX-M-like genes, the majority were 

similar to chromosomal ESBLs such as blaRAHN-1, blaRAHN-2 and blaFONA-5 (FIG. 3). 
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FIG. 3: Dendrogram tree of blaCTX-M gene sequences types A to N identified from the polluted (P) 

and unpolluted (UP) genomic libraries. The number in parentheses shows the number of times the 

sequence was found in the library. The branch numbers refer to the percent confidence as estimated 

by a bootstrap analysis with 1000 replications.  
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3.1.4 DISCUSSION 

 

Lotic ecosystems are threatened daily by anthropogenic actions that compromise water 

quality and, in consequence, its sustainable use.  

Considering aquatic systems as reactors for diverse biological interactions that have 

important genetic implications, the study of the aquatic antibiotic resistome (which 

includes ARGs, pathogenic and non-pathogenic ARBs) is important, as it might indicate 

the extent of alteration of water ecosystems by anthropogenic activities. Several studies 

have been reporting the presence of antibiotic resistant bacteria from several aquatic 

environments but focusing on pathogenic organisms or directly related to an environmental 

threat as a hospital sewage discharge (Allen et al. 2010, Baquero et al. 2008, Wright 2010).  

In this study, two groups of rivers (polluted and unpolluted), which are part of the 

same Portuguese lotic ecosystem, were inspected for the presence of cefotaxime-resistant 

Gram-negative bacteria, in order to understand how human action is modulating the 

environmental resistome, in particular the cefotaxime-resistome.  

As expected, high levels of resistance were obtained in this study, among CTX
R
 

isolates, against other beta-lactams frequently conferred by the same resistance mechanism 

(16), with higher occurrence among P strains. ESBL-production was detected in 

Pseudomonas sp., Acinetobacter sp., E. coli and Aeromonas sp., and was more frequent 

among isolates from polluted sites. Recently in several environmental studies, members of 

the same genera have been identified as ESBL-producers, enforcing their relevance and 

importance for resistance monitoring (Girlich et al. 2011, Guenther et al. 2011, Poeta et al. 

2008). We investigated the presence of different ESBL genes and found blaCTX-M gene as 

the most prevalent followed by blaTEM genes. The majority of the isolated CTX-M-

producers affiliated with E. coli but also with Aeromonas hydrophila (3 blaCTX-M-3) and 

Pseudomonas sp. (1 blaCTX-M-15). Few studies have reported the presence of blaCTX-M genes 

in Pseudomonas spp. and Aeromonas spp.. A previous study reported blaCTX-M-27 genes in 

2 Aeromonas sp. isolated in river sediment (Lu et al. 2010). 
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Also Aeromonas spp. producing blaCTX-M-3 and blaCTX-M-15 have been detected in 

clinical settings and directly implicated in human infections (Ye et al. 2010). As far as we 

know, this is the first work reporting environmental Aeromonas spp. producing blaCTX-M-3 

genes. Also in Pseudomonas spp. reports on CTX-M producers are rare. In fact the 

majority refer to clinical Pseudomonas aeruginosa isolates which have been reported to 

produce CTX-M-1, -2, -15 and –43 (Picão et al. 2009). Also recently 2 spinach saprophyte 

strains identified as P. putida and 1 P. teessidea were referred as CTX-M-15-producers 

(Raphael et al. 2011).  

To detect any potential genetic platforms able to mobilize the blaCTX-M genes, we also 

analyzed the genomic environment of the 18 blaCTX-M genes detected. Different insertion 

sequence elements were found. Upstream the bla gene in all strains it was detected an 

ISEcp1 element. Other IS elements (IS5 and IS26) were found but disrupting the ISEcp1 

element. The organization IS26 and end of ISEcp1 has been mostly found in clinical 

Enterobacteriaceae isolates but it was also described in an E. coli blaCTX-M-1 producer 

isolated from seagulls fecal droppings (Eckert et al. 2006, Poeta et al. 2008, Saladin et al. 

2002). On the other hand, the organization IS5 and end of ISEcp1 was found upstream the 

blaCTX-M-32 gene in environmental and clinical E. coli isolates (Fernandez et al. 2007, 

Poeta et al. 2008). The presence of ISEcp1 element upstream blaCTX-M-1, blaCTX-M-3, blaCTX-

M-14 and blaCTX-M-15 has been also reported in clinical isolates (Eckert et al. 2006, Lartigue et 

al. 2004, Saladin et al. 2002). Downstream of the bla genes in the CTX-M-1 group, 

sequence ORF477 was present in all strains. Another insertion sequence, IS903, was found 

downstream the blaCTX-M-14 from CTX-M group 9, as already described by other authors in 

clinical Enterobacteriaceae isolates (Eckert et al. 2006, Lartigue et al. 2004, Saladin et al. 

2002). The common phenotype of multiresistance among ESBL-producing isolates is a 

result of the presence of other genes, normally encoded in the same plasmid carrying 

ESBL genes. This gene panoply contributes to maintaining ESBL-producing bacterial 

communities, even with low concentration of beta-lactams (Coque et al. 2008). As 

reported in this work, it is of particular concern the fact that 88.9% of the CTX-M-

producers are multiresistant (93.3% P and 66.6% UP). Among CTX-M-producers isolated 

from polluted waters, resistance to quinolones, aminoglycosides, tetracyclines and the 

combination sulfamethoxazole-trimethoprim was highly prevalent. Due to their ability to 

capture and incorporate gene cassettes from the environment, integrons have an important 
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role on the spread of multidrug resistance in Gram-negative bacteria. In this work, class 1 

integrons were detected in 56.4% of ESBL producers (48.7% in P and 7.7% in UP sites). 

Analyzing only the cultivable fraction of Gram-negative bacteria in MacConkey agar 

plates might underestimate the diversity of blaCTX-M gene variants present in the lotic 

ecosystem under study. To overcome this methodological aspect, it was applied a culture-

independent approach to further analyze the diversity of blaCTX-M genes in both 

environments. For that, two clone libraries of blaCTX-M gene fragments amplified from 

polluted and unpolluted environmental DNA were constructed and analyzed. In P library 

the variety of CTX-M-like genes was much higher than in UP library. This probably is 

related to higher anthropogenic selective pressures posed by the release of antibiotics 

and/or antibiotic resistant bacteria. Also other studies have shown that other contaminants 

can also contribute to the persistence of antibiotics resistance in the environment, like for 

example heavy metals and disinfectants (Martinez 2009, 2009a). Within P library 

similarity with blaCTX-M genes from 4 clusters and also with chromosomal variants referred 

as ancestors of clusters CTX-M-1 and CTX-M-2 was found. Interestingly, the majority of 

blaCTX-M-like sequences found in unpolluted DNA were similar to chromosomal class A 

ESBLs that have been described in Rahnella spp. (blaRAHN-1 and blaRAHN-2) and Serratia 

fonticola (blaFONA-5). In a previous work a blaCTX-M library cloned from urban river 

sediment DNA presented also high diversity of blaCTX-M sequences with 13 variants found 

(Lu et al. 2010). Overall, results here presented show clear differences in polluted and 

unpolluted environments. While in unpolluted rivers we found at most 4 variants with the 

majority related to ancestor chromosomally located genes, in polluted waters up to 14 

variants were found (from 4 out of 5 clusters so far identified in CTX-M enzymes). 

A shift in the distribution of different ESBLs has recently occurred in European 

clinical settings, with a dramatic increase of CTX-M enzymes over TEM and SHV 

variants. More than 110 CTX-M variants have been described so far. Due to the high 

homology with chromosomal beta-lactamases from different Kluyvera species these are 

now recognized as CTX-M ancestors, such as KLUA-1 from K. ascorbata and KLUG-1 

from K. georgiana (Cantón and Coque 2006). However the diversity we found in polluted 

sites cannot be attributed to the presence of bacteria carrying CTX-M ancestral genes. As 
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in clinics, our results suggest that CTX-M genes dominance is correlated to selective 

pressures imposed by human activities.  

These findings sustain our hypothesis that anthropogenic activities might modulate the 

environmental resistance gene pool and promote antibiotic resistance dissemination. Also, 

we have shown that ESBL genes are a form of environmental pollution, either resulting 

from the intake of ARGs or ARB from human activities or from the selection of 

environmental resistant bacteria by subtherapeutic antibiotic doses released into the 

environment. In our study, ESBL genes were found in genera not included in routine 

evaluation of water quality, associated with the genetic platforms needed for their 

mobilization and transfer. Thus, we suggest that data on the occurrence and diversity of 

ESBL genes, and specifically CTX-M genes, can be used to assess ecosystems health and 

antibiotic resistance evolution. Yet, more studies on other geographical locations are 

needed to validate this application. These genes are also good candidates to be used as 

pollution indicators. To further confirm this potential, source tracking approaches must be 

conducted to link the presence of CTX-M genes to specific sources of contamination. 

 

3.1.5 CONCLUSIONS 

 

The work here presented showed that occurrence and antimicrobial susceptibility 

profiles of CTX
R
 bacteria are markedly different between polluted and unpolluted lotic 

ecosystems; the same happens with occurrence and diversity of clinically relevant ESBL 

genes. Our results validate the hypothesis that anthropogenic impacts on water 

environments are modulators of the resistance gene pool and promote dissemination of 

antibiotic resistance. 

In addition, it suggests that blaCTX-M-like genes may constitute indicators of pollution by 

antibiotics, useful to study antibiotic resistance dispersal in aquatic environments. 

We also conclude that the dissemination of resistance to broad-range antibiotics such 

as cefotaxime may be at an earlier stage in pristine environments, providing the 

opportunity to continuing studying the impact of anthropogenic-driven dissemination and 

evolution.  
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SUPPLEMENTAL MATERIAL 

 

TABLE S1: GPS coordinates for the 12 sites under study 

 
Site River Coordinates 

1 Antuã 40° 44.580 N, 08° 34.173 W 

2 Úl 40° 51.114 N, 08° 29.419 W 

3 Ínsua 40° 51.070 N, 08° 27.118 W 

4 Caima 40° 43.513 N, 08° 06.483 W 

5 Zela 40° 43.170 N, 08° 06.440 W 

6 Vouga 40° 44.226 N, 08° 05.191 W 

7 Alcofra 40° 37.420 N, 08° 11.410 W 

8 Alfusqueiro 40° 38.541 N, 08° 16.517 W 

9 Águeda 40° 35.478 N, 08° 14.101 W 

10 Águeda 40° 34.144 N, 08° 26.509 W 

11 Da póvoa 40° 37.304 N, 08° 25.571 W 

12 Cértima 40° 30.518 N, 08° 27.533 W 
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TABLE S2: Physical, chemical and microbiological parameters determined according to Portuguese laws (D.L. 236/98) and water quality classification, for 

the 12 sites under study. 

Sites pH 

Temp. 

(ºC) 

Cond. 

µS/cm 

DO  

mg/l 

TSS 

mg/l           

Nit. 

mg/l 

Clor. 

mg/l 

Phosp.      

mg/l 

Amm.     

mg/l 

COD 

mg/l 

BOD5 

mg/l 

Color 

mg/l 

PtCo 

Smell     

Dil. 

factor 

TC 

CFU/100mL 

FC 

CFU/100mL 

FS 

CFU/100mL 

Classification 

1 7,50 19,7 226.0 9,20 15 30,2 28 1,1 < 0,10 < 30 1,1 28 1 11.1 X 10
4
 324 166 Polluted 

2 8,70 19,1 251.0 8,70 14 15,8 30 2,7 5,49 36 4,2 75 1 140.4 X 10
4
 INC 49500 Polluted 

3 7,30 17,7 96.0 10,00 13 14,7 < 25 0,5 0,13 < 30 < 1,0 79 1 54.0 X 10
4
 69 334 Unpolluted 

4 7,30 20,8 100.0 9,60 16 < 11 < 25 0,8 0,29 < 30 < 1,0 31 1 54.0 X 10
4
 648 10 Unpolluted 

5 6,94 20,1 69.0 7,84 26 < 11 < 25 0,2 < 0,10 < 30 < 1,0 13 1 1.8 X 10
4
 156 286 Unpolluted 

6 6,83 23,7 68.0 7,02 < 10 < 11 < 25 0,1 < 0,10 < 30 < 1,0 28 1 12.3 X 10
4
 1 174 Unpolluted 

7 6,35 19,2 39,9 7,32 < 10 < 11 < 25 < 0,1 < 0,10 < 30 < 1,0 12 1 0.07 X 10
4
 8 20 Unpolluted 

8 7,03 22,8 52,1 6,75 < 10 < 11 < 25 < 0,1 < 0,10 < 30 < 1,0 19 2 5.5 X 10
4
 82 204 Unpolluted 

9 6,53 21,0 38,4 6,92 < 10 < 11 < 25 < 0,1 < 0,10 < 30 < 1,0 14 1 0.09 X 10
4
 0 42 Unpolluted 

10 6,78 21,4 6,6 7,30 < 10 < 11 < 25 < 0,1 < 0,10 < 30 < 1,0 24 1 4.4 X 10
4
 73 44 Unpolluted 

11 7,57 18,9 722.0 4,89 < 10 < 11 < 25 < 0,1 < 0,10 < 30 < 1,0 13 1 2.7 X 10
4
 474 144 Unpolluted 

12 7,11 18,5 68,7 7,60 14 19,4 33 1,5 0,23 < 30 1,6 43 1 6.6 X 10
4
 626 404 Polluted 

Abreviations: Temp., temperature; Cond., conductivity; DO, dissolved oxygen; TSS, total suspend solids; Nit., nitrates; Clor., clorets; Phosp., phosphates; Amm., ammonium; 

COD, chemical oxygen demand; BOD5, biological oxygen demand; TC, total coliforms; FC, fecal coliforms; FS, fecal streptococci. 
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FIG S1: Example of BOX-PCR fingerprints generated by PCR with BOXA1R primer, in 1.5% 

agarose gels (M- Gene Ruler DNA Ladder Mix, MBI Fermentas, Lithuania; 1-34, cefotaxime 

resistant isolates obtained from water samples). 
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FIG S2: Phylogenetic tree based on 16S rRNA gene sequences of isolates from polluted (P) and 

unpolluted (UP) rivers; Sequences displaying 100% homology were removed (14P+35UP 

Pseudomonas sp., 3P Aeromonas sp.) (Left- Enterobacteriaceae and Alcaligenes sp.; Right- 

Aeromonas sp., Pseudomonas sp. and Acinetobacter sp.). 
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FIG S3: Antimicrobial resistance of isolated strains. AML, amoxicillin; AMP, ampicillin; AMC, 

amoxicillin/clavulanic acid; ATM, aztreonam; IPM, imipenem; KF, cephalotin; CTX, cefotaxime; 

CAZ, ceftazidime; FEP, cefepime; CN, gentamicin; K, kanamycin; NA, nalidixic acid; CIP, 

ciprofloxacin; C, chloramphenicol; TE, tetracycline; SXT, trimethoprim/sulfamethoxazole. 
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3.2 

CO-RESISTANCE TO DIFFERENT CLASSES OF ANTIBIOTICS AMONG  

ESBL-PRODUCERS FROM AQUATIC SYSTEMS 

 

 

Abstract 

In this study we investigated the co-occurrence of resistance to non-beta-lactams among cefotaxime-resistant 

extended-spectrum beta-lactamase (ESBL) producers (ESBL
+
) versus non-ESBL producers (ESBL

-
), from 

aquatic environments. Higher prevalence of resistance to tetracycline, fluoroquinolones and aminoglycosides 

were observed in ESBL
+
. Among ESBL

+ 
resistant to tetracycline (n=18), tet(A) was detected in 88.9% and 

tet(B) in 16.7%. Among fluoroquinolone-resistant-ESBL
+ 

(n=15), aacA4-cr and qnrVC4 were identified in 

26.6% and 40% strains, respectively. The qnrVC4 gene was detected for the first time in Pseudomonas sp. 

and Escherichia coli. Class 1 integrase genes were detected in 56.41% of ESBL
+
 and in 27.67% ESBL

-
. Gene 

cassette arrays identified conferred resistance to aminoglycosides (aadA-type genes and aacA4), 

trimethoprim (dfrA17), chloramphenicol (catB8), fluoroquinolones (qnrVC4) and beta-lactams (blaOXA-10). 

