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Chapter

Bottom-Up and Top-Down 
Approaches for MgO
Jitendra Pal Singh, Manish Kumar, Aditya Sharma, 

Ganesh Pandey, Keun Hwa Chae and Sangsul Lee

Abstract

In this chapter, we present an overview of synthesis of MgO nanoparticles 
and thin films by using top-down and bottom-up approaches. The bottom-up 
approaches are generally utilized to grow nanoparticles by the methods that involve 
chemical reactions. Sometimes, methods based on these reactions are also able to 
grow thin films. The top-down approaches are preferred for growing thin films 
where bulk material is used for depositions. The methods, which are frequently 
used, are radio frequency sputtering, pulsed lased deposition, and molecular beam 
epitaxy and e-beam evaporation. Sometimes, methods like mechanical milling and 
high energy ball milling are used to grow nanoparticles.

Keywords: MgO, bottom-up approaches, top-down approaches

1. Introduction

Nanoparticles and thin films are very common form of materials for utili-
zation in different applications [1–4]. Synthesis approaches play vital role to 
determine characteristics of nanoparticles [5] and thin films [6]. Thus, a number 
of methods are being developed to synthesize either nanoparticles [7–9] or thin 
films [10–12]. The motive behind to explore numerous methods is to look for 
reproducibility and cost effectiveness in terms of industrial utilization [13, 14]. 
Researchers are also working to get deep insights of involved phenomena during 
growth which persists a way to optimize for particular application [15–18]. The 
factors, which are considered during nanoparticle growth, are size [19], shape 
[20, 21] and size distribution [22, 23]. In case of thin films, these factors are 
nature of growth, morphology, stress, strain developed across films substrate 
interface [24–26].

While growing nanoparticles, one need to take care annealing treatment [27, 28] 
and stoichiometry [29, 30], however, process is rather typical in case of thin film 
technology. Choice of substrate [31], annealing temperature [32, 33], base pressure 
[34], target to substrate distance [35], deposition pressure [36, 37] and nature of gas 
during growth determine the nature of film [38]. Textured of grown thin film [39], 
stoichiometry [40] and nature of surface [41, 42] are another important parameter, 
which are considered during deposition. Thus, keeping in mind the necessity and 
challenges in the synthesis, synthesis approaches for growing nanoparticles and 
thin films are discussed by taking a simple inorganic system. However, magnesium 
oxide is known from long time [43] but recent advances in application of this 
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material motivated us to discuss these approaches for MgO [44]. In Table 1, a sum-
mary of properties of MgO are depicted [45–47].

While keeping in mind the importance of this material, we attempt to give an 
overview of synthesis of MgO nanoparticle and thin film. To grow nanoparticles, 
two kinds of approaches are used: (1) bottom-up approach and (2) top-down 
approach [48, 49]. These approaches are explained on the basis of following 
schematic diagram. In general, bottom-up approach is meant by synthesis of 
nanoparticles by means of chemical reactions among the atoms/ions/molecules 
(Figure 1a). Whereas top-down involves the mechanical methods to crush/
breaking of bulk into several parts to form nanoparticles (Figure 1b). In the next 
section both kind of approaches for growth of MgO nanoparticles and thin films 
are grown.

Figure 1. 
Synthesis approaches for nanoparticles (a) bottom-up and (b) top-down approaches.

Properties/applications Bulk [43, 45] Nanoparticles [44] Thin films [45]

Crystallite structure Rocksalt Rocksalt Rocksalt

Lattice parameter (Å) 4.214 4.128 4.22

Optical band-gap (eV) 7.6 4–5 4–5

Table 1. 
Properties and applications of MgO bulk, nanoparticles and thin films.
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2. Bottom-up approaches

2.1 MgO nanoparticles

To initiate chemical reaction among the involved atoms/ions/molecules certain 
salts are taken as starting materials. These salts are mixed with each other to form 
a homogeneous solution along with a suitable chelating agent. Control of nature of 
solution also plays important role during synthesis process [50]. Thus, various meth-
ods are being developed by researchers to minimize annealing treatment, nature of 
chelating agent, pH value of solution. Some of these methods are depicted here.

