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resumo 
 

 

Esta tese apresenta os resultados do estudo de Scanning Probe 
Microscopia (SPM) de materiais de baterias de ions de litio. As medidas 
foram executadas na cátodos de LiMn2O4 e ânodos de grafite extraidos de 
bateriais de litio comerciais em diferentes estados de carga e fadiga. O 
estudo concentrou-se na medição da distribuição de Li e propriedades de 
transporte dos materiais de eletrodo ativo. Especial atencao tem sido dada a 
influencia do ciclo de fadiga da elevada taxa C na distribuicao especial dos 
ions de Li e coeficiente de difusao. Microscopia de tensão eletroquímica 
(ESM) tem sido usada para acessar Li transporte propriedades em 
nanoescala em cátodos de LiMn2O4. Microscopia de força de sonda Kelvin 
(KPFM) tem sido usada para acessar a distribuição espacial de Li em 
anodos de grafite. 

ESM foi implementada e usada em um modo de única freqüência de 
ressonância o contato pela primeira vez. Análise de relação sinal-ruído foi 
feito para um número de monomodo e multimodo usados no ESM. A análise 
permite estabelecer critérios para um cantilever e uma instalação 
experimental para a detecção mais sensível de deslocamentos superficiais. 

Propriedades da mobilidade dos ions de lition em catodos de bateria 
LiMn2O4 frescos e fatigados foram estudados em nanoescala via ESM, 
espectroscopia de tempo e espectroscopia de tensão de transporte. 
Contribuições como sinal Vegard e non-Vegard ESM foram identificadas em 
ciclos de histerese eletroquímica obtidos em amostras frescas e fatigadas. 
Em cátodos frescos o sinal Vegard dominante, enquanto em amostras 
envelhecidas, a diferente ciclo de histerese indica contribuições adicionais. 
Distribuição espacial não-uniforme do ciclo aberto  eletroquímico em 
partículas de LiMn2O4 foram estudadas nas amostras fatigadas indicando 
mais forte variação do coeficiente de difusão de Li das amostras fatigadas 
em microescala em comparação com a outra amostra. Medições de 
espectroscopia de tempo  revelaram a ausencia de difusidade local em 
amostras fatigadas por mais de duas ordens de magnitude em comparação 
com a outra. Atribui-se tal redução do coeficiente de difusão o acúmulo de 
defeitos de ponto induzida pelo Ciclo de elevada taxa C e acompanhadas de 
instabilidade estrutural. Este mecanismo pode ser especialmente importante 
para ciclo de elevada taxa C. 

Distribuição espacial de Li em cátodos amostras fresca e fatigada 
grafite foi analisaa via KPFM no modo de modulação de amplitude 2-pass. 
Estruturas de superfícies potenciais core-shell e mosaico têm sido 
observadas em ânodos fatigados e frescos, respectivamente. As 
distribuições de superfícies  potenciais observadas foram atribuídas para os 
perfis de concentração Li aparentes em grafite. Distribuição potencial core-
shell tem sido atribuída para o ions remanescentes de Li empilhados em 
partículas de grafite, causando perda irreversível de capacidade. A 
distribuição de potencial de mosaico tem sido atribuída a Li inativo dentro do 
grafite na fase inicial do ciclo. Os resultados corroboram o modelo "radial" 
usado para explicar o mecanismo de desvanecimento de capacidade 
específica a alta taxa de C em baterias de íon-lítio. 
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abstract 

 
This thesis presents the results of Scanning Probe Microscopy 

(SPM) study of Li-ion battery active materials. The measurements have been 
performed on LiMn2O4 cathodes and graphite anodes extracted from 
commercial Li batteries at different states of charge and health. The study 
has been focused on measurements of Li spatial distribution and transport 
properties in the active electrode materials. Special attention has been paid 
to influence of fatigue caused by high C rate cycling on Li spatial distribution 
and local diffusion coefficient. Electrochemical Strain Microscopy (ESM) has 
been used to access Li transport properties at the nanoscale in LiMn2O4 
cathodes. Kelvin Probe Force Microscopy (KPFM) has been used to 
examine Li spatial distribution in graphite anodes.   

ESM has been implemented and used in a single frequency mode 
out of the contact resonance for the first time. Signal-to-noise ratio analysis 
has been performed for a number of single- and multi-frequency modes used 
in ESM. The analysis allowed to establish criteria for a proper cantilever 
choice and an experimental setup for the optimized detection of surface 
displacements via lock-in amplifier.    

Transport properties of Li+ mobile ions in fresh and fatigued LiMn2O4 
battery cathodes have been studied at the nanoscale via ESM using time-
and voltage spectroscopies. Both Vegard and non-Vegard contributions to 
ESM signal have been identified in electrochemical hysteresis loops obtained 
on the fresh and fatigued samples. In fresh cathodes the Vegard contribution 
dominates the signal, while in fatigued samples different shape of hysteresis 
loops indicates additional contributions. Non-uniform spatial distribution of 
the electrochemical loop opening in LiMn2O4 particles studied in the fatigued 
samples indicates stronger variation of Li diffusion coefficients in fatigued 
samples’ as compared to the fresh one. Time spectroscopy measurements 
have revealed suppressed local Li diffusivity in fatigued samples by more 
than two orders of magnitude as compared to the fresh one. We attributed 
such reduction of the diffusion coefficient to the accumulation of point defects 
induced by high C-rate cycling and accompanied structural instability. This 
mechanism can be specifically important for high C-rate cycling. 

Li spatial distribution in fresh and fatigued graphite cathodes has 
been accessed via KPFM using a 2-pass amplitude modulation mode. Core-
shell and mosaic surface potential structures have been observed on the 
fatigued and fresh anodes, respectively. The observed surface potential 
distributions have been attributed to the apparent Li concentration profiles in 
graphite. The core-shell potential distribution has been attributed to the 
remnant Li ions stacked in graphite particles causing irreversible capacity 
loss. The mosaic potential distribution has been attributed to inactive Li 
inside graphite at the starting stage of cycling. The results corroborate the 
“radial” model used to explain the specific capacity fading mechanism at high 
C rate cycling in Li-ion batteries. 
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Chapter 1 

Introduction 

Over the last decades Li-ion batteries have become an integral part of portable 

devices on account of their light weight and compact size. Growth in usability of electric 

vehicles as well as green and wireless technologies has driven continuous development of 

Li-ion cells. Conventional Li-ion batteries are only efficient for low-current applications 

such as mobile devices, but do not satisfy needs of emerging high-power automotive and 

renewable energy applications. Relatively high cycling rates in these applications cause 

faster degradation and lower specific capacity after prolonged use as compared with the 

conventional (low current) applications. 
1
 

Micromechanical effects associated with cycling significantly contribute to fatigue. 

Lithium intercalation and de-intercalation results in volume expansion and contraction as 

well as phase changes in active electrode materials. Resulting mechanical stress can cause 

microcracks, particle fracture, loss of contact among particles, thus leading to a reduction 

of the electrochemically active mass and the consequent capacity decrease. Therefore, a 

thorough understanding of functional properties and degradation mechanisms of electrode 

materials is essential for further development of energy storage technologies. 

Conventional electrochemical methods can hardly be used to study functional 

properties at the scale less than several μm. Existing and emerging Scanning Probe 

Microscopy (SPM) based techniques such as Kelvin Probe Force Microscopy (KPFM) 
2
 

and recently implemented Electrochemical Strain Microscopy (ESM) 
3
 are able to probe 

electric and transport properties of ionically conducting materials down to the nanoscale. 

Wider application and development of these techniques are especially important in view of 

the present trends in reduction of the active particles’ size, often to the nm scale. 

The main goals of this study are to apply these SPM based methods to commercial 

Li-ion battery materials in order to deeper understand microscopic origins of degradation, 

and to further develop the recent ESM method. Electrochemical Strain Microscopy has 

been used to investigate battery degradation mechanisms by measuring mobility of Li in 

active particles at different states of charge and health. Mainly LiMn2O4 cathodes have 
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been studied due to their stability under ambient conditions. The ESM method has been 

implemented in the single frequency out-of-resonance mode for the first time. Question 

about the true origin of the ESM response has been stated. Kelvin Probe Force Microscopy 

has been used to study degradation mechanisms of electrode materials by measuring spatial 

surface potential distribution associated with local Li concentration mainly in the graphitic 

anodes of the same batteries. 

This work has been done within the FP7 Marie Curie Initial Training Network 

"Nanomotion" (grant agreement № 290158, www.nanomotion.eu). 

 

This thesis is organized as follows: 

Chapter 2 briefly overviews basics of the Li-ion battery functionality and 

properties of used active electrode materials. Special attention is paid to physical and 

chemical properties and problems related to degradation of LiMn2O4 cathodes and 

graphitic anodes. 

Chapter 3 introduces principles of Kelvin Probe Force Microscopy and 

Electrochemical Strain Microscopy. Kelvin Probe Force Microscopy is widely used to 

measure local surface potential of various materials down to the nanoscale. 

Electrochemical Strain Microscopy is a novel method developed to measure local surface 

vibrations caused by influence of the external ac electric field to mobile ions below a tip. 

Chapter 4 describes the samples preparation. Samples were extracted from 

commercial Li-ion batteries at different states of charge and health and carefully polished. 

Sample’s phase and lithiation states were identified and presented. Implemented 

experimental techniques are also listed in this chapter. 

Chapter 5 presents a comparative analysis of the signal-to-noise ratio of multi-

frequency vs. single-frequency ESM modes. The analysis provided criteria for selection of 

a working mode based on the cantilever’s properties and the microscope detection system 

sensitivity and noise level. It is shown that for certain parameters the signal-to-noise ratio 

for the single frequency detection can be higher than that for the multi-frequency 

resonance detection. 

Chapter 6 summarizes ESM results obtained for LiMn2O4 cathodes of the 

commercial Li batteries at different stages of charge and health. The results revealed that at 

high C-rate cycling accumulation of structural defects makes the electrochemical system 

less structurally stable as compared to the fresh one. Local diffusion coefficients of Li were 

quantitatively estimated. The strain-diffusion coupling effect was calculated. The results 

were discussed within the framework of reported degradation mechanisms. Finally, 

alternative explanation of the ESM response origin was suggested and simulated. 

Chapter 7 summarizes KPFM results obtained on graphitic anodes of the 

commercial Li batteries at different stages of charge and health. The results demonstrated 

that at high C-rate cycling relatively big structurally integral particles possess a core-shall 

distribution of the surface potential. By contrast, similar particles without cycling showed a 

mosaic distribution of the surface potential, which was attributed to inactivated regions of 

graphite at the early stage of cycling. Additional results obtained on the LiMn2O4 cathodes 

http://www.nanomotion.eu/
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showed that the pitting corrosion of the Al current collector could be another source of the 

internal resistance increase and associated capacity fading. 

Chapter 8 summarizes the presented results and formulates the conclusions. 
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Chapter 2 

Li-ion batteries: overview 

The first commercially available rechargeable Li-ion battery was developed by 

SONY Corporation in 1991. Nowadays, the vast majority of personal mobile devises is 

powered by Li-ion batteries because of their light weight and compact design. They are 

sufficient enough to survive the short active lifetime of cellphones, laptops, and other 

portable electronic devices. However, they are not yet sufficient for emerging and growing 

automotive and green energy applications, where high power density and long lasting 

lifetime are urgently required. Conventional Li-ion batteries suffer from fast irreversible 

capacity loss due to fatigue and ageing
*
. Researchers are intensively developing new 

battery materials and studying degradation mechanisms in order to overcome the 

limitations. One of the current trends in the battery research and development is reduction 

of size of active particles, often to the nm scale. 
4
 Nanotechnology approach promises the 

next generation of Li-ion batteries with longer life cycle, higher power and energy density. 

However, it raises a number of issues such as thermodynamic instability of 

electrode/electrolyte interfaces or electrical connectivity of nanoparticles. One of the main 

issues it to understand the origin of degradation and peculiarities of the ionic transport at 

the nanoscale. 

The purpose of this Chapter is to briefly overview the state of the art of Li-ion 

batteries, principles of the battery functionality, and common problems arising during their 

use. Special attention will be paid to widely used graphitic anode and LiMn2O4 spinel 

cathode materials. 

                                                           
*
 There are three terms in literature describing battery degradation: fatigue, ageing, and calendar ageing. 

Initially, the calendar ageing was used to describe degradation of a battery maintained at specific stable 

conditions, while the ageing was used to describe degradation due to cycling. Then the fatigue was used to 

describe degradation caused by cycling as well. Now the term ageing is used to describe both types of 

degradation depending on the author preferences. 
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2.1 Principles of Li-ion battery functionality 

Li-ion battery is an electrochemical system capable to store and return electrical 

energy when required. The battery receives electrical energy from an external source, 

transforms it to chemical energy, and stores it. When required, it releases the stored 

chemical energy, converts it into the electrical one, and powers an external load. Typical 

Li-ion battery consists of a negative electrode (anode), a positive electrode (cathode), a 

separator, an electrolyte, and metallic current collectors (Figure 2.1). During the charging 

process electric potential is applied between the anode and the cathode, and mobile Li
+
 

ions de-intercalate from the cathode host lattice and are transferred by the electrolyte 

molecules through the separator to the anode, where they intercalate into the anode host 

lattice within a finite concentration range. During this process, the external energy is stored 

inside the battery. Upon discharging the anode and the cathode are connected through an 

external electrical circuit and the process proceeds in the opposite direction. In order to 

maintain the charge neutrality, these reversible electrochemical processes are accompanied 

by the electron transfer from the cathode to the anode and vice versa through the external 

circuit, where they produce electric work. The electrolyte and the separator must allow the 

Li
+
 ionic transport but prevent the electronic transport, otherwise the electrons will not go 

through the external load. 

In the charged state Li
+
 ions are stored in the negative electrode – the anode. 

Metallic Li was the obvious initial choice for the anode because it has very high theoretical 

capacity per unit volume (3860 mAh·g
-1

). 
5
 However, the metallic lithium anode suffers 

from critical safety issues due to formation and uncontrollable growth of Li dendrites 
6
 and 

the consequent short circuits, which damage the battery. A number of other high capacity 

 

 
 

Figure 2.1. Schematic illustration of a Li-ion battery (Reproduced from Ref. 7) 
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alloy anodes also have critical problems with the major disadvantage coming from the high 

volume change upon intercalation/de-intercalation and the consequent fast degradation. 

Silicon 
8
 and other nanostructured anode materials are promising, but have not been 

commercialized yet. Nowadays, the most used commercial anode material is graphite 

because of its low and stable potential vs. Li/Li
+
, low cost, and long life, even though its 

theoretical capacity more than 10 times lower than one of the metallic lithium. 
9,10

 

In the discharged state Li
+
 ions are stored in the positive electrode – the cathode. 

The most commercially used cathode materials are layered transition metal oxides such as 

LiCoO2 and the spinel LiMn2O4. They possess high operating voltage, but low capacity 

and short cycling lifetime. Additional drawbacks of LiCoO2 are the high cost of Co and its 

toxicity. New promising class of cathode materials are polyanionic compounds such as 

LiFePO4 and Li3V2(PO4)3. 
11,12,13

 Figure 2.2 illustrates typical electrode compounds, their 

theoretical capacity and voltage vs. Li/Li
+
 reference electrode. 

The driving force for Li ions to flow from the anode to the cathode and vice versa is 

the electrochemical potential gradient 

  FzLiLiLi ,    (2.1) 

where Li  is the chemical potential of Li
+
 ions, Liz  is the Li ionic charge, F is the Faraday 

constant, and   is the electric potential. While the electric potential is controlled from 

outside the battery, the chemical potential is the intrinsic property of the battery. It 

originates from difference of chemical potentials of Li
+
 ions inside host lattices of an anode  

 

 
 

Figure 2.2. Typical anode and cathode materials, their specific capacities, and 

electrochemical reduction potentials with respect to metallic Li. (Reproduced from Ref. 
10

) 
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and a cathode, which is schematically illustrated in Figure 2.3. 

 

 
 

Figure 2.3. Schematic illustration of the Li-ion battery as an open circuit. Relative energies 

of the electrolyte window Eg and the electrode electrochemical potentials μA and μC are 

shown. 12 AA    is a region of the anode passivation (SEI formation) (Adopted from Ref. 
12

) 

 

The chemical potential of Li
+
 ions inside the anode is higher than one inside the 

cathode, so that the chemical potential gradient is present, driving Li
+
 ions from the anode 

to the cathode. 

The chemical potential difference must be within the electrolyte stability window 

between its lowest unoccupied molecular orbital (LUMO) and highest occupied molecular 

orbital (HOMO) energies. If Li  in the anode or in the cathode is outside the electrolyte 

LUMO/HOMO window, then a Li permeable passivation layer must be formed on the 

electrode(s) in order to make the electrochemical system thermodynamically stable. 
11

 

Typical reversible electrochemical reactions in the graphitic anode/LiMn2O4 

cathode electrochemical system proceed as follows: 

  VxexLiCCLix 9.2    

  VxOLiMnxexLiOMnLi x 9.0,10,42421  

   

  VOLiMnCOMnLiCLi xx 8.30 42421     

The potential difference determines the battery open-circuit voltage (OCV) 

 
zF

Cathode

Li

Anode

LiCathodeAnode 



     (2.2) 

and gives the amount of energy per every mobile charge stored in the battery. Hence, to 

maximize energy stored in the battery, the amount of energy per a single charge should be 

maximized, i.e. the OCV should be maximized. Ideally, the operation voltage should be 
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stable over the whole cell discharge range. The real battery operating voltage is lower than 

the written above and can be schematically expressed as follows: 
7
 

    i

c

c

a

c

c

ct

a

ctcell IREE  0 ,    (2.3) 

where E0 is the standard cell potential, a

ct  and c

ct  are the activation polarizations at the 

anode and the cathode, a

c  and a

c  are the concentration polarizations at the anode and the 

cathode respectively, I is the cell operating current, and Ri is the internal cell resistance. 

These parameters depend on both charge and mass transfer kinetics and, hence, the cycling 

rate (C-rate) and the cell degradation state (or State of Health - SOH). 

Figure 2.4 illustrates typical OCV profiles and their dependence on thermodynamic 

properties of an electrochemical system. Solid solution without phase transitions possesses 

a gradual OCV slope (Figure 2.4 (a, b)). First order phase transition possesses a stable 

constant OCV profile (Figure 2.4 (c, d)). First order phase transition with an intermediate 

metastable phase (e.g. ordering) possesses a step-like OCV profile (Figure 2.4 (e, f)). 

By definition, the battery capacity is an amount of charges that can be reversibly 

transferred between the electrodes. The total battery charge can be expressed as follows: 

FCzeNVCzq iAitotal  maxmax    (2.4) 

where z  is the valence of a mobile ion, max

iC is the maximum concentration of mobile ions 

in an electrode,   is the volume of an active electrode material, e  is the elementary 

charge, AN  is the Avogadro number, and F  is the Faraday constant. Alternatively, for 

very small current density the total charge is 




jdtSqtotal , 

where S is the area of an active electrode material, j is the current density, and τ is the 

discharge time. The stored energy is proportional to the amount of energy per mobile 

charge (  ) multiplied by the total charge ( totalq ). 

 

 
 

Figure 2.4. OCV profiles (b), (d), (f) are directly related to the slopes of the free energy of 

the electrode material (a), (c), (e). (Reproduced from Ref. 
14

) 
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In this work, commercial batteries with graphitic anodes and LiMn2O4 cathodes 

have been investigated. Therefore, we will further focus on properties and common 

degradation problems of these electrode materials. 

2.2 Graphitic anode 

Graphite has been widely used in many engineering, technological, and scientific 

applications for a long time and its properties are widely and thoroughly studied. 

Crystal structure 

Graphite is a polymorphic structure of carbon with the trigonal sp
2
 hybridization of 

carbon atoms. It possesses a layered hexagonal structure with the P63/mmc space group. 

Carbon atoms are strongly bonded by the covalent σ-bands within layers. The layers are 

joined together by the weak Van der Walls interaction (delocalized π-bands – electrons 

with high mobility) and stacked in the A-B consequence. The unit cell parameters are 

a=2.46 Å and c=6.71 Å. There are 4 atoms per unit cell. Figure 2.5 illustrates the crystal 

structure of graphite. 
15

 

 

 
 

Figure 2.5. Crystal structure of graphite (Reproduced from Ref. 
15

). 

Electronic structure 

There are 4 valent electrons per atom. Among 16 bands 12 are σ-bands (6 bonding 

and 6 anti-bonding) and 4 are π-bands (2 bonding and 2 anti-bonding). 16 electrons per 

unit cell fill 8 energy levels, therefore the Fermi level lies in the middle of π-bands. The 

upper π-bands overlap with the Brillouin zone edges and make graphite semimetal. At 



 

- 11 - 

 

Chapter 2: Li-ion batteries: overview 

room temperature electrical conductivity along the a axis is σa = 2.26*10
4
 S·cm

-1
 and along 

the c axis is σc = 5.9 S·cm
-1

. 
15

 

Intercalation compounds 

The layered anisotropic structure with the weak bounds between the layers results 

in good intercalation properties – it allows intercalation of reactant between the layers. The 

intercalation process can be chemical or physical in nature, depending on type of 

intercalate. If the bonds between carbon and foreign atoms are covalent, then the 

intercalation is chemical. Such bonds are usually connected with 2 carbon planes, distort 

them in a wavy form and change the carbon bonding from the trigonal sp
2
 to the tetrahedral 

sp
3
, making it nonconductive. An example of such compound is the graphite oxide. Such 

intercalation materials cannot be used as the anode. 
15

 

If the bonds are partly ionic, such as in graphite-alkali metal compounds, then the 

resulting compound is lamellar with intercalates well ordered between the graphite layers. 

Such compounds tend to de-intercalate the foreign atoms when an external excess of such 

atoms is removed. Doping or accepting electrons from the foreign atoms change electronic 

properties of such compounds in a different manner. Li intercalation compounds (as well 

as other alkali intercalation compounds of graphite) are n-type, i.e. Li
+
 ion donate electron 

to graphite, thus increasing its electrical conductivity. 
15

 The Li positive ionic charge in 

graphite is ≈0.8 and, in general, depends on Li concentration. 
16

 

The intercalation compounds pass through a number of stages depending on 

concentration of foreign atoms. Stage is defined by the number of carbon layers between 

two intercalated layers (stage 1 is 1 layer, stage 2 is two layers, stage 4 is 4 layers and so 

on). Hence, the higher stage corresponds to the lower concentration of intercalates. 