Conjugation experiments were performed with CTX-M-producers. Transconjugants showed multiresistance 

to 3 or more classes of antibiotics, and conjugative plasmids were assigned to IncF, IncK and IncI1 replicons. 

Results obtained showed that co-selection of resistance to aminoglycosides, quinolones and tetracyclines is 

prevalent among ESBL-producers and that these features are successfully mobilized by IncF, IncK and IncI1 

conjugative plasmids. This study reinforces the importance of natural aquatic systems as reservoir of mobile 

genetic platforms carrying multiple resistance determinants. Moreover, to the best of our knowledge, this 

constitutes the first observation of IncK::CTX-M-3 in Aeromonas hydrophila and the first report of IncK 

plasmids in Portugal.  
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3.2.1 INTRODUCTION  

 

Antibiotic resistance is no longer seen as restricted to clinical settings but as 

ubiquitous ecological phenomena (Laroche et al. 2009). Aquatic systems, such as rivers 

and streams, constitute important antibiotic resistance reservoirs (Lupo et al. 2012) where 

anthropogenic pressures may promote the dissemination of antibiotic resistance genes and 

bacteria (Tacão et al. 2012). Co-resistance is the outcome of the accumulation of resistance 

mechanisms to different classes of antibiotics on the same bacterial strain; this happens by 

means of mutation or acquisition of novel resistance genes by horizontal transfer.  

Multidrug resistance is a comprehensive feature, including resistance to compounds 

such as heavy metals or disinfectants, in addition to antibiotics (Skipppington et al. 2011). 

Different determinants of resistance may be linked, carried by mobile genetic platforms 

like plasmids, transposons or integrons (Woodford et al. 2011), with plasmids playing a 

central role in the dissemination of resistance genes by horizontal transfer. Multidrug 

resistant strains can be selected by a single antibiotic but also by the exposure to different 

compounds (Canton and Ruiz-Garbajosa 2011). 

   Extended-spectrum beta-lactamases (ESBLs) are capable of hydrolyzing 

penicillins, cephalosporins and also the monobactam aztreonam. When dealing with 

bacterial infections caused by ESBL-producers (ESBL
+
), a multiresistance phenotype 

clearly limits the therapeutic options (van Hoek et al. 2011). Plasmids carrying ESBL 

genes frequently are conjugative and lodge determinants of resistance to non-beta-lactams 

such as tetracyclines, quinolones or aminoglycosides. In that case, ESBL-positive strains 

are multiresistant and pose major public health concerns (Carattoli et al. 2011, Coque et al. 

2008a).  

Aquatic systems such as rivers are exposed to disposals from different sources, 

receiving chemical and microbial contaminants of industrial, agricultural and domestic 

origins. Water pollution was shown to modulate the antibiotic resistome (Tacão et al. 

2012) and aquatic  environments may act as reactors with incubation conditions that 

promote genetic exchanges  and contribute to the spread of antibiotic resistance (Lupo et 

al. 2012).  
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In a previous work, we analyzed a set of cefotaxime-resistant strains isolated from 

river waters in Portugal (Tacão et al. 2012): multiresistance was frequent among ESBL
+
 

strains, mostly carrying blaCTX-M.  

The present investigation was conducted to evaluate which resistance genes are co-

selected with ESBL genes in aquatic systems and to what extent are those genes included 

in linkage groups carried by mobile genetic elements. For that, we analyzed the prevalence 

of antibiotic resistance traits among ESBL
-
 and ESBL

+
 strains and tested their association 

to conjugative plasmids and integrons. 

 

3.2.2 MATERIALS AND METHODS 

 

3.2.2.1 Bacterial strains 

 

In this study, we analyzed 151 cefotaxime-resistant Gram-negative strains previously 

isolated from surface waters of 12 rivers located in Portugal (Tacão et al. 2012). Of these 

strains, 39 were identified as ESBL-producers (ESBL
+
) and 112 as ESBL-non producers 

(ESBL
-
). The phylogenetic affiliation of bacterial strains used in this study is presented in 

Table 1. 

 

3.2.2.2 Antibiotic susceptibility profiles and ESBL production 

 

The disc diffusion method on Mueller-Hinton agar was used to test antibiotics from 6 

classes: beta-lactams (penicillins, monobactams, 3rd and 4th generation cephalosporins 

and carbapenems), quinolones, aminoglycosides, phenicols, tetracyclines and the 

combination sulfamethoxazole/trimethoprim. The discs (Oxoid, Basingstoke, UK) 

contained the following antibacterial agents and concentrations according to the Clinical 

Laboratory Standards Institute guidelines (CLSI 2012): amoxicillin (10 mg), 

amoxicillin/clavulanic acid (20 mg/10 mg), ampicillin (10 mg), aztreonam (30 mg), 

cefepime (30 mg), ceftazidime (30 mg), ciprofloxacin (5 mg), chloramphenicol(30 mg), 
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gentamicin (10 mg), imipenem (10 mg), kanamycin (30 mg), nalidixic acid (30 mg), 

sulfamethoxazole/trimethoprim (25 mg) and tetracycline (30 mg). As quality control, E. 

coli ATCC 25922 was used. Detection of ESBL was carried out by a clavulanic acid 

combination disc method, based on comparison of the inhibition zones of discs (Oxoid, 

UK) of cefpodoxime (10 mg) and cefpodoxime-plus-clavulanate (10 þ 1 mg). The 

organisms were classified as sensitive, intermediate, or resistant according to the Clinical 

Laboratory Standards Institute guidelines (CLSI 2012), after 24 h of incubation at 37 ºC. 

 

 

TABLE 1:  Bacterial strains used in this work. 

ESBL-production Phylogenetic 

affiliation 

         

 No. of isolates 

ESBL 
+
 Aeromonas sp. 9 

(n=39) Escherichia coli 14 

 Acinetobacter sp. 2 

 Pseudomonas sp. 14 

ESBL 
–
 Aeromonas sp. 10 

(n=112) Escherichia coli 4 

 Acinetobacter sp. 17 

 Pseudomonas sp. 69 

 Enterobacter sp. 10 

 Citrobacter freundii 1 

 Alcaligenes sp. 1 

 

 

3.2.2.3 PCR amplification of resistance determinants 

 

Genetic determinants of resistance  to tetracycline [tet(A), tet(B), tet(C), tet(D), tet(E), 

tet(G) and tet(M)] and fluoroquinolones (parC and gyrA mutations, qnrA, qnrB, qnrS, 

qnrVC, qepA and aacA4-cr) were inspected by PCR using previously described primers 

and conditions (see supplemental material Table S1). Amplification of qnrVC genes was 

carried out by PCR using primers designed in this study (qnrVC_F: 5’ - 



Results and Discussion - 3.2 

 

99 

 

GGATAAAACAGACCAGTTATATGTACAAG – 3’ and qnrVC_R: 5’- AGATTT 

GCGCCAATCCATCTATT -3’). Amplicons were confirmed by DNA sequencing.  

 

3.2.2.4 Integron screening and characterization 

 

The presence of integrons was assessed through PCR amplification of intI1, intI2 

and intI3 integrase genes (supplemental material Table S1). The variable regions of 

integrase-positive strains were further amplified by PCR using several combinations of 

primers (supplemental material Table S1) and sequenced.  

 

3.2.2.5 Conjugation experiments 

 

Eighteen strains containing blaCTX-M genes (Tacão et al. 2012) were used as donors 

in mating assays, from which: 3 Aeromonas hydrophila carrying blaCTX-M-3, 9 E. coli 

carrying blaCTX-M-15, 3 E. coli carrying blaCTX-M-1, 1 E. coli carrying blaCTX-M-14, 1 E. coli 

carrying blaCTX-M-32 and 1 Pseudomonas sp. with blaCTX-M-15). The azide-resistant E. coli 

J53 was used as recipient strain. Transconjugants were selected in Luria-Bertani agar 

plates (LA) supplemented with azide (100 µg/ml) and cefotaxime (8 µg/ml). 

Transconjugants were verified by ERIC-PCR (Versalovic et al. 1994) to confirm the 

identity of the host and, to confirm plasmid acquisition, the detection of blaCTX-M gene was 

performed as previously described (Tacão et al. 2012). Primers used are listed in 

supplemental material Table S1. 

 

3.2.2.6 Transconjugants analysis 

 

Plasmid DNA from transconjugants was purified using the Qiagen Plasmid Mini-kit 

(Qiagen GmbH, Germany). Molecular diversity of plasmids was examined by restriction 

analysis with PstI and Bst1770I (Fermentas, Lithuania) as described elsewhere (Moura et 
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al. 2012b). Antimicrobial susceptibility profiles of transconjugants and recipient strains 

were determined as described above. 

 

3.2.2.7 Replicon typing  

 

Detection of IncA/C, IncB/O, IncF (FIA, FIB, FIC, FIIA, FrepB subgroups), IncHI1, 

IncHI2, IncI1-I, IncK, IncL/M, IncN, IncP IncT, IncW and IncY replicons was performed 

by PCR, using primers (see Table S1, supplemental material) and conditions as described 

previously (Moura et al. 2012b). For confirmation, the nucleotide sequence of the 

amplicons was determined. For transconjugants that received more than one plasmid, the 

location of CTX-M was clarified by southern blot hybridization, as previously described 

(Henriques et al. 2006). 

 

3.2.2.8 Statistical Analysis 

 

Statistical analysis was performed by two-sample t-test. 

 

3.2.2.9 Nucleotide sequence accession numbers 

 

Nucleotide sequences were deposited in GenBank under the accession numbers: 

JQ837985-JQ838002 (gene cassette arrays) and JQ838003-JQ838009 (qnrVC).  

 

3.2.3 RESULTS  

 

3.2.3.1 ESBL
+
 vs. ESBL

-
 antibiotic resistance profiles 

 

Antibiotic resistance profiles were determined for 39 ESBL
+
 (26%) and 112 ESBL

-

(74%) cefotaxime-resistant strains. Results are shown in Figure 1.  
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FIG.1: Prevalence of resistant strains (%) among ESBL-producers (ESBL
+
) and non-ESBL-

producers (ESBL
-
), to tetracycline (TET), quinolones (NAL, nalidixic acid; CIP, ciprofloxacin), 

aminoglycosides (GEN, gentamicin; KAN, kanamycin), trimethoprim/sulfamethoxazole (SXT) and 

chloramphenicol (CHL). Statistical significance is shown with p<0.05 (*) and p<0.01 (**). 

 

Multidrug resistance was slightly higher among ESBL producers (79.5% against 

71.4%). Resistance to tetracycline was significantly more prevalent in ESBL
+
 strains 

(48.7% vs. 6.3%, p<0.05). Significant differences (p<0.05) were also obtained for 

resistance to quinolones (ciprofloxacin, 38.5% vs. 17.0%; nalidixic acid, 82.1% vs. 

76.8%), aminoglycosides (kanamycin, 33.3% vs. 9.8%; gentamicin, 23.1% vs. 6.3%) and 

the combination sulfamethoxazole-trimethoprim (66.7% vs. 50.9%). Only for 

chloramphenicol an opposite trend was observed being resistance significantly more 

prevalent in ESBL
-
 strains (30.8% vs. 58.0%, p< 0.05) (FIG. 1).  
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3.2.3.2 Integron screening and characterization 

 

The prevalence of intI1 was 56.41% (22 out of 39) among ESBL
+
 strains and 27.67% 

(31 out of 112) among ESBL
-
 strains (Table 2).  

Integron variable regions were characterized in 41% of the intI-positive strains. These 

included nine different gene cassette arrays: aadA1 (Pseudomonas sp., Aeromonas sp.), 

aadA2 (A. hydrophila), aadA16/aacA4’ fusion (A. hydrophila), aadA6 – orfD 

(Pseudomonas sp.), catB8 – aadA1 (A. hydrophila), dfrA1 – aadA1 (E. coli), dfrA17 – 

aadA5 (E. coli, Aeromonas sp., Pseudomonas sp.), qnrVC4 – aacA4’-17 (E. coli, A. 

hydrophila), blaOXA-10 - aacA4’ (A. hydrophila). Empty integrons were detected in A. 

hydrophila, Aeromonas sp., Citrobacter freundii and Pseudomonas sp.. Among ESBL
+ 

strains, the gene cassette array dfrA17-aadA5 was the most frequently detected (Table 2). 

The simultaneous presence of two integrons with different gene cassette arrays was 

observed in 4 strains: A. hydrophila C52 ESBL
-
 (catB8 –aadA1and blaOXA-10 - aacA4’), A. 

hydrophila E1 ESBL
+ 

(empty integron and aadA16 /aacA4’), E. coli C88 ESBL
+
 (dfrA17 – 

aadA5 and qnrVC4 – aacA4’-17) and A. hydrophila C89 ESBL
+
 (aadA2 and qnrVC4 – 

aacA4’-17). Sequence analysis revealed the presence of PcH1 (n=14) and PcW (n=3) 

promoter variants, responsible for the expression of gene cassettes, well as of internal 

cassette-specific promoters PqacE1 and PqnrVC (in arrays aaA16-aacA4’ and qnrVC4-

aacA4’-17, respectively).  

 

3.2.3.3 Tetracycline resistance genetic determinants 

 

Among tetracycline-resistant strains (n=26), tet(A) was the most frequently detected 

resistance determinant, present in 88.9% ESBL
+
 (16/18) and 50% ESBL

-
 (4/8). The tet(B) 

gene was detected only in ESBL
+
 strains, in 16.7% (3/18). In one ESBL

+
 strain both tet(A) 

and tet(B) genes were detected. No tet(C), tet(D), tet(E), tet(G) or tet(M) were detected.  
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TABLE 2:  Prevalence of different gene cassette arrays identified among class 1 integrons detected 

in ESBL
+
 and ESBL

- 
strains. 

ESBL 

production 

intI1 Gene cassette arrays
a
 Prevalence             

(no. of isolates) 

Phylogenetic affiliation
b
 

(no. of isolates) 

ESBL 
+
 56.41% (22/39) dfrA17 – aadA5 22.72% (5) A (1), Ec(3), P (1) 

  aadA1 4.54% (1) A 

  qnrVC4 – aacA4’-17 9.09% (2) Ah, Ec 

  aadA16 /aacA4’ 4.54% (1) Ah 

  aadA2 4.54% (1) Ah 

  Empty integron 13.63% (3) Ah 

  n.d.* 54.54% (12) A (1), Ec (9), P (2) 

ESBL 
–
 27.67% (31/112) catB8 –aadA1 3.22% (1) Ah 

  blaOXA-10 - aacA4’ 3.22% (1) Ah 

  dfrA17 – aadA5 3.22% (1) Ec 

  aadA1 3.22% (1) P 

  dfrA1 - aadA1 3.22% (1) Ec 

  aadA6 – orfD 3.22% (1) P 

  Empty integron 9.67% (3) A, Cf, P 

  n.d.* 74.19% (23) Ac (5), E (1), Ec (1), P (16) 

a  n.d.: not determined; b  A- Aeromonas sp., Ah – Aeromonas hydrophila, Ac- Acinetobacter sp., Cf- Citrobacter 

freundii, E- Enterobacter sp., Ec- E. coli, P- Pseudomonas sp.. 

