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Chapter

Cryomedia Formula: Cellular 
Molecular Perspective
Noha A. Al-Otaibi

Abstract

The growing market of cell therapy medicinal products (CTMPs) and biophar-
maceuticals demand effective cryopreservation with greater safety, of which the 
currently available cryoprotective agents [CPAs (e.g., dimethyl sulfoxide, glycerol, 
trehalose, etc.)] alone are unable to provide. This is due to the need of applying 
high concentration of CPAs to achieve verification that concomitant oxidative 
damages. Formulating cocktail of compounds with anti-freezing and antioxidants 
properties found to be advantageous to overcome the resultant damages. Each 
cocktail, however, demonstrate overlapping and/or unique protective and modula-
tion effect patterns. The advance technology and research tools (e.g., OMICs) 
provide a deep insight on how the formulation of cryomedia can influence the 
cellular pathways and molecular interactions. In fact, this shed the light over the 
uniqueness of cryomedia formulation and how can they serve various application 
purposes.

Keywords: mammalian cells, cryoprotective agents, biological profile, toxicity, 
protection, formula, additive agents

1. Introduction

Cryopreservation is one of the most effective techniques that widely used for 
preserving living cells and organs in research and therapeutic industries [1]. The 
principle of cryopreservation is to protect cells from the application of super low 
temperature and ice crystal formation by using media that consist of antifreezing 
or cryoprotective (CPA) substances such as; glycerol, dimethylsulfoxide (DSMO) or 
trehalose. The expansion in clinical experiments for medical applications revealed 
the limitations of utilizing the conventional CPAs which resulting sub-optimal cell 
quality. This is attributed to the detrimental effects of conventional CPAs and their 
molecular interactions that compromise cell quality. The new research areas and 
advanced techniques significantly increase the demand of better cryopreservation 
to maintain the quality and functionality of cells and tissues.

Current trends in cryopreservation are actively focusing on identifying a safe 
and effective alternative CPAs to substitute or support the conventional agents. In 
addition, there are various cell types valuable for investigation and medical devel-
opment and their different biological profile and functional mechanisms required 
customizing cryopreservation. However, there are limiting number of studies 
addressing the influence of the cryomedia formulation on the global proteomic and 
biomolecular profile of the cells.
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2. Conventional cryomedia compositions and protection mechanisms

Cryomedia formulation usually encompass of cryoprotective agents (CPAs) and 
carrier media prepared at or close to cell isotonic concentrations to provide sup-
port to cells at low temperature [2]. It also may contain salts, pH buffers, osmotic 
agents, nutrients, antioxidants or apoptosis inhibitors [2]. There are about 56 CPAs 
commonly used for different cell cryopreservation [3, 4]. Glycerol and dimethyl-
sulfoxide (DMSO) are the most common CPAs used in cryomedia formula. CPAs 
are classified based on the permeability through cell membrane into, permeable 
(pCPA), and impermeable (ipCPA).

pCPAs are generally small, non-ionic molecules that are highly soluble in water, 
even at low temperatures. They can pass through cellular membranes and equilibrate 
within the cytoplasm in exchange for intracellular water during dehydration without 
over dehydrating the cell [5]. They become solid at a lower temperature than water 
freezing point and subsequently suppress ice crystal formation [6] and mitigate 
cellular physical damage that could occur in cellular compartments and membranes. 
Moreover, pCPAs reduce salt-induced stress by dissolving solute and reducing 
concentrations in the remaining water fraction intracellularly until the cell is cooled 
to a sufficiently low temperature [6, 7]. pCPA permeability is controlled by their vis-
cosity and the membrane properties of the cell itself [8, 9]. The latter mentioned is 
variable between different cell types as well as the varying ages of cells [10, 11]. Most 
of the pCPAs are polyols, such as glycerol and dimethylsulfoxide (DMSO), which are 
prominence in cryopreservation. Many successful cryopreserving protocols utilized 
these compounds for their high efficiency in compare to others such as methanol 
and ethylene glycol [6].