This thesis deals with the graphitic Li-ion battery anode, therefore we will further 

consider only Li intercalation compounds. 

Figure 2.6 illustrates the graphite-lithium phase diagram and stages. 

Within the practical lithiation range the C-Li system passes through a number of 

stable stages which can coexist within a single grain in a form of domains: 
17,18

 Li0.05C (0.2 

V vs. Li/Li
+
) – dilute stage 4, LiC18 – stage 3, LiC12 – stage 2, LiC6 (0.05 V vs. Li/Li

+
) – 

stage 1. 
19–21

 The average spacing between graphite layers: 3.359 Å for the pristine 

graphite, 3.440 Å for the stage 4, 3.513 Å for the stage 2, and 3.712 Å for the stage 1. 
15,22,23

 

In order to accommodate Li
+
 ions upon intercalation, single layers of graphite 

translate with respect to each other into different stacking sequences depending on a stage, 

finally to the A-A sequence for the stage 1. 
16,24,25

 

Typical diffusion coefficient of Li in graphite is in the range 10
-9

-10
-10

 cm
2
s

-1
 and 

depends on the lithiation stage. 
26

 The diffusion coefficient becomes smaller with 

increasing Li concentration and changes in discontinuous manner. 
7,27

 The diffusion is 

highly anisotropic: Li
+
 ions move along the layers and can hardly jump from one layer to 
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Figure 2.6. C-Li phase diagram and the stages of Li intercalation into graphite (Adopted 

from Refs. 
28

,19) 

 

another. 

Fully intercalated graphite with 1 Li per 6 C atoms has theoretical capacity 372 

mAh·g
-1

. 

Anode major degradation mechanisms 

Practically, Li intercalates into graphite from an organic solvent – electrolyte. 

When a lithiated graphite is immersed in an electrolyte solution, a Li
+
 permeable 

polycrystalline solid-electrolyte interface (SEI) is formed. 
29

 It happens because the 

chemical potential of Li in graphite Graphite

Li  is above the electrolyte lower unoccupied 

molecular orbitals (LUMO) and the lithiated graphite/electrolyte electrochemical system is 

thermodynamically unstable (see Figure 2.3). Reduction of the electrolyte progresses until 

the anode-electrolyte reaction is blocked by the passivating SEI layer, which is usually 

several tens of nm thick. 
11

 The SEI layer has sufficient Li conductivity but higher 

electrical resistance as compared with the pure graphite (literally speaking, it is electrically 
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insulating), thus increasing the overall battery resistance. Moreover, the growing SEI layer 

irreversibly consumes Li – the battery’s essence. Finally, the SEI layer decreases both the 

cell OCV (Eq. 2.3) and the specific capacity (Eq. 2.4) resulting in a decrease of stored 

energy. It usually happens during several initial cycles. 

Another degradation mechanism is a structural damage due to the volume 

expansion/contraction (max about 10%) and consequent stresses, especially at high C-rates 

and early stages of Li intercalation (x<0.1 in LixC6), where it can result in local C-C bond 

breaking. 
19

 

Finally, Li progressively plates the graphite surface at high C-rates when the 

intercalation rate, limited by the diffusion coefficient of Li, is lower than the rate of Li 

delivery from the electrolyte solution to the graphite surface. 
30

 Li plating can lead to 

growth of Li dendrites, short circuits, and thermal runaway. 
31

 

A number of methods have been used to improve the cycle life of graphitic anodes. 
32–35

 These methods are mainly focused on surface modifications in order to stabilize the 

SEI layer. 

 

Though graphite is one of the most studied anode materials, most of research has 

been done for small C-rates. Current needs for batteries for automotive applications 

(working at high C-rate) require studying degradation mechanisms at higher C-rates where 

not only the previously described degradation mechanisms can contribute to the total 

degradation, but new degradation mechanisms can emerge as well. In this context, various 

degradation effects at high C-rates can overwhelm the positive effects of surface 

modifications. Therefore, thorough investigation of the degradation mechanisms at high C-

rate cycling is essential in order to improve the batteries’ performance for current and 

emerging needs. 

2.3 LiMn2O4 cathode 

LiMn2O4 spinel has been intensively investigated over the last decades as one of the 

cheapest, widely available, and non-toxic material for Li-ion battery cathodes. Its 

functional properties and degradation mechanisms are generally well known and 

understood. Nevertheless, the LiMn2O4 electrical conductivity and Li diffusivity 

mechanisms are not completely understood. 

Crystal structure 

At room temperature the stoichiometric LiMn2O4 possess the cubic 

centrosymmetric crystal structure with the m3Fd  space group and the lattice parameter 

a=8.24 Å. 
36

 There are 56 atoms per unit cell: 8 Li, 16 Mn, and 32 O. The oxygen atoms 

form a cubic close packed framework where the Li atoms occupy 1/8
th

 of the tetrahedral 8a 

positions and the Mn atoms occupy half of the octahedral positions designated as 16d 

(Figure 2.7). 
37–39
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Figure 2.7. Part of the cubic LiMn2O4 spinel structure (Reproduced from Ref. 
37

) 

 

Electronic properties 

LiMn2O4 is a small polaron semiconductor. 
12,40

 Mn
n+

 ions exist in the Mn
4+

/Mn
3+

 

mixed-valence state where the high-spin Mn
3+

:t2
3
e

1
 and the low spin Mn

4+
:t2

3
e

0 

configurations coexist and the localized e electrons are trapped in local lattice relaxations. 
12

 The electrical conductivity is controlled by hopping of the trapped electrons between 

available Mn positions, i.e. it is governed by the electro-diffusion mechanism with the 

activation energy for the hopping process ≈ 0.16 eV. 
41

 

In LixMn2O4 (0≤x≤1) the electrical conductivity increases with Li concentration 
42

 

because each Li atom donates electron to Mn
4+

 and turns it into Mn
3+

. Reported values of 

the electrical conductivity at room temperature vary between 10
-4

 and 10
-6

 S cm
-1

. 
7,42,43

 

LiMn2O4 as the electrode material 

Figure 2.8 illustrates the Li-O-Mn phase diagram representing multiple compounds 

existing at room temperature around the LiMn2O4 composition. Lithiation/delithiation 

occurs along the λ-MnO2 – LiMnO2 stoichiometric spinel line through the LiMn2O4 cubic 

spinel. MnO – Li2MnO3 is the stoichiometric rock salt line. Practical lithiation/delithiation 

range in battery applications is λ-MnO2 – LiMn2O4. 

Upon lithium deintercalation from Lix=1Mn2O4 the lattice parameter a progressively 

decreases (Figure 2.9). Within this process three stages can be identified. In the stage III 

where 0.6<x<1 the lattice parameter linearly decreases from 8.247 to 8.194 Å according to 

the Vegard law; in the stage II where 0.4<x<0.55 the lattice parameter linearly decreases 

from 8.17 to 8.15 Å. There is a discontinuity gap of 0.02 Å between these stages. Upon 

further delithiation in the stage I from x=0.4 to 0.1 the lattice structure becomes unstable 

and can split into two cubic phases: one with the 8.150 Å lattice parameter and another 

with the 8.072 Å lattice parameter. 
36,44

 If splitting does not occur, the fully deintercalated 

spinel has the lattice parameter a=8.029 Å and is known as λ-MnO2. 
45,46

 Exact lattice 
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Figure 2.8. (a) An isothermal slice of the ternary Li-Mn-O phase diagram at 25°C; (b) an 

expanded view of the shaded region of the phase diagram in (a). (Reproduced from Ref. 
47

) 

 

parameters and Li concentration of the phase transitions strongly depend on sample’s 

defect structure, oxygen and manganese nonstoichiometries, contaminations, average Mn 

valence state, etc. 
36

 

Upon Li intercalation when x exceeds 1 in LixMn2O4 (stage IV) (average Mn
n+

 

oxidation state ≤3.5) the phase transformation from the cubic LiMn2O4 (space group 

m3Fd ) to the tetragonal Li2Mn2O4 (space group I41/amd) takes place. 
37

 This 

transformation is accompanied by the first order Jahn-Teller distortion and the severe 

lattice deformation to c/a=1.16 (the tetragonal lattice parameter a is smaller and c is higher 

than the cubic lattice parameter a). Further Li insertion into Li2Mn2O4 results in 

transformation to the layered Li4Mn2O4 structure, which is unstable upon delithiation and 

converts back into LiMn2O4. 
46

 

Figure 2.10 illustrates the electrochemical OCV profile of LixMn2O4 versus Li 

reference electrode for 0≤x≤2. Upon intercalation from λ-MnO2 to LiMn2O4 Li
+
 ions fill 

the tetrahedral 8a positions in the 4V spinel region. This region is separated into two sub-

regions by a ≈150 mV step around the composition Li0.5Mn2O4, where the discontinuity 

gap of 0.02 Å has been detected. 
48

 The reason for that is believed to be ordering of Li
+
 

ions at one half of the tetrahedral 8a sites. Li insertion into the octahedral 16c positions of 

Lix=1Mn2O4 is accompanied by the Jahn-Teller distortion and the voltage drop to ≈ 3V 

(Figure 2.10). Further Li insertion is followed by the transformation to the layered 

Li4Mn2O4 structure and the voltage drops to ≈1.2 V. 
46
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Figure 2.9. Variation of the lattice parameter as a function of Li concentration. a is the 

cubic lattice parameter, c is the tetragonal lattice parameter after the cubic to tetragonal 

phase transformation. Dash line shows variation of the cubic lattice parameter if spliting 

into two cubic phases does not occur. Percents show the lattice parameter expansion. 

(Adopted form Refs. 
36

, 
48

) 

 

 
 

Figure 2.10. Voltage – capacity profile of the LixMn2O4 cathode over the 0<x<2 lithiation 

range (Reproduced from Ref. 
11

) 
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Only the 4V region is practically interesting for battery applications because 

otherwise the Jahn-Teller distortion results in fast degradation due to the strong internal 

mechanical stress and particle fracture. 

Resent experimental data shows that the real distribution of Li
+
 ions in the lattice is 

more complex. Synchrotron XRD experiments allowed to determine that part of Li
+
 ions is 

displaced from the ideal 8a positions into the octahedral 16c positions. 
38

 Nuclear magnetic 

resonance (NMR) revealed that Li
+
 occupies 8a, 16c, and 16d positions. 

38,49
 In-situ 

neutron powder diffraction (NPD) experiments during charge-discharge cycles showed that 

Li insertion/extraction in the Li-reach Li1+yMn2O4 spinel proceeds in four stages: (1 – 

discharge) Li occupies the tetragonal 16c sites first; (2 – discharge) Li transfers from the 

16c to the tetrahedral 8a sites; (3 – charge) Li removes directly from the 8a sites; (4 – 

charge) Li transfers to the 16c sites and removes from both 8a and 16c sites. 
50

 These data 

can be helpful for further explanation of Li diffusivity and its dependence on Li 

concentration. 

Theoretical capacity of LixMn2O4 (0≤x≤1) is 148 mAh/g. 
37

 120 mAh/g practical 

rechargeable capacity corresponds to insertion/extraction of 0.4 Li per 1 Mn. 
46 

Li diffusion 

Li diffusion in the LixMn2O4 spinel is not fully understood yet. 

Before discussion, we want to emphasize that the concentration gradient is not the 

diffusion driving force as one can erroneously conclude from Fick’s laws. As it was 

suggested by G. S. Hartley 
51

 and demonstrated by L. S. Darken, 
52

 the chemical potential 

gradient is the main thermodynamic factor controlling the chemical diffusion. 

The conventional Li diffusion mechanism suggests that Li
+
 ions simply hop over a 

saddle point from an initially occupied 8a position over a single vacant 16c position into 

the next vacant 8a position along the [111] direction, which forms the three-dimensional 

network (Figure 2.11). 
38

 Within the framework of this approximation, an increase of Li 

concentration should result in a decrease of available neighboring 8a vacant positions and 

in an increase of the potential barrier for Li to hop from the 8a to the 16c position and, 

consequently, should decrease the diffusion coefficient. However, real diffusion 

mechanisms in transition metal oxides are more complex. 

Experimentally determined diffusion coefficients of Li (DLi) in the spinel LixMn2O4 

vary in a wide range from ~10
-9

 to ~10
-12

 cm
2
s

-1
 depending on a measurement technique 

and a sample preparation. 
7,53,54

 Additionally, the Li diffusion coefficient strongly depends 

on the Li concentration in a complex and nonlinear manner. Chung et al 
53

 reported an 

order of magnitude variation of DLi during charging/discharging with two minima (Figure 

2.12). Saidi et al 
39

 suggested that the minima can be attributed to the Coulomb interaction 

between the guest-host and the guest-guest ions and Li ordering around the Li0.5Mn2O4 

composition. Additional deviation of the diffusion coefficient from the simplified classical 

interpretation can come from other sources such as presence of impurities or Mn and O 

nonstoichiometry (defect structure). 
55
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Figure 2.11. First and second nearest coordination shells around 8a and 16c positions in 

LiMn2O4 (Reproduced from Ref. 
38

) 

 

Considering the presented above experimental evidence, the classical diffusion 

mechanism with the saddle point activation energy seems not to be the case. Moreover, it 

is not consistent with the small polaron hopping mechanism of the electrical conductivity. 
38,56

 During Li intercalation/deintercalation the electronic charge transfer occurs at the 

Fermi level of LixMn2O4 (large intercalation range requires high density of states near the 

Fermi level). Delocalized electronic states at the Fermi level do favor fast ionic kinetics 

while the localized electronic states do not. 
56

 Because the high-spin Mn
3+

:t2
3
e

1
 electronic 

states are localized, the conventional ambipolar diffusion of Li should be suppressed. 

Nevertheless, LiMn2O4 shows good intercalation properties that cannot be explained by the 

conventional diffusion mechanism. 
56

 

Tateishi et al 
57

 proposed another mechanism of Li diffusion, where hopping of the 

Mn
3+

 eg electron over Mn
n+

 ions mediates displacement of an O
2-

 ion (dynamic 

deformation of the LiO4 tetrahedra) and opens the bottleneck of the oxygen tetrahedral 

cage around the tetragonal 8a position (Figure 2.11). As a result, the potential barrier 

between the neighbor 8a and 16c positions drops down and allows Li
+
 to hop from one 

position to another. According to the suggested mechanism, Li diffusion is strongly 

depends on the electron-lattice interaction (Li-polaron coupling), i.e. the activation energy 

is related to the lattice distortion energy rather than to the potential barrier energy. 
58

 

This supposition is in agreement with the fact that Li exchange starts when 

Mn
3+

/Mn
4+

 charge ordering disappears upon the first order orthorhombic (space group 

Fddd) to cubic (space group m3Fd ) phase transformation around room temperature 

(∼280-300 K). 
49

 This transition is accompanied by the rapid nonlinear change of 

conductivity from the low to the high temperature activation processes. 
41,49,59

 When the 

charge ordering disappears, the electrons start to hop more frequently and conductivity 

increases, as was experimentally verified. 
56
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Figure 2.12. Li diffusion coefficient in LixMn2O4 as a function of cell potential vs. Li 

reference electrode. Both cathodic and anodic cycles are shown. (Reproduced from Ref. 
53

) 

 

Li diffusion coefficient and electronic conductivity do not follow the same function 

of Li concentration though. As such, much of the physics underlying Li diffusion in 

LiMn2O4 and its interaction with the electronic host structure remains unknown. 

It is worth mentioning that the reported Li diffusion coefficient in Li2Mn2O4 is an 

order of magnitude lower than in the cubic phase. 
60

 

Common problems and related degradation mechanisms 

Degradation of LiMn2O4 active particles occurs via three major mechanisms: 

 surface degradation due to Mn dissolution caused by the disproportional 

reaction   2432 solutionsolidsolid MnMnMn ; 
36,61,62

 

 particle cracking and consequent loss of the electrical contact with the 

current collector due to internal stress generated upon lithiation/delithiation; 
63–65

 

 structural instability and loss of crystallinity in the bulk due to Li 

intercalation/deintercalation and associated structural transformations. 
66

 

Many researchers consider Mn dissolution as the primary mechanism of capacity 

fading, though it was shown to be responsible for only 23% of the overall capacity 

decrease on cycling at room temperature. 
67

 It happens on the LiMn2O4/liquid electrolyte 

interface in the high voltage region 
36

 and results in a decrease of the spinel phase available 

for Li intercalation on the surface. Possible redeposition of nonconducting Mn-electrolyte 

reaction products on the surface of active LiMn2O4 particles additionally increases the 

internal resistivity and decreases the specific capacity. 
68
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Partial substitution of Mn
n+

 cations by divalent and trivalent cations (such as Ni, Cr, 

Co) stabilizes the spinel structure and partly suppresses the Mn dissolution 
69,70

 by 

decreasing the Mn
3+

/Mn
4+

 ratio (increasing the average Mn
n+

 valence state). Another 

method to suppress the Mn dissolution is to isolate LiMn2O4 from the electrolyte by 

coating particles with oxide materials such as ZnO or Mn2O3. 
69

 

Cracking of the active particles happens due to severe internal stress created mainly 

during the first order Jahn-Teller distortion when the average Mn
n+

 valence state falls 

below 3.5, accompanied by the 6% volume change. 
65,71

 It is then followed by loss of 

electrical connectivity of active particles, and parts of the cracked particles become 

electrochemically inactive, thus decreasing the overall battery capacity. Larger particles are 

more susceptible to cracking events, especially at high C-rates. 
63,64

 

This effect can be reduced by suppressing the Jahn-Teller distortion. It can be 

accomplished by partial substitution of Mn
n+

 cations to Li
+
, thus increasing the average 

Mn
n+

 valence. 
46

 Mn
n+

 can also be substituted by other cations such as Cr, Ni, Co, etc. 
72

  

Structural instability and loss of crystallinity in the bulk due to Li intercalation/de-

intercalation is also presumably caused by the Jahn-Teller distortion and instability of the 

cubic phase in the delithiated state. Stabilization of the cubic phase can be achieved by 

partial substitution of Mn
n+

 cations by other cations as described above. 

All these methods could significantly improve the LiMn2O4 performance. 

Nevertheless, limited understanding of Li diffusion and degradation mechanisms, 

especially at high C rates, abridges positive effects of modifications. 

 

Non-toxic and widely available LiMn2O4 along with its high open-circuit voltage 

versus Li makes it one of the promising cathode materials for Li-ion batteries. However, 

the possibility of its application in growing fields such as automotive is limited due to poor 

cycling performance, especially at high C rates. Therefore, deeper understanding of 

degradation of relevant functional properties (e.g. Li mobility) at meso- and nano-scales is 

required. 
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Chapter 3 

Scanning Probe Microscopy methods 

Improvement and optimization of Li-ion batteries require complex study of 

implemented and future electrode materials involved in Li transport. It is prerequisite to 

study Li transport and diffusion at the highest possible resolution for deeper understanding 

of degradation processes taking place in battery materials during intensive cycling. 

Conventional electrochemical methods such as electrochemical impedance 

spectroscopy, potentiostatic and galvanostatic intermittent titration techniques 
73,74

 have 

long been used to measure kinetic and thermodynamic properties of energy storage 

materials. However, their lateral resolution, limited to several μm, does not allow to access 

electrochemical properties at the scale of single grains and grain boundaries. Rapid 

development of Scanning Probe Microscopy (SPM) based techniques during last decades 

has allowed to access structural and functional properties of materials at the nanoscale. 

SPM-based techniques have already been implemented to study photovoltaics and solar 

cells, fuel cells, and Li ion batteries. 
75,76,77

 

The purpose of this Chapter is to describe principles of Kelvin Probe Force 

Microscopy and Electrochemical Strain Microscopy, and to explain how they can be used 

to study functional properties of Li-ion battery materials at micro- and nanoscale. 

3.1 Kelvin Probe Force Microscopy 

3.1.1 Principles of KPFM 

Kelvin Probe Force Microscopy (KPFM) was first introduced by M. 

Nonnenmacher in 1991. 
2
 Since then, it has been widely implemented to study electronic 

properties of semiconductors. 
78,79

 Recently, it has been used to study Li-ion battery 

materials. 
77,80

 

KPFM is a non-contact SPM method. It is based on detection of a contact potential 

difference (CPD) between a SPM tip and a sample’s surface. Figure 3.1 schematically 
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Figure 3.1. Schematic representation of the operation principle of 2-pass KPFM. 

 

illustrates operation of the 2-pass KPFM mode. During the first pass, topography of a 

sample is recorded in the tapping mode. During the second pass, a tip, lifted at a certain 

height, passes above the surface following the recorded topography profile. Simultaneous 

application of ac and dc voltages between the tip and the sample allows measurement of 

contact potential difference as further described in details. 

The tip-surface system can be considered as a capacitor with the energy 
2

2CV
U  , 

where C is capacity and V is voltage. Electrostatic force between the tip and the sample 

originates from the surface potential difference 
e

WW
V

sampletip

CPD



 , where tipW  and 

sampleW  are the work functions of the tip and the sample, and e is the electronic charge. 
79

 

By definition, the electrostatic force UF   is always attractive. In case of KPFM, the 

tip displacement is only detected in the vertical z direction, hence we can write 

z

C
V

CV

zz

U
F






















 2

2

2

1

2
. 

Potential applied to the tip can be written as  tVVV acdctip sin , where ω is the tip 

resonance frequency.  tVac sin  generates oscillating electrostatic force that results in 

cantilever vibrations measured by the microscope detection system. The resulting force is 
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











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22

1
2

2

0
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dcCPD

V
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z

C
F  is the static force, 

   tVVV
z

C
F acdcCPD  sin1 




  is the oscillating force at a given frequency, and 

 tV
z

C
F ac  2cos

4

1 2

2



  is the oscillating force at the double frequency. 

The system is tuned to nullify the first harmonic of the signal 1F  by applying 

CPDdc VV  . The exact sign of the dcV  depends on whether it is applied to the tip or to the 

sample. 
79

 Thus, the contact potential difference 
e

WW
V

tipsample

CPD


  can be obtained. The 

tip work function is known (typically, the Pt coated cantilever is used with WPt=5.27±0.08 

eV), 
81

 so the sample’s work function can be easily extracted. 