 

3.2.3.4 Fluoroquinolone resistance genetic determinants 

 

The qnrA, qnrB, qnrS and qepA genes were not detected among the fluoroquinolone-

resistant strains (n=34) (Table 3).  

The aacA4-cr gene was detected in 26.6% ESBL
+
 (4/15) and 36.84% ESBL

-
 (7/19). 

The qnrVC4 gene was identified in 40% ESBL
+
 (6/15) and 15.7% ESBL

-
 (3/19), in 

Pseudomonas sp. (n=4), Aeromonas sp. (n=4) and E. coli (n=1) (FIG. 2).  
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FIG. 2: Phylogenetic tree of qnrVC genes. Accession numbers and phylogenetic affiliation are 

indicated. Sequences obtained in this study are shown in bold. 

 

Four ESBL
+
 and 1 ESBL

-
 strains presented both the qnrVC4 and aacA4-cr genes. 

Regarding chromosomal-encoded resistance, no mutations were identified in DNA gyrase 

gene (gyrA). However, in 13 out of 34 strains one or two mutations in the topoisomerase 

IV gene (parC) were identified. Of these, a Ser80Ile mutation was identified in a non-

ESBL-producer E. coli strain. The remaining 12 were found in ESBL
+
 strains with parC 

(80,84) in Aeromonas sp. (n=2), Pseudomonas sp. (n=1), E. coli (n=5) and parC(80) in E. 

coli strains (n=2). None of the fluoroquinolone resistance mechanisms searched was 

identified in 10 ESBL
-
 strains (Table 3). 
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TABLE 3: Prevalence of different fluoroquinolones-resistance mechanisms identified among 

ESBL
+
 and ESBL

- 
strains. 

ESBL-production on 

fluoroquinolones- 

resistant strains 

Resistance mechanism detected Prevalence             

(no. of isolates) 

Phylogenetic affiliation
a
 

(no. of isolates) 

ESBL 
+
 (n=15) parC(80) 20.00% (3) Ec 

 parC(80,84) 40.00% (6) Ah (1), Ec (5) 

 qnrVC4 6.66% (1) Ah 

 qnrVC4 and aacA4-cr 13.33% (2) Ah 

 qnrVC4 and parC(80) 6.66% (1) P 

 qnrVC4, aacA4-cr and parC(80) 6.66% (1) Ec 

 qnrVC4, aacA4-cr and parC(80,84) 6.66% (1) A 

ESBL 
–
 (n=19) aacA4-cr  26.31% (5) A (1), Ac (1), P (3) 

 qnrVC4  10.52% (2) P 

 qnrVC4 and aacA4-cr 5.26% (1) P 

 aacA4-cr and parC(80) 5.26% (1) Ec 

 Unknown 52.63% (10) Ac (3), Ah (1), E (3), P (3) 

a  A- Aeromonas sp., Ah -Aeromonas hydrophila, Ac- Acinetobacter sp., E- Enterobacter sp., Ec- E. coli, P- 

Pseudomonas sp.). 

 

3.2.3.4 Analysis of CTX-M-transconjugants 

 

Six out of 18 donor strains generated transconjugants resistant to azide and cefotaxime 

(Table 4).  

Restriction analysis of transconjugants revealed 7 different profiles (strain E1 

generated 2 transconjugants with distinct plasmid content). Conjugative plasmids detected 

were assigned to replicons FrepB, FIB, K and I1. One transconjugant could not be assigned 

to any of the replicon types tested. In two transconjugants more than one plasmid type was 

present: FrepB and FIB (1T) and FrepB and IncK (1aT).  

The blaCTX-M gene amplified from plasmid DNA purified from all the transconjugants. 

The blaCTX-M genes transferred were: blaCTX-M-1 in IncI1 (from E. coli donor strains); 

blaCTX-M-3 in IncF and IncK (from A. hydrophila); and blaCTX-M-15 in IncI1 (from E. coli 

and Pseudomonas sp. strains). As expected, all transconjugants displayed phenotypes of 
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resistance to 3
rd

 and 4
th

 generation cephalosporins and monobactams and were positive for 

ESBL production, in contrast to the recipient strain. In addition, the majority of 

transconjugants were resistant to penicillins (ampicillin and amoxicillin, 6 out of 7 

transconjugants) and to the combination sulfamethoxazole/trimethoprim (5 out of 7) (Table 

4). Resistance to carbapenems, quinolones, aminoglycosides, tetracyclines and phenicols 

was also observed. In three cases the transferred plasmids conferred multiresistance 

phenotypes: transconjugant 1T was resistant to beta-lactams, aminoglycosides and 

tetracycline, transconjugant 1aT was resistant to beta-lactams, aminoglycosides, 

tetracycline and phenicols and transconjugant 4T was resistant to beta-lactams, 

aminoglycosides, tetracycline, quinolones and sulfamethoxazole/trimethoprim. 
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TABLE 4: Antibiotic resistance profile and replicon types of transconjugants carrying blaCTX-M genes. 

Donor strain CTX-M 

gene 

Transconjugant Resistance phenotype of transconjugant
a
 Incompatibility 

group 

A. hydrophila E1 CTX-M-3 1T CPD, CAZ, FEP, ATM, TET, GEN, KAN FrepB, FIB 

A. hydrophila E1 CTX-M-3 1aT AMP, AML, CPD, FEP, ATM, TET, GEN, CHL FrepB, K 

E. coli E7 CTX-M-15 4T AMP, AML, CPD, FEP, IPM, ATM, TET, KAN, CIP, NAL, SXT n.d.
b
 

E. coli E18 CTX-M-15 11T AMP, AML, CPD, CAZ, FEP, ATM, SXT I1 

E. coli E24 CTX-M-1 13T AMP, AML, CPD, CAZ, FEP, ATM, SXT I1 

E. coli E26 CTX-M-1 14T AML, CPD, CAZ, FEP, ATM, SXT I1 

Pseudomonas sp. E39 CTX-M-15 18T AMP, AML, CPD, FEP, IPM, ATM, SXT I1 

a  AML- amoxicillin, AMP- ampicillin, ATM- aztreonam, CAZ- ceftazidime, CPD- cefpodoxime, FEP- cefepime, GEN- gentamicin, IPM- imipenemo, KAN- kanamycin, 

NAL- nalidixic acid, SXT- sulfamethoxazole/trimethoprim, TET- tetracycline; b   n.d.: not determined. 
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3.2.4 DISCUSSION 

 

Multidrug resistant strains can result from the co-selection of several resistance genes 

in the same genetic platform or from cross-resistance due to expression of a mechanism 

responsible for resistance to different compounds (Laroche et al. 2009). In this study we 

analyzed co-resistance among ESBL
-
 and ESBL

+
 environmental strains.  

Epidemiological studies have shown that ESBL-producers from clinical environments 

are often multiresistant (Coque et al. 2008a). As an example of a worldwide disseminated 

ESBL is the CTX-M-15 beta-lactamase. Its huge success is due to the association of the 

blaCTX-M gene to conjugative plasmids that often harbor genetic determinants of resistance 

to several classes of antibiotics others than beta-lactams, such as aminoglycosides, 

fluoroquinolones and tetracyclines (Coque et al. 2008a, Perez et al. 2007).  

Our results showed that ESBL-producers isolated from river waters presented higher 

levels of resistance to non-beta-lactams, especially to tetracyclines, aminoglycosides and 

fluoroquinolones. Also the majority were multidrug resistant and harbored class 1 

integrons. Resistance to the above mentioned classes of antibiotics has been observed for 

ESBL
+
 strains isolated in clinical setting but also in environmental ESBL-producers (Chen 

et al. 2010, Coque et al. 2008a). The majority of the ESBL
+
 strains used in this study were 

isolated from polluted rivers highly impacted by different human activities (domestic, 

industrial and agricultural origins) (Tacão et al. 2012) which in turn may potentiate the 

exchange of genetic material and the spread of multiresistant strains. 

Moreover, the high prevalence of intI1-genes and the presence of identical arrays in 

different strains suggest that integrons are exchanged and disseminated easier among 

ESBL
+
 strains. Although integrons are not considered per se as mobile genetic elements, 

their location on plasmids and transposons gives them the possibility to pass 

multiresistance traits in a single event (Lupo et al. 2009). The gene cassettes identified in 

this work conferred resistance to aminoglycosides, trimethoprim, chloramphenicol, 

fluoroquinolones and beta-lactams. The gene cassette array dfrA17-aadA5 was the most 

frequently detected among ESBL
+
. This array has been frequently reported worldwide in 

both clinical and environmental samples (http://integrall.bio.ua.pt; Moura et al. 2009). 

Moreover, dfrA17-aadA5 was also described as the most prevalent array among ESBL-
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producers isolated from the Yangtze River, China (Chen et al. 2010). In integrons detected 

in both ESBL
+
 and ESBL

-
 groups, the control of gene cassette expression was associated to 

weak PcW and PcH1 variants. Since weaker Pc variants are correlated with higher 

integrase gene expression and activity (Jové et al. 2010), leading to shorter and less stable 

arrays, these results suggest the existence of a dynamic gene cassette pool in these 

environments due to high rates of gene cassette recombination. Similar trends have also 

been reported in integrons from wastewaters and clinical environments, as recently 

discussed (Moura et al. 2012a). 

CTX-M beta-lactamases are commonly referred as the most widespread ESBLs 

nowadays (Coque et al. 2008a). Several mechanisms have been associated to its success 

such as the association to ISEcp1 and ISCR1 insertion sequences (Canton and Coque 2006, 

Pfeifer et al. 2010, Poirel et al. 2012a, Tacão et al. 2012) and conjugative plasmids 

belonging to IncF, IncA/C, IncL/M, IncN, IncHI2, IncN, IncI1 and IncK groups, that often 

carry other antibiotic resistance genes (Canton and Coque 2006, Carattoli, 2009). In the 

present study, results from the conjugation experiments showed that the multiresistance 

phenotype registered for blaCTX-M -producers was due to the presence of narrow host range 

(NHR) plasmids carrying several genetic determinants of resistance. Although NHR 

plasmids have difficulties in replicating in distantly related hosts (van Hoek et al. 2011), 

both A. hydrophila and Pseudomonas sp. generated transconjugants using E. coli J53 as 

recipient strain. Plasmids successfully transferred were assigned to IncF::blaCTX-M-3, 

IncK::blaCTX-M-3, IncI1::blaCTX-M-15 and IncI1::blaCTX-M-1. 

The blaCTX-M-15 gene is the most successfully disseminated blaCTX-M gene and it has 

been mostly associated to the IncF-family but also to IncL/M, IncA/C, IncN and IncI1 

plasmids, as also blaCTX-M-3 genes. The blaCTX-M-1 has been detected also in FII variants, 

and in IncL/M, IncN and IncI1 plasmids (Carattoli 2009, Poirel et al. 2012a). In this work 

we identified also an IncK plasmid carrying a blaCTX-M-3 gene, as confirmed by southern 

blot hybridisation. The blaCTX-M gene that has been mostly associated to this 

incompatibility group is the blaCTX-M-14, but also blaCTX-M-9 and blaCTX-M-10 (Carattoli 2009, 

Valverde et al. 2009). As far as we know the occurrence of IncK plasmids carrying CTX-

M genes have never been described in Portugal. Also, to the best of our knowledge, this is 

the first work reporting IncK::blaCTX-M-3 in A. hydrophila. One transconjugant was not 

assigned to any replicon type screened in this study. The antibiotic susceptibility pattern of 
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this transconjugant revealed a complex resistance phenotype against 5 classes of 

antibiotics: beta-lactams (penicillins, 3
rd

 and 4
th

 generation cephalosporins, carbapenems, 

and monobactam), tetracyclines, quinolones, aminoglycosides and the combination of 

sulfamethoxazole-trimethoprim. Hence, it should be of major interest to fully-sequence and 

analyze its accessory genes. 

In this work we aimed also to understand the resistance mechanisms associated to 

tetracyclines and fluoroquinolone resistance, in both ESBL
+
 and ESBL

-
 strains. Although 

tetracycline use has been restricted in several countries, tetracycline resistance mechanisms 

persist (Lupo et al. 2012). Our data showed that tet(A) and tet(B) were the most frequently 

detected resistance determinant among tetracycline resistant strains. These efflux genes 

have been frequently detected in the same phylogenetic groups as in this work, which 

include Pseudomonas sp., Aeromonas sp. and Escherichia coli strains (Roberts et al. 2012, 

van Hoek et al. 2010) and also in aquatic systems (Tao et al. 2010, Zhang et al. 2009). As 

for fluoroquinolone resistance, three different resistance mechanisms were identified 

among ESBL
+
 and ESBL

-
 strains: amino acid substitutions in quinolones targets (parC), 

enzymatic inactivation (aacA4-cr) and alterations in expression levels of quinolones targets 

(qnrVC4). In two ESBL
+
 strains three different mechanisms were identified, but most 

presented only one. The acetyltransferase gene aacA4-cr was found in nearly one third of 

strains resistant to fluoroquinolones, in both ESBL
+
 and ESBL

-
. Besides being able to 

acetylate aminoglycosides like kanamycin, amikacin and tobramycin, this variant of the 

well-disseminated aacA4, also acetylates ciprofloxacin, giving an advantage to these 

strains by conferring resistance to 2 classes of antibiotics (Poirel et al. 2012b). Association 

of aacA-4-cr with ESBLs (Rodriguez-Martinez et al. 2011) have been reported, for 

instance in an E. coli CTX-M-15-producing strain described in Portugal (Coque et al. 

2008b). 

Surprisingly, in this study the most prevalent variant of the qnr gene was qnrVC4. 

Until now, qnrVC had only been detected in a few studies in Vibrio cholerae (qnrVC1, 

qnrVC2 and qnrVC3), Acinetobacter sp. (qnrVC-like) and in Aeromonas punctata 

(qnrVC4), associated with integrons (qnrVC1, qnrVC-like and qnrVC4) and to a 

chromosomal integrative conjugative element (qnrVC3)
 
(Fonseca et al., 2008; Kim et al. 

2010, Wu et al. 2012, Xia et al. 2010). As far as we know, this was the first time that 

qnrVC genes were detected in Pseudomonas sp. and E. coli strains. Moreover, only 2 out 
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of 9 qnrVC4 genes were associated with integrons, suggesting its association with other 

genetic elements. All deduced amino acid sequences identified in this work were 100% 

homologous to QnrVC4 (accession no. ADI55014). The majority of the strains harboring 

qnrVC4 genes were isolated from polluted water samples (8 out of 9 strains). 

 

3.2.5 CONCLUSIONS 

 

This work highlights the problem associated to multidrug resistant ESBL
+
 strains that 

pose an extra concern since it obviously implies limited therapeutic options. Our data has 

shown that, as in clinical settings, environmental ESBL-producers are often multiresistant 

and that is a result of co-selection mechanisms such as co-resistance (several resistance 

mechanisms in the same genetic platform) and cross-resistance (same resistance 

mechanism for different antibiotics). Integrons and NHR plasmids largely contributed to 

multiresistance among ESBL producers. 