ipCPAs are large molecules usually comprised of long chains of polymers that 
are unable to permeate through cellular membranes. They are water soluble and 
thought to increase the osmolarity around cells, which result in cellular dehydra-
tion and reduce ice crystal formation intracellularly [12]. The combination of high 
concentrations of ipCPAs and fast cooling promotes vitrification and stabilizing 
cellular proteins and membranes [13, 14]. Their protective mechanism is based on 
preventing ice formation extracellularly as well as intracellular through dehydration 
[15]. There are several classes of ipCPAs, such as certain forms of sugars, macromol-
ecules, and polymers. Sugars are classified based on their chemical structure into: 
mono-, di- and poly-saccharides (glucose, trehalose, and raffinose, respectively). 
A number of these sugars are permeable (e.g., glucose) and others are impermeable 
(e.g., trehalose). Sugars have garnered unique interest over the last decades. They 
have been found to protect protein activity and reduce thermal denaturing heat 
capacity of chemicals [16–21], which leads to protein stabilization. In particular, 
trehalose has been identified as a universal protein stabilizer and been involved in 
many freezing and desiccation studies [18–20].

Depending on the freezing mode (slow cooling or vitrification), the concentra-
tions of CPAs are variant in the solution. For instance, slow freezing mode requires 
less CPA concentration than vitrification. Choosing the optimum concentration of 
CPA in combination with the cooling rate is crucial for successful cryopreservation 
[20]. For instance, when preserving human ovarian tissue following slow freezing 
protocol, DMSO is used with initial concentration of 7.5% and gradually increased 
to 12.5%. Whereas preserving the same tissue using the vitrification protocol, 20% 
DMSO is needed [21]. Different tissues and cells, however, demonstrate different 
responses to the cryopreservation approaches and CPAs. Therefore, the selection 
of the appropriate protocol and CPA is subject to the cryopreservation empirical 
success of the desired cells or tissues.
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3.  Quality assessment methods of cryopreserved cells and CPA 
protection action

An accurate assessment of cryopreserved cells or tissues considering the viabil-
ity and functionality is paramount to determine the quality and reliability of the 
cryopreservation protocol and solution. In the past, classical parameters, such as 
survival rate or motility, were the only quality measurements [22, 23]. With the 
evolution in technologies and developed assays, scientists can obtain more informa-
tion surrounding the level of stress that heralds cellular death cascades and dynamic 
changes that impact cryopreserved cells’ function and morphology.

Nowadays, there are a wide range of viability assays available; however, selecting 
the appropriate assay mainly depends on cell types to avoid inaccurate measure-
ment. For instance, the measurement of LDH leakage in media can be used for 
membrane integrity assessment because of its reliability and easy performance. 
It is an applicable measurement in single cells as well as tissues and organs [24]. 
Conversely, using fluorescent probes for viability measurement is suitable for many 
cells excluding hepatocytes, because of their detoxification activity with respect to 
probes that influencing the accuracy of the measurement [25].

The emergence of developed technologies, such as genomics, transcriptomics, 
proteomics, and metabolomics (collectively termed OMICs), has provided a 
comprehensive profile of cryopreserved cells, including their stressed and com-
promised biological pathways, which may help designing protocols or solutions in 
order to modulate the damaged pathways. So far, the majority of OMICs applica-
tions in cryopreservation are limited to reproduction medicine and plants [26, 27], 
such as in human sperm characterization post-thaw [28]. The deep analysis OMICs 
stresses the importance of adopting such analytical approach in researches aiming 
at advancing cryopreservation and biobanking for better CTMPs outcome [25].

4. Cryoprotectant toxicity and detrimental effects

Introducing CPAs in high concentration (molars) is accompanied with non-
specific adverse effects such as osmotic stress and cell dehydration [29] that also 
could induce the oxidative stress [30]. This can cause severe cell damage; for 
instance, increasing the concentration of DMSO, glycerol, and 1,2-propanediol 
is linked with the production of non-enzymatic formaldehyde [31], a cytotoxic 
compound that contributes to cell death [32]. The long exposure duration of cells 
to high concentration of CPA also harm cell development, as reported when expos-
ing bovine blastocytes to a high concentration of ethylene glycol over 10 min [33]. 
Likewise, introducing a high concentration of propanediol to mouse zygotes was 
found to have a similar damaging effect on cell development to that observed in 
bovine blastocytes [34].