The above analysis is valid for the case of a metallic sample surface and the metal 

coated cantilever under vacuum conditions. In this case, the contact potential difference 

reflects the work function that is a difference between the Fermi energy level and the 

vacuum energy level. In the case of a semiconductor sample, the contact potential 

difference depends on both the space-charge layer and the trapped surface charge, and is 

more complicated for quantification. 
82

 In case of an insulating sample, the contact 

potential difference depends only on the charge trapped on the sample’s surface (Figure 

3.2). 

 

 
 

Figure 3.2. Potential distribution in the tip-sample system: (a) tip and sample positions; (b) 

metallic tip – metallic sample potential distribution; (c) metallic tip – semiconductor 

sample potential distribution. V0 is the voltage on the metallic tip, VS is the semiconductor 

surface potential. (Adopted from Ref. 
82

) 
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3.1.2 Working modes and resolution 

The microscope detection system can detect the amplitude of an oscillating 

cantilever and its phase. It cannot detect the force directly. Depending on the measured 

parameter, the amplitude modulation (AM-KPFM) and the frequency modulation (FM-

KPFM) modes are distinguished. As follows from their names, in the AM-KPFM mode the 

cantilever oscillation amplitude is tracked and nullified; in the FM-KPFM mode the 

cantilever oscillation frequency is tracked and nullified. 

In the AM-KPFM mode topography is measured in the conventional tapping mode 

at the first (or fundamental) cantilever resonance frequency 0 . During the second pass, 

the ac potential  tVac sin  is applied at the second cantilever resonance frequency 

025.6    to avoid possible crosstalk with the topography and to increase the oscillation 

amplitude by the quality factor Q. Electrostatic interaction between the tip and the sample 

with the force    tVVV
z

C
F acdcCPD  sin1 




  results in cantilever oscillations, nullified 

by applying CPDdc VV  . The ac modulation amplitude should be high enough to excite 

detectable oscillations. The resonance-enhanced detection allows using low Vac and 

minimizing possible band bending in semiconductors with the minimum impact from 

topography. 
75

 The measured amplitude correlates with the force. 
83

 

In the FM-KPFM mode topography is measured in the conventional tapping mode 

at the first cantilever resonance frequency 0 exactly as in the AM-KPFM mode. During 

the second pass, the cantilever is mechanically excited at the first resonance 0  and 

additional ac potential  tVac sin  is applied and modulates the oscillation of the 

electrostatic force    tVVV
z

C
F acdcCPD  sin1 




 . The resulting shift of the first 

resonance frequency correlates with the force gradient. 
83

 Indeed, the resonance frequency 

84
 is defined as 

*0
m

k
 , where k is the cantilever stiffness and m* is the cantilever 

effective mass. If the external force F with the gradient 
z

F




 is applied, the effective 

stiffness is changing, thus changing the resonance frequency 





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












z

F

km

z

F
k

2

1
10*0  . It leads to appearance of additional signals shifted by 

   tVVV
z

C

kz

F

k
acdcCPD   sin

2

1

2

1
2

2
1

00 








  from the first resonance at 

0 . This signal is nullified by applying CPDdc VV  . The modulation frequency  should 

be high enough to avoid the apparent crosstalk with the topography, but to stay within 

bandwidth of the frequency demodulator. 
83
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Figure 3.3. Theoretical calculation of the minimum detectable CPD for AM- and FM-

KPFM as a function of the tip–sample distance (Reproduced from Ref. 
85

) 

 

It was shown that FM-KPFM has higher lateral sensitivity than the AM-KPFM 

because it probes the force gradient (shorter range than the force) and, thus, has stronger 

distance dependence as compared with the AM-KPFM. 
85,86

 In the FM-KPFM mode 

mainly the tip apex contributes to the detection, while in the AM-KPFM mode the apex 

contribution is smaller and the lever contribution is stronger. 
87

 At the same time, AM-

KPFM has higher energy resolution (Figure 3.3). 
85

 

Recently, Nagpure et al 
77

 implemented KPFM to measure surface potential of aged 

and fresh LiFePO4 cathodes. They found that the surface potential of the aged samples is 

lower than that of the fresh ones. In another work, Jing Zhu et al 
80

 used KPFM to study 

changes of the surface potential of TiO2 anode in an all-solid-state Li-ion battery during Li 

insertion and extraction. These results clearly demonstrated a great promise of KPFM for 

characterization of battery materials at the mesoscale. 

3.2 Electrochemical Strain Microscopy 

3.2.1 Principles of ESM 

Electrochemical Strain Microscopy (ESM) has emerged after application of 

Piezoresponse Force Microscopy (PFM) to non-ferroelectric ionic conductors. The 

observed response was attributed to reversible modulation of the local molar volume below 

the tip due to intercalation and deintercalation of mobile ions under applied electric field. 

Similar to PFM, its lateral resolution is limited by the tip diameter and typically varies 

between 5 and 50 nm, and vertical resolution is of the order of several pm (because of the 

lock-in amplification). Thus, a tiny electrochemical response can be detected inside single 

grains and even at grain boundaries of polycrystalline ionic conductors. 
88

 ESM method 
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with time and voltage spectroscopies in general combines microscopy itself, spectroscopy, 

and electrochemical probing at the nanoscale. 

Before further description, it is important to mention and keep in mind that the 

high-frequency ESM response mechanism is not fully understood and the theory is not 

complete by now. The first – diffusion-based – model was suggested in 2010. 
3
 Since then, 

a number of works on computer modeling of ESM showed that at high frequencies the 

diffusion-based response must be well below the microscope detection limit. 
89,90

 Still, the 

response is experimentally detectable at 200-400 kHz frequencies. Another mechanism of 

the high-frequency response has been recently suggested. 
91

 We will postpone its 

discussion to Chapter 6 (§ 6.5). In this Chapter we will focus on the diffusion-based 

description. Despite of the mentioned limitations in the high-frequency regime, it 

accurately describes static (0 kHz) and low-frequency (<<100 kHz) processes. 

Electrochemical Strain Microscopy is based on detection of oscillating surface 

displacements presumably caused by ionic motion and the consequent local volume change 

under applied electric field. In ESM, an external ac voltage is applied between a 

conducting SPM tip operating in the contact mode and a sample’s counter electrode. 

Resulting electric field alters local electrochemical potential of lithium (or other mobile 

ions) in a host lattice, causing them to locally intercalate or deintercalate. Consequent 

changes of their local concentration mediate expansion or contraction of the lattice under 

the tip (Figure 3.4). Corresponding oscillating surface displacements are detected by the 

SPM detection system via a lock-in amplifier. 

The diffusion-based description of the ESM response was given by Morozovska et 

al. 
3
 It requires solution of conjoint elastic and diffusion problems. Fick's laws were used 

assuming absence of strain-diffusion coupling and negligible thermal expansion effect. 

Note, that Fick’s laws are true only for small concentrations and concentration gradients in 

binary or pseudo binary systems. Nevertheless, they are often (but not always) applicable 

to describe real systems with appropriate accuracy. 
92

 

Equation of state for anisotropic elastic media with elastic compliance tensor ijkls , 

Vegard’s tensor ij , concentration excess iC , mechanical stress tensor ij , and elastic 

strain iju  is following: 
3,93,94

 

klijkliijij sCu   .     (3.1) 

For the isotropic Vegard tensor   332211  and concentration excess 

),,,( 321 txxxCi , using equilibrium 0, jij  and boundary conditions on the surface 

0| Sjij n , the solution for the displacement field is: 
3,89,95
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This Equation can be simplified in case of an axially symmetric electric field ),,(  zxy  

with axially symmetric redistribution of the ionic concentration ),,(  zC xyi , were 
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Figure 3.4. Upper image – the surface deformation z as a result of local change of a lattice 

parameter due to change of ionic concentration under the tip. Lower image – deformation 

z of a small cylinder with the z  height clamped laterally. 

 

),,(  zC xy  is the frequency spectrum of ),,,( 321 txxxCi  and 22 yxxy  . Then the 

linear surface displacement at the tip-surface junction 0z  is 
95
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)(),(),,( 0 xyxy RtzCtzC   ,     (3.4)  

where 0)0( and 1)0(  xx   is the Heaviside step function. Equation (3.4) is valid 

when the Li-diffusion length is less than the tip-surface contact area 0R , i.e. 1  (ω is 

the driving frequency, τ is the characteristic diffusion time).
 
The concentration field (3.3) is 

a function of z at 0Rxy   and is zero outside the tip-surface contact. It vanishes when 

0Rz  . Then 
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It can be expressed via the average concentration variation 
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Thus, the solution of the problem is reduced to finding the concentration change 

),,( tzC xyi   ( ),,(  zC xyi ). 
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In case of a non-uniform electric field at the tip-surface junction, absence of the 

strain-diffusion coupling, and when ionic transport is controlled by ambipolar diffusion the 

Fick second law is used to describe the Li concentration change 
3
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with the following boundary conditions 
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where D is the constant diffusion coefficient, and  txxV ,, 210  is the electrostatic potential 

distribution at the tip-surface junction (x3 = 0). 
96

 Phenomenological exchange coefficients 

λ and η correspond to the case of either fixed concentration ( = 0) or fixed ionic flux ( = 

0). The solution is  
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where ki are coordinates of the Fourier transformation. 

As one can see, the concentration change ),,( tzC xyi   (and the final equations for 

the strain 3u  consequently) depends on the diffusion coefficient, which is essential for 

studying ionic dynamics by means of ESM in time and frequency domains and can be used 

to obtain the diffusion coefficient from the measured strain response. 

Specific attention has to be paid to the boundary conditions, since in real 

experiments the tip-surface interfacial state, use of different cantilevers, and atmosphere 

conditions (e.g. vacuum, liquid environment, dry or humid atmosphere) affects the 

measured response. 

In ESM, a SPM cantilever is a movable top electrode. Depending on the cantilever 

type and details of an experimental setup it can be either ion blocking (with a metallic 

coating in dry atmosphere) or partially reversible non blocking. 

Ion blocking electrodes (cantilevers with Pt/It, Au, TiN, etc. coatings) are able to 

conduct electrons but not mobile ions. These cantilevers are preferable for ESM on Li-ion 

battery materials because they do not interact with Li ions. The blocking electrode employs 

the fixed concentration ( = 0) boundary conditions. 

Electrodes can be reversible if they transfer electrons and ions with low impedance. 
97 

In case when ESM measurements are performed by bare Si probes, or under ambient 

conditions with humidity > 30% when liquid wetting layer forms on the tip-surface 

junction, 
3,98,99

 or in Li-containing electrolyte the tip-electrode system may be considered 

as partially reversible. Interaction of the bare Si cantilever with Li ions should be partially 

reversible and results in rapid degradation of the cantilever due to formation of unstable 

chemical compounds (e.g. Si-Li) and their interaction with atmosphere gases and water. In 
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the idealized fully reversible case the non blocking electrode employs the fixed ionic flux 

( = 0) boundary conditions. Blocking electrodes can be also rendered to reversible ones at 

high biases when Li extraction and tip plating inevitably occurs. 

Note, that the simplification used in Eq. (3.4) stands for thin film samples when the 

field distribution is indeed axial (Figure 3.5). In case of thick samples the radially 

symmetric field distribution must be considered instead (Figure 3.5 (a)). In both cases the 

dependence of the displacement 3u  on the tip-surface contact area will be different. 

 

 
 

Figure 3.5. Electric field distribution in (a) a bulk sample where the sample thickness is 

much higher than the tip radius, and in (b) a thin film sample where the electric field is 

more confined between the tip and the counter electrode. 

 

In all mentioned cases the electric field created by the probe is highly localized and 

the tip detects local deformations. 

3.2.2 Spatial resolution 

The spatial resolution of ESM can be estimated from the characteristic size of the 

area affected by the concentration change. Lateral resolution is defined as half width of the 

excited spatial region at half maximum (HWHM) (normalized to the tip size 0R ) and is 

shown in Figure 3.6 as a function of frequency for the limiting cases of boundary 

conditions. Vertical resolution is defined as the maximum ESM response and is shown in 

Figure 3.7. Limiting cases for low and high frequency regimes can be classified depending 

on the value of   in relation to unity: 
3
 

1. Static or quasi-static regime, where the Li-diffusion length significantly 

exceeds the signal detection volume (tip radius), 1 . 

2. Low frequency regime, when the Li-diffusion length is comparable to the 

tip radius, 1 . 

3. High-frequency regime, when the Li-diffusion length is less than the tip 

radius, 1 . 

The highest lateral resolution can be achieved in the high-frequency regime ( 1 ) 

when the diffusion length is less or about the tip radius, while the highest vertical 

resolution can be achieved in the quasi-static regime ( 1 ) when the volume affected 

by the concentration change is maximum. Attention should be paid to the signal-to-noise  
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Figure 3.6. Frequency dependence of the excited spatial HWHM normalized by the tip size 

0R  for boundary conditions with λ=0 and η=0. (Reproduced from Ref. 3) 

 

 
 

Figure 3.7. (a) and (b) Absolute values of the materials displacement (dotted curves) and 

the ESM response multiplied by the experimental transfer function (solid curves) vs 

driving frequency f for the determined concentration 05.0max ii CC  (i.e., 0 ) for 

LiMn2O4 and Li0.8CoO2. (c) Zoom in the high-frequency regime. (d) Materials response 

(dotted curves) and signal to noise ratio for ESM response divided by noise function 

~ )1( 0 ff  with 30 f kHz (solid curves). (Reproduced from Ref. 3) 
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ratio (SNR) with the noise function ~ )1( 0 ff  for the ESM response multiplied by the 

experimental transfer function in Figure 3.7 (d): in order to avoid the flicker noise 
f

1
, 

measurements should be performed at sufficiently high frequency. 

3.2.3 ESM spectroscopies 

ESM response represents the combined contribution of several factors and cannot 

be directly used to distinguish among different mechanisms involved in signal formation. It 

only illustrates how different elements of topography respond to the ac excitation, while 

understanding and interpretation of results require knowledge of actual mechanisms of the 

response. 

Time spectroscopy 

Studying of Li diffusion at the nanoscale is possible by measurement of a local 

ESM response as a function of time. Dynamics of the response reflect the instant changes 

of Li
+
 concentration and, therefore, serves as a signature of the ionic mobility. It requires 

formation of the Li concentration gradient that can be easily created by an external electric 

field bias. These principles are used in ESM Time Spectroscopy (TS). 
100

 Figure 3.8 (a) 

illustrates the pulse application schematic of TS. 

In this technique, a sequence of dc pulses is applied between a tip and a counter 

electrode, and the surface vibrations (ESM response) are typically measured after the dc 

pulses. Li drift velocity consists of field dependent and field independent components 

according to Equation 
7
 

   Fz
Tk

D
ii

B

i
i


,    (3.10) 

where iD  is the ionic diffusion coefficient, Bk is the Boltzmann constant, T is the 

temperature, μi is the chemical potential, zi is the ionic charge, F is the Faraday constant, 

and   is the electric potential. When the dc voltage is on, Li
+
 ions migrate under the 

electric potential gradient   towards or outwards the tip in order to compensate the 

external electric field, thus shifting the sample from the initial thermodynamically stable 

state to a new state with inhomogeneous Li concentration distribution. This redistribution 

is controlled by both migration and diffusion mechanisms. 
74

 As a result, the Li 

concentration gradient defined by the amplitude and the time of the applied dc pulse is 

created below the tip. After the dc bias is off, the Li
+
 ions diffuse back (relaxation) 

bringing the sample from the inhomogeneous concentration state into the initial 

equilibrium state under the resulting chemical potential gradient i . Simultaneous ac 

probing of the ESM response after the dc pulse (dc off state) represents dynamics of the 

local deformation and presumably Li
+
 concentration (this assumption is correct if only Ci 

changes, while temperature, contact area, diffusion coefficient and voltage remain  
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Figure 3.8. Schematic representation of time spectroscopy. (a) Sequence of dc pulses and 

ac probe between the dc; (b) schematic illustration of the measured ESM response. 

 

constant, and non-Vegard’s contributions can be neglected). Shape of the ESM relaxation 

response is schematically represented in Figure 3.8 (b). Fitting the experimental curves 

with an appropriate physical model allows estimating local Li diffusion coefficient in a 

studied material. 

To minimize irreversible changes of concentration and injected charges, a sequence 

of positive and negative dc pulses of the same magnitude is commonly applied. Initial 

ESM response should be measured before the first dc pulse to record the reference 

response (initial state). Dc pulse magnitude and time should be small enough to activate 

only reversible processes. 

Before further description, one must clearly distinguish difference between the dc 

mediated ionic migration and diffusion and the ac mediated oscillating surface 

displacements probed by SPM (ESM response). In TS increasing/decreasing ESM response 

represents the dc mediated migration and diffusion processes of mobile ions through the 

oscillating strain. Remember that the true mechanism of the ESM response that links the 

detected ac mediated strain to the ionic mobility/concentration below the tip is not fully 

understood. We will discuss this issue later in Chapter 6. 

Solutions for the dc mediated strain and its relaxation in time domain were obtained 

by using Fick's second law (see Eq. 3.7 and 3.8), assuming absence of strain-diffusion 

coupling, the constant diffusion coefficient, and the negligible thermal expansion effect. 
3
 

For the rectangle dc pulse with 0t  pulse time and in the case of fixed concentration 

boundary condition (λ = 0) the solution for the static case (ω=0) is following: 
3, 93 
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where 3u  is the elastic strain, β is the Vegard coefficient, ν is the Poisson ratio, and R0 is 

the tip-surface contact area. 

In the classic diffusion theory the exponent i in the power law t
-i/2

 at t>>t0 

determines the dimension of diffusion: i=1 for 1D, 2 for 2D, and 3 for 3D and 

experimentally can indicate reduction/increase of the diffusion dimension, i.e. local 

diffusion anisotropy. 

For the same dc pulse in the case of fixed flux boundary condition ( = 0) the 

solution for the static case (ω=0) is following: 
3,96
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Time dependent solutions for the dynamic strain (ESM, ω≠0) have not been 

derived yet. 

Voltage spectroscopy 

Further insight into Li dynamics can be done by means of the voltage spectroscopy. 
101,102

 In this method, a series of dc pulses (sketched in Figure 3.9) is applied between a tip 

and a counter electrode, and the resulting ESM response is probed after each dc pulse by 

applying a periodic ac voltage. Measured ESM amplitudes are plotted versus 

corresponding dc voltages. As the field induced Li
+
 concentration increases/decreases 

below the tip, the induced displacement increases/decreases correspondingly. Short time 

between pulses prevents full displacement relaxation after each pulse (diffusion relaxation 

time is in the 0.1–1 s range for the probed volume and for typical diffusion coefficients 10
-

14
–10

-12
 m

2
s

-1
), thus electrochemical hysteresis loops can be observed, resembling the 

piezoresponse hysteresis loops in ferroelectric materials. 
103

 In contrast to ferroelectrics 

where hysteresis is a signature of polarization switching, ESM loops represent a variation 

of Li
+
 concentration/mobility following the dc cycling. 

The loop is open only when significant Li redistribution occurs during dc pulses. It 

is possible if there are mobile Li ions in the probed volume. 
104

 Loop opening strongly 

depends on the dc sweep frequency and can be understood from a simple mechanism. If 

the frequency is much higher than the Li inverse diffusion frequency in the probed volume 

2

1

l

D



 than the Li redistribution during the dc sweep is small, measured ESM response is 

almost constant and the loop is closed. When the frequency decreases and becomes  



 

- 35 - 

 

Chapter 3: Scanning Probe Microscopy methods 

 
 

Figure 3.9. Voltage spectroscopy: (a) schematic of dc and ac pulses, (b) schematic of 

response and loop formation. 

 

comparable with the Li diffusion frequency 


1
1–10 Hz in the probed volume, Li 

redistribution in the probed volume is significant, but there is a lag between the Li 

concentration change and the electric field, and the loop opens. If the sweep frequency is 

much lower than the Li diffusion time, then Li redistribution occurs in a volume that 

significantly bigger than the probed one, and the loop saturates, closes and becomes S-

shaped. 
104

 

The applied dc pulses should be limited in time and amplitude in order to prevent 

possible irreversible changes that might arise for sufficiently high and long voltage pulses. 

These values depend on many parameters such as tip material, humidity, sample’s surface 

state and should be determined empirically before measurements. 

A certain threshold dc voltage is needed in order to initiate Li redistribution. Apart 

of that, in electrochemically active systems there is a concentration limit for mobile ions, 

i.e. ESM response reaches saturation after a certain dc pulse amplitude. Figure 3.10 

schematically illustrates effect of the threshold voltage and the concentration saturation on 

the loop shape. 

Figure 3.11 is a striking illustration of the dependence of loop opening on mobile Li 

concentration below the tip. The measurements were done over the test solid-state battery 

structure consisting of partially overlapped layers of the LiCoO2 cathode, the LiPON 

electrolyte, and the Si anode. 
104

 Loops from the anode deposited directly on the Al current 
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Figure 3.10. Schematic illustration of the Li-redistribution as a function of the maximum 

bias pulse. In presence of the reaction limitation, the process is linear above a certain 

threshold bias and saturates at the intercalation limit. (b) The expected hysteretic response. 

(Adopted from Ref. 
104

) 

 

collector are completely closed, while loops from the full battery structure are open. These 

results clearly demonstrate that the ESM response and the voltage spectroscopy hysteresis 

loops are representative for the electrochemical processes below the tip. 

 

 
 

Figure 3.11. (a) Layout of the battery device, illustrating the relative position of LiCoO2 

cathode, LiPON electrolyte, and Si anode layers. (b) Combination of the optical 

micrographs of the battery surface acquired through an AFM digital camera system, 

illustrating the location of measurement. (c) Measured responses (shifted along the y-axis 

for better visibility) illustrating the lack of electromechanical activity on a bare anode 

surface and strong hysteretic responses in the regions where underlying LiPON and 

cathode materials are present. (Reproduced from Ref. 
104

)
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3.2.4 Non-Vegard contributions 

Besides the Vegard ESM response u, a number of other – non-Vegard – 

contributions to the measured signal 1A  is possible: 
95
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where   is the Poisson coefficient, h is the film thickness (in case of a thin film sample), 
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 is the electrostatic contribution, 
103

 

CPDV  is the contact potential difference between the tip and the sample, and AC

eff Vd33  is the 

piezoresponse. 
103

 )(tCi , )(tn , and )(tp  are concentration variations of ions, 

electrons, and holes as a function of the applied voltage acV  (for example, 

0

)(
TRfk

VDeC
tC

B

acii
i  ). In case of multiple types of mobile ions the Vegard contribution is 
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

N

i

ii tC

~

1

 , where N
~

 is a number of types of mobile ions. 