This reinforces the hypothesis that aquatic systems, especially when pressured by 

anthropogenic activities, may act as reservoirs of resistance genes, potentiating the 

dissemination and mobilization of genetic platforms that include several resistance 

determinants, leading to complex phenotypes that may persist even in the absence of 

antibiotics.  
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SUPPLEMENTAL MATERIAL 

           TABLE S1: Primers used in this study 

Primer name Sequence (5’-3’) Reference 

qnrA-F TTC TCA CGC CAG GAT TTG 1 

qnrA-R CCA TCC AGA TCG GCA AA 1 

qnrB-F GGM ATH GAA ATT CGC CAC TG 2 

qnrB-R TTY GCB GYY CGC CAG TCG 1 

qnrS-F GCA AGT TCA TTG AAC AGG GT 2 

qnrS-R TCT AAA CCG TCG AGT TCG GCG 2 

qepA-F CGT GTT GCT GGA GTT CTT C 3 

qepA-R CTG CAG GTA CTG CGT CAT G 3 

tetA-F GCT ACA TCC TGC TTG CCT TC 4 

tetA-R GCA TAG ATC GCC GTG AAG AG 4 

tetB-F TCA TTG CCG ATA CCA CCT CAG 4 

tetB-R CCA ACC ATC ATG CTA TTC CAT CC 4 

tetC-F CTG CTC GCT TCG CTA CTT G 4 

tetC-R GCC TAC AAT CCA TGC CAA CC 4 

tetD-F TGT GCT GTG GAT GTT GTA TCT C 4 

tetD-R CAG TGC CGT GCC AAT CAG 4 

tetE-F ATG AAC CGC ACT GTG ATG ATG 4 

tetE-R ACC GAC CAT TAC GCC ATC C 4 

tetG-F GCG CTN TAT GCG TTG ATG CA 5 

tetG-R ATG CCA ACA CCC CCG GCG 5 

tetM-F GTG GAC AAA GGT ACA ACG AG 5 

tetM-R CGG TAA AGT TCG TCA CAC AC 5 

AAC(6’)-Ib-F TTG CGA TGC TCT ATG AGT GGC TA 6 

AAC(6’)-Ib-R CTC GAA TGC CTG GCG TGT TT 6 

intI1F  CCT CCC GCA CGA TGA TC 7 

intI1R TCC ACG CAT CGT CAG GC 7 

intI2F  TTA TTG CTG GGA TTA GGC 8 

intI2R ACG GCT ACC CTC TGT TAT C 8 

intI3F  AGT GGG TGG CGA ATG AGT G 8 

intI3R TGT TCT TGT ATC GGC AGG TG 8 

5'-CS GGC ATC CAA GCA GCA AG 9 

3'-CS AAG CAG ACT TGA CCT GA 9 

qacE-F ATC GCA ATA GTT GGC GAA GT 10 
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qacE-R CAA GCT TTT GCC CAT GAA GC 10 

sulR1 AAA AAT CCC ATC CCC GGR TC 11 

orf513_6F ATG GTT TCA TGC GGG TT 12 

orf513_7R CTG AGG GTG TGA GCG AG 12 

RH506 (tniR) TTC AGC CGC ATA AAT GGA G 13 

aadA1R GCC ACG GAA TGA TGT CGT CG 14 

gyrA-F AAA TCT GCC CGT GTC GTT GGT 15 

gyrA-R GCC ATA CCT ACG GCG ATA CC 15 

parC-F CTG AAT GCC AGC GCC AAA TT 15 

parC-R GCG AAC GAT TTC GGA TCG TC 15 

CTX-F SCV ATG TGC AGY ACC AGT AA 16 

CTX-R GCT GCC GGT YTT ATC VCC 16 

B/O-F GCG GTC CGG AAA GCC AGA AAA C 17 

B/O-R TCT GCG TTC CGC CAA GTT CGA 17 

FIC-F GTG AAC TGG CAG ATG AGG AAG G 17 

FIC-R TTC TCC TCG TCG CCA AAC TAG AT 17 

A/C-F GAG AAC CAA AGA CAA AGA CCT GGA 17 

A/C-R ACG ACA AAC CTG AAT TGC CTC CTT 17 

P-F CTA TGG CCC TGC AAA CGC GCC AGA AA 17 

P-R TCA CGC GCC AGG GCG CAG CC 17 

T-F TTG GCC TGT TTG TGC CTA AAC CAT 17 

T-R CGT TGA TTA CAC TTA GCT TTG GAC 17 

K/B-F GCG GTC CGG AAA GCC AGA AAA C 17 

K/B-R TCT TTC ACG AGC CCG CCA AA 17 

W-F CCT AAG AAC AAC AAA GCC CCC G 17 

W-R GGT GCG CGG CAT AGA ACC GT 17 

FIIA-F CTG TCG TAA GCT GAT GGC 17 

FIIA-R CTC TGC CAC AAA CTT CAG C 17 

FIA-F CCA TGC TGG TTC TAG AGA AGG TG 17 

FIA-R GTA TAT CCT TAC TGG CTT CCG CAG 17 

FIB-F GGA GTT CTG ACA CAC GAT TTT CTG 17 

FIB-R CTC CCG TCG CTT CAG GGC ATT 17 

Y-F AAT TCA AAC AAC ACT GTG CAG CCT G 17 

Y-R GCG AGA ATG GAC GAT TAC AAA ACT TT 17 

I1F CGA AAG CCG GAC GGC AGA A 17 

I1-R TCG TCG TTC CGC CAA GTT CGT 17 

X-F AAC CTT AGA GGC TAT TTA AGT TGC TGA T 17 
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X-R TGA GAG TCA ATT TTT ATC TCA TGT TTT AGC 17 

HI1-F GGA GCG ATG GAT TAC TTC AGT AC 17 

HI1-R TGC CGT TTC ACC TCG TGA GTA 17 

N-F GTC TAA CGA GCT TAC CGA AG 17 

N-R GTT TCA ACT CTG CCA AGT TC 17 

HI2-F TTT CTC CTG AGT CAC CTG TTA ACA C 17 

HI2-R GGC TCA CTA CCG TTG TCA TCC T 17 

L/M-F GGA TGA AAA CTA TCA GCA TCT GAA G 17 

L/M-R CTG CAG GGG CGA TTC TTT AGG 17 

Frep-F TGA TCG TTT AAG GAA TTT TG 17 

Frep-R GAA GAT CAG TCA CAC CAT CC 17 

ERIC1R ATG TAA GCT CCT GGG GAT TCA C 18 

ERIC2 AAG TAA GTG ACT GGG GTG AGC G 18 

qnrVC_F GGA TAA AAC AGA CCA GTT ATA TGT ACA AG This study* 

qnrVC_R AGA TTT GCG CCA ATC CAT CTA TT This study 

 

* PCR reaction mixtures (25 μl) had the following composition: 1× PCR buffer (PCR buffer with 

(NH4)2SO4), 3 mM MgCl2, 5% dimethylsulfoxide, 100 μM each nucleotide, 7.5 pmol of each primer, 0.5 U 

of Taq polymerase, and 50–100 ng of purified DNA. The temperature profile was as follows: initial 

denaturation (94ºC for 9 min); 30 cycles of denaturation (94ºC for 30 s), annealing (48ºC for 30 s), and 

extension (72ºC for 1 min); and a final extension (72ºC for 10 min); 
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3.3 

RESISTANCE TO CARBAPENEMS IN RIVER WATER BACTERIA: 

POLLUTED VS. UNPOLLUTED ENVIRONMENTS 

 

Abstract 

Carbapenems are last-resort antibiotics for handling infections caused by multiresistant bacteria. The 

incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have 

emerged. Despite its public health relevance, the dissemination of carbapenems resistance in the 

environment has been overlooked. The main goals of this research were to assess the prevalence and 

diversity of carbapenem-resistant bacteria in polluted and unpolluted rivers and to study the diversity of 

carbapenemase genes. The study was conducted in 11 rivers in Portugal. Imipenem-resistant bacteria 

incidence was higher in polluted rivers. Imipenem-resistant strains (n=110) were identified as 

Pseudomonas spp., followed by Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium 

haemolyticum, Shewanella xiamenensis and Enterobacteriaceae members, with no clear differences 

between polluted and unpolluted rivers in terms of phylogenetic diversity. High levels of beta-lactams 

resistance were observed in both environments with slightly higher numbers of strains resistant to 

quinolones, aminoglycosides, chloramphenicol and sulfamethoxazole/trimethoprim in polluted rivers. 

Multiresistance was observed in 70% of strains, and resistance to all antibiotic classes tested (6 classes) 

was higher among isolates from polluted sources. The blaVIM-2 was detected in 5.45% of strains, all 

isolated from polluted rivers. Integrons were identified in Pseudomonas spp., with gene cassettes 

encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b) and beta-lactams 

(blaVIM-2). Carbapenems resistance was mostly associated with intrinsically-resistant bacteria. 

Nevertheless results show that resistance to carbapenems is being enhanced by anthropogenic pressures. 

As carbapenems resistance is still at an early stage, it is important to carry on monitoring these 

environments, to identify the dissemination promoters and so outline strategies to minimize this process. 
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3.3.1. INTRODUCTION  

 

Over the years, the extensive use of antibiotics beyond medical practices has 

increased not only the prevalence of antibiotic-resistant bacteria and antibiotic-

resistance genes but also the load of antibiotics discharged in the environment (Baquero 

et al. 2008, Lupo et al. 2012, Martinez 2009). Aquatic systems are the main collectors 

of antibiotics, mostly still in an active form, as well as of other compounds human-

originated (e.g. disinfectants, metals) that accumulate and persist throughout time 

(Baquero et al. 2008, Lupo et al. 2012, Martinez 2009, Martinez 2009a, Taylor et al. 

2011). Although antibiotics might remain in low concentrations, their presence, along 

with these other compounds, impose important selective pressures (Andersson and 

Hughes 2012). Adding the fact that there are antibiotic producers and/or bacteria that 

are intrinsically resistant to several antibiotics, these environmental reservoirs facilitate 

the spread of multidrug resistance features to human pathogenic bacteria (Lupo et al. 

2012, Taylor et al. 2011). It has already been shown that anthropogenic pressures 

promote antibiotic resistance spread in the environment and that mobile genetic 

elements play an important role on these events (Tacão et al., 2012; Tacão et al., 2014; 

Taylor et al. 2011). Hence, aquatic systems must not be neglected when evaluating 

antibiotic resistance dispersion.  

Carbapenems such as imipenem, meropenem and ertapenem are considered last-

resort antibiotics, commonly applied to treat severe infections when all other therapeutic 

options fail (Bush 2013). In some countries, including Portugal, carbapenems use is still 

limited to hospital settings (Henriques et al. 2012). However, in the latter years the 

prevalence of bacterial resistance to carbapenems has continuously been increasing and 

while some resistance mechanisms are still geographically constrained, others are 

spread worldwide (Patel and Bonomo 2013). The most common carbapenem resistance 

mechanism reported in Gram-negative bacteria is the production of carbapenemases.  

Clinically-relevant carbapenems-hydrolyzing beta-lactamases have been detected 

mostly in Enterobacteriaceae but there are also reports of carbapenemase production in 

other clinically important genera such as Pseudomonas and Acinetobacter (Bush 2013). 

Carbapenemases belong to 3 of the Ambler classes: class A (e.g. KPC), class B (e.g. 

VIM, NDM) and the class D (e.g. OXA-48) (Bush 2013).  
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Despite the fact that environmental resistance dissemination has been recognized as 

a major public health problem, the study of carbapenem resistance dissemination and 

the diversity of carbapenemases-encoding genes in the environment has been 

overlooked. Even so, carbapenemases have been described in environmental isolates, 

and in fact some have been detected only in environmental strains as for example BIC-1 

in Pseudomonas fluorescens (Girlich et al. 2010),and Sfh-I and SFC-1 in Serratia 

fonticola (Henriques et al. 2004, Saavedra et al. 2003). On the other hand, clinically-

relevant carbapenemases have also been identified in strains isolated from different 

environmental sources, such as KPC (Chagas et al. 2011, Picão et al. 2013, Poirel et al. 

2012), VIM (Chouchani et al. 2013, Quinteira et al. 2005, Quinteira et al. 2006), IMP 

(Chouchani et al. 2013) and NDM (Isozumi et al. 2012, Walsh et al. 2011, Zhang et al. 

2013) detected in strains isolated from rivers and/or waste waters. Moreover, for several 

carbapenems-hydrolyzing beta-lactamases the putative origin has been acknowledged to 

species that are commonly found in natural settings. Two examples are the class D 

carbapenemases OXA-23 in Acinetobacter radioreducens (Poirel et al. 2008) and OXA-

48 in Shewanella spp. (Poirel et al. 2004, Tacão et al. 2013). 

The majority of these observations resulted from large screening investigations 

where a few carbapenem-resistant strains were identified. Few studies have focused 

specifically in the study of bacterial resistance towards these last-resort antibiotics in 

natural environments (Henriques et al. 2012) and so data on the diversity of 

carbapenem-resistant bacteria and their resistance mechanisms in these settings is still 

scarce. 

The main goals of this research were to assess the prevalence and diversity of 

carbapenem-resistant bacteria in polluted and unpolluted rivers and to study the 

diversity of carbapenemase encoding genes. 
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3.3.2 MATERIAL AND METHODS 

 

3.3.2.1 Sample collection  

 

Water samples were collected in 12 locations in 11 rivers in the Vouga River basin, 

located in central Portugal. These sampling sites are impacted by different pollution 

sources, of agricultural, industrial and domestic origins. Previously analyzed physical, 

chemical and microbiological parameters showed that these rivers displayed different 

levels of superficial water quality, from unpolluted to polluted characteristics: 3 rivers 

were classified as polluted and 9 as unpolluted, according to the national legislation for 

water quality categorization (for details see Tacão et al. 2012). Water was collected in 

sterile bottles (7L) from 50 cm below the water surface and kept on ice for 

transportation.  

 

3.3.2.2 Enumeration and selection of imipenem-resistant bacteria 

 

Water samples were filtered in sterile 0.45-μm-pore-size cellulose ester filters, and 

the membranes placed on MacConkey agar plates supplemented with 8 μg/ml of 

imipenem. MacConkey medium was used to select for Gram-negative phylogenetic 

groups that are currently the greatest threats in terms of carbapenemase resistance 

(Nordmann et al., 2011; Bush, 2013). The total filtered volumes varied from 1 mL to 

500 mL, according to preliminary studies conducted in each sampling site. Plates 

without an antibiotic supplement were used to determine the proportion of imipenem-

resistant bacteria. Plates were incubated at 37ºC for 16 h. Colony counting was done in 

triplicate. Individual imipenem-resistant colonies were purified and stored in 20% 

glycerol at −80ºC.  
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3.3.2.3 Molecular typing and identification of imipenem-resistant isolates 

 

BOX-PCR was used to type all isolates as previously described (Tacão et al., 

2012). PCR products were loaded in 1.5% agarose gels for electrophoresis and banding 

patterns were analyzed with the software GelCompar II version 6.1 (Applied Maths, 

Belgium, available from http://www.applied-maths.com/). Similarity matrices were 

calculated with the Dice coefficient and cluster analysis of similarity matrices was 

performed by the unweighted pair group method using arithmetic averages (UPGMA; 

Sneath and Sokal, 1973). Isolates displaying different BOX profiles were identified by 

16S rRNA gene sequencing analysis with primers and PCR conditions as previously 

described (Tacão et al., 2012). PCR products were purified with DNA Clean & 

Concentrator (Zymo Research, USA) following manufacturer’s instructions, and used as 

template in the sequencing reactions. Online similarity searches were performed with 

the BLAST software at the National Center for Biotechnology Information website 

against the GenBank database. Identification was confirmed with the EZTaxon tool available at 

http://www.ezbiocloud.net/eztaxon#, using on average 1200 bp. 