Combustion synthesis is well known phenomena to synthesize nanomateri-
als of different kinds in its different variance [51, 52]. Most of the study utilizes 
solution combustion process for synthesizing nanoparticles. Typically, this method 
involves an oxidizer and fuel to initiate the reaction [53–55]. The most common 
oxidizers are metal nitrate/hydrates, ammonium nitrate and nitric acid. However, 
Urea, Glycine, Sucrose, Glucose, Citric Acid, Hydrazine based organic materials 
and Acetylacetonce are frequently used as a fuel. The water, hydrocarbons and 
alcohols works as solvent for reactions involved in this synthesis [53].

Thus, combustion synthesis is able to produce nanoparticle of various materials 
both at research purposes as well as at industrial scale [51, 53–57]. Various kind of 
nanoparticles like titanates [58], ferrites [59], carbonates [60], hydroxide [61] and 
oxides [62] are grown using this approach. Combustion synthesis is utilized for 
growing different kind of MgO nanostructures [63, 64] and its derivative [65–67].

Our group utilizes, this method to synthesize MgO nanoparticles using combus-
tion synthesis while taking magnesium nitrate as an oxidizer and citric acid as fuel 
[68]. This method shows reproducibility [69]. The following equation is expected 
during synthesis process.

  Mg   ( NO  3  )   2.4    H  2   O + Citric acid → MgO +  CO  2   + NO +  H  2   O  

Figure 2. 
Synthesis of MgO nanoparticles from magnesium nitrate Ref. [69].
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Figure 2 depicts schematic diagram of synthesis process. It is clear that synthesis 
takes place at low temperature, which reduces cost of synthesis. Figure 3 shows 
representative X-ray diffraction (XRD) pattern of the nanoparticle synthesized at 
500°C for 1 h. The method is able to produce nanoparticle with pure phase and no 
other crystalline phases are observed [70].

Green synthesis techniques utilize natural extracts [71] as fuels/oxidizer. Some 
of the natural extracts for synthesizing MgO nanoparticles are Neem leaves [72], 
Artemisia abrotanum Herba Extract [73], orange fruit [74], Aqueous Eucalyptus 
globules leaf [75] and Medicinal Plant Pisonia grandis R.Br. Leaf [76].

Microwave synthesis utilizes microwave radiation rather than furnace 
heating in order to avoid longer duration of heating to precursor [77, 78]. This 
method was successfully applied to form MgO nanoparticles by number of 
researchers [79–81].

Other methods which are effectively used to grow nanoparticles are facile 
[82, 83] and miroemulsion synthesis [84–86].

2.2 MgO thin films

Spin coating method is well known tool for growing thin films which utilizes 
chemical reaction to form materials on the given substrate [87, 88]. Sol-gel chemis-
try is helpful to synthesize thin films of MgO of desired crystallographic orientation 
using spin coater [89, 90]. Figure 4 shows schematic of sol-gel method utilizing a 
spin coater to grow thin film [91, 92].

Atomic layer deposition (ALD) method allows depositions with excellent 
uniformity and conformality, with a cost-effective methodology [93, 94]. Thickness 
and composition control are usually possible over large-area substrates. Thin films 
of MgO were deposited by atomic layer epitaxy (ALE) from bis(cyclopentadienyl)
magnesium and water using soda lime glass and Si(100) as substrates [95]. In 
another study, MgO films have been grown by atomic layer deposition in the wide 

Figure 3. 
X-ray diffraction pattern of the nanoparticle synthesized at 500°C for 1 h.
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deposition temperature window of 80–350°C by using bis(cyclopentadienyl)
magnesium and H2O precursors [96].

3. Top-down approaches

Top-down approaches are mostly utilized to grow thin films of inorganic materi-
als. Some of these methods are discussed here.

3.1 MgO nanoparticle

Mechanical milling/high energy ball milling is well known method which 
utilizes bulk counterpart as starting material and used for growing nanoparticles 
of different kind of materials [97, 98]. Depending upon milling process, the milling 
machines are categories as follows: tumbler ball mills, vibratory mills, planetary 
mills, and attritor mills [99, 100]. In the ball milling process, powder mixture or 
bulk powder placed in the ball mill is subjected to high-energy collision from the 
balls for nanoparticle synthesis. Figure 5 depicts the schematic of high energy 
ball milling system [101]. Though this technique is effective to synthesize oxide 
nanoparticles [102, 103], however, no report is available for synthesizing MgO.