Ferroelectric (and piezoelectric) contribution is common in noncentrosymmetric 

materials and is typically higher than the ESM response controlled by the Vegard 

deformation. The electrochemically active cathode and anode materials used in Li-ion cells 

are usually not piezoactive. Commercial battery anodes and cathodes are typically 

composites containing active particles within the PVDF binder enriched with conductive 

nanoparticles. The PVDF binder could show stronger piezoresponse then the ESM 

response from active particles containing mobile Li ions (LiMn2O4, LiCoO2, etc.). 
105

 

Ferroelectric response is polar in nature. Polarization switching during voltage 

spectroscopy results in the characteristic butterfly-like shape of the amplitude hysteresis 

loop and 180° phase switching. Conversely, the ESM amplitude loop has different shape 

and its phase does not switch to 180° due to non-polar nature of the Vegard strain 

response, which depends only on Li concentration 
106

 (Figure 3.12). 

Flexoelectricity is a spontaneous electrical polarization induced by the strain 

gradient. The flexoelectric contribution is common for both centrosymmetric and non- 

centrosymmetric materials and typically an order of magnitude smaller than the Vegard 
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Figure 3.12. Phase-voltage and amplitude-voltage loops from (a) piezoactive PZT, (b) non-

piezoactive Li conductive LFP and (c) soda-lime glass. (Reproduced from Ref. 
106

) 

 

contribution. 
95

 

The electrostatic signal contributes to the measured response in the dc on state, but 

can be easily identified as a linear function of bias and subtracted. 
103,107

 Moreover, the 

electrostatic contribution is inversely proportional to the cantilever spring constant and can 

be suppressed by using sufficiently stiff cantilevers. In the dc off state it should be zero 

unless the contact potential difference CPDV  between the tip and the sample is present. 

Electrostatic contribution due to the contact potential difference does not change the 

hysteresis loop shape measured in the off-field state. 
103

 It just shifts the whole loop along 

the ESM response axis causing an offset which depends on the tip electrode material. 

However, this is not always true and will be discussed in details in Chapter 6.
 

The electrostriction contribution can significantly affect the ESM response, but 

only in the dc on mode. In the dc off mode it exists at the double modulation frequency and 

does not contribute to the ESM response unless a background dc of any nature is present. 
95 

 

Numerical calculations performed for LiCoO2 and LiMn2O4 systems with ion-

blocking boundary conditions show displacements much below 1 pm for frequencies above 

10
4 

Hz even though a relatively high Li diffusion coefficient of 10
-13

-10
-14

 m
2
s

-1
 was used. 

108,90
 A mean oscillation path for the ions smaller than the distance between two interstitials 

was calculated, meaning that the diffusion-based model cannot be applied in this case. 

However, the ESM signal induced by lithium ions is experimentally detected at 

frequencies 200-400 kHz as was described above in this Chapter. This fact arises a 

question about the true nature of the ESM response. 
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Chapter 4 

Experimental 

4.1 Sample preparation 

All samples studied in this work were prepared and characterized by XRD, ICP-

OES, SEM, and EBSD by Mr. Hugues-Yanis Amanieu and colleagues at the Corporate 

Research business unit of Robert Bosch GmbH in Gerlingen-Schillerhoehe, Germany 

within the FP7 Marie Curie Initial Training Network "Nanomotion" project collaboration. 

In order to investigate degradation mechanisms of LiMn2O4 cathodes and graphite 

anodes caused by intensive cycling at high C rates, we compared samples from non-cycled 

and cycled down to 80% state of health (SOH) batteries. The batteries are commercial 

18650 Li-ion cells with LiMn2O4 cathodes and graphitic anodes and a typical capacity of 

1200 mAh. Three cells (termed “fresh” further in the text) were completely discharged at 

1C-rate in the CC/CV mode down to 2.3 V with a stop current of 0.2C-rate. The first of 

these cells was maintained at 0% state of charge (SOC), the second cell was charged at 1C-

rate up to 50% SOC, the third one was charged at 1C-rate up to 100% SOC. Another three 

cells (termed “fatigued” further in the text) were cycled being charged at 2 A (slightly 

more than 1C-rate) and discharged at 16C-rate (Figure 4.1). After fatigue down to 80% 

SOH (Figure 4.2) they were cycled 3 times at 1C-rate and finally completely discharged at 

1C-rate. After that, one cell was maintained at 0% SOC and the other two were charged at 

1C-rate up to 50% SOC and 100% SOC similar to the fresh ones. The LiMn2O4 cathodes 

with the Al current collector and the graphitic anodes with the Cu current collector were 

extracted in a glove box in Ar atmosphere and washed in dimethyl carbonate in order to 

remove the electrolyte. 
109

 

The extracted samples are complex composites consisting of the Al/Cu current 

collector, LiMn2O4/graphite active particles, and the soft polymer PVDF binder enriched 

with carbon black nanoparticles. Figure 4.3 illustrates element mapping obtained on 

LiMn2O4 cathodes using Scanning Electron Microscopy (SEM) with Energy Dispersive X-

ray Spectroscopy (EDS). Preliminary X-Ray diffraction (XRD) measurements showed that 
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Figure 4.1. Charge-discharge curves of the fatigued to 80% SOH sample for the 1st and the 

100th cycles. Battery was charged in the CC/CV mode at 2 A current until voltage reached 

4.2 V and then discharged at 16C-rate. (Reproduced from Ref. 
109

) 

  

 
 

Figure 4.2. Discharge capacity versus cycle number of the fatigued cell at 16C discharge 

rate. The 5 first cycles present a capacity increase due to activation of the cell. The very 

low capacities at some points are due to the failure with the cycling instrument. SOH was 

determined as a capacity loss at 1C-rate – not shown. (courtesy of ZSW) (Reproduced 

from Ref. 
109

) 
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Figure 4.3. SEM image and EDS spectra of the washed LiMn2O4 cathode. C, Mn, and O 

letters on images correspond to distribution of carbon, manganese, and oxygen. 

 

all LixMn2O4 samples possess the spinel cubic structure ( m3Fd space group). Inductively 

coupled plasma optical emission spectrometry (ICP-OES) showed the Li/Mn ratio within 

the cubic spinel phase range. Results are summarized in Table 4.1. It should be noted that 

ICP-OES cannot distinguish the origin of different elements. It is hence possible that 

lithium were present as impurities (secondary electrolyte interface, rest of electrolyte salts, 

etc.), increasing the overall ratio. 

After preliminary characterization the samples were embedded in a soft and 

compliant epoxy resin, sequentially polished with 1200–4000 silicon carbide sand paper, 3 

μm and 1 μm diamond paste, and Struers OP-S suspension. Resulting surface is shown in 

Figure 4.4. The mechanically polished samples were finally polished by an Ar ion beam: 

15 min cleaning at a 10° angle and 30 min polishing at a 4° angle. PVDF was completely 

sputtered off the surface. 

4.2 Experimental setup 

ESM measurements were performed using a commercial AFM (Solver Next, NT-

MDT – Figure 4.5) working under ambient conditions (RH≈40%) in the ESM mode. Pt/Ir 

coated cantilevers of the same type with ≈5 N/m stiffness and ≈130 kHz fundamental 

resonance frequency were used as external movable electrodes. Before measurements they 

were tested using a periodically poled lithium niobate (PPLN) test sample. The samples 

were grounded through the metallic current collectors serving as counter electrodes. Each 
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active particle (LixMn2O4 or graphite) was electrically connected to the metallic current 

collector (Al for the cathode and Cu for the anode) through the conductive carbon black  

Table 4.1. Samples 

№ of 

sample 

Composition SOH, % SOC, % Lattice 

parameter, Å 

Li/Mn ratio 

1 LixMn2O4 100 0 8.1779 0.94/2 

2 Graphite 100 0 - - 

3 LixMn2O4 100 50 8.1406 0.75/2
*
 

4 LixMn2O4 100 100 8.092 0.61/2 

5 LixMn2O4 80 0 8.1791 0.89/2 

6 Graphite 80 0 - - 

7 LixMn2O4 78 50 8.1352 0.756/2 

8 Graphite 78 50 - - 

9 LixMn2O4
**

 78 100 8.1104 0.65/2 

10 LiMn2O4 thin 

film 

n/a n/a 8.1866 - 

*
 the Li/Mn ratio is estimated from the lattice parameter 

**
 the cell is unchargable, stopped at 4.08 V 

 

within the PVDF. Driving ac voltage with 3 V amplitude was applied between the 

cantilever and the counter electrode using the internal source of the microscope (≤10 V). 

Parameters of dc pulses for ESM spectroscopies are presented in Chapter 6. Measurements 

were conducted below the first cantilever-surface contact resonance in the frequency range 

where no spurious peaks were observed, until different is specifically stated. ESM response 

was measured by means of the internal lock-in amplifier of the microscope as the first 

harmonic of the laser beam deflection. 

KPFM measurements were performed in the 2-pass AM-KPFM mode using the 

same microscope under ambient conditions. The samples were grounded through the 

metallic current collector serving as a counter electrode. Ac voltage of the second pass was 

0.5 V in amplitude, the 2
nd

 pass lifting height was always 15 nm; scan resolution was 

256×256 points. Pt/Ir coated cantilevers (NTMDT NSG10, resonance frequency = 249.4 

kHz, force constant = 11.8 N·m
-1

) were used. Before measurements the cantilevers were 
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calibrated using a highly oriented pyrolytic graphite (HOPG) test sample and a thin Ag 

film sputtered on a Si substrate. 

 
 

Figure 4.4. SEM images of cross-sections of the LiMn2O4 cathode (a, b) and graphite 

anodes (c, d). Courtesy of Robert Bosch GmbH, Corporate Research. 

 

 
 

Figure 4.5. Solver Next scanning probe microscope. (Reproduced from Ref. 
110

) 



 

- 45 - 

 

Chapter 4: Experimental 



 

- 46 - 

 

Single- and multi-frequency detection of surface displacements via ESM 

 

 

 

Chapter 5 

Single- and multi-frequency detection of 

surface displacements via ESM 

Estimated vertical surface deformations measured in ESM are ranging from 10
-2

 pm 

to tens picometers. 
3
 Implemented in ESM lock-in amplification allows detecting surface 

displacements with the vertical resolution down to several pm. However, this is at the limit 

of the AFM’s resolution. Up to now the ESM method has been implemented in multi-

frequency modes 
111

 such as Band Excitation (BE) 
112

 and Dual AC Resonance Tracking 

(DART) 
113

 in order to amplify sufficiently low ionic mediated displacements at the 

cantilever resonance. Despite the fact that the BE and DART techniques were introduced 

more than 7 years ago, their noise performance has not been carefully analyzed yet. 

In this work we implemented ESM in the single frequency detection mode without 

the resonance amplification for the first time, so it is prerequisite to compare its noise 

performance with the earlier used multi-frequency methods. 

In order to prove efficiency of the single frequency approach for ESM 

measurements, in this Chapter we first analyzed noise performance of the multi-frequency 

detection modes and compared it with the conventional single-frequency detection mode. 

We established the dependence of the signal-to-noise ratio on cantilever parameters and 

noise in the AFM system. Finally, we demonstrated that the ESM response can be 

measured off the resonance using a commercial AFM system. 

5.1 Band Excitation mode 

Band Excitation was recently introduced as an universal alternative to the 

traditional single-frequency detection that allows quantitative studies of dissipative and 

conservative phenomena of a tip in contact with surface, and thus can be applied virtually 

to all SPM methods. In this method, both excitation and detection are performed using a 

driving signal having defined amplitude and phase content in a given frequency interval 
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across the contact resonance. This allows efficient use of the resonance amplification, 

avoiding artifacts due to changes in the resonance frequency and the quality factor Q as a 

function of a probe position, bias, or surface properties. 
112

 Figure 5.1 illustrates the first 

contact resonance shift over a composite sample surface recorded in the BE mode. 

 

 
 

Figure 5.1. Shift of the contact resonance frequency during scanning of a LiMn2O4 

cathode: (a) surface topography, (b) the resonance frequency map, (c) shift of the 

resonance frequency along the single line. (This image was obtained at the CNMS ORNL 

(project CNMS2013-130)) 

 

Analytical expression )(tx for the BE excitation signal in time domain can be found 

by Fourier transformation of the Heaviside step function  )()( UL    (Figure 

5.2 (b)): 
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,  (5.1) 

where LUBE    is the bandwidth of the BE signal, )(x  is the Heaviside step 

function, 






 
ti LU

2

)(
exp


 is the carrier signal with the frequency 

2
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 and 

)
2
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 




 is the modulation signal with the modulation frequency 

2

BE
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Figure 5.2. Excitation signals of BE mode in comparison with the single frequency 

detection method in time (right figures) and frequency domains (left figures). (a) Single 

harmonic signal for the single frequency mode. (b) BE pulse has spectral density uniformly 

distributed within BE band. (c) Group of the BE pulses has discrete spectrum with spectral 

density at each spectral point higher than spectral density of a single BE pulse but lower 

than a single harmonic signal (a). (Reproduced from Ref. 
114

) 

 

Infinite in time domain Sinc excitation signal (Eq. 5.1) has a rectangular continuous 

spectral density and zero shift phase content. Energy of the Sinc excitation is concentrated 

in one pulse for a short period of time 
BE





2
~  during which all excitation energy can be 

transferred to the sample. 

Another type of BE excitation signal is the Chirp excitation )sin( 2

0 tV   – which 

is the phase modulated signal with the fixed amplitude 0V  with a rectangular type of 

spectral density and a quadratic phase content. Energy of the Chirp excitation signal is 

distributed more continuously within the pulse duration and, consequently, for the same 

injected energy has much lower electric field at the maximum. Preferable type of excitation 

can be selected for a specific task. The desired energy distribution in the time domain can 
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be obtained by tuning the phase content of the signal from the Sinc to the Chirp type of 

excitation. 

5.2 Signal-to-noise ratio and vertical resolution 

Noise in the Atomic Force Microscopy consists of the cantilever thermal noise, the 

tip-surface interaction noise, and the instrumental noise of detection and signal processing 

systems (Figure 5.3). 
115

 Therefore, the power spectral density of the total displacement 

signal noise can be expressed as z

ds

z

th

z

tot DDD  , where z

thD  and z

dsD  are the thermal and 

the detection-system contributions, respectively. 

 

 
 

Figure 5.3. Schematic presentation of the signal path in AFM detection and lock-in system. 

The quantities 
z

sP  and 
fz

sPg )( 2
 describe the input and output signals of the lock-in and 

AFM system. z

ds

z

th

z

tot DDD   and f

totD  are the corresponding noise power spectral 

densities superimposed on the ESM/PFM signal and )(g  is the frequency response 

function of the cantilever. (Reproduced from Ref. 
114

) 

 

Electrical and optical components of the detection system produce noise that typically 

overlays the ionic displacement (ESM) signal. 

Single frequency 

Effect of the cantilever resonance amplification can be considered using a simple 

harmonic oscillator (SHO) model. Around the first contact resonance the frequency 

response function of a cantilever can be approximated by the frequency response function 

of SHO. Solution of the SHO equations for a single sinusoidal excitation 

)sin(2 max2

0

2

0 tAzzz     with the amplitude 
maxA  and the frequency   is: 

)sin()()(   tAtz ,     (5.2) 

where the response amplitude A and the phase φ are defined by equations: 
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Here 00 2 f   is the resonance frequency, 




2

0Q  is the quality factor, and )(g is the 

frequency response function of SHO. For an arbitrary excitation signal )(ts  the expression 

for )(tz  is the integral of the frequency response function with the amplitude spectral 

density of the excitation signal )(s : 

  

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

dtzdtgstz ))(sin()(
2

1
))()(sin()()(

2

1
)( , (5.4) 

where )(  is the phase of )(s . Spectrum of the cantilever vibrations )(tz  is 

)()()(  sgz       (5.5) 

According to the equipartition theorem 
116

 

Tktzk B
2

1
)(

2

1 2  ,     (5.6) 

where )(2 tz  is the cantilever mean-square displacement, k  is the static stiffness of the 

cantilever, Bk  is the Boltzmann constant, and T is temperature. The total mean square 

cantilever displacement and the power spectral density of the cantilever thermal noise 

)()( 2  th

z

th zD  are related to each other as 





0
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th .    (5.7) 

The power spectral density of the cantilever thermal noise )(z

thD  with the constant 

thermal excitation spectral density   (white noise) can be written as 

  )(
2

)( 2g
k

D z
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Q

TkB

0

2


  . 
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Using Equations (5.4) – (5.7), the 
noise

signal

P

P
SNR   in the frequency range from L  to 

U  before processing is: 
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where BLUB f 2 is the bandwidth of the system, integral 
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where Ps is the power of the measured response, and B

z

ds

z

ds fDP   is the power of the 

detection system noise in the system bandwidth. 

After using a low-pass filter in a lock-in amplifier with the cutoff frequency 
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Subsequently, after changing the integration limits in Eq. (5.8) 
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where 

z
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r
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       (5.12) 

is the ratio of spectral densities of the thermal excitation noise 
k

2
 to the detection system 

white noise z

dsD . The term 
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 is responsible for the SHO amplification and the  
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term 
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and off the resonance at 1)( g  
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Now, consider the ratio of SNRs at the resonance ))(( 0 Qg   and off the 

resonance )1)(( g : 
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If 
r

Q
12   , then 1

1

)1(

)(


rSNR

QSNR
, i.e. at high Q, the effect of the resonance amplification 

is defined by r. 

If 
r

Q
12   then 2

)1(

)(
Q

SNR

QSNR
 , i.e. at low 1r , the effect of the resonance 

amplification is defined by Q
2
. 

Figure 5.4 (a, c) illustrates 
)1(

)(

SNR

QSNR
at a single frequency as a function of Q and r. 

If sensitivity of the SPM detection system (laser and photodetector) is higher or about the 

thermal excitation spectral density ( 1r ), then the resonance amplification does not 

significantly improve the signal-to-noise ratio, because the cantilever thermal vibration 

spectra corresponds to its frequency vibration spectra. 
115,117–119

 For more effective 

resonance amplification r  should be significantly less than 1 and Eq. 5.12 can be used to 

select optimal parameters of the cantilever for the resonance measurements. 

A typical cantilever for contact measurements has 10-100 kHz resonance frequency 

and 0.01-1 N/m stiffness. For numerical estimations the commercial Solver Next AFM 

microscope (NT-MDT) and a Pt/Ir coated cantilever with 0.3 N/m spring constant and 14.5 

kHz resonance frequency were used under ambient conditions on a cross-section of 

LiMn2O4 lithium-ion battery cathode embedded in epoxy resin and rigorously polished. In 

contact with the sample the cantilever’s quality factor 30Q  and the contact resonance 

frequency kHz 4.750 f  (Figure 5.5). The contact spring constant N/m 8* k  was 

estimated as a ratio of the contact and the non-contact resonance frequencies and is 27 

times higher than the non-contact spring constant. This is in agreement with typical ratios 

of contact and non-contact cantilever spring constants. 
120

 However, the thermal noise level 

(mean square cantilever displacement) in contact remains almost the same, while a 

decrease by the kk *
 factor was expected. It is due to additional noise originated from the 
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Figure 5.4. Ratio of SNR with resonance amplification (SNR(Q)) to SNR without 

resonance amplification (SNR(1)) as functions of quality factor Q and r. Figures (a) and (c) 

illustrates the single frequency case while figures (b) and (d) illustrates the BE case for 50 

points in frequency domain. In the BE case (SNR(Q)/SNR(1))/N at one frequency point 

(bin) can be less than 1 a certain values of Q and r. (Reproduced from Ref. 
114

) 

 

change of the cantilever boundary conditions in contact, which are not equal to the ideally 

fixed beam cantilever. 
121

 

For these parameters and for HzpmD z

ds

21.0   (taken from the microscope 

specification) we calculate r=0.014 and 56
)1(

)(


SNR

QSNR
(corresponding ratio of amplitudes is 

5.7
)1(

)(


SNR

QSNR
). In this case, the resonance amplification is 56 instead of maximum 

possible 9002 Q  for the high level of the detection system noise. 

Time delay at the resonance s
f

Q
SHO 


 63

2 0

  is still lower than the time of the 

signal averaging of the lock-in amplifier s 3000300
2

1



 

cut

passlow
f

 (condition 

Q
fcutcut

02


   for Eq. 5.10), therefore the resonance amplification can improve the 
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Figure 5.5. Observed resonance frequency shift Δω0 during scanning. Band width is the 

schematic frequency range of the BE band needed to track the resonance shift. 

(Reproduced from Ref. 
114

) 

 

SNR without the significant additional time delay. However, a shift of the resonance 

frequency due to the topography crosstalk results in a significant error in the amplitude 

response in case of the single frequency measurements (Figures 5.1 and 5.5). 
112,122

 For this 

reason, the BE or DART techniques are used to avoid the resonance frequency shift error. 

Multi-frequency 

To analyze SNR for the BE method we should consider a more complex excitation 

signal. Analytical expressions )(tx of the BE excitation signal in the time domain for 

continuous spectrum are SINC 






 



tit LUBEBE

2

)(
exp)

2
sinc(

2






 or CHIRP 

)sin( 2

0 tV   single pulses. Since the lock-in processing method operates with a discrete 

type of a signal spectrum, in practical applications a periodic excitation signal (group of 

Sinc or Chirp pulses) with the time period 
BE

N
T




~
 (Figure 5.2 (c)) can be used. 

According to the convolution theorem, such sequence gives a discrete spectrum consisting 

of N÷N+1 bins in the bandwidth LUBE   . The analytical expression of the 

periodic BE excitation signal can be found as a sum of N+1 harmonics )exp( ti j  with 
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j
N

BE
Lj 


  and j = 1, 2, .., N: 

)
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)
2
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)
2

1
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))(exp()(
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,  (5.16) 

where 






 
ti LU

2

)(
exp


 is the carrier signal with the frequency 

2

LU  
, and 

)
2

sin(

)
2

1
sin(

t
N

t
N

N

BE

BE



 


 is the modulation signal with the modulation frequency 

BE
N

 )
1

1(
2

1
 and pulse frequency 

TN

BE
~

2
 . Here T

~
 is the pulse period with 0 and 

  alternating phase content following the period 2T
~

. 

