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Chapter

Synthetic Melatonin Receptor 
Agonists and Antagonists
Andrew Tsotinis and Ioannis P. Papanastasiou

Abstract

The functions of the pineal hormone melatonin are of intense and continuous 
interest. Synthetic melatonin receptor analogues, as agonists and antagonists, have 
been explored, and the molecule can be viewed as consisting of an indole nucleus, 
acting mainly as a spacer, and the C5-OMe and the C3-ethylamido side chains, act-
ing as pharmacophoric components. The present chapter focuses on the synthetic 
routes towards these melatonin derivatives, first the aromatic nucleus, then the 
functionalities that have been introduced to the nucleus, and finally those analogues 
with restrained conformations and those that are optically active. The importance 
of the various parameters involved in the agonist and antagonist profile of the com-
pounds is indicated, as is the difference in the action of the chiral melatoninergics.

Keywords: melatonin, indole and bioisosteric derivatives, constrained polycyclic 
analogues, chiral melatonin analogues

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine 1) is a hormone ubiquitously dis-
tributed in a variety of organisms, such as bacteria, unicellular algae, fungi, plants, 
vertebrates, and mammalians [1]. Melatonin is mainly known to regulate circadian 
rhythms by synchronization to environmental cues but participates also in diverse 
important physiological processes, such as regulation of the visual functions, glu-
cose metabolism, and immune functions (Figure 1) [2]. The functions of melatonin 
are modulated through its binding to G protein-coupled receptors (GPCRs), which 
activate signaling pathways, as a cascade effect [3]. Up to date, two different types 
of melatonin receptors have been described in mammals: type 1A (MT1) and type 
1B (MT2). Both receptors are located in many regions in the central nervous system 
and in peripheral tissues as well [4]. X-ray free electron laser (XFEL) studies have 
recently revealed that MT1 binding site is extremely compact, and ligands interact 
with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen 
bonds with Asn162 and Gln181 [5]. Comparison of the structures of MT2 and MT1 
indicated that, despite conservation of the orthosteric ligand binding site residues, 
there are significant conformational variations between both melatonin receptor 
subtypes, which justify the selectivity between the two subtypes [6]. Melatonin was 
proven to bind to one more co-substrate binding site (MT3), which is a quinone 
reductase-2 [7]. Melatonin receptors had been cloned in 1990s [8–10] but character-
ized and described in the 1980s by using the radiolabeled 2-[125I]-iodomelatonin 
and 3H-melatonin ligands [11, 12]. Herein, we are reviewing the synthetic routes of 
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the main indole and bioisosteric aromatic nucleus derivatives: first, the conforma-
tionally restricted; the active chiral compounds second; and the derivatives with 
substituted 3-side chains third.

2. Indole and bioisosteric derivatives

A guide of general principles has been applied throughout SARs for both melato-
nin receptors. The C5-OMe group of the indole ring is optimal, while the same sub-
stituent at positions 4, 6, or 7 leads to a drastic loss of affinity. However, congeners 
with a halogen at the 5-position do retain high affinity [13]. The relative position 
of the methoxy group and the N-acetylaminoethyl side chain seems to be the most 
important structural feature that increases the melatonin receptor binding affinity 
[14–16]. The syntheses of these derivatives are based on classic chemical procedures 
[17–19]. The indole ring could also be considered as a spacer [20, 21] with the pyr-
role portion not involved in the receptor binding pocket, because it can be replaced 

Figure 1. 
Regulation of melatonin production.
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by diverse aromatic scaffolds, such as naphthalene, benzofuran, benzothiophene, 
or benzocycloalkane rings [14, 22, 23]. Various congeners with substitutions in the 
positions 2 and 6 of melatonin have been synthesized. Substituents, like methyl, 
phenyl, or halogen at position 2 of melatonin, can increase receptor binding affinity 
by ca tenfold [24–27]. The presence of an optimal N-acyl group with a 2-halogen 
substitution exhibits very potent affinity [28].

Interestingly, substituents on the 2-position seem to direct the N-acetylaminoethyl 
side chain into the optimal conformation for interaction with the receptor and 
increase the ligand affinity [29, 30]. 6-Substituted analogues have been prepared [31] 
with the aim of retarding metabolism, because melatonin is degraded rapidly in vivo, 
mainly in the liver, by 6-hydroxylation followed by conjugation and excretion in the 
urine. A halogen substituent at the 6-position reduces binding affinity nonsignifi-
cantly, while the binding affinity of 6-hydroxymelatonin is decreased by 5 to 10 times 
and 6-methoxymelatonin by more than 100 times [32].