3.2 MgO thin films

Top-down approaches for growing MgO thin films are depicted in this section.

Figure 4. 
Schematic of sol-gel spin coating method to grow MgO thin films. This schematic is based on the method 
described Ref. [91].
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e-Beam evaporation method involves the evaporation of material target with 
e-beam energy [104]. Schematic of this method is shown in Figure 6. This method 
is effectively used to grow MgO thin films on different type of substrates like NaCl 
[105], Si [106], fused quartz [107] as well as on metallic layers [108, 109].

Figure 7 shows the MgO thin films on fused quartz substrate along with MgO 
powder. Both the films of thickness around 5 and 50 nm reveal almost amorphous 

Figure 5. 
Schematic of ball-milling process. Redrawn from Ref. [101].

Figure 6. 
e-Beam evaporation for growing MgO thin films. Schematic is based on the set-up used for growing MgO thin 
films in Ref. [107].
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nature. Optical absorption spectra of MgO thin films exhibit onset of film forma-
tion (Figure 8). This method is also utilized to grow MgO thin films on Si substrate. 
Films grown on this substrate exhibits polycrystalline nature [110].

Figure 7. 
X-ray diffraction pattern of MgO thin film grown on fused quartz using e-beam evaporation method.

Figure 8. 
UV-Vis spectra of MgO thin film grown on fused quartz using e-beam evaporation method.
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Molecular beam epitaxy (MBE) utilizes e-beam for growing thin films [111]. It 
provides better control over stoichiometry ratio but also helpful in epitaxial growth 
of MgO [112, 113].

Pulsed laser deposition (PLD) as a thin film growth technique was not much 
popular until the late 1980s, when it has been used to grow superconducting 
YBa2Cu3O7-δ films [114]. Since then, the amount of research involving this technique 
has increased significantly and a number of compositions have been stabilized in 
thin film successfully [115–122]. The schematic of PLD system is shown in Figure 9. 
In PLD, a pulsed laser beam (having wavelengths in UV range) strikes the surface of 
the target material to be deposited. For a short duration of laser pulse (~20 nanosec-
onds), enormous power (~10 MW) is delivered to the target material and absorption 
of energy leads to ablation before the thermodynamic equilibrium. The energy from 

Figure 9. 
Schematic of pulsed laser deposition setup.

Figure 10. 
Schematic of radio frequency sputtering setup based on the work reported in Ref. [131].
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the laser evaporates the target’s surface and the ablated material forms the plasma 
plume which finally deposit on the substrate mounted in front of the target.

The main advantage of PLD is the stoichiometric transfer from the multicompo-
nent target to the thin film form, which otherwise is hard to achieve with any other 
thin film growth technique such as thermal evaporation or sputtering. The pulsed 
nature of PLD allows precise control on the film growth rates. Some drawbacks 
of the PLD technique are small area deposition, growth of macroscopic particles 
(particulates) during the ablation process, defects produced during growth, etc.

These advantages of this method allow researchers to grow MgO films on 
yttrium stabilized zirconia (111) substrates [123], Si (100) [124] and Al2O3 (0001) 
substrates [125].

Radio frequency sputtering method: At present most desired application 
of MgO is its utilization as a barrier for magnetic tunnel junction and rf sputter-
ing method is preferred choice [126, 127] as well as for other applications [128]. 
Figure 10 shows the rf sputtering setup for the fabrication of thin films.

MgO films on Si substrate are grown by number of researchers [129, 130] as well 
as by our group [42, 131]. Films grown on Si substrate are both amorphous [132, 133] 
and crystalline [134, 135] in nature depending upon the deposition time and anneal-
ing temperature. Figure 11 shows the XRD pattern of the MgO thin film grown at 
substrate temperature of 350°C, deposition time of 400 min and annealing tempera-
ture of 800°C for 1 h followed by 300°C and 24 h.

Apart from this, number of groups utilizes chemical deposition (CVD) 
method to grow MgO thin films on different substrates [136–138].

4. Conclusions

Thus, an overview of bottom-up and top-down approaches for synthesis of 
MgO nanoparticles and thin films is depicted in this chapter. Chemical methods 
are effective to grow nanoparticles, however, later is successful to grow thin 
films.

Figure 11. 
XRD pattern of MgO thin film grown using rf sputtering method.
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