Such sequences of the pulses can be characterized by an average power P over the 

time period T
~

 








2

~

2

~

2
)(~

1

T

T

dttx
T

P .     (5.17) 

According to Parseval's theorem, the average power can be expressed as: 










 dffX
T

dttx
T

P
BEBE

22
)(~

1
)(~

1
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where BET
~

is the time period of the signal x(t). The average power of the signal can be 

written as an integral (sum) of the power spectral densities 
BET

fX
fP ~

)(
)(

2

 : 










 dffPdffX
T

P
BE

)()(~
1 2

.    (5.19) 

For the spectral density )( fP of the exciting signal with the discrete spectrum including N 

equal bins, the average power P is equally distributed between each Pi components of the 

spectrum: 

N

P
Pi  .     (5.20) 

According to Eq. (5.11), the lock-in amplification is expressed by the relation 










 

cut

B

f

f
, where 

2

1
cutf  is the cutoff frequency and   is the time constant limiting the 

minimum time of measurement. Then SNR improvement after the lock-in amplification is 
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 BfSNR ~ ,     (5.21) 

i.e. it is proportional to the time of measurement of the system  . Based on Eq. (5.11), 

(5.20) and (5.21), the SNR at a single frequency point (bin) after the lock-in amplification 

for different methods such as lock-in sweep/fast tune, band excitation, and single 

frequency signal processing can be expressed as a ratio of the measurement time ( ) for a 

number of points in the frequency domain to the number of these bins (N) in the frequency 

domain at the same power P  of the driving signal: 

Ndomainfrequency  in points of number

asurementtime of me
SNR


~ .  (5.22)  

Because of simultaneous measurement of a number of bins in the frequency 

domain, the signal energy (and the average signal power P) is redistributed between the 

bins in the frequency band range, and, therefore, the signal-to-noise ratio for a single bin in 

BE is apparently lower than in the case of the single frequency resonance amplification. In 

this regard, the DART technique which can operate at the resonance and use only two 

frequencies should be more effective. 
113

 However, the method is sensitive to the shape 

symmetry of the resonance curve and phase stability during quality factor measurements. 

From the point of view of the average power distribution between frequency points, the 

fast tuning technique 
123

 is similar to the described BE method. 

Additional resonance amplification results in SNR improved by a factor 
 2

2

1 rQ

Q


 

(see Eq. 5.13). 

FWHM of the resonance peak of the example cantilever is 
Q

f0 2–2.5 kHz. To 

trace the 5 kHz resonance shift (observed on the LiMn2O4 for the given cantilever – Figure 

5.5) in the case of BE the frequency range must be extended at least up to 10 kHz. This 

needs minimum 10–20 points in the frequency domain (2 points per FWHM). When the 

tip-surface interactions are non-linear and cannot be described by the SHO model, typical 

number can be 50–100 points. According to Eq. (5.22), the SNR decrease for a single 

frequency point is proportional to a number of points in the frequency domain, i.e. 50–100 

times that eliminates amplification at the resonance, i.e. 1.1–0.6 instead of 56 for the same 

measurement time and driving voltage at a single frequency. 

Figures 5.4 (b) and (d) illustrate 
)1(

)(1

SNR

QSNR

N
 for BE as a function of Q and r for 50 

points in the frequency domain. Under ambient conditions on stiff surface (for example, 

quartz), typical Q~10
2
 and r≤10

-4
 that allow efficient resonance amplification using BE. 

However, in case of soft samples, soft cantilevers, or liquid environment 
124

 r could exceed 

0.1 and 
)1(

)(1

SNR

QSNR

N
 will be less than 1, i.e. operating at resonance can attenuate the 

measured response for the multi-frequency detection. Therefore, it is particularly important 

that the cantilever is chosen according to sample’s properties and experimental setup in the 
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case of multi-frequency detection. Equations (5.12), (5.15) and (5.22) can be used as a 

guide for choosing correct parameters of the cantilever for the ESM measurements if the 

noise in the system is known. 

If the lock-in detection using the same reference signal with the same phase content 

for N spectral components of the expected response signal, the spectral amplitudes after the 

demodulator will be shifted to zero frequency and after summing up can be filtered by a 

low-pass filter. In this case, we have a coherent sum (in one phase) of N signal amplitudes 

and a sum of N incoherent (random phase) amplitudes of the noise signal. Incoherent sum 

of noise amplitudes can be expressed as a sum of noise powers. Such synchronous 

detection in the BE mode can improve SNR of the response signal. 

Indeed, the power presentation of the response signal with N spectral components is 





N

i

i

s

N

P
s

1
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



N

i

i

s

N

P
s

1

)(2)(  ,   (5.23) 

Phase sensitive lock-in detection results in summing up of signal amplitudes: 
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Then 
noise
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P

P
SNR   can be estimated in a similar manner as it was made in Eq. (5.8): 
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where 
z

ds

B

DQ

kTk
r

0

4


  is the ratio of the spectral densities of the thermal excitation noise 


k

2
 to the detection system white noise z

dsD . The sums 


N

i

ig
1

)(  and 


N

i

ig
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2 )(  for 
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1N can be estimated as integrals 


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



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 with the 

bandwidth LUBE   . To estimate these integrals near the resonance we 

approximated the frequency response function )(2 g  by an exponential distribution 

(Figure 5.6): 
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Then 
























 






 







 
















QN
dg

N
g BE

BEBE

N

i

i

BE

BE 0

0

2

2

1

exp1)()(

0

0

 

and 
























 






 







 


















Q
Q

N
dg

N
g BE

BEBE

N

i

i

BE

BE

2
exp1

2
)()(

0

0

2

2

2

1

2

0

0

. 

Thus, for the bandwidth 
Q

BE

0~   of the excitation signal symmetrically extended to 

both sides from the resonance, where 0~  , Eq. (5.24) takes the form: 

 

 
 

Figure 5.6. Fitting of the frequency response function of SHO by exponential distribution. 

(Reproduced from Ref. 
114

) 
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The relation for 
)1(SNR

SNR
BE

 at different ~  is shown in Figure 5.7 (b). Increase of the 

bandwidth BE  with respect to the FWHM of the resonance peak 
Q

0
 reduces Q

~
 and 

increases r~  resulting in SNR reduction. 
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Figure 5.7. Q
~

, 
)1(SNR

SNR
BE

 reduction and r~  increase as a result of BE  bandwidth  

increase. (a) represents Q
~

, r~ dependences , and (b) 
)1(SNR

SNR
BE

as a function of 
0

~




 BEQ . 

(Reproduced from Ref. 
114

) 

 

Dependences of 
Q

Q
~

 and 
r

r~
 on ~ are shown in Figure 5.7 (a). Reduction of Q

~
 and 

increase of r~  results in the SNR decrease as can be seen from Fig. 5 (b). 

The considered synchronous detection can be used if phase of ESM response is 

frequency independent within the BE frequency range. To make the lock-in detection 

synchronous (in one phase) for all spectral components we have to know phase 

characteristics of the resonance in advance, i.e. first we have to make the fitting procedure 

on the spectral points when SNR is reduced by a number of bins N (Eq. 5.22). Fitting 

(weighted fitting) of the resonance curve is used to extract the resonance parameters Q and 

f0, and normalized amplitude 
Q

A
 of the signal (here we consider amplitude A  as a fitting 

parameter). Two fitting parameters Q and f0 are enough to calculate the phase of the 

response signal at the resonance (Eq. 5.3). The described method is more complicated in 

realization, but provides the best SNR in the BE mode for a measured ESM/PFM 

amplitude. In this case, the response amplitude will be characterized by better SNR than 

the amplitude as the fitting parameter A , since in the fitting procedure the basic SNR at 

each frequency point (bin) is reduced by the number of bins (Eq. 5.22). 

Optimal number of bins in the BE mode should be minimal to be enough to make 

correct fitting and extract basic parameters Q, and f0 of the resonance. This requires 

minimum two bins per 
Q

FWHM 022

  frequency region (as realized in DART 

technique) and three bins within resonance – minimal number of bins to make 

unambiguous fitting of the resonance. Depending on the character of a tip-surface 

interaction, a resonance frequency shift, and a change of a quality factor, the total number 
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of bins can be increased to tens and hundreds. In the BE mode the fitting is a key 

procedure which operates with spectral signal components with reduced by N SNR. 

One of the alternative ways by which ESM/PFM instrument development can be 

focused is an improvement in the sensitivity of the detection system of AFMs. The optical 

beam detection (OBD) noise ( z

dsD ) can be significantly reduced. Fukuma et al 
125

 

developed an OBD sensor with a deflection noise density of 17 Hzfm  instead of 

conventional 100–1000 Hzfm . Up-to-date AFM systems with the improved sensitivity 

of the detection system have already achieved 25 Hzfm  level of the detection system 

noise (according to NT-MDT Titanium AFM specification). According to Eq. (5.12), such 

reduction of z

dsD  results in ~5-50 times higher r , thus weakening the effect of the 

resonance amplification on SNR. In case of the mentioned above low noise optical beam 

detection system 
125

 and the given cantilever, r could be ~0.1 –1. According to the SNR 

analysis, in the case when the OBD noise is lower or about the thermal cantilever noise the 

single frequency regime (conventional mode) becomes optimal with the best SNR of a 

measured signal as compared with the multi-frequency methods. 

An example of the ESM imaging using the single-frequency detection is shown in 

Figure 5.8 for the cross-section of the commercial battery cell with the LiMn2O4 cathode. 

The ESM contrast is overlaid on the topography, which shows LiMn2O4 cathode 

particles embedded in epoxy resin next to the Al current collector. Decreased vertical 

sensitivity due to the off-resonance detection is compensated by the elevated ac-excitation  

 

 
 

Figure 5.8. ESM image overlaid on the topography of the LiMn2O4 cathode. ESM response 

is on the LiMn2O4 active particles. Noise signal is on the epoxy and the Al current 

collector. (Reproduced from Ref. 
114

) 
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voltage – 5 V – which did not cause any surface damage. The signal-to-noise ratio in this 

case was 2 to 4 times lower than that foreseen for the resonance bin in the BE method. 

Nevertheless, the robust ESM contrast is observed thus allowing nanoscale measurements 

of Li
+
 mobility in lithium-battery electrode materials. 

Conclusions 

The conventional single-frequency method and the multi-frequency methods for 

measuring surface displacements were analyzed and compared. Signal-to-noise ratio was 

calculated taking into account different sources of noise in modern AFM systems. It was 

shown that the resonance amplification at a single frequency depends on the ratio of the 

detection system noise to the thermal excitation white noise and can be lower than that 

predicted by the SHO theory. In case of the multi-frequency detection (BE) the resonance 

amplification can be additionally attenuated due to distribution of the driving power over a 

number of points in the frequency domain. The analysis allowed establishing criteria for a 

cantilever and an experimental setup for the most sensitive detection of surface 

displacements via a lock-in amplifier. Example of the single-frequency detection ESM 

imaging was given for the cross-section of the commercial Li-battery According to the 

presented SNR analysis, the improvement of the sensitivity of the AFM optical detection 

system is crucial for the performance of ESM (PFM) methods which can be significantly 

improved in different (multi-frequency and single frequency) regimes.
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Chapter 6 

Li transport properties in LiMn2O4 

A novel method called Electrochemical Strain Microscopy is able to probe 

transport properties of ion conducting materials at the scale down to a few nm, allowing 

better understanding of their functionality and degradation mechanisms. Up to now it has 

been implemented only in the multi-frequency Band Excitation 
112

 and DART 
113

 modes on 

a number of lithium and oxygen conducting materials, 
101,126–128

 but never on commercial 

samples and after prolonged cycling at high C-rate. 

In the previous Chapter we showed that the single frequency detection possess 

sufficient sensitivity to detect the ESM response. This Chapter summarizes ESM results 

obtained on LiMn2O4 cathodes at different SOH and SOC in the single frequency out of 

resonance mode. The results revealed a difference in voltage spectroscopy electrochemical 

loops between the fresh and the fatigued samples. Time spectroscopy data were used to 

quantitatively estimate diffusion coefficients of Li in the samples. These data were 

analyzed in the framework of existing degradation mechanisms. Finally, an alternative 

mechanism of the ESM response origin from ionic polarization rather than from Vegard’s 

expansion was proposed and used in a finite element model. 

6.1 Defining the measurement limits 

In Chapter 3 we stated that the ESM response represents the combined contribution 

of several factors and cannot be directly used to distinguish among different mechanisms 

involved in signal formation. For this reason, voltage and time spectroscopies are used to 

isolate specific contributions to the signal. The aim of the ESM spectroscopies is to study 

electrochemical system dynamics, i.e. bringing it from the initial stable state into an 

unstable one and observing its relaxation to the initial state. Electric potential applied 

between a tip and a sample changes local Li concentration below the tip. Exact 

concentration change depends on the duration and amplitude of the applied dc pulse. As it 

was noted in Chapter 2, LixMn2O4 experiences several phase transitions upon 

lithiation/delithiation. Phase transition can temporarily stabilize the system, preserving its 
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relaxation as well as changing local properties (diffusion coefficient, conductivity, etc.) 

Additional perturbation can emerge from induced electrochemical reactions at the tip-

sample interphase with formation of stable or metastable products of the reactions. These 

effects should be avoided. Therefore, before performing actual measurements we will 

determine a maximum dc voltage that can be applied without phase transitions and 

irreversible electrochemical reactions. In order to determine these limits, we applied dc 

pulses and determined where the expected transitions start. Appearance of measurable 

currents correlated with change of topography was attributed to onset of an electrochemical 

reaction. 

Note that the samples are composites and after cycling different particles could 

have different Li concentration as was reported by Amanieu et al. 
129

 Nevertheless, all 

particles where measurements were done showed similar voltage-current dependences. 

Figure 6.1 summarizes the measurement results. Negative voltage applied to the tip 

produced small but detectable stable current below -5 V presented in Figure 6.1 (a). 

Positive voltage applied to the tip produced unstable current above +6 V, which was 1-2 

orders of magnitude higher than that produced by the negative pulses (Figure 6.1 (b)). 

These will derive the limits for applied dc voltage in further measurements. 

 

 
 

Figure 6.1. Current dependences. Two regimes of current were determined: stable after 

negative pulses (a) and unstable after positive ones (b). 

 

Note that the small stable current slightly decreased with the increasing state of 

charge. It corresponds to decrease of Li concentration and amount of electronic current 

carriers (presumably small polarons). 
12

 

Figures 6.2 and 6.3 illustrate reversible and irreversible types of surface changes. 

The reversible change of topography was attributed to the formation of small (200-300 nm 

in diameter) protrusions on the surface, which relaxed after 15 minutes (Figure 6.2). ESM 

response after the relaxation returned back to the initial value. Such behavior might be due 

to a field-induced phase transition. The field induced cubic to tetragonal phase transition 

during scanning of a LiMn2O4 sample by a SPM tip under bias was observed by Kuriyama 

et al. 
130

 This new phase, being metastable, relaxed back into the spinel. 
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Figure 6.2. Reversible change of topography upon application of dc voltage pulses: (a) 

protrusions in topography formed by the pulses; (b) topography after 15 minutes, 

protrusions relaxed. 

 

 
 

Figure 6.3. Irreversible change of topography and ESM response upon application of dc 

voltage pulses: (a) and (b) topography and ESM response before the dc pulse; (c) and (d) 

topography and ESM response after the dc pulse; (e) and (f) ESM histograms before and 

after the pulse. 
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The irreversible surface change was attributed to appearance of a ~100 nm high 

stable particle on the surface (Figure 6.3). The ESM response was suppressed on the 

particle and increased around it. The increased one was noticeably stronger than the initial 

response before the damage. It illustrates that the irreversible damage, being created by 

applying voltage between the tip and the sample on the area of ~30 nm radius, modifies 

much larger area (up to several μm). 

Note, that the actual potential in the material is smaller than the applied one 

because of the interfacial potential drop. 
101

 

6.2 Possible non-Vegard contributions 

Figure 6.4 shows amplitude hysteresis loops taken on the same 0% SOC 100% 

SOH LiMn2O4 sample from different places. On the one hand, Figure 6.4 (a) shows the 

concentration dependent loop. Negative dc voltages applied to the tip attract mobile Li ions 

to the tip-sample contact and increase the local Li concentration below the tip, thus 

increasing the ESM response. Positive dc voltages repulse Li ions and reduce the local Li 

concentration, thus decreasing the ESM response. On the other hand, Figure 6.4 (b) 

exhibits the butterfly-like shaped asymmetric loop with the higher signal. This kind of loop 

does not seem to be Li concentration dependent and is not expected in LiMn2O4. 

Ideal ESM response is attributed to oscillatory surface displacements caused by the 

Vegard strain due to local concentration change of lithium ions under the applied ac 

electric field. However, the lock-in detection system of the microscope can measure 

another ac-mediated responses contributing to the first harmonic signal 1A , which were 

briefly described in Chapter 3 as follows (see Eq. 3.13): 

 

 
 

Figure 6.4. Experimental amplitude hysteresis loops measured on LiMn2O4 particles: (a) 

non-polar loop caused by presumably Vegard’s response; (b) complex loop with the 

additional polar contribution. 
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Multiple non-Vegard contributions have to be distinguished in the measured response in 

order to prevent misinterpretation of results. The best way to do this is to know qualitative 

and quantitative properties of each contribution. 

For LixMn2O4 the lattice parameter changes almost linearly from 8.03 Å for λ-

MnO2 to 8.24 Å for LiMn2O4. Taking into account that the dynamic resolution of ESM is 

about 10 pm (using a lock-in amplifier), one can detect about 5% of the Li concentration 

variation in the unit cell (on average). 

Flexoelectric and deformation potential contributions for LiMn2O4 are not known, 

but typically an order of magnitude smaller than the Vegard contribution. 
95

 

Electrostatic and electrostriction contributions normally appear as the second 

harmonic of the driving signal. They can, however, appear as the first harmonic, but only if 

the dc component of the electric field is present. In the dc off state the dc electric field can 

be caused by the contact potential difference between the tip and the sample which is 

normally constant. In this case, the electrostatic and electrostriction contributions do not 

change the hysteresis loop shape measured in the off-field state. 
103

 They just shift the 

whole loop along the ESM response axis causing the offset. However, this is not always 

true. Sufficiently high voltage applied to the tip in contact with the sample can cause a 

charge injection. Typical space charge relaxation time (also known as Maxwell-Wagner 

relaxation) for LiMn2O4 with the static dielectric permittivity ≈10 
131

 and electrical 

conductivity ~10
-6

 S/cm 
7
 does not exceed ~10

-6
 sec (




 0 ). Nevertheless, if charge 

traps are present, the injected charge can be stabilized and its relaxation time can 

significantly exceed 10
-6

 sec. If it is longer than the probing time after the dc voltage pulse, 

it can contribute to the dc off signal. This phenomenon was demonstrated in perovskite 

manganite La0.89Sr0.11MnO3. 
132

 

The response is not limited by the mentioned above general contributions. LiMn2O4 

is a small polaron semiconductor 
40

 with centrosymmetric cubic crystal structure 

(centrosymmetric structure rules out the piezoelectric effect). The external electric field 

applied in ESM experiments between a tip and a counter electrode should induce a dipole 

moment of the small polarons (as schematically shown in Figure 6.5) and their ordering. 
133

 

Corresponding signal will be detected along with the true ionic ESM response. The dipole 

moment is proportional to a number of polarons, i.e. it is higher for the higher local Li 

concentration. 

Note, that if the driving frequency ω is below the dipole polarization change 

frequency, then the response must be detected as the second harmonic of the driving 

frequency, because the induced dipole reorient (if it can) in the ac field each half period in 

order to compensate an external electric field. In this case, it will just increase the effective  
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Figure 6.5. (a) Schematic representation of the polaron; (b) dipole moment induced in the 

polaron by the external electric field. 

 

dielectric permittivity in the second harmonic electrostriction contribution. It can, however, 

response at the first harmonic if there is a dc component, which is always present due to 

contact potential difference and charge injection. Physically it means that at a certain dc 

electric field part of the polaron dipoles are induced and oriented (induced polaron 

polarization ipP ), thus giving a total dipolar moment that respond to the ac at the first 

harmonic as )cos(2 0033  tEPQ acip . Because the induced polarization ipP  is 

determined by the dc electric field, the final response depends on the dc/ac ratio. 

Additionally, static long-range ordering of Jahn-Teller polarons and local charge 

ordering under the external electric field in manganites can induce lattice distortion that 

can break the structural inversion symmetry and provoke local ferroelectric-like response. 
132, 134, 135, 136 

Though it has not been reported in LiMn2O4 so far, we cannot exclude a 

possibility of emergence of the ferroelectric-like state (localized in time and space), which 

is difficult to assess numerically. 

This contribution can be more complex when the local Li/Mn ratio below the tip 

exceeds the first order Jahn-Teller distortion threshold (average Mn
n+

 oxidation state ≤3.5) 

and induces lattice transformation from the cubic to the tetragonal crystal structure. 
37

 

Though the first order Jahn-Teller distortion does not break the inversion symmetry, the 

structural transformation/electrochemical reaction can manifest itself via a butterfly-like 

amplitude response and phase switching, which was observed even in silicon at very high 

values of the applied voltage. 
137

 

It follows that not all contributions can be quantitatively estimated and subtracted. 

Fortunately, the qualitative approach still allows distinguishing the presence of non-Vegard 

contributions. Ferroelectric, electrostatic, electrostriction, and dipole non-Vegard 

contributions to the first harmonic considered above are polar and, therefore, should 

possess the characteristic V- of butterfly-like shape of the amplitude hysteresis loop (as in 
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Figure 6.4 (b)) and 180° phase switching. Alternatively. the concentration controlled ESM 

amplitude loop should possesses the diamond-like shape (as in Figure 6.4 (a)) and its phase 

does not switch at 180° due to the non-polar nature of the Vegard strain response, 
106

 which 

depends mainly on the Li concentration and the Li diffusion coefficient in the host lattice. 