 

3.3.2.4 Antibiotic susceptibility testing 

 

Antibiotic susceptibility patterns were determined by the agar disc diffusion method 

on Mueller–Hinton agar, against 14 antibiotics from 6 classes: beta-lactams (penicillins, 

monobactams, carbapenems, beta-lactam/beta-lactamase combination and 3
rd

 and 4
th

 

generation cephalosporins), quinolones, aminoglycosides, phenicols, tetracyclines and 

the combination sulfamethoxazole/trimethoprim. After 24 h of incubation at 37ºC, 

results were analyzed following the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) guidelines (EUCAST 2014). In the lack of EUCAST 

information, the Clinical Laboratory Standards Institute criteria were used (CLSI 2012). 

Detection of extended-spectrum beta-lactamase (ESBL) production was carried out by a 

clavulanic acid combination disc method based on comparing the inhibition zones of 

cefpodoxime (10 μg) and cefpodoxime-plus-clavulanate (10/1 μg) discs (Oxoid, UK).  
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3.3.2.5 PCR amplification of antibiotic resistance determinants 

 

Genes conferring resistance to beta-lactams (blaSHV, blaTEM, blaSPM, blaAIM, blaGIM, 

blaDIM, blaIMP, blaVIM, blaKPC, blaGES, blaNDM, blaCphA-like, blaL1, blaCTX-M, blaPER, 

blaVEB), to tetracycline [tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(O) and tet(M)] 

and fluoroquinolones (qnrA, qnrB, qnrVC, and aacA4-cr) were inspected by PCR using 

previously described primers and conditions (see Table 1). Results were confirmed by 

sequencing.  

 

  TABLE 1: Primers used in this study. 

Resistance to Primers targeting genes References 

Beta-lactams blaSHV Henriques et al. 2006 

 blaTEM Speldooren et al. 2006 

 blaGES, blaVEB, blaPER, blaKPC Dallenne et al. 2010 

 blaIMP, blaVIM Henriques et al. 2006 

 blaAIM, blaSPM, blaGIM, blaDIM, blaNDM Poirel et al. 2011 

 blaCTX-M Lu et al. 2010 

 blaL1 Avison et al. 2001 

 blaCphA-like Henriques et al. 2006 

Quinolones qnrA, qnrB Cattoir et al. 2007 

Guillard et al. 2011 

 qnrVC Tacão et al. 2014 

 aacA4-cr Park et al. 2006 

Tetracyclines tet(A),  tet(B),  tet(C),  tet(D),  tet(E) Nawaz et al. 2006 

 tet(G),  tet(M),  tet(O) Ng et al. 2001 

 

 

3.3.2.6 Integron screening and characterization 

 

Integrase screening was performed for intI1 and intI2 genes (Henriques et al. 2006). 

The variable regions of integrase-positive strains were further amplified by PCR as 

described before (Tacão et al. 2014) and sequenced.  
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3.3.2.7 Statistical analysis 

 

Statistical analysis was performed by two-sample t-test using GraphPad Prism for 

Windows (GraphPad Software, San Diego, CA, USA).To assess correlations between 

antimicrobial susceptibility profiles and the isolation source (polluted vs. unpolluted), a 

cluster analysis was performed. For that results were converted into a binary matrix (1, 

resistant to the antibiotic; 0, susceptible to the antibiotic). Similarity matrices were 

calculated using the Bray-Curtis coefficient and cluster analysis was performed using 

UPGMA. The analysis was performed with the PRIMER 6 software (Clarke 2006).  

 

3.3.2.8 Nucleotide sequence accession numbers 

 

All the nucleotide sequences stated in this work have been deposited in the 

GenBank database under the accession numbers KJ396795–KJ396890 (16S rRNA gene 

sequences), KJ620481 - KJ620486 (blaVIM genes from bacterial isolates), KM495226 - 

KM495239 (blacphA genes from bacterial isolates) and KM495240 - KM495266 (blaL1 

genes from bacterial isolates) 

 

3.3.3 RESULTS 

 

3.3.3.1 Prevalence and phylogenetic diversity of imipenem-resistant bacteria 

 

Bacterial counts on MacConkey agar were on average 10
5
 CFU/100mL of riverine 

water of which 0.19% grew on MacConkey agar supplemented with imipenem 

(1.87X10
2
 CFU/100mL). Comparing bacterial counts in polluted and unpolluted rivers, 

higher prevalence of imipenem-resistant bacteria was observed in polluted rivers, with 

0.34% vs. 0.03% in unpolluted rivers, although not statistically significant. Among 

polluted rivers, higher numbers (statistically significant, p< 0.05) were observed in the 

water of the only river that was classified as extremely polluted, showing high values 
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for several water quality parameters previously determined (Tacão et al., 2012), which 

include high phosphates and ammonia concentrations (2.7 mg/L and 5.5 mg/L, 

respectively), high load of fecal streptococci, total and fecal coliforms (all above 500 

CFUs/100 mL). The prevalence of carbapenem-resistant bacteria in this river was the 

highest observed in this study, with 20.5 UFCs/mL.  

Clonal relationships among imipenem-resistant isolates (n=184) were evaluated by 

BOX-PCR, and 110 isolates displaying unique BOX profiles were selected for 

sequencing analysis of 16S rRNA gene. Identification results are shown in Table 2.  

Overall, the most frequent genus with 41.8% of the total number of strains, was 

Pseudomonas (P. geniculata, P. beteli, P. hibiscicola, P. aeruginosa, P. monteilli, P. 

protegens, P. otitidis, P. putida, P. taiwanensis and Pseudomonas sp.), followed by 

Stenotrophomonas maltophilia with 24.5%, Aeromonas adding 20% (A. veronii, A. 

hydrophila, A. jandaei, A. australlensis), Chromobacterium haemolyticum with 8.2% 

and finally both with 2.7%, Shewanella xiamenensis and Enterobacteriaceae members 

(Enterobacter ludwigii, Enterobacter asburiae and Providencia alcaligenes). There 

were no relevant differences between polluted and unpolluted rivers in terms of the 

phylogenetic distribution of the retrieved carbapenem-resistant strains (Table 2). 

 

3.3.3.2 Antimicrobial susceptibility testing  

 

Levels of resistance of isolates from polluted and unpolluted rivers are shown in 

figure 1. Overall, imipenem-resistant strains showed resistance to ampicillin and to both 

carbapenems tested (imipenem and ertapenem). Also 88.2% of total strains showed 

resistance to the 3
rd

 generation cephalosporin cefotaxime and 62.7% to the 4
th

 

generation cephalosporin cefepime. For non-beta-lactam antibiotics, higher resistance 

levels were observed against aminoglycosides (particularly against kanamycin with 

68.2% resistant isolates), followed by resistance towards tetracycline (50.9%), nalidixic 

acid (43.6%), chloramphenicol (43.6%) and sulfamethoxazole/trimethoprim (33.6%). 

No ESBL was detected by the double disc diffusion test.  
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TABLE 2: Phylogenetic affiliation and distribution of bacterial strains among polluted and 

unpolluted rivers. 

 POLLUTED UNPOLLUTED 

Identification 

Nº of 

isolates 

Incidence Nº of 

isolates 

Incidence 

Pseudomonas sp. 4 9.3% 

37.2% 

(n=16) 

0 - 

44.8% 

(n=30) 

Pseudomonas geniculata 3 6.9% 11 16.4% 

Pseudomonas beteli 0 - 5 7.5% 

Pseudomonas hibiscicola 1 2.3% 2 3.0% 

Pseudomonas aeruginosa 3 6.9% 1 1.5% 

Pseudomonas protegens 2 4.7% 7 10.4% 

Pseudomonas otitidis 1 2.3% 4 5.9% 

Pseudomonas putida 1 2.3% 0 - 

Pseudomonas taiwanensis 1 2.3% 0 - 

Stenotrophomonas matophilia 12 27.9% 15 22.4% 

Aeromonas veronii 5 11.6% 

23.3% 

(n=10) 

1 1.5% 

17.9% 

(n=12) 

Aeromonas jandaei 0 - 3 4.5% 

Aeromonas australlensis 0 - 1 1.5% 

Aeromonas hydrophila 5 11.6% 7 10.4% 

Chromobacterium haemolyticum 1 2.3% 8 11.9% 

Shewanella xiamenensis 2 4.7% 1 1.5% 

Enterobacter ludwigii 1 2.3% 

4.6% 

(n=2) 

0 - 

1.5% 

(n=1) 
Enterobacter asburiae 1 2.3% 0 - 

Providencia alcaligenes 0 - 1 1.5% 
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As stated above, high levels of antibiotic resistance were observed towards beta-

lactams in both environments (FIG. 1), and so differences between polluted and 

unpolluted settings were only noticed for resistance to some non-beta-lactam antibiotics.  

 

 

FIG. 1: Prevalence of strains (%) in polluted (P, dark grey) and unpolluted (UP, light grey) river 

water resistant to: AML-amoxicillin, AMC- Amoxicillin + clavulanic acid, CTX- cefotaxime, 

FEP- cefepime, IPM- imipenem, ERT- ertapenem, ATM- aztreonam, NAL- nalidixic acid, CIP- 

ciprofloxacin, KAN- kanamycin, GEN- gentamicin, SXT- sulfamethoxazole-thrimetoprim, 

TET- tetracycline, CHL- chloramphenicol. 

 

Resistance towards quinolones (nalidixic acid and ciprofloxacin), aminoglycosides 

(kanamycin and gentamicin), chloramphenicol and sulfamethoxazole/trimethoprim was 

slightly higher among strains isolated from polluted river water, with Pseudomonas 

strains contributing the most for these observations (FIG. 2).  
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FIG. 2: Prevalence of Pseudomonas strains (%) in polluted (P, dark grey) and unpolluted (UP, 

light grey) river water resistant to: AML-amoxicillin, AMC- Amoxicillin + clavulanic acid, 

CTX- cefotaxime, FEP- cefepime, IPM- imipenem, ETP- ertapenem, ATM- aztreonam, NAL- 

nalidixic acid, CIP- ciprofloxacin, KAN- kanamycin, GEN- gentamicin, SXT- 

sulfamethoxazole-thrimetoprim, TET- tetracycline, CHL- chloramphenicol. 

 

In fact, resistance levels observed among pseudomonads showed clear differences 

between strains isolated from polluted and those from unpolluted river water, 

particularly towards sulfamethoxazole/trimethoprim, ciprofloxacin and kanamycin.  

Multiresistance (defined as resistance to 3 or more classes of antibiotics, including 

beta-lactams) was found in 70% of the strains (n=77). Overall, Pseudomonas spp. 

contributed the most, representing 57.1% of the multiresistant strains, followed by S. 

maltophilia strains with 28.6%. In fact, 95.6% and 84.5% of pseudomonads and S. 

maltophilia strains, respectively, were multiresistant (44 out of 46 Pseudomonas spp. 

and 22 out of 27 S. maltophilia strains). Aeromonads contributed with 8.2% of total 

multiresistance (40.9% of total Aeromonas strains; 9 out of 22). Two out of 3 

Enterobacteriaceae strains were multiresistant. The prevalence of strains resistant 

towards all antibiotic classes tested (6 classes) was higher among isolates from polluted 

than those from unpolluted waters (FIG. 3). Multiresistance phenotypes were not 

identified in neither C. haemolyticum nor S. xiamenensis strains. 
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FIG.3: Clustal analysis of the antibiotic susceptibility profiles of Pseudomonas, Aeromonas, S. 

maltophilia and C. haemolyticum strains isolated from polluted (P) and unpolluted (UP) river 

water, using Bray-Curtis similarity coefficient and UPGMA cluster methods. 

 

 

By comparing polluted vs unpolluted environments by cluster analysis of all the 

antibiotic susceptibility profiles (FIG. 4) we observed that strains group preferentially 

according to their phylogenetic affiliation rather than water quality (i.e. polluted and 

unpolluted). 
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FIG. 4: Prevalence of multiresistant strains (%) in polluted (P, dark grey) and unpolluted (UP, 

light grey) river water resistant to 3 up to 6 classes of antibiotics. 

  

 

3.3.3.3 Occurrence and diversity of antibiotic resistance genes 

 

The imipenem-resistant isolates were further analyzed by PCR with the primer sets 

specific to the antibiotic resistance genes. The carbapenemase genes blaCphA-like were 

detected in 77.3% of Aeromonas spp. (17 out of 22) and the blaL1 gene in all S. 

maltophilia (n=27). blaVIM was detected in 6 Pseudomonas strains isolated from 

polluted waters. 

Sequencing results showed that the 6 blaVIM-positive strains (1 P. putida, 1 

P.monteilii, 1 P. geniculata and 2 Pseudomonas sp.) carried a blaVIM-2 gene. 

Genes conferring resistance to tetracyclines, aminoglycosides or quinolones were 

not detected with the primers used in this study. 

 

3.3.3.4 Integrons characterization 

 

The gene intI1 was detected in 2 Pseudomonas strains (IR35 and IR49) isolated 

from polluted waters, both carrying the carbapenemase gene blaVIM-2. The integrons 

variable regions were analyzed. The gene cassette arrays identified conferred resistance 
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to aminoglycosides (aacA and aacC type genes), trimethoprim (dfrB1b) and beta-

lactams (blaVIM-2). In P. putida IR35 the gene cassette array was aacA7-blaVIM-2-aacC1-

aacA4 and in P. geniculata IR49 was dfrB1b-aacA4-blaVIM-2. The gene cassette array 

blaVIM-2–aacA4 was identified in 4 Pseudomonas spp. strains (IR46, IR52, IR53 and 

IR54) using primers targeting both genes, but no integrase gene was detected.  

 

3.3.4 DISCUSSION 

 

No doubt that the increasing number of antibiotic-resistant bacterial strains is a 

serious public health concern that has been addressed in many studies worldwide. 

Particularly worrying are the growing numbers of clinically-relevant strains resistant to 

last-resort antibiotics such as carbapenems. Despite the clear public health importance, 

few studies have addressed this topic. 

Here, we focused on the riverine carbapenems resistome, in what concerns 

prevalence and diversity of carbapenem-resistant bacteria, resistance genes and 

mechanisms of resistance dissemination, in polluted and unpolluted aquatic 

environments.  

The prevalence of imipenem-resistant bacteria was low. In comparison with the 

incidence of cefotaxime-resistant bacteria (Tacão et al. 2012) calculated for the same 

rivers and sampling period, the proportion of imipenem-resistant isolates was clearly 

inferior (0.18% vs. 4.64%, on average). In a previous study performed in Portugal with 

bacteria from untreated drinking water, results showed also a low prevalence of 

imipenem-resistant bacteria (Henriques et al. 2012). These numbers might be linked to 

carbapenems restrictive administration in Portuguese clinics (Henriques et al. 2012). 

The lack of similar studies in different geographic regions, with more permissive 

carbapenems prescription policies, prevents a comparison that would be of major 

interest.  