One of the synthetic routes for the production of 5-methoxyindole (4) is via the 
Leimgruber-Batcho reaction [33], modified by Repke and Ferguson [34] (Figure 2). 
A successful side chain functionalization was reported by Ates-Alagoz et al. [35] 
using the Vilsmeier-Haack formylation reaction of 5-methoxyindole (4). On the 
other hand, Righi et al. [36] applied the direct C3 reductive alkylation of N-benzyl-
5-methoxyindole (8), as described in Figure 2.

In an attempt to map the receptor requirements, a series of phenylalkyl amides 
9–11 were prepared and proven to exhibit the minimal structure required for the 
ligand recognition by melatonin receptors [16, 37, 38] (Figure 3).

Some C3-modified melatonin analogues have exhibited interesting melatonin-
ergic activities. It has been shown that small modifications in the acyl chain are 
able to change the binding affinity for melatonin receptors. A typical modification 
to increase the activity is the replacement of the acetyl by an N-butanoyl chain. 
Depreux et al. reported a 100-fold higher affinity of 5-methoxy-N-butanoyltrypt-
amine than melatonin [14]. Tsotinis et al. reported that upon the appropriate func-
tionalization at the end of the C2 side chain, the azido compounds 16 were produced, 
which serve as photoactivity labels, while the respective isothiocyanate compounds 
17 serve as electrophilic probes (Figure 4), in order to produce adducts covalently 
linked to key amino acid residues of the melatonin receptor subtypes [39].

Luzindole, N-acetyl-2-benzyltryptamine (21), is a selective melatonin receptor 
antagonist with approximately 11- to 25-fold higher affinity for the MT2 than the 

Figure 2. 
Highlighted synthetic routes of melatonin 1.
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MT1 receptor [4]. The synthesis of luzindole, achieved through a Pictet-Spengler 
reaction and formation of the intermediate β-carboline 19, was first patented by 
Dubocovich et al. [40]. In 2008, Tsotinis et al. reported a new method of luzindole 
synthesis, through the C-3 indole nitroolefin 22, leading to a much higher overall 
yield [41] (Figure 5).

The benzo[b]furan nucleus can replace the indole skeleton and retain its reactivity. 
5-Methoxy-3-oxo-2,3-dihydrobenzo[b]furan (25) was prepared from 4-methoxyphe-
nol (23) by acylation with chloracetonitrile followed by cyclization [42] (Figure 6). 

Figure 5. 
Luzindole.

Figure 3. 
Phenylalkyl amides.

Figure 4. 
C2-functionalized melatonin analogues.
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Tasimelteon, N-[[(1R,2R)-2-(2,3-dihydro-1-benzofuran-4-yl)cyclopropyl] methyl]
propenamide (27), is a melatonin agonist, which bears the benzo[b]furan skeleton 
and was approved by the FDA, in January 2014, for the treatment of non-24 h 
sleep–wake disorder [43]. The starting material for the synthesis of tasimelteon is the 
4-vinyl-2, 3-dihydrobenzofuran (26).

The naphthalene scaffold can also be considered as a melatonin-acting biomol-
ecule with high affinity and potency [44, 45]. The preparation of the key intermedi-
ate in this synthesis, 2-(7-methoxy-1-naphthyl)ethanol (31), is depicted in Figure 7. 
Agomelatine, N-[2-(7-methoxy-1-naphthyl)ethyl]acetamide (32), was recently 
approved for medical use in Europe and Australia [46].

3. Constrained polycyclic derivatives

Tricyclic and even larger constrained derivatives have been investigated for their 
melatoninergic potency. The synthesis of 6,7,8,9-tetrahydropyridino[1,2-a]indole 
(36) [47] is illustrated in Figure 8.

Figure 6. 
Tasimelteon.

Figure 7. 
Agomelatine.

Figure 8. 
6,7,8,9-Tetrahydropyridino[1,2-a]indole.
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Figure 9. 
1,3,4,5-Tetrahydro[cd]indole.

Figure 10. 
Azaindoles.
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The 3-substituted 1,3,4,5-tetrahydro[cd]indoles exhibit higher melatonin recep-
tor affinity than their more constrained congeners [30]. The key intermediate ketone 
38 was obtained upon cyclization of the carboxylic acid 37 with polyphosphoric acid. 
As shown in Figure 9, the ketone 38 was converted to the corresponding cyanide 39, 
in two steps. The latter gave then the respective acetamide 40, and the final tricyclic 
adduct 41 was prepared by ester hydrolysis followed by decarboxylation of the cor-
responding acid in boiling quinoline in the presence of copper powder.