Such qualitative approach is sufficient to differentiate polar and non-polar contributions. 

6.3 Voltage spectroscopy on LiMn2O4 

6.3.1 Voltage spectroscopy measurements 

Kumar et al 
101

 showed that the ESM loop’s shape is controlled by relaxation 

kinetics and thermodynamics of an electrochemical reaction. The representative results on 

the cross-section of the 0% SOC 100% SOH LiMn2O4 sample are shown in Figure 6.6. 

Here, we measured electrochemical loops for three different times after dc pulses at the 

same location. Loop opening corresponds to the change of local Li
+
 concentration and 

strain below the tip. The obtained loop shapes are nonpolar and similar to those reported by 

Balke et al. 
138

 

 

 
 

Figure 6.6. Voltage spectroscopy (electrochemical hysteresis loops) for 10, 20, and 40 ms 

pulse period. 

 

Loops measured over a grid of points on surface can reveal distribution of 

electrochemical activity (Li
+
 mobility/concentration) as a function of position. Figure 6.7 

represents mapping of the hysteresis loop opening measured over a grid of points on the 

fresh (a), (c), (e) and fatigued (b), (d), (f) samples at different states of charge. The loop 

opening (represented by the color scale) is overlaid with the surface topography. On the 

epoxy the loops are closed as expected because there are no mobile ions responsible for the 

ESM signal. On the active particles the loops are open. On the fresh samples loop opening 

is relatively uniform and does not exceed 0.1 a.u. for this experiment In contrast, loop  
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Figure 6.7. ESM loop opening maps on the fresh and fatigued cathodes: (a) 0% SOC, 

100% SOH; (b) 0% SOC, 78% SOH; (c) 50% SOC, 100% SOH; (d) 50% SOC, 78% SOH; 

(e) 100% SOC, 100% SOH; (f) unchargable, 78% SOH. Each loop is average of 3 loops 

measured consequently at the same point. Dash line traces the particles edges. Topography 

images are the same as in Figure 6.8. 

 



 

- 72 - 

 

Li transport properties in LiMn2O4 

opening on the fatigued samples is less uniform, indicating less uniform properties 

determining the measured response. The loop opening irregularity and the amplitude 

increase with the SOC, i.e. with sample delithiation. 

More information can be extracted from the loop’s shape. Figure 6.8 compares 

typical electrochemical hysteresis loops measured on the same fresh (a), (c), (e) and 

fatigued (b), (d), (f) samples. Loops 1 on all samples were measured on the epoxy that 

filled porosity in the PVDF binder. They are expectedly closed. Loops 2, 3, and 4 were 

obtained on different places within LiMn2O4 particles. They are open, clearly indicating 

presence of mobile Li
+
 ions. The ESM hysteresis loops from the fresh samples are 

uniformly open over the particle with the response gradually changing with the applied dc 

voltage (corresponding to change of local Li
+
 concentration and strain below the tip). In 

contrast, stronger variation of the loop opening was observed on the fatigued samples. As 

compared to the loops from the fresh sample, they possess noticeably different shapes and 

wider range of amplitudes. 

Considering only the Vegard contribution, such increase of the loop opening can be 

explained by lower Li
+
 diffusion coefficient. Taking into account the complex dependence 

of the Li diffusion coefficient on the Li concentration, 
53

 the observed change of loop’s 

shape can also indicate wider variation of the Li diffusion coefficient over the dc voltage 

cycle on the fatigued sample. 

What is more interesting, some of the loops (for example, loop 4 in Figure 6.8 (e)) 

possess the butterfly-like shape with significantly asymmetric shoulders (like those in 

Figure 6.4 (b)): the negative bias shoulder is higher than the positive bias one. Such 

behavior indicates the appearance of additional non-Vegard contribution(s). The ratio of 

the Vegard to the non-Vegard contributions can determine the final shape of the hysteresis 

loop. 

In view of complex nature and multiple sources of the total non-Vegard 

contribution, it is hard to estimate it numerically. Nevertheless, one hypothesis can be 

proposed based on previously published results by Proksch 
139

 and Chen et al 
106

. 

6.3.2 Analysis of the loop’s shape 

Proksch employed ESM to measure potassium mobility in a soda-lime glass. 
139

 

Until a certain dc voltage, amplitude hysteresis loops were opened only from one side. 

Upon the dc voltage increase, the loops started to open up from another side, forming a 

butterfly-like shape. It was attributed to mobile potassium ions. However, the pure Vegard 

expansion caused by only one type of mobile ions cannot explain this phenomenon. Chen et 

al 
106

 suggested that such butterfly amplitude loops from the soda-lime glass can be caused 

by induced dipoles. 

Indeed, in dielectric materials strain induced by electric field is 

nmijmnij PPQu  ,     (6.1) 

where ijmnQ  are the elements of the fourth rank polarization related electrostriction tensor, 
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Figure 6.8. ESM loops on the fresh and fatigued cathodes: (a) 0% SOC, 100% SOH; (b) 

0% SOC, 78% SOH; (c) 50% SOC, 100% SOH; (d) 50% SOC, 78% SOH; (e) 100% SOC, 

100% SOH; (f) unchangeable, 78% SOH. Each loop is average of 3 loops measured 

consequently at the same point. 
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mP  and nP  are the components of the polarization vector P. 
140

 Normally, in ESM we 

measure only deformation normal to the surface, so, for simplicity, we consider only one 

component of the strain. In this case, the strain expression simplifies as follows: 
2

3333 PQu  ,      (6.2) 

where the total polarization spi PPP   with the induced polarization EPi 0  and the 

spontaneous polarization spP . Then the strain can be expressed as follows: 
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The first harmonic response dcacacsp EEQEPQ 2

0

2

33033 22    includes the spontaneous 

polarization term acspEPQ 0332   with the polarization coefficient spPQ 0332   
140,141

 and 

the electrostrictive term dcacEEQ 2

0

2

33   that appears if the dc component of the electric 

field 0dcE  is present. 

As one can see from Eq. (6.4), the response driven by the spontaneous polarization 

spP  does not require 0dcE  and can be sufficiently measured in the off field state. The 

total response at the first harmonic is not limited by the acspEPQ 0332   contribution. 

Additional dc-mediated electrosctrictive response dcacEEQ 2

0

2

33   should be present. 

Dc component always exists due to the contact potential difference between the tip 

and the sample. Usually it is not sufficiently large to cause a response big enough to 

exceed the Vegard response. It can be derived from comparison of the fresh and the 

fatigued samples, where the contact potential difference between the tip and the sample 

must be the same. However, on the fresh samples Vegard’s response clearly dominates. It 

means that the contact potential difference dc is not sufficiently large to cause significant 

electrostrictive signal. Additional source of charge traps or spontaneous polarization must 

be present in the fatigued samples. 

One possible source of the charge traps are point defects introduced into the 

structure by the 16C-rate cycling. If this statement stands, then the local charge injection, 

being trapped on the defects, increases the local background dc bias, thus increasing the 

first harmonic electrostriction contribution dcacEEQ 2

0

2

33   (it can increase the spontaneous 

polarization contribution as well if  dcsp EfP  ). 

Presence of the non-Vegard contributions in the fatigued samples may indicate 

spontaneous polarization of unidentified nature. 
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Under ambient conditions additional bias can appear due to dissociation of the 

adsorbed water in the applied electric field and injection of the dissociate ions into surface. 
142

 To avoid unnecessary charge injection, one should conduct experiments under 

controlled conditions (low humidity, etc.) 

6.3.3 Analysis of loop’s opening 

In view of irregular and complex shape of the loops from the fatigued samples, 

further analysis was done on the loops from the fresh samples. 

Figure 6.9 illustrates average ESM amplitude loops measured on the fresh LiMn2O4 

samples with different Li concentration and on the LiMn2O4 thin film. The loops exhibit 

typical concentration dependent shape as described above. The first loop on the left is 

taken on the epoxy. 

The loops open wider with increasing SOC, i.e. with the lower Li concentration. 

Taking into account that the loop opening represents the amount of mobile Li redistributed 

by the dc electric field, the difference may origin from two sources: (i) different diffusion 

coefficients of Li in the host lattice; (ii) saturation of available Li positions within the cubic 

phase. 

(i) Higher diffusion coefficient of Li in the spinel host lattice results in a more 

complete relaxation of the local Li concentration excess and strain for the same period of 

time. Consequently, the ESM response, representing the amount of local strain, will show 

smaller deviation from equilibrium for the higher diffusion coefficient after each dc pulse, 

thus leading to a more closed loop. Therefore, more closed loops represent higher local 

diffusion coefficient ceteris paribus. Taking into account that the Li diffusion coefficient in 

LiMn2O4 indeed depends on Li concentration, 
53

 this explanation looks reasonable. 

 

 
 

Figure 6.9. ESM loops on the fresh cathodes: (a) epoxy (b) LiMn2O4 thin film; (c) 0% 

SOC, 100% SOH; (d) 50% SOC, 100% SOH; (e) 100% SOC, 100% SOH. Each loop 

(except of the epoxy one) is an average of 75 loops measured over 25 points with 3 loops 

at each point. 
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(ii) Saturation of available Li positions should decreases the loop opening with 

increasing Li concentration. Li cannot occupy more than 1/8
th

 of the 8a octahedral 

positions within the cubic phase of LiMn2O4 (otherwise, the structure transforms into the 

tetragonal phase). As a consequence, ideally when all available 8a positions are occupied, 

i.e. the stoichiometric spinel is fully lithiated Lix=1Mn2O4, the ESM Vegard response 

should be null due to absence of concentration variation (without source and drain of Li
+
 

ions and with the ideally blocking tip-surface contact interface). Delithiation of the 

stoichiometric fully lithiated spinel creates vacant 8a positions available for Li and allows 

local concentration variation below the tip, thus opening the loop. Higher local 

concentration variation results in wider loop opening. Thus, lower concentration of mobile 

Li
+
 ions within the single spinel phase wider opens the loop, which is the case in Figure 

6.9. This stands until a certain degree of delithiation, below which the loop starts to close 

due to lack of mobile Li. 

In principle, both (i) and (ii) mechanisms can act in parallel. 

Figure 6.10 illustrates the average loop openings based on two parameters: the min-

max loop opening was measured between the minimum and maximum points of the loop; 

the mean loop opening was measured between the forth and back branches of the loop at 0 

Vdc. The min-max loop opening increases with the SOC, while the middle loop opening 

remains constant. The min-max loop opening was explained above by the diffusion and 

saturation mechanisms. Obviously, the mean loop opening cannot be attributed to the 

saturation mechanism. It represents a difference between the remaining concentration 

excess and lack during the bias voltage sweep from plus to minus and vice versa. 

Apparently, this value is the same for different SOCs. It may thus represent 

thermodynamics of the system rather than its kinetics. This question is still open and 

requires detailed theoretical description and computer modeling. 

In the end, the ESM loop is a complex type of measurements. Each data point 

depends on the length of the pulse, the history of the measurement (the accumulation of all 

the previous pulses in the spectroscopy) and the time lag between the release of the dc 

pulse and the data point (longer time lags give smaller loops as illustrated in Figure 6.6). 

Qualitative data with a certain physical meaning cannot be extracted at present. Voltage 

spectroscopy has the advantage of giving a qualitative overview within seconds of voltage 

dependences in the ESM signal and the reversibility of the measurement. It can clearly 

represents spatial variation of the voltage induced local concentration variation and 

indicate presence of additional non-Vegard contributions. Further development of ESM 

theory is prerequisite for separation and quantification of multiple data containing in the 

ESM loop. 

Deeper insight into battery functionality with possible quantitative interpretation 

can be done by the time spectroscopy. 
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Figure 6.10. Average ESM loop opening as a function of SOC. The top graph is the min-

max loop opening, measured between the maximum and minimum points of the loop. The 

bottom graph is the mean loop opening, measured between the forth and back branches at 0 

Vdc. 

6.4 Time spectroscopy on LiMn2O4 

6.4.1 Time spectroscopy measurements 

In time spectroscopy, a sequence of dc pulses with the same magnitude and 

consequently different signs is applied between the tip and the sample’s counter electrode, 

and the ac mediated surface vibrations (ESM response) are typically measured after the dc 

pulses. Dynamics of the ESM response represents dynamics of the local deformations and 

presumably reflects the instant change of Li
+
 concentration and, therefore, serves as a 

signature of the ionic mobility. 

Figure 6.11 illustrates results of time spectroscopy measurements on both fresh and 

fatigued samples at 0% SOC. Here we measured ESM response not only when the dc bias 

is off, but also when dc is on to observe both electro-migration and diffusion processes. 

The same measurements were performed on the samples at 50% SOC and 100% SOC, and 

on the thin film. The obtained migration and relaxation curves were similar to those from 

the fresh 0% SOC sample (they are not shown). On the thin film, all fresh samples, and 

fatigued samples at 50% and 100% SOC ESM response increased during electric potential 

gradient induced migration for all voltages and almost completely relaxed during chemical 
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potential gradient induced diffusion, thus indicating stable and reversible migration (dc on) 

and diffusion (dc off) processes. Contrary, on the fatigued sample at 0% SOC (fully 

lithiated) the migration in the electric field was stronger than the following relaxation, and 

not symmetrical with respect to 0 V. The relaxation process was not complete. 

 

 
 

Figure 6.11. Time dependence of the ESM signal. Probing ac voltage was maintained at 3 

V. 500 msec dc voltage pulses of ±3, ±4, and ±5 V were applied (red line). ESM response 

during and after the pulses is measured as a function of time on the fresh (blue curve) and 

fatigued (black curve) samples at 0% SOC. Curves were averaged over 10 consequent 

measurements from a single point. Electrostatic linear contribution (when the dc is on) was 

subtracted. 

 

 
 

Figure 6.12. ESM response measured vs time during time spectroscopy. The dc pulse was 

applied between 0.4-0.85 sec. Red lines show electrostatic contribution that emerged when 

the dc was on and vanished when the dc was off. 
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The linear electrostatic response when dc is on was subtracted in order to make the 

migration-relaxation dynamics easier to understand. Figure 6.12 illustrates the ESM time 

spectroscopy response with the dc on electrostatic contribution. 

The obtained relaxation data can be used to qualitatively estimate the local value of 

diffusion coefficient of Li in LiMn2O4. 

6.4.2 Calculation of the Li diffusion coefficient 

Up to now, no theory describing high frequency ESM response in the time domain 

has been developed. Analytical equations derived by Morozovska et al in Ref. 3 (see Eq. 

3.10 and 3.11) are applicable only for the static case, i.e. when the driving ac frequency 

ω=0, and for D=const. Nevertheless, qualitative estimations can be done using the 

simplistic approach based on the concept of characteristic diffusion time (see Ref. 
143

 and 

Ref. 
92

 for systems where its use is appropriate). 

Characteristic diffusion time approach 

Following Jesse et al, 
96

 we estimated characteristic diffusion times for volumes 

typically probed by ESM in LiMn2O4. For the probed diffusion length equal to the tip 

radius R0≈30 nm and DLi=10
-12

–10
-10

 cm
2
s

-1
 

53
 the characteristic diffusion time 

D
l 2

  

0.1-10 s. In order to compare the diffusion coefficients of Li in the fresh and the fatigued 

samples, we fitted the relaxation (dc off) curves by the exponential function: 
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The characteristic decay times τ1~10
-3

 s and τ2~0.1-10 s were extracted. The slow decay 

time τ2~0.1-10 s is in agreement with the estimated diffusion time and was used to estimate 

the Li diffusion coefficients via the expression 

2lD  . The calculated diffusion 

coefficients are plotted in Figure 6.13 as functions of the applied voltage. 

The estimated DLi~10
-10

–10
-11

 cm
2
s from the thin film and the fresh samples are 

stable vs the bias voltage and slightly lower after the positive dc pulses than after the 

negative ones. The diffusion coefficients from the fatigued samples at 50% and 100% SOC 

are similar to ones from the fresh samples. These data are in good agreement with 

literature. The only deviation was observed on the fully lithiated fatigued sample at 0% 

SOC. The estimated diffusion coefficients are 1–2 orders of magnitude lower as compared 

to the others and decrease with the bias voltage, especially after the negative bias where 

DLi drops by 2 orders of magnitude. Possible origin of this phenomenon will be discussed 

below. 
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Figure 6.13. Li diffusion coefficient as a function of dc bias estimated from the ESM 

relaxations on LiMn2O4: (a) thin film, (b) 0 SOC, (c) 50 SOC, (c) 100 SOC. Integral lines 

represent the fresh samples. Dash lines represent the fatigued samples. 

 

Static case approach 

In the beginning of this paragraph we indicated that the analytical equations for 

migration and diffusion were derived only for the static case. Here we denote them as 

“static” in order to highlight that the ac frequency ω=0. Nevertheless, applied to the 

obtained migration and relaxation curves, they give realistic diffusion coefficients. 

In the case of static (ω=0) migration and relaxation curves the local diffusion 

coefficient for the case of blocking cantilever can be described in the following way (see 

Eq. 3.10): 

2/1

0

4
)1(),0( tAVDt

V
ttu dc

dc 

















    (6.5)  

2/3

2/3

0

2

0

0
6

)1(),0( 












 tBV

tD

tRV
ttu dc

dc




 .   (6.6)  

Eq. (6.5) describes migration during a dc pulse (t<t0), and Eq. (6.6) describes relaxation 

after a dc pulse (t>>t0). From the data fitting we can extract numerical coefficients at 

Vdc∙t
1/2

 and Vdc∙t
-3/2

: 
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After division 
B

A  the diffusion coefficient is 

24

0

2

0 tR

B

A
D  ,      (6.8) 

where R0 is the only unknown variable that can be estimated as the tip radius. 

More precisely R0 can be calculated from the point contact resistance equation (if 

measurable) 
144

 





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




a

b

a
RS

2
arctan

2


,    (6.9) 

where  is the sample’s resistivity, a is the contact radius that is equal to R0, and b is the 

sample’s thickness. In case of b>>a Eq. (6.9) transforms to 
a

RS
4


 . 

Estimations based on Eq. 6.8 gave DLi~10
-11

–10
-12

 cm
2
s

-1
 with the diffusion 

coefficients after the positive pulses 1.5–2 times lower than after the negative pulses. 

Note that under ambient conditions the water meniscus around the ion blocking Pt 

tip can serve as a reservoir for Li
+
 ions, so the real tip-surface contact can be not ideally ion 

blocking. Moreover, equations 6.5 and 6.6 were obtained for the constant diffusion 

coefficient, while in LiMn2O4 it varies with the Li concentration. 

In the end, both approaches gave realistic diffusion coefficient parameters that, 

however, can be only used to compare to each other within a single approach. 

The detailed theoretical description is the future task in this field. 

6.4.3 Contribution of the elastic energy to the diffusion coefficient 

As was described in Chapter 3 and illustrated in Figure 3.4, the local volume below 

the tip is clamped and can free-expand only in the direction normal to the surface. Hence, 

after application of a dc pulse and the local expansion/contraction (strain), the local volume 

is under compression/tension elastic stress. Corresponding elastic energy contributes to the 

local diffusion coefficient. Below we describe how the local elastic energy increases the 

ESM measured diffusion coefficient. For simplicity, in the end we will neglect the 

anelastic effect, which is present in the anisotropic strain field. 
55,145

 

In the most general form stress and strain are related by Hooke's law as follows: 

ij

ij

klijkl uc ,     (6.10) 

where kl  are the components of the second rank stress tensor, klijc  are the components of 

the forth rank tensor of the elastic modules, and iju  are the components of the second rank 
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strain tensor. Strain in the solid body is described by the dependence of the displacement 

vector u on the position r. The second rank tensor of infinitesimal strain iju  is defined as: 























i

j

j

i

ij
x

u

x

u
u

2

1
.     (6.11) 

Due to the symmetry of the stress ( kl ) and strain ( iju ) tensors the number of independent 

components of the elastic tensor klijc  is reduced: kljilkijklij ccc  . It is further reduced by 

the requirement of the elastic energy to be a unique function of the strain. Thus, in case of 

the Vegard expansion iklkl Cu    the elastic energy density elastU  can be expressed as 

follows: 

 
kl

iklkl

kl

klklelast CuU  ,    (6.12) 

where kl  and iju  are functions of position ),,( zyx rrrr  . 

Considering a small volume V  and a corresponding number of mobile ions 

ii CVN    in the volume, the elastic energy takes the form 

 
kl

iklkl
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klklelastielast NuVUVNU  )( . (6.13) 

By definition, the chemical potential )1(  iNU  , so the chemical potential 

induced by strain can be expressed in terms of stress as follows: 


kl

klklelast  .     (6.14) 

In case of a rectangular lattice with the unit cell natural basis ia , the i component of the 

flux density induced by the chemical potential elast  is: 
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Figure 6.14 schematically illustrates the potential energy barrier distortion caused 

by the chemical potential gradient and the resulting flux. 

For the isotropic diffusion coefficient DDi   the elastic energy induced flux 

density elast

ij  can be written as: 

)(),,( elast

B

ielast

z

elast

y

elast

x

elast grad
Tk

N
Djjjj  . 

The total flux density includes three parts: 

)()()(),,( klkl
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i
izyx grad
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DNgradDjjjj   , (6.16) 
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Figure 6.14. Chemical potential originated from the elastic energy 
kl

klklelast   

increases the total 
x


 and additionally distorts the potential energy barrier, increasing the 

diffusion coefficient. 

 

where ),( tr   is the electrostatic potential distribution. The first term )( iNgradD   

describes the concentration dependent flux, the second term )(grad
Tk

N
D

B

i  describes the 

electrostatic potential dependent flux, and the third term )( klkl

B

i grad
Tk

N
D   describes the 

elastic energy dependent flux. 