Noteworthy, in this study, a very high prevalence of imipenem-resistant bacteria (> 

20%) was detected in the river classified as extremely polluted, indicating that, as 

observed previously for cefotaxime-resistant bacteria (Tacão et al. 2012), anthropogenic 

activities might influence the prevalence of carbapenems resistance in these aquatic 
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systems. This river is impacted by different sources of pollution which include not only 

those of domestic and agricultural origins but also industry related sources (Tacão et al., 

2012). The high levels of imipenem resistance detected in this river might be related to 

co-selection events driven by the presence of other contaminants rather than antibiotics. 

Similar effects were reported in other studies (Baker-Austin et al. 2006, Seiler and 

Berendonk 2012).  

As expected, since bacteria were isolated in imipenem-containing culture media, 

high resistance rates were observed towards beta-lactams. Most commonly, cross-

resistance mechanisms, that is, the same resistance determinant conferring resistance to 

more than one antibiotic, are responsible for this extended phenotype. For example 

metallo-beta-lactamases like VIM or IMP are able to hydrolyze all beta-lactams (Pfeifer 

et al. 2010).  

The isolation of carbapenem-resistant Aeromonas and S. maltophilia was of no 

surprise. These are commonly isolated from aquatic systems and intrinsically resistant 

to carbapenems (Lupo et al.2012, Patel and Bonomo 2013). In S. maltophilia resistance 

results from the expression of blaL1, encoded in a plasmid-like element considered 

intrinsic to this species (Avison et al. 2001). blaL1 was detected in all S. maltophilia 

strains isolated in this study. Likewise, the majority of members of the genus 

Aeromonas show resistance towards carbapenems due to the expression of 

chromosomal class B metallo-beta-lactamase genes like blaCphA (Walsh et al. 2005), 

which was detected in the majority of aeromonads here isolated. 

The majority of imipenem-resistant strains isolated belonged to the genus 

Pseudomonas. Although in general carbapenems (except for ertapenem) are active 

against pseudomonads, several carbapenems resistance mechanisms have been 

described particularly in P. aeruginosa, which is by far the most studied species in this 

genus due to its clinical importance. Pseudomonads might carry one or combinations of 

2 or more resistance mechanisms which include high-level expression of 

chromosomally encoded class C β-lactamase, reduced outer membrane permeability and 

overexpression of efflux pumps with wide substrate specificity (Livermore 2001, 

Mesaros et al. 2007, Strateva and Yordanov 2009). These combinations act differently 

according to the antibiotic molecule (Strateva and Yordanov 2009). Also plasmid-

mediated class A (e.g. BIC-1, GES- and KPC-types) and class B (e.g. IMP- and VIM-
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types) carbapenemases (Patel and Bonomo 2013) have been detected in Pseudomonas 

strains. Recently, a 3-year surveillance study performed with P. aeruginosa isolates 

obtained in hospitals in 14 European countries, showed that, although there was an 

increase in the number of metallo-beta-lactamase producers (most frequently VIM-2), 

the majority carried 1 or more resistance mechanisms, being the loss of OprD (reduced 

permeability) the most common cause for the high minimal inhibitory concentration 

(MIC) values observed (Castanheira et al. 2014). Moreover, combinations of these 

intrinsic mechanisms have been associated to resistance to unrelated classes of 

antibiotics, which might result in resistance to all beta-lactams but also quinolones and 

aminoglycosides (Strateva and Yordanov 2009). Also for the majority of pseudomonads 

analyzed in this study MIC values for ertapenem, meropenem and imipenem were over 

32 µg/mL (data not shown). 

In general, only slight differences were observed between the antibiotic 

susceptibility profiles of strains retrieved from polluted and unpolluted river water, yet, 

when analyzed separately, Pseudomonas spp. isolated from polluted settings presented 

higher resistance levels particularly towards non beta-lactams. Although globally 

multiresistance levels were high, in fact resistance towards 6 classes of antibiotics was 

almost 3 times higher among strains isolated from polluted water. These results show 

evidences that water quality is determining antibiotic resistance levels, i.e., 

anthropogenic pressures are modulating the carbapenems resistome in these aquatic 

environments. 

More than half of strains presenting multiresistance phenotype affiliated with 

Pseudomonas. The majority of these strains presented resistance to several classes of 

non-beta-lactam antibiotics, mostly towards aminoglycosides, quinolones and 

chloramphenicol. In Pseudomonas spp. several resistance determinants have been 

described previously encoding resistance to these antibiotics (Tacão et al. 2014, van 

Hoek et al. 2011). Although we have targeted a large number of these genes none was 

detected by PCR with the primers used in this study, and most probably, intrinsic 

resistance mechanisms are responsible for the phenotypes observed. 

We have detected blaVIM-2 genes 100% identical to those reported in clinics. This is 

the most common VIM variant reported so far in clinical settings worldwide (Patel and 

Bonomo 2013), including Portugal although sporadically (Nordmann et al. 2011, 
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Cantón et al. 2012). The blaVIM-2 was identified as gene cassette included in arrays with 

other resistance genes, as frequently described (Patel and Bonomo 2013). Hence, with 

this multiresistance apparatus several classes of antibiotics are covered. Both gene 

cassette arrays have been already described in clinical P. aeruginosa strains 

(http://integrall.bio.ua.pt; Moura et al. 2009). Although the prevalence of these usually 

acquired genes is still low in these water bodies, their presence suggest that the 

dissemination of acquired carbapenems resistance is at an early stage. Their association 

to mobilizable genetic platforms simplifies their dispersion and the fact that blaVIM-2 

genes were detected only in strains isolated from polluted river water alert to the fact 

that anthropogenic pressures can haste these events. 

 

3.3.5 CONCLUSIONS 

 

The prevalence of carbapenem-resistant bacteria in aquatic environments is still low 

and mostly related to the presence of intrinsically resistant bacteria, at least in countries 

where carbapenems prescription policies are restrictive, as in Portugal. However we 

gathered evidences that show that the dissemination of carbapenems resistance might be 

accelerated by human-related pressures.  

These findings warn for the relevance of monitoring anthropogenic activities, 

which include contaminants disposal in these environments, comprising not only 

antibiotics but also antibiotic resistance genes, antibiotic resistant bacteria, and other 

pollutants such as metals and disinfectants. These contaminants have been proven to 

promote also antibiotic resistance dissemination, with mobile genetic elements as main 

mediators.  

Hence, since carbapenems resistance dissemination is apparently at its initial phase, 

it gives the opportunity to monitor these environments and to identify and minimize the 

key human-derived negative impacts that are reducing water quality continuously and 

consequently promoting resistance dissemination.  
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3.4 

ENVIRONMENTAL Shewanella xiamenensis STRAINS THAT CARRY blaOXA-48                

OR blaOXA-204 GENES: ADDING PROOF FOR blaOXA-48-like GENES ORIGIN 

 

The chromosome-encoded beta-lactamases of Shewanella spp. have been recognized 

as progenitors of blaOXA-48-like genes (Poirel et al. 2012). The analysis of available genome 

sequences of Shewanella spp. showed the presence of blaOXA-48-like genes in their 

chromosome with at least 80% identity to blaOXA-48 (Zong 2012). Although initially 

considered as geographically restricted, it has now been demonstrated that the spread of the 

blaOXA-48 gene is one of the greatest concerns in terms of antibiotic resistance (Patel and 

Bonomo 2013). In fact, since its first description less than a decade ago (Poirel et al. 2004), 

blaOXA-48-like genes have been reported worldwide (Poirel et al. 2012, Patel and Bonomo 

2013). Several variants of blaOXA-48 genes have been identified in Enterobacteriaceae 

strains, mostly isolated from clinical settings. So far, blaOXA-181 (Potron et al. 2011), 

blaOXA-48b and blaOXA-199 (Zong 2012) have been reported in S. xiamenensis strains.  

The OXA-204 enzyme was recently described in Klebsiella pneumoniae clinical 

isolates in Tunisia. Its substrate profile is similar to OXA-48, from which differs by only 

two amino acids (Poirel et al. 2013). The origin of blaOXA-204 was not identified before. 

Here we report the isolation of three S. xiameniensis strains from river water in Portugal, 

one of which carried the blaOXA-204 gene. Strains IR24, IR33 and IR34 were isolated from 

rivers (Tacão et al. 2012) in MacConkey agar plates supplemented with 8 μg/ml of 

imipenem and identified by 16S-rDNA sequencing as S. xiamenensis. Sequencing of the 

blaOXA-48-like genes amplified by PCR using previously described primers (Zong 2012) 

revealed that these strains carried either a blaOXA-48b (IR24 and IR33) or a blaOXA-204 gene 

(IR34). 

Antimicrobial susceptibility and MICs were determined in Mueller-Hinton agar plates 

at 37ºC and interpreted according to the CLSI guidelines (CLSI 2012). Results are shown 

in table 1. All three isolates were resistant to penicillins and carbapenems but susceptible 

to 3
rd

 generation cephalosporins and fluoroquinolones. MICs of ertapenem, imipenem and 
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meropenem for OXA-204-producing strain were at least 4 times higher than those 

determined for the OXA-48-producing strains. Moreover, MICs for carbapenems were also 

higher than those previously described for K. pneumoniae carrying blaOXA-204 (6). 

To investigate the genetic context, primers were designed targeting regions commonly 

described as flanking blaOXA-48-like genes in Shewanella spp. (Zong 2012): upstream a gene 

encoding peptidase C15 (C15_fwd: 5’- TTACGGCCTGGGAAGTGTTC-3’) and 

downstream the lysR gene (lysR_rev: 5’- AAGGGATTCTCCCAAGCTGC-3’) which 

codes for a putative LysR transcriptional regulator. Sequencing of the amplified region 

revealed an identical context for both blaOXA-204 and the blaOXA-48 genes, presenting 

upstream the C15 gene and downstream the lysR gene (accession numbers KC902850- 

KC902852). This constitutes the first report on S. xiamenensis strains carrying a blaOXA-204 

gene suggesting that the emergence of different blaOXA-48-like genes probably had origin in 

different S. xiamenensis strains. Also it suggests the participation of diverse mobilization 

events and mechanisms in the transfer of blaOXA-48-like genes from Shewanella spp. to 

Enterobacteriaceae. Whereas ISEcp1 has been identified preceding the blaOXA-204 and 

blaOXA-181 gene, the IS1999 has been found upstream blaOXA-48 genes (Poirel et al. 2012). 

Moreover, it is of great relevance to acknowledge that these genetic events may have 

occurred in natural environments, reinforcing the importance of aquatic systems on the 

evolution and spread of antibiotic resistance. 

 

TABLE 1: Resistance phenotype and MICs of carbapenems for S. xiamenensis strains 

Strain::blaOXA-48-like gene Resistance phenotype MIC (µg/ml) 

ERT IMP MER 

S. xiamenensis IR24::blaOXA-48 AML AMC IPM ERT ATM 8 (R) 4 (R) 2 (I) 

S. xiamenensis IR33::blaOXA-48 AML AMC CTX IPM ERT ATM 8 (R) 4 (R) 1 (S) 

S. xiamenensis IR34::blaOXA-204 AML AMC IPM ERT NA >32 (R) >32 (R) 8 (R) 

AML- amoxicillin, AMC – amoxicillin + clavulanic acid, ATM- aztreonam, CTX- cefotaxime, ERT - ertapenem, IPM- imipenem, MER – meropenem, 

NAL- nalidixic acid 
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3.5 

CULTURE-INDEPENDENT METHODS REVEAL HIGH DIVERSITY OF       

OXA-48-LIKE GENES IN AQUATIC ENVIRONMENTS 

 

Abstract 

The carbapenemase OXA-48 was identified for the first time in 2001 and is now one of the greatest concerns 

in terms of antibiotic resistance. While many studies report clinical OXA-48-like producers, few reports refer 

blaOXA-48-like genes in environmental bacteria. The main goal of this study was to evaluate the diversity of 

blaOXA-48-like genes in aquatic systems, using culture-independent approaches. For that, environmental 

DNA was obtained from riverine and estuarine water and used to construct clone libraries of blaOXA-48-like 

gene PCR amplicons. blaOXA-48-like libraries from river and estuarine water DNA comprised 75 and 70 

clones, respectively. Sequence analysis showed that environmental blaOXA-48-like genes span a broader 

diversity than that so far observed in clinical settings. In total, 50 new OXA-48 variants were identified as 

well as sequences identical to previously reported OXA-48, OXA-181, OXA-199, OXA-204 and OXA-162. 

These results reinforce that natural systems have been undervalued in what concerns antibiotic resistance-

related investigations. Also strengthen the risk associated to natural reservoirs of blaOXA-48-like that persist 

and disseminate successfully, and that may pose a serious antibiotic resistance threat. The variants of 

blaOXA-48 here described should be taken into account when designing molecular strategies for detecting this 

gene. 
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3.5.1 INTRODUCTION 

 

The class D OXA carbapenemases comprises a diverse group of enzymes that have 

been identified mostly in outbreaks of carbapenem-resistant Acinetobacter spp. (e.g. OXA-

23, OXA-24, OXA-40, and OXA-58), Pseudomonas spp. (OXA-50) and 

Enterobacteriaceae (OXA-48) (Evans and Amyes, 2014). Species-specific class D 

carbapenemases have also been identified like the OXA-60 family, naturally present in the 

genome of Ralstonia pickettii (Girlich et al. 2004), and OXA-62 in Pandoraea pnomenusa 

(Schneider et al. 2006). 

The carbapenemase OXA-48 was identified for the first time in a clinical Klebsiella 

pneumoniae isolate in Turkey (Poirel et al. 2004). Although initially disseminated mostly 

in Mediterranean countries, nowadays OXA-48 and its variants are an example of widely 

disseminated carbapenemases that have been detected in all continents (Poirel et al. 2012). 

These enzymes hydrolyze penicillins and carbapenems, but not 3
rd

 generation 

cephalosporins (Poirel et al. 2012). However, there are many reports of OXA-48-like-

producers that carry also an extended spectrum beta-lactamase gene, commonly a blaCTX-M-

15 gene. The expression of both genes (blaOXA-48 and blaCTX-M-15) results in resistance to 

most beta-lactams, leading to limited treatment options (Poirel et al. 2012).  

Since its first description blaOXA-48-like genes detection has been restricted to 

Shewanella species (Potron et al. 2011a, Poirel et al. 2012; Zong, 2012, Tacão et al. 2013) 

and Enterobacteriaceae members worldwide (Potron et al. 2011, Poirel et al. 2012; Galler 

et al, 2013, Gomez et al. 2013, Sampaio et al. 2014). Although most reports referred to 

clinical isolates, there are also reports describing OXA-48-producers in Enterobacteriaceae 

isolated from river water (Potron et al. 2011) and wastewater (Galler et al 2013).  

Up to now, 11 OXA-48 variants have been found, differing in 1 to 5 amino acids: 

OXA-48, OXA-162, OXA-163, OXA-181, OXA-199, OXA-204, OXA-232, OXA-244, 

OXA-245, OXA-247 and OXA-370 (Poirel et al. 2012; Gomez et al. 2013, Sampaio et al. 

2014).  
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Shewanella spp., the putative origin of OXA-48-like genes, are mostly identified in 

aquatic ecosystems, under a wide range of environmental conditions. Furthermore some 

members of this genus are increasingly being linked to cases of human infections, acquired 

mostly after exposure to water through professional- or leisure-related activities (Janda and 

Abbot, 2014). So far, the gene variants blaOXA-48, blaOXA-199 and blaOXA-204 have been 

detected in shewanellae (Potron et al. 2011a, Zong, 2012; Tacão et al. 2013). 

