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Chapter

Visual-Tactile Fusion for Robotic
Stable Grasping
Bin Fang, Chao Yang, Fuchun Sun and Huaping Liu

Abstract

The stable grasp is the basis of robotic manipulation. It requires balance of the
contact forces and the operated object. The status of the grasp determined by vision
is direct according to the object’s shape or texture, but quite challenging. The tactile
sensor can provide the effective way. In this work, we propose the visual-tactile
fusion framework for predicting the grasp. Meanwhile, the object intrinsic property
is also used. More than 2550 grasping trials using a novel robot hand with multiple
tactile sensors are collected. And visual-tactile intrinsic deep neural network (DNN)
is evaluated to prove the performance. The experimental results show the superior-
ity of the proposed method.

Keywords: stable, grasp, tactile, visual, deep neural network

1. Introduction

In recent years, dexterous robotic manipulation increasingly attracts worldwide
attention, because it plays an important role in robotic service. Furthermore, the
stable grasp is the basis of manipulation. However, stable grasp is still challenging,
since it depends on various factors, such as the actuator, sensor, movement, object,
environment, etc. With the development of the neural network, the data-driven
methods [1] become popular. For example, Levine et al. used 14 robots to randomly
grasp over 800,000 times for collecting the data and training the convolutional
neural network (CNN) [2]. Guo et al. trained the deep neural network (DNN) with
12 K-labeled images to learn the end-to-end grasping polices [3]. Mahler et al. built
the dataset that included millions of point cloud data for training Grasp Quality
Convolutional Neural Network (GQ-CNN) with an analytic metric. Then GQ-CNN
developed the optimal grasp strategy that achieves 93% success rate for eight kinds
of objects [4–6]. Zhang et al. trained robots to manipulate objects by videos that
were made by virtual reality (VR). For pick-place tasks, the success rate was
increased when the number of samples increased [7]. Therefore, sufficient high-
quality data is important for robotic grasping.

Nowadays, a few datasets of robot grasping have been developed. Playpen
dataset obtains 60-hour grasping data of robot PR2 with RGBD cameras [8].
Columbia dataset collects about 22,000 grasping samples via the GraspIt! simulator
[9]. Besides experiments with robots and numerical simulations, human manipula-
tion videos are also useful. Self-supervised learning algorithms are developed from
demonstration of videos [10]. While the above datasets focus on the whole grasping
process, there are other datasets that concentrate on specific tasks, like grasp
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planning and slip detection. Pinto et al. instructed robots to automatically generate
labeled images for grasp planning with 50,000 times by self-supervised learning
algorithms [11]. MIT built the grasp dataset by vision-based tactile sensor and
external vision [12]. While some experiments produced slip with extra force or
fix objects [13, 14], researchers recorded the actual random grasping process with
46% failure results in 1000 times grasp [15, 16]. The real data can contribute to
the precision grasping [17]. In daily life overabundance of the object’s types leads
to the difficulty of building datasets. Some researchers select the common
objects and build 3D object set models such as KIT objects [18], YCB object set
[19], etc. They are more convenient for research. However, there are few
datasets that include the visual and tactile data. Sufficient visual, tactile, and
position data can clearly describe the grasping process and improve the robot’s
ability of grasping.

According to the previous work, it is necessary to build a complete dataset for
the robotic manipulation. In this chapter, a new grasp dataset based on the three-
finger robot hand is built. In the following section, the structure of the multimodal
dataset is introduced in detail. Moreover, the CNN and long short-term memory
networks (LSTMs) are designed to complete grasp stability prediction.

2. Grasp stability prediction

In this section, the multimodal fusion framework of grasp stability prediction is
proposed.

2.1 Visual representation learning

Under the visual image set, we can only observe 2700*2 = 5400 sets of image
data in total, which is in use. It is difficult to extract visual features with
convolutional neural networks (ResNet-18 network structure is used in our
experiment). Training convergence is less on a small dataset, so time comparison
network is used [10], capture video information from the capture process, anchor,
positive, negative data. Then we define the triplet loss function [20] and use the
characteristics of the continuous change of motion in the video to learn the opera-
tion process. The visual characteristics are also used as a pre-training process for the
subsequent stable retrieval of the convolutional network part of the prediction
network. Such as shown in Figure 1, we cleverly use a multi-angle camera to record
the video image of the same capture process; at the same time, different image in
the perspective should represent the same robot state, that is, its embedded layer
embedding vector. A certain distance from the feature representation is relatively
small, and the image at the same perspective at different times represents the robot.
At different grasping states, a certain distance of the embedded layer Embedding
vector is relatively large, formally:
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2.2 Predicting grasp stability

In order to describe the properties of the objects like shape or size, the images
are captured before grasping from two cameras, represented by Ib (Figure 2). Id is
the position of the robot concerning the object grasped. Hence the vision feature fv
can be calculated as

fv ¼ RðIb, IdÞ (3)

where R represents the pre-trained neural network.
The images are passed through the standard convolutional network that uses the

ResNet-18 architecture. Different from the previous work [22], the tactile sensors
are used to obtain the force applied by the robot during the manipulation. As tactile
sequences, the LSTMs are applied as the feature extractor:

ft ¼ L T0,T1, … ,TTð Þ (4)

where ft is the last time step of the LSTMs’ output and T0,T1, … ,TT is the input
of the LSTMs at each step.

Figure 1.
Visual representation network.
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Besides, the mass and mass distribution of the object also affect the stability of
grasping. In order to simplify the problem, the weight of the object is known and
the mass distribution is assumed uniform. Then the intrinsic object property is
described as

fi ¼ M wð Þ (5)

where fi represents the intrinsic object feature and w is the object weight.
Then the multilayer perceptron (MLP) is used to extract the intrinsic feature.