Now, consider only the elastic component klkl . The stress tensor kl  can be 

found from the equation of state for the anisotropic elastic media with the concentration 

excess iN , the mechanical stress tensor ij , and the elastic strain iju : 
3,93

 

klijkliijij sNu   .  (6.17) 

According to Morozovska et al, 
3
 displacement field under the tip for the isotropic case is 

iNhu 


 )1(
3


 , where h  is the film thickness, ν is Poisson’s ratio, and 
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

h

ii dzzN
h

N
0

),(
1

  is the average concentration variation. For the small volume 

below the tip ii NN    the maximum elastic strain can be estimated as: 

 iijij N
h

u
u 



 )1(3 
 .  (6.18) 

Substituting Eq. (6.18) in Eq. (6.17) and multiplying both parts by the tensor of elastic 

stiffness ijklc  gives the following expression: 
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For an isotropic Young modulus Y the tensor of elastic stiffness for an isotropic linear 

elastic solid 
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Substituting Eq. (6.20) in Eq. (6.16) and changing ikl  to   gives the total flux density in 

the following form: 
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This equation shows that elast  effectively increases the diffusion coefficient by the 

additional term 




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In the case of LiMn2O4 with 3010 m
3
, 1110Y N/m

2
, 3.0 , 

-328 m 104.1 iN , and 211014.4 TkB N∙m we calculated 4.0 , i.e. the effective 

diffusion coefficient measured by ESM is about 1.4 times higher than the diffusion 

coefficient in the decoupling approximation due to the elastic strain contribution. 

Using Ni for the samples from Table 4.1 and Y from Ref. 
129

, we can estimate the 

effective increase of the diffusion coefficient of Li for each LiMn2O4 sample. In the Ref. 
129

 the Young modulus’ were measured on the fresh samples and on the aged one at 0% 

SOC. The values for the fresh and for the aged samples at 0% SOC were almost equal. We 

assume that the same stands for the other samples and will use the same Y for the fresh and 

aged samples at the same SOC. Calculated results are presented in Table 6.1.  

As one can see, the diffusion coefficients are stronger effectively increased for the  
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Table 6.1. Elastic modulus (Y), Li concentration (Ni), and (1+α) coefficient for the 

LiMn2O4 samples at different SOC and SOH 

Composition SOH, % SOC, % Y, GPa 
129

 Ni, 10
28

 m
-3

 (1+α) 

LixMn2O4 100 0 87 1.316 1.33 

LixMn2O4 100 50 97 1.05 1.29 

LixMn2O4 100 100 104 0.854 1.25 

LixMn2O4 80 0 87 1.246 1.31 

LixMn2O4 78 50 97 1.064 1.29 

LixMn2O4
*
 78 100 704 0.91 1.27 

*
 the cell is unchargable, stopped at 4.08 V  

 

samples at lower SOC, viz. with higher concentration of Li. 

Earlier, Zhang et al 
146

 showed that for the case of spherical LiMn2O4 particle and 

hydrostatic intercalation pressure the strain-diffusion coupling effect gives αmax=0.356, 

which is consistent with our results. 

6.4.4 Mechanism of the observed diffusion coefficient reduction 

In the paragraph 6.4.2 we estimated the local diffusion coefficients of Li in 

LiMn2O4 and observed 1–2 order of magnitude drop of the diffusion coefficient on the 

fully lithiated fatigued sample. Such behavior can be attributed to a number of causes: (i) 

decrease of the local structural order due to increased concentration of point defects; (ii) 

cubic to tetragonal phase transition. 

(i) Increased concentration of point defects (vacancies, interstitials, composition 

change of Mn and O atoms) induced by cyclic Li insertion and extraction 
147

 is a common 

cause of the Li diffusion reduction because it leads to a partial destruction of the Li 

transport network within the spinel host structure. 

(ii) The tetragonal phase of the lithium manganese oxide has the Li diffusion 

coefficient that is about an order of magnitude lower than the cubic one. 
60

 Transition from 

the cubic to the tetragonal phase below the tip can happen due to local overpotential, thus 

decreasing the diffusion coefficient. Nucleation of a new phase occurs inhomogeneously 

on defects, where the nucleation barrier ΔG is reduced. Thus, the sample with higher 

concentration of defects under the same conditions is expected to experience earlier phase 

transition and reduction of the diffusion coefficient. 

The first case stands for all fatigued samples, but the suppression of the diffusion 

coefficient was detected only in the fatigued LiMn2O4 at 0% SOC. It seems that the 

diffusion coefficient reduction happens not only because of higher concentration of point 



 

- 86 - 

 

Li transport properties in LiMn2O4 

defects, but also due to the high initial Li concentration in the 0% SOC fatigued sample 

(0.89/2 Li/Mn ratio). The higher the initial average Li concentration in the sample, the 

lower overpotential is needed to locally reach critical Li concentration and initiate the 

phase transition. The fact that at the same overpotential the phase transition did not happen 

in the fresh sample at 0% SOC (0.94/2 Li/Mn ratio) indicates that the nucleation barrier ΔG 

for the phase transition is higher in the fresh sample than in the fatigued one. It is possible 

in case of lower concentration of point defects than in the fatigued sample. 

The data were obtained from the polished cross-section of the particles and cannot 

be attributed to the surface Mn dissolution caused by the disproportional reaction 
  2432 solutionsolidsolid MnMnMn  or other surface degradation effects. Li insertion/extraction 

and associated effects (such as instability of the delithiated spinel and onset of the Jahn-

Teller distortion in the lithiated spinel) affect the whole particle, increasing concentration 

of defects. This mechanism is especially important for the case of 16C-rate of discharge, 

when local Li concentration in the surface region of a LiMn2O4 particle can exceed the 

cubic to tetragonal transformation threshold. 
148

 

Unsaturated and asymmetric migration parts of the time spectroscopy data (shown 

in Figure 6.11) as well as the characteristic plunge in the beginning of the relaxation curves 

could indicate additional – non-Vegard – contributions as discussed above. It is worth to 

point out that such effects have to be considered in order to prevent possible 

misinterpretation of experimental results, especially in complex oxides. Moreover, they 

could constitute the sources of additional information about material properties. 

Previously reported drop of Li diffusion coefficient during fatigue was attributed to 

the Mn dissolution and increase of surface resistivity. 
149

 Our results suggest that it is not 

the only cause of Li diffusion reduction and at high C-rates the structural instability could 

extensively contribute to LiMn2O4 degradation as compared to low and moderate C-rates. 

Additional information can be obtained by macroscopic measurements of Li diffusion 

coefficient at different C-rates and SOH in bare LiMn2O4 particles and in those with a 

coating reducing Mn dissolution. 
150

 

6.5 Computer modeling 

Earlier in Chapter 3 we noted that previously developed computer models based on 

the diffusion mechanism of the ac strain generation showed that for LiCoO2 and LiMn2O4 

systems with ion-blocking boundary conditions displacements much below 1 pm are 

expected for frequencies above 10
4 

Hz. 
90,108

 Such displacements are well below the 

detection limit of modern SPMs. Nevertheless, the ac mediated Li concentration dependent 

ESM signal is experimentally detected at hundreds kHz as shown in previous works and in 

the present study (remember that the ac electric field is used to probe local strain during 

dynamic processes caused by the dc electric field, and thus should be concentration 

dependent). This fact arises the question about the real origin of the ESM signal. 

In order to get deeper understanding of the ESM, the thermodynamic finite element 

model was developed by Hugues-Yanis Amanieu (Robert Bosch GmbH, Gerlingen-
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Schillerhoehe, Germany; University of Duisburg-Essen, Essen, Germany) and Huy N.M. 

Thai (University of Duisburg-Essen, Essen, Germany) and compared with the experimental 

data obtained by Sergey Luchkin and Hugues-Yanis Amanieu in University of Aveiro. The 

model implemented approach based on the ionic polarization mechanism where the lithium 

ions are vibrating within their interstitial sites without hopping. This mechanism, being 

electrostrictive, is active up to THz frequency as shown in Figure 6.15 and can explain the 

high frequency experimentally obtained response if a background dc is present. 

In this model the ESM response is considered linearly proportional to the 

concentration dependent force  
V

acLiLiac VdFtczt
~

~
)()(  , where ac  is the local RMS 

electric potential, F is the Faraday constant, Liz  is the Li charge, Lic  is the Li 

concentration, and V
~

 is the particle volume. This force is a simplified version of the 

Lorentz force and should be considered as a mathematical tool to probe the concentration 

of lithium within a small volume defined by the electric field just under the tip. 

In order to compare simulation and experimental results, the model emulated a 

semispherical particle of a LixMn2O4 single crystal with x=0.5 (Li occupies half of the 

available sites) and DLi=10
-14

 m
2
s

-1
. The particle was electrically connected to the closed 

circuit through the back surface emulating the contact provided by the carbon black in the 

real battery. The tip-surface junction was blocking and the balance laws of momentum for 

the mechanical stress, conservation of mass, and conservation of charge were preserved. 
 

 

 
 

Figure 6.15. (a) Frequency dependence of the real part of the dielectric constant and 

polarization contributions; (b) schematic representation of different polarization 

mechanisms (Adopted from Refs. 
151,152

) 
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The local electroneutrality below the tip was assumed for simplicity. Coupling between Li
+
 

ions in real LiMn2O4 was taken into account through the concentration dependent effective 

Li diffusion coefficient. The effective diffusion coefficient was derived from the 

experimental open-circuit voltage in a LiMn2O4/Li(m) half-cell as explained in Refs. 
14,153

 

The model was implemented in COMSOL Multiphysics 4.4. 

Voltage and time spectroscopies were simulated in order to compare loops and 

relaxations. The voltage ramp for a simulated loop was 20 dc pulses with 200 msec pulse 

period (scheme of pulses is similar to one in Figure 3.11). The response was recorded in 

the dc-off mode. 

Figure 6.16 compares the experimentally obtained (a) and the simulated (b) voltage 

spectroscopy loops. The simulated ESM loop is open resembling experimentally measured 

ESM amplitude loops with characteristic asymmetrical concentration dependent shape. The 

presented experimental loop was additionally measured on the 0% SOC 100% SOH 

LiMn2O4 sample with the same VS parameters as before, but at 1100 kHz ac frequency. 

The new experimental result is similar to those presented in Figure 6.4, thus confirming the 

same nature of the response at 1100kHz as at 100 kHz. 

Simulated time spectroscopy relaxations after a single dc pulse possessed the 

relaxation time of the order of 0.1 sec and the shape similar to the experimental curves. 

This is in agreement with the characteristic diffusion times estimated above. 

The proposed mechanism of the ESM response due to the ionic polarization rather than the 

ac mediated short range electro-diffusion gives realistic qualitative results for voltage 

spectroscopy and qualitative results for time spectroscopy. However, the SI numerical ac 

mediated displacements were not calculated and the solid conclusion about the real origin 

of the ESM response cannot be made. At this stage, we know that the response is 

concentration dependent and can be used to qualitatively evaluate Li 

mobility/concentration. In order to make it quantitative, the real origin of the ESM signal 

generation have to be understood. 

 

 
 

Figure 6.16. The experimentally measured at 1100kHz ESM amplitude hysteresis loop (a) 

and the simulated hysteresis loop (b). 
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Conclusions 

In this Chapter, the appropriate voltage range for ESM measurements on LiMn2O4 

was experimentally determined. Additional non-Vegard response was demonstrated and its 

possible origins were discussed. We showed that the ESM method cannot be blindly 

applied to any ion conducting material. Beforehand, material’s specific properties have to 

be analyzed in order to reveal possible contributions to the measured signal. This is an 

essential step for correct interpretation of experimental results. 

Voltage spectroscopy measurements showed less uniform distribution of loop 

opening on the fatigued LiMn2O4 samples as compared to the fresh ones. It was explained 

by stronger contribution of non-Vegard terms on the fatigued samples due to increased 

concentration of point defects upon cycling. Moreover, the wider loop opening was 

observed on the samples with lower lithium concentration. Two possible mechanisms were 

suggested to explain the observed behavior: (i) higher Li diffusion coefficient in the 

samples with higher Li concentration, and (ii) saturation of available Li positions in the 

host lattice within the cubic phase. 

Time spectroscopy measurements were used to estimate local Li diffusion 

coefficients in the samples at different states of charge and health. The obtained results 

revealed a reduction of Li diffusion coefficient in the fatigued sample at 0% SOC (fully 

lithiated) as compared to all other samples. This effect was attributed to the structural 

degradation during 16C-rate cycling and the electric field mediated cubic to tetragonal 

phase transition below the tip. 

Further, we calculated contribution of the elastic energy to the diffusion coefficient. 

The effect can effectively increase the diffusion coefficient by 1.3-1.4 times in LiMn2O4, 

thus the strain-diffusion coupling cannot be neglected when Li diffusion is quantifed. 

The finite element modeling was performed and compared with the experimentally 

obtained data in order to deeper understand origin of the ESM response. Since the earlier 

performed calculations showed the ac mediated displacements well below the SPM 

detection limit, the implemented model utilized the ionic polarization mechanism of the ac 

mediated response rather than the Vegard one. The obtained simulation results were 

qualitatively similar to the experimental one. Quantitative estimation (in SI units) of the ac 

mediated displacements for the case of ionic polarization was not done, and the solid 

conclusion about origin of the ESM response cannot be made at this stage. Further 

experiments and theoretical calculations are required. 

Summarizing, we conclude that the ESM is a potentially powerful technique able to 

probe local transport properties in ion conducting materials at the nanoscale. We 

established that the response is concentration dependent and can be used to qualitatively 

evaluate ionic mobility/concentration. However, since the real origin of the ESM response 

is not fully understood, the complete interpretation and quantification of the experimental 

results is still challenging. 
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Chapter 7 

Li concentration in graphite via KPFM 

In the previous Chapter we showed how to use ESM to study transport properties of 

the LiMn2O4 cathodes of commercial Li-ion batteries. ESM locally affects Li ions by the 

applied electric field and receives information about local Li mobility/concentration by 

measuring dynamic surface strain. At present, reliable quantification of physical variables 

from ESM data is challenging. Additional information about local Li concentration can be 

obtained by Kelvin Probe Force Microscopy. KPFM is sensitive to the electronic structure 

of materials and, consequently, to its composition, so it can detect spatial distribution of 

Li
+
 ions inside electrode materials with a resolution down to the nanoscale. 

This Chapter summarizes KPFM results obtained mainly on graphitic anodes at 

different stages of charge and health. The results revealed that at 16 C-rate cycling 

relatively big structurally integral particles possess a core-shall distribution of the surface 

potential (presumably indicating Li concentration). By contrast, similar particles without 

cycling showed a mosaic distribution of the surface potential, which was attributed to 

inactivated regions of lithiated graphite at the early stage of cycling. Additional results 

obtained on the LiMn2O4 cathodes showed that the pitting corrosion of the Al current 

collector could be another source of internal resistance and associated capacity fading. 

7.1 Methodology and calibration 

Surface potential of the samples was measured by means of the 2-pass amplitude 

modulated Kelvin Probe Force Microscopy (AM-KPFM). 
79

 Ac voltage of the second pass 

was 0.5 V in amplitude, lifting height was always 15 nm; scan resolution is 256×256 

points. To avoid a shift of ΔVCPD measured on a biased device in AM-KPFM mode, 
86

 the 

investigated samples were not electrically biased. 

One can argue that AM-KPFM has lower spatial resolution than FM-KPFM. 
85

 

However, AM-KPFM has higher energy resolution and can detect lower minimum 

detectable ΔVCPD as compared to FM-KPFM, which was described in details in Chapter 3.  
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We used Pt/Ir coated cantilevers (NT-MDT NSG10, resonance frequency ≈ 250 

kHz, force constant ≈ 12 N·m
-1

) which were calibrated on a sputtered Au thin film and on a 

cleaved HOPG calibration sample. The calibration and measurements were performed 

under ambient conditions at 40% relative humidity (RH). Measured contact potential 

difference between the Au film and the tip was mV 0.3)±(57.8- =CPDV . According to the 

recommended values of work functions 
81

 (see Table 7.1), VCPD should be in -(19–11) mV 

range. The difference can be explained by the impact of the ambient humidity, resulting in 

the absorbed water layer that can screen the work function difference. 
154

 Measured contact 

potential difference between the HOPG calibration sample and the tip was 

mV 5.6)±(318.8=CPDV  that is within the table range. Note that presented in literature 

work function values for Au and Pt are scattered in a wider range as compared to those 

presented in Table 7.1. 

 

Table 7.1. Recommended work functions for polycrystalline materials (Ref. 
81

) 

Material (polycrystalline) Work function, eV 

Au 5.31±0.07 

Pt  5.27±0.08 

Cu 4.51±0.07 

Graphite  4.6±0.1; 5.0 

 

The Pt/Ir tip coating is 25 nm thick and is subjected to wearing during scanning. As 

a result, the tip apex could become the bare n-type silicon while the rest of the tip will 

remain covered by the Pt/Ir alloy. This defect leads to change of the measured VCPD 
155

 and, 

being ignored, could cause erroneous interpretations of results. Similar effect can be 

caused by contamination of the tip apex. On this account, areas subjected to measurements 

in our experiments always included a part of the Cu current collector, which work function 

was considered as a reference. As illustrated in Figure 7.1, the tip damage effect can be 

clearly noticed by the shift of the Cu VCPD. This is a simple way to recognize the described 

error. 

7.2 Surface potential of the graphitic anodes 

7.2.1 Measurements 

The main measurements were performed on the graphitic anodes in the delithiated 

state (samples №2 – fresh – 100% SOH, 0% SOC; sample №6 – fatigued – 80% SOH, 0% 
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Figure 7.1. Illustration of the Pt/Ir coating damage effect on the KPFM surface potential of 

the graphitic anode at 80% SOH 0%SOC: (a) topography, (b) surface potential, (c) surface 

potential profile. VCPD before and after the damage is ≈20-25 mV. 

 

SOC). The lithiated graphite samples were not studied because they are not 

thermodynamically stable under ambient conditions that results in formation of a film on 

the particle’s surface due to reaction of Li with ambient gases and absorbed water. The 

lithiated sample №8 (78% SOH, 50% SOC) was used to gather additional data. 

Figure 7.2 (a, b) illustrates simultaneous mapping of topography and surface 

potential (SP) of the fresh anode (100% SOH, 0% SOC). Graphite particles and the Cu 

current collector are clearly distinguishable inside the polyvinylidene fluoride (PVDF) 

binder filled with the epoxy resin. Surface potential on the graphite particles is not 

uniform: there are internal regions with reduced down to 200 mV surface potential (Figure 

7.2 (b), dark color). Cross-section of the KPFM signal (line 1 in Figures 7.2 (a) and (b) 

correspond to Figure 7.2 (c)) clearly demonstrates that the surface potential within these 

regions is flat around 200 mV with sharp boundaries. 

Though the surface potential image looks similar to the topography image, it is not 

due to the topography crosstalk. The sample is a composite that contains a number of 

different materials, viz. copper, graphite, PVDF with carbon black, and epoxy. Each of 

these materials has its own surface potential, therefore the topography and the surface 

potential images correlate with each other, but not identical. The comparison of the surface 
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Figure 7.2. Topography (a), surface potential (b), and cross-sections (c) of the fresh 

graphitic anode (100% SOH, 0% SOC). On the topography image “Cu” denotes the Cu 

current collector, ”G” – active graphite particles, “B” – the binder filled with the epoxy. 

Notice regions of the reduced surface potential inside graphite particles on the surface 

potential image (b). (Reproduced from Ref. 
109

) 
 

potential profile with the topography profile (Figure 7.2 (c)) unambiguously proves that the 

reduced potential did not come from the topography crosstalk. 

Figure 7.3 illustrates a peak distribution assigned to the Cu current collector, the 

“normal” graphite, and the graphite with the reduced potential (internal areas) from Figure 

7.2. All peaks are narrow enough with similar full width at half maximum (FWHM) and 

without broad transition regions (as for the fatigued sample, see below). It indicates 

uniform composition of the areas from which the peaks were collected. 

Figure 7.4 (a, b) illustrates topography and surface potential of the fatigued sample. 

The first striking observation is that the surface potential of graphite particles strongly 

depends on the particle’s mechanical integrity. Several particles on the upper half of the 

topography image have open cracks that are filled with epoxy (that also prove cracks are 

not due to the polishing process). Surface potential on these particles is less uniform and is 

lower (vs. Cu) than in the fresh sample, but not as low as on dense particles on the bottom 

half of the image. The second striking observation is that the surface potential on the big (≈ 

25×15 μm) dense particle forms the core-shell structure with almost linear decay in the ≈ 5 

μm shell region toward the constant bottom level in the core region (Figure 7.4 (b, c)). The 

shell region corresponds to the broad transition part in the surface potential peak 

distribution in Figure 7.5 (“Graphite 2” peak). The reduced potential in the core 

corresponds to the narrow peak at the end of the transition region in Figure 7.5. Small (≈ 

10 μm) dense particle in contact with the big one shows quite low SP without the core-

shell structure. 

Peak distribution in Figure 7.5 clearly demonstrates that the Cu surface potential 

peak remains narrow without transition regions – similar to the Cu surface potential peak 
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Figure 7.3. Surface potential distribution from Cu and graphite parts of the fresh sample. 

Arrows show corresponding surface potential on the surface potential image of the sample. 

(Reproduced from Ref. 
109

) 

 

 
 

Figure 7.4. Topography (a), surface potential (b), and cross-sections (c) of the fatigued 

anode. On the topography image “Cu” denotes the Cu current collector, ”G” – active 

graphite particles, “B” – carbon black enriched with PVDF binder filled with epoxy. Core-

shell structure is evident on the big dense particle on the surface potential image (b). 

(Reproduced from Ref. 
109

) 
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Figure 7.5. Surface potential distribution from Cu and graphite parts of the fatigued anode. 

Arrows show corresponding surface potential on the surface potential image of the sample. 

(Reproduced from Ref. 
109

) 

 

of the fresh specimen. On the contrary, both graphite peaks are drastically different in 

comparison with the fresh sample: they are much broader and have transition regions. 

A total of 8000 μm
2
 were scanned in order to exclude the statistical error. Each 

crack-free particle with more than 10 μm minimum size has similar core-shell type of 

surface-potential with the shell width around 5 um. 

For 40×40 μm scan size with 256×256 points density the resolution is 156 

nm/point. Taking into account 10–50 nm thickness of the SEI layer 
29

 and the blur effect of 

the absorbed water layer the resolution is not sufficient to observe the SEI layer effect on 

edges of graphite particles. 