Presumptively other Shewanella strains carrying diverse blaOXA-48-like genes are expected to 

be present in aquatic systems.  

Although there have been reports on OXA-48-like carbapenemases worldwide, it has 

been pointed out that the spread of this beta-lactamase is silent due to the difficulties on its 

detection. In fact, OXA-48-producers show low Minimal Inhibitory Concentrations (MIC) 

values for carbapenems, which might be masking their presence leading to an 

underestimation of its dispersion (Poirel et al. 2012). Therefore, molecular methods have 

been pointed out as liable alternatives for the recognition of OXA-48-like producers (Poirel 

et al. 2012).  

The study of the diversity of blaOXA-48-like genes is important for elaborating molecular-

based strategies for their rapid detection. Also unrevealing the diversity of these molecular 

determinants can contribute to get insights into their evolution and to anticipate the 

dissemination of new variants of blaOXA-48-like genes. In this study we aimed to evaluate the 

diversity of OXA-48-like class D carbapenemase encoding genes in aquatic systems. In 

order to attain a more broad assessment of gene variety in these environments, we applied 

a culture-independent approach. 

 

3.5.2 MATERIALS AND METHODS 

 

3.5.2.1 Sample collection and environmental DNA extraction  

 

Samples were collected from 3 rivers in the Vouga River basin, located in central 

Portugal. These rivers are highly polluted due to disposals of domestic, industrial and 
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agricultural origins (for more details and rivers location see Tacão et al. 2012). The 

estuarine water was collected from Ria de Aveiro, a mesothrophic estuary located in the 

same basin and highly polluted due to the presence of harbor facilities, aquaculture ponds, 

industrial plants, diffuse domestic sewage inputs and run-off from agricultural fields 

(Azevedo et al. 2012; Henriques et al. 2006). Water was collected into sterile bottles from 

40-50cm below the water surface, and kept on ice for transportation.  

Environmental DNA was purified by filtering 200-500 mL of water through 0.2-µm-

pore-size filters (Poretics Products). Cells were washed from the filter with TE buffer 

(10mM Tris-HCl, 1mM EDTA, pH 8.0) followed by centrifugation (13,000 rpm, 10 min.). 

The pellet was ressuspended in 200 µl TE buffer enclosing 10 mg/ml of lysozyme, 

followed by 1h incubation at 37 ºC, and then frozen in liquid nitrogen and thawed three 

times. DNA extraction continued by using the Genomic DNA Extraction Kit (MBI 

Fermentas, Vilnius, Lithuania) according to the manufacturer’s instructions. Purified DNA 

was stored at -20ºC. 

 

3.5.2.2 Amplification of blaOXA-48-like gene fragments by PCR 

 

The blaOXA-48-like gene fragments were amplified from a pool of environmental DNA 

from rivers and from DNA extracted from estuarine water with the two blaOXA-48-like-

specific primer sets described so far, designed by: (i) Poirel et al. (2011) (fwd: 5’-

GCGTGGTTAAGGATGAACAC and rev: 5’-CATCAAGTTCAACCCAACCG) and (ii) 

Zong (2012) (fwd: 5’ AGCAAGGATTTACCAATAAT and rev: 5’ 

GGCATATCCATATTCATC). The PCR reaction mixtures (25 μL total volume) consisted 

of 6.25 μL NZYTaq 2x Green Master Mix (2.5 mM MgCl2; 200 μM dNTPs; 0.2 U/μL 

DNA polymerase) (NZYtech, Portugal), 16.25 μL of ultrapure water, 0.75 μL of each 

primer (reverse and forward), and 50-100 ng of purified DNA. PCR reactions were 

performed in a MyCycler Thermal cycler (Bio-Rad, USA) with conditions as described by 

Poirel et al. (2011) and Zong (2012). Positive and negative controls were included in each 

PCR reaction. Water was used as negative control and a Shewanella xiamenensis strain 

carrying a blaOXA-48 gene was used as positive control (Tacão et al. 2013). PCR products 
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were analyzed by electrophoresis on a 1.5% agarose gel and stained with ethidium 

bromide. 

 

3.5.2.3 Genomic library construction and analysis 

 

Clone libraries of blaOXA-48-like gene fragments were constructed using the TA Cloning 

Kit, according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) and 

Escherichia coli NZYStar competent cells (NZYTech, Portugal). Clones were screened by 

PCR for the presence of fragments with the expected size, using primers targeting the 

vector (T7 forward: 5’- TAATACGACTCACTATAGGG and M13 reverse: 5’- 

CAGGAAACAGCTATGAC). Amplicons were purified and sequenced. Similarity 

searches in the GenBank database were performed using the BLAST tool with the deduced 

amino acid sequences. A phylogenetic tree was obtained using MEGA, version 6.0 

(Tamura et al.2013). The Shannon index of diversity (H) was calculated for each library by 

using the formula H = −Σ(ni/N) log(ni/N), where ni is the abundance of each blaOXA-48-like 

type and N is the sum of the analyzed clones in each library.  

 

3.5.2.4 Nucleotide sequences 

 

All the nucleotide sequences obtained in this work have been deposited in the 

GenBank database under the accession numbers KJ620426 - KJ620480. 

 

3.5.3 RESULTS AND DISCUSSION 

 

In this study we evaluated the diversity of blaOXA-48-like genes in river and estuarine 

water by culture-independent methodologies.  

From river water DNA it was possible to amplify blaOXA-48-like genes using the two 

primers sets, and both amplicons were used for constructing two libraries. From estuarine 

water DNA a amplification was obtained using the primer set described by Poirel and 
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coworkers (2011), and only this amplicon was used. Overall, three clone libraries of 

blaOXA-48-like genes were constructed. 

A total of 145 inserts with the expected size were sequenced: 75 from the river water 

library (35 amplified with primers described by Zong 2012 and 40 with primers described 

by Poirel et al. 2011) and 70 from the estuarine water library. Gene libraries from river 

water comprised 35 deduced amino acid sequence variants (H = 1.23), from which 31 

corresponded to new amino acid sequences and 4 were 100% identical to previously 

described sequences (i.e. OXA-48, OXA-181, OXA-199 and OXA-204). Both primer sets 

detected blaOXA-48 sequences which were the most abundant in both libraries, in a total 

of 70 clones. Ten variants were only detected by the primer set of Zong (2012) and 19 

variants were exclusively detected by the primer set designed by Poirel et al. (2011).  

The estuarine water library encompassed 22 amino acid sequence variants (H = 0.71), 

19 of which were new and 3 have been already reported (100% identical to OXA-48, 

OXA-162 and OXA-199).  

In total, deduced amino acid sequences obtained from 70 clones were 100% identical 

to OXA-48 (25 sequences from riverine water and 45 from estuarine water). Thirteen 

variants were detected in 2 or more clones and the remaining sequences (45) were detected 

only once in the gene libraries. Overall, 50 new variants were detected, with 1 to 3 amino 

acid differences from OXA-48. Besides OXA-48 and OXA-199, only two other variants 

were common to both the river and estuary libraries (OXA-new14 and OXA-new17).  

The amino acid substitutions in the most common variants when compared to the 

OXA-48 sequence are shown in Figure 1. Table S1 in supplemental material indicates the 

amino acid substitutions in all new OXA-48-like variants found.  

Noteworthy the OXA-48 variants found more frequently were those that are already 

triggering serious health concerns in several hospital settings, which is the case of OXA-48 

that was by far the most frequently detected in both libraries. These results suggest that 

there might be a correspondence between what has been observed so far in hospital sets 

and the environmental blaOXA-48 gene pool. If this is the case, new variants here frequently 

detected, might also emerge in clinical settings.  
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FIG. 1: Deduced amino acid sequence alignment of OXA-48 and the other more abundant 

variants found (identified in 2 or more clones). Dashes indicate identical residues among all the 

amino acid sequences. Amino acid motifs that are conserved among class D beta-lactamases are 

indicated by boxes in grey. Numbering is according to the class D beta-lactamase system 

(DBL) (Couture et al. 1992). 

 

Figure 2 shows a maximum-likelihood dendrogram of representatives of OXA beta-

lactamase families and the deduced amino acid sequences detected in this study in two or 

more clones. Sequences obtained in this study clearly affiliated with previously described 

OXA-48-like class D carbapenemases.  
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FIG. 2: Maximum-likelihood tree based on deduced amino acid sequences of representatives of OXA beta-

lactamases families (OXA-2-, OXA-10-, OXA-23-, OXA-40-, OXA-48-, OXA-51-, OXA-58-, OXA-134a-, 

OXA-143-, OXA-211-, OXA-213-, OXA-214-, and OXA-235-like) and OXA-48-like sequences identified in 

2 or more clones retrieved from gene libraries constructed in this study. Numbers in parentheses indicate the 

number of times that the sequence was found in the libraries. The branch number refers to the percent 

confidences as estimated by a bootstrap analysis with 1,000 replications. 
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The aquatic environments here analyzed are impacted by different pollution sources, 

of domestic, industrial and agricultural origins (Azevedo et al. 2012, Henriques et al. 2006; 

Tacão et al. 2012). Previously reported studies confirmed polluted aquatic systems as 

reservoirs and places for the evolution of antibiotic resistance (Tacão et al. 2012). Besides, 

different strains of S. xiamenensis have been previously isolated from the sampling sites 

included in this study carrying blaOXA-48 and blaOXA-204 genes (Tacão et al. 2013).  

Few studies assessed the presence of OXA-48-like-producers in environmental 

settings, and so it is not possible to clarify if the gene diversity here described is particular 

to these aquatic systems or if these genes are more diverse than expected and commonly 

present in environmental compartments worldwide. As the putative origin of this gene is 

attributed to Shewanella spp., commonly found in aquatic environments, this later 

hypothesis seems plausible.  

Most probably, diverse mobilization events have mediated the transfer of blaOXA-48-like 

genes from Shewanella spp. to Enterobacteriaceae or other still unidentified hosts which 

reinforces the importance of these environmental compartments in the evolution and 

spread of antibiotic resistance. In fact, there are already reports of Enterobacteriaceae 

members isolated from river (Potron et al. 2011) and wastewater (Galler et al. 2013) 

carrying blaOXA-48 genes. Mobilization may have been mediated by diverse mobile genetic 

platforms, previously linked to blaOXA-48-like genes (Poirel et al. 2012). These include 

IncA/C, Inc F-like and Inc L/M and plasmids, but also the ColE-type plasmids which are 

non-conjugative but mobilizable (Poirel et al. 2012, Sidjabat et al. 2013, Sampaio et al. 

2014).  

The hypothesis that the environmental gene pool detected in this study may be a result 

of clinical-related contamination is far less probable since, until now, no blaOXA-48-like 

producer was identified in Portuguese clinical settings. This might be related to the 

national carbapenems prescription policies and awareness campaigns (Henriques et al. 

2012). However, on a worst case scenario, in the particular case of blaOXA-48 genes, what 

might be happening is a silent spread, i.e., undetectable due to the low level resistance to 

carbapenems.  
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By applying environmental DNA-based methodologies both culturable and 

unculturable fractions are covered. However, it is important to acknowledge that by using 

PCR-based methodologies, the diversity found is biased by the primer sets used, which 

were designed based on previous described sequences. In the case of this study it was 

confirmed that different primer sets assessed different sequence variants, thus highlighting 

the need to improve the molecular-based strategies of blaOXA-48 detection. Besides, culture 

independent approaches may detect DNA sequences that do not encode active beta-

lactamases. 

Nevertheless, the molecular approach here applied added relevant information to the 

current knowledge on the diversity of OXA-48-like carbapenemases. 

 

3.5.3 CONCLUSIONS 

 

The diversity of OXA-48-like sequences identified by culture-independent methods 

indicates that the environment and in particular aquatic systems constitute important 

reservoirs of these genes. Also, from this study resulted a list of diverse variants of OXA-

48 genes that should be taken into account when designing molecular strategies for 

detecting this gene. As the diversity of blaOXA-48-like resulting from using different primer 

sets differed, it is advantageous to use more than one set of primers to accurately 

characterize any given sample.  

The observation of such a diverse blaOXA-48-like gene pool in these aquatic systems 

indicates the need of further research in at least 3 lines: identification of the host species, 

assessment of expression and activity of the gene products, and evaluation of the capability 

of dissemination among strains of the variants here reported. Even so, these observations 

may represent a forewarning of blaOXA-48-like genes dissemination.  
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SUPPLEMENTAL MATERIAL 

TABLE S1: Amino acid substitutions and positions in all OXA-48 variants identified. Numbering is according to class D beta-lactamase system 

 

OXA 21 30 33 35 45 72 79 82 92 93 98 99 104 113 120 125 127 131 132 136 140 141 142 144 149 152 154 158 159 167 168 169 170 172 178 183 187 194 195 201 205 209 211 212 222 226 227 229 234 248

-48 V S A F V F I D V F Q T T T V E A G E S H A F Y I N D L D T E Q I F H V S A M G I T Y S W V E D F G

new 1 I

new 2 A

new 3 P

new 4 A G

new 5 A

new 6 V I

new 7 \ C

new 8 D I

new 9 G A

new 10 A

new 11 G

new 12 I G

new 13 A

new 14 L

new 15 S

new 16 V

new 17 L

new 18 A I

new 19 T

new 20 A L

new 21 G

new 22 G T

new 23 V A

new 24 V I E

new 25 L

new 26 A L I

new 27 A A

new 28 A Q

new 29 G A

new 30 A A
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OXA 21 30 33 35 45 72 79 82 92 93 98 99 104 113 120 125 127 131 132 136 140 141 142 144 149 152 154 158 159 167 168 169 170 172 178 183 187 194 195 201 205 209 211 212 222 226 227 229 234 248

-48 V S A F V F I D V F Q T T T V E A G E S H A F Y I N D L D T E Q I F H V S A M G I T Y S W V E D F G

new 31 A C

new 32 I A

new 33 L

new 34 P

new 35 A

new 36 T

new 37 I S

new 38 A

new 39 G

new 40 R

new 41 R

new 42 T V

new 43 G

new 44 V G

new 45 A

new 46 T

new 47 G

new 48 V

new 49 G

new 50 A
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4.1 MAIN CONCLUSIONS 

 

From economic and social viewpoints, multiple factors have been highlighted as 

drivers for the global antibiotic resistance expansion (Shallcross and Davies 2014). Far 

more frequently acknowledge as a central feature impelling increasing levels of global 

antibiotic resistance is the abusive use of antibiotics in clinical settings. In this way, 

these are well recognized hotspots for the acquisition and dissemination of genetic 

determinants of antibiotic resistance. Nevertheless, the range of scenarios where this 

selective pressure is exerted is beyond clinical institutions (Wellington et al. 2013). 

For many years the study of antibiotic resistance among human pathogens has 

absorbed the large majority of investigations. This research focused on the 

consequences to human health that upsurge from the increasing prevalence of antibiotic 

resistant microorganisms, with the consequent inefficacy of relevant drugs used for 

treating serious infections. In recent years there have been an increasing number of 

studies on resistance associated to bacteria present in natural habitats. Several aspects 

justify this recent interest:  

i) many environmental microorganisms are antibiotic producers, thus carrying 

antibiotic resistance mechanisms and contributing for their development on 

adjoining bacteria (Baquero et al. 2008, Baquero et al. 2009, D’Costa et al. 