Azaindoles have also been proven to exhibit melatoninergic potency. Some 
melatonin analogues based on 3a-aza-, 4-aza-, 6-aza-, and 7-azaindole cores are 
described in Figure 10.

In the synthetic route to the 3a-azamelatonin analogue 49, El Kazzouli et al. [48] 
reported the treatment of 2-amino-5-bromopyridine (42) with 2-bromoacetone 
and the use of ethyl 2-azidoacetate for the formation of the key intermediate ester 
45. In the synthesis of 3-substituted-4-azaindole 49, Mazeas et al. [49] have used 
2-methoxy-5-nitropyridine (50), as starting material, and standard chemistry proce-
dures. The 4-azaindole analogue 50 was proven to be a stronger agonist than melato-
nin at both melatonin receptors [50]. The preparation of 6-azamelatonin derivative 
61 involves the Sonogashira reaction, as reported in the literature [49]. Finally, the 
7-azamelatonin congener 67 presents promising melatoninergic potential [49].

The isoindolo[2,1-a]indoles and benzo[c]azepeno[2,1-a]indoles were prepared 
by Tsotinis et al. [51]. The appropriate N-acetyl tryptamine was coupled with the 
respective dibromide 68, and the derived N-alkyl indole 70 was then cyclized in the 
presence of Pd(PPh3)4 to afford the desired products 71 (Figure 11).

The pharmacological evaluation has shown that 6H-isoindolo[2,1-a]indoles 
(71a) are agonists, while the 5,6-dihydroindolo[2,1-a]isoquinolines (71b) are partial 
agonists/antagonists, and the 6,7-dihydro-5H-benzo[c]azepino[2,1-a]indoles (71c) 
are antagonists. Thus, the size of the linker between the phenyl ring and the pyrrole 
nitrogen atom serves as a switch pharmacological probe, spanning from agonist to 
antagonist melatoninergic action.

4. Chiral melatonin analogues

Some derivatives with constrained conformation also present chiral-
ity. Ramelteon is the most emblematic representative example of this class of 

Figure 11. 
Isoindolo[2,1-a]indoles and benzo[c]azepeno[2,1-a]indoles.
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compounds. Ramelteon, N-{2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-
8-yl]ethyl}propanamide (76) [52], is a melatonin analogue approved by the FDA 
as a sedative-hypnotic. The following synthetic route [53], illustrated in Figure 12, 
uses dibenzoyl-L-tartaric acid as an acid to form the salt at the end of hydrogena-
tion and as the resolution agent as well.

Most of these chiral derivatives are prepared as racemates and, then, in some 
cases, resolved. The racemate mixture of enantiomers provides an initial estima-
tion of the biology of these compounds, although asymmetric syntheses may then 
be required if one of the enantiomers exhibits a selective result. Substituents on 
the 3-side chain, particularly at the β-position, present a preference for the active 
conformation. This hypothesis has been investigated by assessing the melatonin-
ergic potency of various compounds which bear in their side chain small to large 
substituents. An example of α- and β-methyl side chain functionalized molecules 
with enhanced activity is the N1-phenethyl-substituted indole derivatives 79 and 
82 [54]. The characteristic steps of the synthesis of these probes are illustrated in 
Figure 13. Similar results, in terms of activities and related conformation, have 
been obtained for the analogues 83, 84, and 85 [55–57].

Figure 12. 
Ramelteon.

Figure 13. 
Examples of chiral melatoninergic analogues and side chain conformationally constrained tricyclic derivatives 
83 and 84.
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The β-methyl, N-methyl-substituted melatonin derivative 86 was prepared and 
resolved by chiral HPLC [58]. The (+) enantiomer has a tenfold higher potency in 
pigment aggregation in the Xenopus laevis protocol, while the (−) enantiomer has a 
28-fold selectivity for the MT2 receptor.

5. Conclusions

A selection of key melatoninergic derivatives was reported herein. We pointed 
out the synthetic routes towards these melatonin analogues, first of the aromatic 
nucleus, then of the functionalities that have been introduced to the nucleus, and 
finally of those analogues with restrained conformations and those that are optically 
active. Much more needs to be explored about the variant functions of melatonin 
and through which receptor type they exert their action. The range of small mol-
ecules having agonist or antagonist effects on the melatonin receptors is large, and 
new scaffolds keep appearing as drug candidates in different treatments. This work 
is hoped to assist those seeking to explore the melatonin and melatoninergic field.
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