7.2.2 Impact of humidity 

The measurements were performed under ambient conditions. This means that there 

is inevitable an adsorbed water layer on top of the surface. It is well known that the 

adsorbed water layer screens surface potential due to formation of dipoles. Hence, the 

measured potential difference is lower than the actual one. Different authors have reported 

different impacts of absorbed water. On the one hand, Bluhm et al 
154

 demonstrated a 

decrease of the surface potential on dry mica from +350 mV at RH=0% down to zero at 

RH=40%. Zaghloul et al 
156

 documented similar results on SiNx surface, where surface 

potential of the trapped charge was reduced from ≈ 5 V at RH = 0.02% to ≈ 2 V at RH = 
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40%. On the other hand, Hansen and Hansen 
157

 reported almost negligible contribution of 

humidity to the measured surface potential in highly ordered pyrolytic graphite (HOPG). 

Ono et al 
158

 found that the surface potential of InAs decreased more than 25% after the 

thermal treatment that removed the adsorbed water layer from the surface. Obviously, the 

humidity impact on KPFM results strongly depends on a type of probed materials due to its 

different hydrophobic properties. 

We consider the impact of humidity only on the graphite and Cu surfaces and 

ignore the epoxy. Based on the calibration data taken on the Au thin film and on the HOPG 

sample, we assume that the impact of the absorbed water layer on the graphite and the Cu 

potential is similar and ~50 mV. 

7.2.3 Effect of the Cu oxide layer 

Another reason for the surface potential deviation from the table values of the work 

function difference (see Table 7.1) is presence of oxides. Apart of the adsorbed water, only 

Cu2O can change the surface potential. According to Przychowski et al, 
159

 presence of the 

copper oxide leads to an increase of the work function as compared to the pure metal. They 

reported a change in the work function from 4.45–4.95 eV on the pristine surface to 4.65–

5.05 eV on the surface exposed to oxygen. Remarkably, the work function increased with 

time of the exposition and tended to saturation at 5.05 eV. It is equal to a drop of the 

surface potential on the oxidized surface as compared to the unoxidized one. Using data 

from Table 7.1, the work function difference between Pt and Cu is WPt - WCu = (0.76 ± 

0.11) eV. Using data from Przychowski et al, 
159

 WPt - WCu/Cu2O ≈ 5.3 - 5.05 = 0.25 eV that 

is equal to 0.25 V surface potential value. Hence, the copper oxide should decrease the 

measured surface potential down to 250 mV. The copper surface potential peaks in Figures 

7.3 and 7.5 are in the same range ≈ (250–300) mV (i.e., 0.25–0.30 eV) being in a good 

agreement with the above result. 

Further, we use the Cu surface potential as the reference value that should be the 

same for both samples and which shift is related to the RH change. Quantitative 

comparison of the graphite surface potentials from different samples was done with respect 

to the Cu surface potential. 

7.2.4 Graphite surface potential 

Figure 7.3 revealed that the surface potential value of graphite on the fresh sample 

is 279±14 mV. According to Table 7.1, WPt - WG ≈ 5.3 - (4.5–5.0) = 0.6–0.3 eV (equal to 

600–300 mV). As one can see, the experimental value of the graphite potential is in a good 

agreement with the table data if the graphite work function ≈ 5.0 eV. Small difference can 

be attributed to the absorbed water layer. 
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Surface potential reduction 

We consider three possible physical mechanisms of the observed surface potential 

change in the graphitic anodes: (i) graphite structural disorder, (ii) Li intercalation, and (iii) 

appearance of the reaction products and following contamination of the surface. 

(i) Structural disorder of graphite during cycling is a well known phenomenon. 

Obraztsov et al 
160

 show that a disordered graphite with sp
3
-like defects in the sp

2
 network 

possesses a lower work function as compared with a highly ordered pyrolytic graphite 

(HOPG). This should apparently result in the surface potential increase. However, the 

experimental results show that graphite of the fresh and the fatigued anodes has surface 

potential equivalent to the fresh graphite work function (Figure 7.3 (b)) or lower (Figure 

7.5 (b)), i.e. opposite to what is expected. This fact rules out the structural disorder effect 

as the main contribution to the surface potential variation. 

(ii) Another possible source of the surface potential change is presence of remnant 

Li
+
 ions in the graphite active particles. It is long time known that doping of graphite by 

alkali, alkali-earth, and rare-earth elements leads to formation of a surface dipole layer that 

reduces the initial work function. 
161

 Thus, the Li-intercalated graphite must have lower 

work function as compared with the fresh graphite. According to 
e

WW
V

sampletip

CPD



 , it 

should also results in the higher surface potential, that is not the case. It means that the Li 

intercalation may not be the dominant mechanism responsible for the observed effect. 

(iii) As pointed out above, the KPFM measurements were performed under ambient 

conditions, i.e. the anode samples (polished cross-sections) were exposed to humid 

atmosphere. Lithiated graphite is not stable under ambient conditions, hence we suggest 

that Li
+
 ions reacted with the ambient gases and the adsorbed water, and formed a layer of 

reaction products on the graphite surface. The surface film typically is a mixture of the 

following reaction products: Li2O, Li3N, LiOH, and Li2CO3. All these compounds reduce 

the overall surface potential relative to the fresh graphite. 
162–164

 Moreover, the thicker 

layer of the products – the stronger should be the surface potential reduction. 
162

 Hence, the 

observed decrease of the surface potential on the cross-sections of the graphite active 

particles in the fatigued sample can be attributed to the surface layer of the Li reaction 

products. We believe that almost linear decline in the shell region is a natural result of the 

increasing thickness or density of the surface film towards the core region that correlates 

with the Li concentration in the graphite material underneath. Consequently, the lowest 

surface potential in the core region must correspond to the highest Li concentration in the 

graphite. 

To confirm the proposed model we studied the lithiated anode with 78%SOH and 

50% SOC. At this SOC significant concentration of Li is certainly present in the graphite. 

Under ambient conditions the layer of reaction products is formed on the surface. 

Measured surface potential and topography are shown in Figure 7.6. The topography after 

the ion polishing is equivalent to the fresh and the fatigued samples. The surface potential 

of the graphite particles is suppressed as compared to the graphite of the fresh sample  
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Figure 7.6. Surface potential distribution from Cu and graphite parts of the lithiated 

sample. Arrows show corresponding surface potential on the sample. Right top and bottom 

images are topography and surface potential respectively. (Reproduced from Ref. 
109

) 

 

without Li
+
 ions (Figure 7.2). Note, that in the proposed model the higher Li concentration 

(and the thicker/denser reaction products surface layer) results in the lower surface 

potential. Using the Cu surface potential (VCu) as a reference, for the suppressed surface 

potential regions of graphite VCu - VG ≈75 mV for the fresh sample, ≈81 mV for the 

fatigued sample, and ≈135 mV for the lithiated 50% SOC sample. This clearly supports the 

proposed model of the surface potential suppression. 

Further prove of the model was obtained by direct observation of the surface film 

during high-resolution scanning of the fresh sample with the mosaic surface potential 

suppression (Figure 7.7). 

Note that the effect of the surface screening layer should disappear when anodes are 

not exposed to humid atmosphere and KPFM measurements are done under controlled 

inert atmosphere or vacuum. 

7.2.5 Explanation of the shape of reduced surface potential regions 

For quantitative estimations we took the Li diffusion coefficient in graphite in the 

range 10
-9

–10
-10

 cm
2
s

-1
. 

7
 Based on these values, at 1C-rate Li can completely deintercalate 

form a particle with up to 40 μm size, while at 16C-rate Li can deintercalete from a particle 

with up to 10 μm size as predicted by a simple formula: 

Dl  . 
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Figure 7.7. Topography (a), (b), (c) and surface potential (d), (e), (f) of the graphite particle 

of on the sample №2 (100% SOH 0% SOC). 10-20 nm thick layer of the reaction products 

partly cover the surface and screens the surface potential. 

 

Here D is the Li diffusion coefficient,  is the diffusion time, and l is the diffusion length. 

At 1C discharge rate of the fresh cell lithium ions had enough time to deintercalate 

from the particles. Still, areas of the suppressed surface potential were observed. These 

might be LixC6 domains of still electrochemically inactive Li within the delithiated 

graphite. Indeed, Figure 4.2 shows the discharge capacity increase during the five first 

cycles, i.e. the activation step. This behavior can be explained by the fact that some lithium 

ions are not yet activated in the beginning of cycling. Being trapped within the graphite 

and subjected to polishing and exposure to atmosphere, these remaining ions reacted with 

the atmosphere gases and reduced the surface potential where they were present. 

In the fatigued at 16C-rate sample deintercalation during cycling was not complete. 

The output battery voltage at a constant current is a combination of a battery 

electrochemical potential (E0) and a potential determined by an internal resistance (Ri): 
165

 

V=E0-IRi 

The internal resistance consists of several components such as electrolyte resistance, 

polarization, SEI layer, etc., but one important cause of increasing resistance is a loss of 

mobile charges, i.e. Li
+
 ions. At 16C-rate Li can pass up to 5 μm that corresponds to the 

shell region size (Figure 7.4 (b, c)). Consequently, during discharging at 16C-rate battery 

passes at least two steps. First step with sufficiently small internal resistance until Li
+
 

diffusion pathway is shorter than the shell width (5 μm). During this step, the number of 

deintercalating Li
+
 ions is high enough to provide a required current. At the second step the 

amount of available mobile Li
+
 ions within the short pathway area is not enough to provide 

a required current, so the internal resistance leaps upwards. The total battery voltage 

decreases below the cut off voltage, so the battery indicates discharge though it is not fully 
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discharged. This might explain the presence of Li in the core region during cycling and the 

observed core-shell surface potential structure. 

The fact that during cycling with 16C-rate discharge Li was extracted only from the 

shell region and remained blocked in the core region due to the diffusion limitation directly 

correlates with the reversible reduction of the specific capacity during cycling at higher C-

rates as compared to lower C-rates. 
1
 

Nevertheless, after aging at 16C-rate the battery was finally discharged at 1C-rate 

and Li
+
 ions might fully deintercalate from the particle, but it did not happen (according 

the proposed model). 

Obviously, the shell region – where Li is constantly inserted and extracted – should 

be much more structurally disordered as compared to the core region (where Li was 

inserted only during the first charge step). According to Gnanaraj et al, 
166

 Li intercalation 

mechanisms into graphite and disordered carbon are different. In the ordered graphite the 

Li intercalation/deintercalation is the staging process, while in the disordered carbon it is 

not. Linear decay of the shell region surface potential might indicate absence of the staging 

phenomena. However, the potential step chronoamperometry did not reveal any correlation 

between the phase boundary movement and degree of crystallinity. 
17

 Therefore, different 

intercalation/deintercalation mechanisms cannot be confidently used to explain the 

obtained results. 

Possible explanation is the continuous network of defects (such as dislocation 

walls) around the core. Lattice parameter c along the z-axis is 3.359 Ǻ for the pristine 

graphite and 3.712 Ǻ for LiC6. 
22

 During the high C-rate cycling the core region interlayer 

distance (if LiC6 is the core phase) remained constant at 3.712 Ǻ, while the shell region 

interlayer distance varied from 3.359 Ǻ to 3.712 Ǻ and vice versa. Moreover, according the 

model proposed by Yue Qi et al, 
167

 the Young’s modulus of polycrystalline graphite is 

increased threefold during lithiation of pristine graphite to LiC6 with simultaneous 

weakening of C–C bonds in basal planes. Within this model, where phase transitions are: 

pristine graphite to LiC18, LiC18 to LiC12, and LiC12 to LiC6, the maximum tension occurs 

at the LiC12 to LiC6 transition – what we expect at the surface potential core-shell 

interphase. Such strong lattice parameter change between the phases with different 

mechanical properties can lead to significant mechanical stress between the core and the 

shell that can break the C-C bonds 
19

 at the interphase. Prolonged cycling that periodically 

produces mechanical stress within the same area should leads to fatigue and massive 

structure damage on the surface potential core-shell interface. Due to the fact that Li 

intercalates inside layers of graphite and hardly can jump from one layer to another, 

significantly damaged edges within the bulk can hinder Li deintercalation.
 

Another important observation on the fatigued sample is that the surface potential 

distribution on the cracked particles and on the dense particles significantly differs. The big 

cracked particle shows higher surface potential than the dense one and without the core-

shell type of the surface potential (Figure 7.4). It means that there are less remnant Li ions 

inside. Taking into account that all observed cracks are filled with the epoxy (Figure 7.4 

(a)), we can conclude that the electrolyte had access to all internal surfaces and Li diffusion 
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paths were significantly shorter than in the dense particle of the same size. Consequently, 

the remnant Li concentration and corresponding surface potential of the cracked particle do 

not depend on the particles size. 

Note that the crack’s surface consumes Li due to formation of the new SEI layers as 

soon as the crack is formed. This process continuously happens upon cycling. 

Furthermore, the mosaic and radial models 
168

 can be introduced in order to explain 

the observed behavior. It summarizes the discussed above experimental data and proposed 

mechanisms. 

According to the mosaic model (Figure 7.8 (a)), inactive Li
+
 ions are trapped within 

the LixC6 domains after the full discharge. The domain boundaries can be pinned by 

localized crystallographic defects such as dislocations. During cycling, lithium insertion 

and extraction gradually redistribute these localized defects along with generation of new 

randomly distributed defects. This process activates trapped Li
+
 ions during first several 

cycles (5 in the present 16C discharge rate case). The mosaic model is size independent. 

 

 
 

Figure 7.8. Schematic illustration of the “mosaic” (a) and the “radial” (b) models of Li 

blocking within the bulk. (Reproduced from Ref. 
109

) 
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According to the radial model (Figure 7.8 (b)), at the high C-rate the core of the 

blocked LixC6 phase is formed due to the diffusion limitation: at a given C-rate (discharge 

time) Li can diffuse at a certain length determined by Dl  . After the prolonged 

cycling at high C-rate the shell region is much more structurally disordered than the core 

one, and the continuous network of defects (C–C bonds disruption) around the core hinders 

Li of the core from deintercalation even at low C-rate discharge. This model is applicable 

only if the diffusion length is smaller than the particle radius, i.e. it is size dependent. 

These two models can coexist within a single particle: experimental results suggest 

a transition from the mosaic model at the beginning of cycling to the radial model after the 

prolonged cycling. 

7.4 KPFM of the LixMn2O4 cathodes 

Measurements performed on the fresh and the fatigued LiMn2O4 samples did not 

reveal any consistent dependence of VCPD on both SOC and SOH. We expected around 2 V 

VCPD between the LixMn2O4 particles and the Pt/Ir tip with slightly higher VCPD for the 

lithiated samples. Indeed, the calculated Fermi levels for λ-MnO2 is -3.213 eV, for 

LiMn2O4 is -3.097 eV, and for Li2Mn2O4 is -2.578 eV. 
169

 Owing to the fact that LiMn2O4 

is a semiconductor, deviations from these values can be caused by the band banding that in 

principle can be different for different Li content for the same external voltage (Li is the n-

doping element). Nevertheless, we did not expect the drastic drop of the VCPD that was 

observed – the measured VCPD were around 0 V independently of SOC and SOH. We 

assume that LiMn2O4 surface potential was almost completely screened by the inherent 

surface water layer at 40% RH. As it was mentioned earlier, the screening effect is 

different on different materials. Therefore, such experiments on LiMn2O4 should be done 

under controlled conditions, i.e. under vacuum or dry inert atmosphere. 

Instead, we observed a significant VCPD drop on the Al current collector of the 

fatigued samples. This is illustrated in Figure 7.9 where two cathode samples are 

compared: the fresh 100% SOH 50% SOC sample and the fatigued 78% SOH 

unchangeable sample. The Al current collector from the fresh sample has uniform VCPD ≈ 

0.9V, while the one from the fatigued sample has large areas of strongly reduced surface 

potential. 

Origin of this phenomenon is the pitting corrosion of Al in electrolyte (solution of 

LiPF6 dissolved in dimethyl carbonate (DMC) and ethylene carbonate (EC)). This problem 

is well known especially in high-voltage Li-ion batteries due to high oxidation potential of 

the battery discharge. 
170,171

 Such corrosion can cause additional internal resistance and the 

consequent capacity drop. 

KPFM is proved to be a useful method for local investigation of the Al pitting 

corrosion 
172–174

 in addition to conventional electrochemical and structural methods (such 

as IS, SEM, EDX, etc.) This problem is out of the scope of the present thesis and will be 

the object of future investigations. 
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Figure 7.9. Topography (a) and surface potential (b) of the fresh 100% SOH 50% SOC 

sample; topography (c) and surface potential (d) of the fatigued 78% SOH unchargable 

sample. The Al current collector of the fatigued sample is severely affected by the pitting 

corrosion while the one from the fresh sample is not. 

Conclusion 

In this Chapter, both cathode and anode samples were investigated by means of 

KPFM. The study revealed the presence of remnant Li after delithiation within the bulk of 

both fresh and fatigued samples. We found that at 1C-rate small fractions of Li
+
 ions can 

be trapped as domains of LixC6 phase within the pure bulk graphite. After cycling at 16C-

rate to 80% SOH and the final discharge at 1C-rate the apparent core-shell structure within 

the big dense graphite particles was observed in the fatigued anode sample. The core 

region might thus represent a “dead” volume within which the Li
+
 ions are blocked. 

Besides this, we found that the cracked particles of the same size did not reveal any core-

shell structure. The results are the first direct visualization of the radial model that is used 

to describe the Li intercalation/deintercalation process in polycrystalline anode materials. 

Surface potential of the cathode LiMn2O4 samples was completely screened by the 

adsorbed water layer under ambient conditions. KPFM study of the LiMn2O4 samples is 
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possible under dry inert atmosphere or under vacuum. Instead, the surface potential 

reduction caused by the severe pitting corrosion was observed on the Al current collector. 

The implemented KPFM method can be used to study Li distribution in graphitic 

anodes at the nanoscale. Being calibrated on a reference sample with known Li 

concentration, this method can provide quantitative information about Li concentration 

distribution in a host material at the mesoscale. If implemented under vacuum, it can be 

used for other Li-intercalation electrode materials. 
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Chapter 8 

Summary 

This thesis presents a detailed study of the local Li mobility and concentration in 

the LiMn2O4 cathodes and the graphitic anodes of the commercial Li-ion batteries at 

different states of charge and health by means of ESM and KPFM. It also addresses further 

development of the recently introduced ESM method. 

ESM has been implemented in a single-frequency mode for the first time. The 

signal-to-noise ratio of the single- and the multi- frequency modes has been analyzed and 

compared. Signal-to-noise ratio was calculated taking into account different sources of 

noise in modern AFM systems. It has been shown that the resonance amplification at the 

single frequency depends on the ratio of the detection system noise to the thermal 

excitation white noise and can be lower than that predicted by the SHO theory. In case of 

the multi-frequency detection the resonance amplification can be additionally attenuated 

due to distribution of the driving power over a number of points in a frequency domain. 

The analysis allowed establishing criteria for a cantilever and an experimental setup for the 

most sensitive detection of surface displacements via the lock-in amplifier. According to 

the presented SNR analysis, the improvement of the sensitivity of the AFM optical 

detection system is crucial for the performance of ESM method which can be significantly 

improved in different – multi-frequency and single frequency – regimes. 

The investigation of transport properties of Li in LiMn2O4 revealed that, except of 

the Vegard contribution, additional non-Vegard contributions are possible. It has been 

shown that the ESM method cannot be blindly applied to any ion conducting material. 

Beforehand, material specific properties have to be analyzed in order to reveal possible 

contributions to the measured signal. This is an essential step for the correct interpretation 

of experimental results. Voltage spectroscopy measurements showed less uniform 

distribution of loop opening on the fatigued LiMn2O4 particles as compared to the fresh 

ones. The observed change of the loop’s shape can indicate a wider variation of the Li 

diffusion coefficient over the dc voltage cycle on the fatigued sample. Alternatively, it can 

indicate an additional – non-Vegard – contributions. Moreover, the wider loop opening 

was observed on the fresh samples with lower lithium concentration. Two possible 
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explanations were suggested: (i) different Li diffusivity and (ii) saturation of interstitials 

available for Li within the cubic phase. None of them, however, are totally satisfactory. 

Time spectroscopy measurements and the consequent quantitative estimations revealed a 

clear reduction of the Li diffusion coefficient in the fatigued sample at 0% SOC (fully 

lithiated) as compared to all other samples. This effect was attributed to the structural 

degradation during 16C-rate cycling and electric field mediated cubic to tetragonal phase 

transition. Additional contribution of the elastic energy to the diffusion coefficient was 

estimated. Finally, the question about the true origin of the ESM response was formulated. 

KPFM revealed the existence of remnant Li after delithiation within the bulk of 

both fresh and fatigued anodes. We found that at 1C-rate small fractions of Li
+
 ions can be 

blocked as domains of LixC6 phase within the bulk pure graphite. After cycling at 16C-rate 

to 80% SOH and the final discharge at 1C-rate the apparent core-shell structure within the 

big dense graphite particles was observed in the fatigued anode sample. The core region 

might thus represent a “dead” volume within which the Li
+
 ions are blocked. Besides this, 

we found that the cracked particles of the same size do not reveal any core-shell structure. 

The results are a direct visualization of the radial model that is used to describe the Li 

intercalation/deintercalation process in polycrystalline anode materials. Surface potential 

of the cathode LiMn2O4 samples was completely screened by the adsorbed water layer 

under ambient conditions. KPFM study of the LiMn2O4 samples is possible under dry inert 

atmosphere or under vacuum. The surface potential reduction caused by the severe pitting 

corrosion was observed on the Al current collector. The implemented method can be used 

to observe Li distribution in the graphite anode. Being calibrated on a reference sample 

with known Li concentration, this method can provide quantitative information about Li 

concentration in a host material at the mesoscale. 

 

Several questions have emerged during this work. 

(i) The ESM can obtain valuable information, but its quantification is still a difficult 

task. Taking into account the complex dependence of the Li diffusion coefficient on the Li 

concentration in battery electrode materials, quantification based solely on the analytical 

approach can be challenging. Alternatively, the computer modeling seems to be an 

appropriate method for reasonable quantification. 

(ii) Except of the Vegard contributions, LiMn2O4 exhibits additional non-Vegard 

contributions that significantly complicate the correct interpretation of results. Explanation 

of these contributions would require additional investigations. Being figured out, they 

could become a valuable source of information about materials properties. 

(iii) The true origin of the ESM response is not fully understood yet. It seems to be the 

key question that urgently needs to be answered for further development of ESM and its 

wider application to battery materials. 
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