The high concentration of CPA accumulated intracellularly has a detrimental 
effect on cells. In cryopreserved human mesenchymal stem cells (hMSC), it has a 
significant effect on cellular viability, filamentous actin distribution, intracellular 
pH, and mitochondria aggregation [35]. It has also been found to cause abnormal 
spindles and morphology in human oocytes, which can potentially influence their 
viability post-cryopreservation [36]. Similarly, CPA causes a serious alteration in 
mammalian sperm viability, physiological properties, protein phosphorylation 
patterns [37], and can lethally damage enzymatic activity and DNA [38]. However, 
osmotic stress factors and associated cell shock cannot be decoupled since they 
interact with each other, though the resultant effects can be reversed or limited to 
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a certain extent by minimizing exposure time, accelerating freezing and thawing 
speeds, and gradually diluting CPAs in cells [39], which can increase post-thaw cell 
viability. These types of reported damages are considered non-specific since it is 
not limited to specific CPA identity. However, the molecular interaction of CPAs is 
more closely linked to the permeable CPAs, as they are able to interact with the cell 
compartments and biomolecules [30].

CPA toxicity effect can be either reversible (e.g., osmotic shock and cellular 
shrinkage) [40, 41] or irreversible. Notably, cryopreservation protocols involv-
ing short exposure times to CPAs can reverse the induced damages. Nevertheless, 
irreversible damage is common in cells lacking self-renewal or repair mechanisms, 
such as RBCs [42] and embryonic stem cells [43, 44].

Oxidative stress occurs during cryopreservation, mainly when adding CPAs 
to cells [45]. The increased oxidative stress results in more ROS production [46], 
which leads to a disequilibrium between the generated ROS and the cellular antioxi-
dant capacity within the redox pathway. A decrease in cellular-reduced glutathione 
(GSH) content was observed during the freezing step of sperm [47], indicating that 
oxidative damage occurs during the initial steps of cryopreservation. Consequently, 
increased ROS production results in lipid peroxidation [48], DNA instability [49], 
protein oxidation [50], overall dysfunctional cells, and low survival rates [47, 49]. 
Oxidative stress has been observed when applying glycerol [51], DMSO [52], and 
trehalose [50] to cells.

4.1 Other biochemical effects

Cells naturally have a dynamic and complex system involving active biomole-
cules that respond distinctly to all forms of environmental stressors, including CPA 
media and temperature alterations. The cells’ response to stressors involves complex 
biomolecular events influencing their fate. Measuring the survival rate of thawed 
cells is a classical parameter that is not precise when determining the efficacy of 
cryopreservation. This is because during the recovery period, a decrease in cellular 
viability occurs in different cell types [53]. This is attributed to the activation of 
apoptosis machinery post-thaw [54]. Xu et al. [53] reported that exposing cells to 
DMSO and freezing conditions activate apoptosis through extrinsic and intrinsic 
pathways, including caspase-8, caspase-9, and p53. Some CPAs have different 
mechanisms, yet they lead to the same lethal results. Propylene glycol (ProH), for 
instance, reduced cell viability via increasing intracellular calcium to a cytotoxic 
level [55].

Furthermore, the cryopreservation affects cells’ biomarkers [56]. It alters the 
proteome profile of cells, which in some cases can bring about changes in cellular 
metabolism, function, and structure [57]. In previous work, there is often no clear 
demarcation between the effect of CPAs and the cryopreservation protocol itself. 
However, the exact effect of CPAs can be investigated in an experiment if cell 
viability and functionality are analyzed before freezing.

5. Modulating CPA damages via additive agents

Considering the aforementioned limitations in cryomedia formula, many active 
studies investigated the efficacy of additive agents to improve the cryomedia and 
modulate the resultant damages in cryopreserved cells (Table 1). Additive agents 
have variable effects on different cells. This was evidently observed in number of 
cases such as; quercetin, glutathione, and ascorbic acid [58]. On other hand, some 
other demonstrated similar efficient antioxidant protection effect on several cells 
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(e.g., curcumin) [58]. Notably, many protective factors share their antioxidant pro-
tection effects at different concentrations (e.g., hyaluronan and glutamine [59, 60]) 
that commonly include reducing oxidative stress on lipid and proteins and improve 
viability rate.