2011).  

ii) antibiotic resistance can be found even in remote locations or untouched 

environments, where no direct selective pressure is identifiable (Aminov 

2010, D’Costa et al. 2011) suggesting that there are no antibiotic-free 

environments on Earth (Allen et al. 2010) 

iii) it has been shown that currently known genetic determinants of resistance 

encoded other functions in the cell (including antibiotic biosynthesis), which 

later turned useful for dealing with these drugs (Baquero et al. 2009, 

Martinez 2009a). 

iv) the putative origin of several clinically-relevant genetic determinants of 

resistance has been linked to environmental bacteria (Poirel et al. 2002, 

Poirel et al. 2004) 
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v) environmental compartments are continuously influenced by human 

activities, including discharges from diverse sources. Those include 

antibiotics, antibiotic-resistant bacteria, antibiotic resistance genes and other 

contaminants that may co-select for antibiotic resistance (Wellington et al. 

2013). 

Particularly aquatic settings constitute large reactors where the spread, 

dissemination and maintenance of antibiotic resistance may be facilitated (Allen et al. 

2010, Lupo et al. 2012, Taylor et al. 2011). Aquatic environments such as rivers, 

streams or lakes: 

- are impacted by different elements merged in agricultural, domestic and 

industrial discharges;  

- accumulate antibiotics and other compounds, such as detergents or heavy 

metals, that may persist for long periods; 

- collect pathogenic and non-pathogenic bacteria, antibiotic resistant bacteria 

and antibiotic resistance genes, incoming from different origins;  

- allow the mixing of incoming bacterial populations with the resident 

antibiotic producers and/or bacteria intrinsically resistant to antibiotics. 

 For these reasons, studying the resistome of this particular environmental 

compartment is essential to further elucidate the role of human activities in the 

dissemination and persistence of antibiotic resistance, particularly in what concerns 

antibiotics used for treating serious infections caused by Gram-negative bacteria.  

Hence, in this study we have focused on resistance towards 3
rd

 generation 

cephalosporins and carbapenems that are critically important for human health and are 

used in many cases as final treatment options for dealing with infections caused by 

multiresistant strains.  

Over the years the prevalence of bacteria resistant to these last-line drugs has been 

continuously increasing, compromising their efficiency. Although there have been some 

reports focused on bacteria resistant to 3
rd

 generation cephalosporins detected in some 

aquatic compartments, reports dedicated to carbapenem resistance in this particular 

environmental settings are scarce. 
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In this way we have established the hypothesis that aquatic environments, 

particularly rivers, are reservoirs and diffusers of antibiotic resistance and that human 

activities promote these events. To test this hypothesis, we set as main goal to 

characterize and compare the environmental antibiotic resistome in polluted and 

unpolluted river water, particularly in what concerns resistance towards last-resort 

antibiotics. The study focused the hydrographic region of Vouga River basin, which 

encompasses aquatic settings exposed to different anthropogenic impacts.  

Taking into account that less than 1% of environmental bacteria are culturable 

(Allen et al. 2010), we have used culture-dependent coupled with culture-independent 

methodologies to extend our knowledge on the antibiotic resistance profile of the 

microbial community present in these particular environments. 

Globally, several key observations contributed for sustaining the above mentioned 

study hypothesis. Particularly it was possible to state the following main conclusions: 

 

1- Rivers are reservoirs and disseminators of last-resort antibiotic resistance 

determinants 

 

To assess the role of rivers as reservoirs of antibiotic resistance to last-resort 

antibiotics, two bacterial collections were established comprising: 1) bacterial strains 

selected in culture media containing cefotaxime and 2) bacterial strains selected in 

culture media supplemented with imipenem. These culture collections were evaluated in 

what concerns phylogenetic diversity and antibiotic resistance phenotypes and 

genotypes.  

Both cefotaxime- and imipenem-resistant collections included a wide diversity of 

Gram-negative bacteria. We found that the phylogenetic groups that apparently play a 

relevant role in the dissemination of antibiotic resistance in these environmental settings 

include Enterobacteriaceae members (most probably related to faecal pollution), 

Pseudomonas spp. that often presented high levels of resistance to last-resort antibiotics 

and Aeromonas spp. (chapter 3.1 and chapter 3.3).   
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Results showed that cefotaxime resistance was frequently associated to the 

production of extended-spectrum beta-lactamases, while carbapenems resistance was 

mostly related to intrinsic mechanisms such as the production of chromosomally-

encoded carbapenemases (chapter 3.1, chapter 3.2, and chapter 3.3).  

Moreover, clinically-relevant resistance mechanisms were identified among isolates 

from both cefotaxime- and imipenem- resistant bacteria collections, predominantly in 

bacteria isolated from polluted water. These included blaCTX-M-like, blaOXA-48-like and 

blaVIM-2 genes (chapter 3.1, chapter 3.3, chapter 3.4), which have been already linked 

to bacterial strains causing serious infectious diseases outbreaks worldwide (Cantón et 

al. 2012, Patel and Bonomo 2013, Poirel et al. 2012).  

Several evidences were gathered indicating that co-resistance mechanisms are 

frequent in riverine bacteria. Co-resistance mechanisms identified in this study 

included: (i) one resistance gene encoding resistance to different classes of antibiotics 

(e.g. aacA4-cr genes that encode resistance to aminoglycosides and fluoroquinolones); 

(ii) several resistance genes in the same genetic platform (e.g. integrons gene cassettes 

arrays); and (iii) one resistance gene encoding resistance towards all antibiotics included 

in one class (e.g. resistance to all fluoroquinolones due to mutations in the 

topoisomerase gene parC) (chapter 3.1, chapter 3.2). Under antibiotic selective 

pressure these co-resistance mechanisms give an advantage to the microorganism and 

imply that limited therapeutic options would be available for the treatment of infections 

caused by these strains (chapter 3.2). Although it would be expected that carrying 

several resistance genes would have an increasing fitness cost to the bacteria, it has been 

discussed that owing to compensatory events the presence of several resistance genes 

might even increase bacteria fitness (Cantón and Ruiz-Garbajosa 2011). 

As described in clinical settings, multiresistance was often observed in bacteria 

isolated in this study (chapter 3.1, chapter 3.3). Frequently multiresistance was 

associated to the presence of mobile genetic elements carrying genes conferring 

resistance to several antibiotic classes. For example, conjugation experiments showed 

that the multiresistance phenotype registered for blaCTX-M-producers was due to the 

presence of narrow host range (NHR) plasmids, such as IncF, IncK and IncI1, carrying 

several genetic determinants of resistance (chapter 3.2). Furthermore results showed 

higher prevalence of class 1 integrons in ESBL-producers and the presence of identical 
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arrays in different strains. This also suggest that integrons are exchanged and 

disseminated easier among ESBL
+
 strains, playing a relevant role on the dissemination 

of antibiotic resistance in rivers (chapter 3.2). Furthermore, we have found gene 

cassette arrays that are frequently reported worldwide in both clinical and 

environmental samples (e.g. dfrA17-aadA5) but also new arrays (e.g. qnrVC4 – aacA4’-

17) or genetic determinants identified in new hosts (e.g. qnrVC4 in Pseudomonas sp. 

and Escherichia coli.) (chapter 3.2). 

To evaluate risks to human health, the majority of published work regarding 

environmental microorganisms aim to characterize the most problematic pathogenic 

bacteria found in clinical settings. However, these represent a minority when compared 

to the large number and diversity of microorganisms and resistance genes present in the 

environment. Thus, the diversity of resistance mechanism residing within the 

environmental resistome is far from being completely disclosed. In fact, we observed by 

culture-independent methods that the environmental diversity of blaCTX-M-like and 

blaOXA-48-like gene sequences is greater than what has been reported so far in clinical 

settings (chapter 3.1, chapter 3.5).  

 

2- Anthropogenic activities modulate the riverine resistome and potentiate the 

dissemination of bacterial resistance to last-resort antibiotics 

 

In this study it was possible to include river waters classified as polluted and 

unpolluted, considering the physical, chemical and microbiological parameters 

established by the Portuguese law for water quality determination . This classification 

was crucial for the analysis of our results, as also to draw conclusions. 

The prevalence of cefotaxime- and imipenem-resistant bacteria was higher in 

polluted water (chapter 3.1, chapter 3.3).  

In both cefotaxime- and imipenem-resistant bacterial collections, the number of 

multiresistant strains was higher among isolates from polluted environments (chapter 

3.1, chapter 3.3) 
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We have also observed that blaCTX-M-like gene sequences found in unpolluted water 

were similar to ancestral chromosomal genes while in polluted water, besides the higher 

diversity detected, also blaCTX-M sequences were identical to those frequently reported in 

clinical settings (chapter 3.1). These results further reinforce the relevance of water 

pollution in modulating the environmental resistome.  

Concerning resistance to carbapenems, blaCphA and blaL1 were detected in 

Aeromonas spp. and Stenotrophomonas maltophilia, respectively, in both polluted and 

unpolluted waters. However, blaVIM-2 genes which constitute an example of acquired 

resistance to carbapenems, were detected in Pseudomonas sp. strains isolated only from 

polluted river water. 

Results suggest that data on the occurrence and diversity of specific genes may be 

useful to assess ecosystems health and antibiotic resistance evolution. In particular, 

blaCTX-M genes showed good potential as pollution indicators, as also blaVIM-2 genes. 

Source tracking methods must be conducted to link the presence of blaCTX-M or blaVIM-2 

genes to specific sources of contamination. Also, similar studies on other geographical 

sites and different environmental compartments should be performed to validate this 

application.  

 

 

3- Bacterial strains and genes previously identified as the origin of genetic 

determinants of resistance are present in riverine water  

 

An environmental putative origin has been indicated for some clinically-relevant 

resistance mechanisms, including blaCTX-M genes in environmental Kluyvera spp. 

(Poirel et al. 2002) and blaOXA-48 genes in Shewanella spp. (Poirel et al. 2004). In this 

study we have also detected blaOXA-48 and blaOXA-204 genes in Shewanella xiamenensis 

strains, recognized as the putative origin of blaOXA-48-like genes (chapter 3.4). We have 

found for the first time S. xiamenensis strains carrying a blaOXA-204 gene suggesting that 

the emergence of different blaOXA-48-like genes probably had origin in different S. 

xiamenensis strains. Moreover, the genetic context was identical to those previously 

described in other environmental Shewanella spp. (Poirel et al. 2012).  



Final considerations - 4 

 

171 

 

 

Furthermore, as stated above, by culture-independent methodologies we also 

detected in unpolluted water putative blaCTX-M-like ancestral sequences. These findings 

also support the idea that the environmental origin of clinically-relevant resistance 

mechanisms is independent of human actions.  

 

4.2 FINAL CONSIDERATIONS 

 

When studying antibiotic resistance it is of major relevance to widen the range of 

target microorganisms, to include pathogenic but also non-pathogenic naturally 

occurring bacteria. In this context, in contrast with research focused on clinical 

microorganisms, studying environmental bacteria is far more challenging. There are no 

standard methods for isolating microorganisms or growing conditions, as culture media, 

incubation conditions or antibiotic concentration. Also there are no guidelines for 

classifying environmental bacteria as resistant or susceptible using phenotypic-based 

methodologies. Usually, antibiotic susceptibility tests are performed and interpreted 

according to recommendations given by the Clinical and Laboratory Standards Institute 

(CLSI) or the European Committee on Antimicrobial Susceptibility Testing (EUCAST), 

which have been elaborated based solely on clinical microorganisms characteristics. In 

this case, it would be relevant to establish breakpoints for environmental 

microorganisms and have an accurate analysis of the resistance patterns observed in a 

specific environmental compartment. Variations in methodologies presented in studies 

reported so far invalidate comparisons between different environmental compartments 

or locations. 

It is quite important also to expand the variety of environmental compartments 

to consider. So far, reports have focused mainly on characterizing microbial populations 

present in wastewaters/sludge and/or discharge points, and only a few were focused on 

rivers/lakes water or sediments. Taking into account that: (i) rivers are major collectors 

of wastewaters, sludge and agricultural run-offs that enclose antibiotics and other 

compounds, pathogenic and non-pathogenic, antibiotic resistant bacteria and genes, and 

(ii) river water is used for different purposes from leisure to occupational activities. 
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Thus surveillance measures are imperative for maintaining the usefulness and 

sustainability of these water habitats. Comparing results obtained at different 

geographic locations, establish surveillance programs and coordinate information 

collected in environmental compartments worldwide, from locations with restrict to 

more tolerant prescription policies, would also be beneficial. Planning strategies for 

analyzing antimicrobial resistance should consider also all the genetic units that might 

be involved in the maintenance and spread of antimicrobial resistance (genes, genomic 

context, genetic platforms, and clones).  

Although many factors have been contributing to the growing rates of antibiotic 

resistance over the years, still the abusive and inappropriate use of antibiotics is 

repeatedly acknowledged as a central cause for this trend. Hence mitigation strategies 

must be implemented in clinical institutions but also in agriculture settings and the 

environment. The application of antibiotic stewardship programs is important to achieve 

the best clinical outcomes but still decrease the antibiotics selective pressure, in both 

medical and environmental settings. Limiting and/or reducing antibiotic consumption in 

both clinical and agricultural settings (as prophylactics or growth promoters in 

livestock) is crucial for maintaining the efficiency of essential drugs.  

It is also important to monitor and reduce the influx of antibiotics, antibiotic 

resistance genes and bacteria to natural environments, through domestic and hospital 

wastewaters but also from agricultural run-offs.  

Nowadays, the commercial production of antibiotics overcomes their natural 

synthesis, estimated in millions of metric tons per year (Segura et al. 2009). In this way, 

globally humans are the main contributors for the presence of antibiotics in the 

environment (Gillings 2013). Also the disposal of other compounds must be supervised, 

including heavy metals and biocides, which have been proven to contribute for selecting 

antibiotic resistant bacteria (Baker-Austin et al. 2006, Baquero et al. 2008). Finally, the 

load of antibiotic resistant bacteria and antibiotic resistance genes in natural settings 

must also be reduced, as well as the mix of microorganisms from different origins 

should be prevented.  

Overall data gathered in this document indicate that water environments, 

particularly river water, have an important role in the spread and evolution of antibiotic 

resistance. Aquatic systems act as reservoirs of resistance genes that facilitate the 



Final considerations - 4 

 

173 

 

dissemination and mobilization of genetic platforms enclosing several resistance 

determinants. Moreover, results suggest that the dissemination of resistance to broad-

spectrum antibiotics such as cefotaxime and imipenem may be at an earlier stage in 

unpolluted environments, providing the opportunity to monitor these aquatic systems 

and to identify the key human-derived negative impacts that reduce water quality 

continuously and consequently promote resistance dissemination.  

Clinically-relevant genetic determinants of resistance that have already been linked 

to serious outbreaks worldwide were identified mostly in polluted water and in 

association with mobilizable genetic platforms. These observations warn for the 

relevance of monitoring anthropogenic activities in these water habitats. As river water 

is continuously used for diverse human activities, it is essential to maintain water 

quality and the ecosystem equilibrium. 

 Given that the origin of antibiotic resistance is the environmental microbiota, it 

seems relevant to continue exploring natural habitats in order to fully comprehend the 

series of events that lead to spread and dissemination of resistance to human pathogens, 

or even identify new genetic determinants of antibiotic resistance and anticipate future 

problems. 
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