The sensory modalities provide the complementary information about the pros-
pects for a successful grasp. For example, the camera’s images show that the gripper
is near the center of the object, and the tactile shows that the force is enough to keep
stable for grasping. In order to study the method of multimodal fusion for
predicting grasp outcomes, a neural network is trained to predict whether robot’s
grasp would be successful integrated by visual, tactile, and object’s characters. The
network computes y = {(X)}, where y is the probability of a successful grasp and
X = [ fv, ft, fi] contains a set of images from multiple modalities: visual, tactile, and
object intrinsic properties.

Train the network: initializing the weights of visual by CNN with a model pre-
trained in Section III-A. The visual representation network is trained 200 epochs
using the Adam optimizer [23], starting with a learning rate of 105 which is
decreased by an order of magnitude halfway through the training process.

During the training, the RGB images are cropped with containing the table that
holds the objects. Then, following the standard practice in object recognition, the
images are resized to be 256 � 256 and randomly sampled at 224 � 224. Meanwhile
the images are randomly flipped in the horizontal direction. However, the same
data is still applied for augmentation to prevent overfitting.

3. Experiment and data collection

The experiment platform consists of the Eagle Shoal robot hand, two RealSense
SR300 cameras, and the UR5 robot arm. As shown in Figure 3, they are arranged
around the table of length 600 mm and width 600 mm. There is a layer of sponge
on the surface of the table for protection. A soft flannel sheet covers the table to

Figure 2.
Multimodal information predict grasp stability network.

4

Industrial Robotics - New Paradigms



avoid the interference of light reflection. The UR5 robot arm with the Eagle Shoal
robot hand fixes at the backside of the table. One RealSense camera is on the
opposite side of the table for recording the front view of grasping. The other
RealSense camera is located in the left of the table for recording the lateral view.

The general grasp dataset is built with various variables including shape, size,
weight, grasp style, etc. The objects in the dataset contain different sizes of cuboid,
cylinder, and special shapes, and their weights change by adding granules or water.
Different grasping methods are tested by grasping from three directions including
back, right, and top. The dataset with unstable grasping data is generated by slip-
ping with added weight, changed grasp force, and adjusted grasp position
(Table 1). The detailed processes are as follows:

1.The object is put on the center of the table; the front camera is used to get the
point cloud data and computer the target’s position.

2.Choose the object’s half height position as the grasped point, control the robot
to approach the object, and then add the random error of �5 mm.

3.Based on the object’s size, controlling the robot hand to grasp with a position
loop mode, and then after 1 second, the robot arm lifts up with a speed of
20 mm/s.

4.After the robot arm moves to a certain position, the robotic finger’s position is
changed. If the hand is bending too much, this grasp is labeled as failure, and
open the hand directly then prepare the next grasp.

5.The grasp is labeled as success, for a light object, if the robot puts down the
object and, for some heavy object, the robot opens the hand and drops the
object directly.

Figure 3.
Experiment platform.

Hand Type Weight Force (mA) Direction Trail Data type Total

Eagle Shoal 10 objects Empty 50/100/150 Top/right/back 10 times T1/I 900 sets

Eagle Shoal 10 objects Half/full 50/100/150 Top/right/back 10 times T1/T2/I/V 1650 sets

Table 1.
Dataset statistics.
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6.Putting the object on the center of the table, the robot arm returns to the initial
place and waits for the next loop.

The proposed method is contrasted with traditional classifiers including k-nearest
neighbor (KNN) [24], support-vector machine (SVM) [25], and naive Bayes (NB)
[26]. A total of 2550 sets have been divided into 80% for training and 20% for testing.
The KNN classifier is set with k = 3, and the SVM kernel is the radial basis function
(RBF). The success rate with a criterion, the number of detection n and the number of
label data m, is calculated by n/m. The contrast result in Table 2 shows the perfor-
mance of LSTM and SVM is both well with a success rate. However, the SVM’s labels
are on the falling edge, which means the SVM model gets a good classification result
by learning the falling edge features. The falling edge means the object is dropped
already and cannot help to realize a stable grasp. SVM proves unsuitable for this test.

Besides the success rate, another criterion is necessary to evaluate the slip
detection. If the time of predict result turns from 1 to 0 ahead of the time in label
data, set it as ahead sample and counted number nahead, calculate the ahead rate by
nahead/m, and set it as the criterion. The results are shown in Table 2. With these
two criteria, LSTM shows the superior performance that attains the higher success
rate and higher ahead rate (Figures 4 and 5).

Classifier Success rate Ahead drop Ahead forecast

KNN 0.7970 0.8176 0.4961

SVM 0.8467 0.6667 0.2569

NB 0.6881 0.6569 0.4843

OUR 0.9460 0.8588 0.6373

Table 2.
Classification results of different classifiers.

Figure 4.
All the grasp object, from YCB object set.
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4. Conclusions

In this chapter, the end-to-end approach for predicting stable grasp is proposed.
Raw visual, tactile, and object intrinsic information are used, and the tactile sensor
provides detailed information about contacts, forces, and compliance. More than
2500 grasp data are autonomously collected, and the multiple deep neural network
model is proposed for predicting grasp stability with different modalities. The
results show that visual-tactile fusion method improves the ability to predict grasp
outcomes. In order to further validate the method, the real-world evaluations of the
different models in the active grasp are implemented. Our experimental results
demonstrate the superiority of the proposed method.

Figure 5.
Visual and tactile information visualization. Visual: grasping process video image sequence; and tactile:
grasping process tactile sensor value.
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