In our published studies, the discovery of the protection potent of salidroside 
and nigerose was exceptional on nucleated as well as anucleated hematopoietic cells 
[RBCs and human leukemia cells (HL-60)] in various cryomedia formulae and 
freezing modes. The efficacy of these compounds was evidenced at low concentra-
tions (200–300 μM) of salidroside and nigerose, respectively. The effect of the addi-
tive compounds was determined by analyzing both the biomolecular and proteomic 
profiles of the survival cells [58]. First, we examined the effect of salidroside in 
standard cryo-solutions (glycerol and trehalose), which are commonly used for the 
RBCs biopreservation, using RBCs [62]. When comparing the survival cells rate, 
RBCs cryopreserved in solutions contained salidroside showed higher survival rate 
in compare to those cryopreserved in standard cryomedia alone. On biomolecular 
level, salidroside improved the intracellular activity of glutathione reductase (GR), 
the active enzyme in the redox pathway. In addition, it reduced the level of stress 
resultant from freeze-thaw process, as it was measured by intracellular lactate dehy-
drogenase (LDH) activity [68]. Moreover, it protected RBC proteins against oxida-
tive damages [62]. Further investigation on human leukemia cells (HL-60) using 
salidroside in 2% DMSO and fetal bovine serum cryosolution demonstrated similar 
protection effects to what have been seen in RBCs [62, 68]. Additionally, it protected 
lipid against oxidative stress. In the same study, we used nigerose for comparison, 
which showed similar protection effect on the biomolecular profile of the cells.

Additive 

agents

Example Concentration Cell types Molecular and biological 

effects

Antioxidants Resveratrol [61]

Salidroside [62]

15 μM

200 μM

Human sperms

Red blood cells

Decrease DNA 

fragmentation through 

activating AMP-activated 

protein kinase (AMPK)

Increase glutathione 

reductase (GR) activity 

and cells stability post 

thawing

Reduce hemolysis, lactate 

dehydrogenase activity and 

protect protein and lipid 

from oxidation damage

Proteins Type III 

anti-freezing 

proteins [63]

Sericin [64]

0.8 mg/ml

5%

Human 

carcinoma 

cells

Human sperm

Increase cells recovery 

post-thawing

Increase cells motility

Decreased DNA 

fragmentation

Enzymes Catalase [65] 40 μl/ml Mice 

spermatogonia 

stem cells

Reduce apoptosis and ROS 

production

Increase viability

Vitamins Vit E [66] 100–200 μmol Human sperm Increase motility

Anti-apoptotic 

drugs

Sphingosine-1- 

and Z-VAD-

FMK [67]

10 μM Ovarian sheep Preserve primordial 

follicular density, with 

normal morphology and 

improved proliferation

Table 1. 
Cryomedia additive agents and their effects on cryopreserved cells.
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On top of the biological profile of cryopreserved cells, proteomic analysis 
revealed the specific and unique modulation effect of additive agents on compro-
mised biological pathways [68]. Each compound was observed to have a demonstra-
bly unique effect on the proteome pattern of cryopreserved HL-60 cells. Nigerose 
was strongly engaged with cell maintenance, energetic, and metabolic pathways, 
whereas salidroside influenced proteins associated with DNA binding and nuclear 
activities. Both overlapped with regards to influencing proteins associated with 
redox pathways. Moreover, the damaging effects of classical cryomedia were modu-
lated by the reformulated media comprising the novel protective agents. The protec-
tive mechanisms of the compounds on the proteomic level were strongly compatible 
with the biochemical analysis of the cells cryosurvival rate and their resistance to 
stressors [68]. This has shed the light over the potency of specific effectiveness of 
additive agents in the cryosolution and their specific applications for preserving 
different cells and tissues for pharmaceutical and clinical applications.

6. Conclusion

Understanding of the protective mechanisms of cryomedia ingredients along 
with identifying powerful protective compounds to enhance cryomedia perfor-
mance is highly demanded. Due to the wide range of preserved cells and tissues, 
designing the appropriate cryosolution with suitable protocol is beneficial. In fact, 
these are particularly important for CTMP industries and end-users at clinics, such 
as those with cancer and diabetes or requiring blood transfusion, organ transplan-
tation, and infertility treatments.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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