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Chapter

A Brief Look at Multi-Criteria
Problems: Multi-Threshold
Optimization versus
Pareto-Optimization
Nodari Vakhania and Frank Werner

Abstract

Multi-objective optimization problems are important as they arise in many
practical circumstances. In such problems, there is no general notion of optimality,
as there are different objective criteria which can be contradictory. In practice,
often there is no unique optimality criterion for measuring the solution quality. The
latter is rather determined by the value of the solution for each objective criterion.
In fact, a practitioner seeks for a solution that has an acceptable value of each of
the objective functions and, in practice, there may be different tolerances to the
quality of the delivered solution for different objective functions: for some
objective criteria, solutions that are far away from an optimal one can be acceptable.
Traditional Pareto-optimality approach aims to create all non-dominated feasible
solutions in respect to all the optimality criteria. This often requires an inadmissible
time. Besides, it is not evident how to choose an appropriate solution from the
Pareto-optimal set of feasible solutions, which can be very large. Here we propose a
new approach and call it multi-threshold optimization setting that takes into
account different requirements for different objective criteria and so is more flexi-
ble and can often be solved in a more efficient way.

Keywords: multi-critneria optimization, optimal solution, Pareto-optimization,
multi-threshold optimization, scheduling algorithm, time complexity

1. Introduction

Multi-objective optimization problems are important as they arise in many
practical circumstances. In such problems, there is no general notion of optimality,
as there are different objective criteria which are often contradictory: an optimal
solution for one criterion may be far away from an optimal one for some other
criterion. Thus for many such real-life problems, there is no unique optimality
criterion for measuring the solution quality. The latter is rather determined by the
value of the solution for each objective criterion. In fact, a practitioner is not
interested, generally, in optimizing a particular objective criterion, but he rather
seeks for a solution that has an acceptable value of each of the objective functions.
Furthermore, in practice, there may exist different tolerances to the quality of the
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delivered solution for different objective functions. In particular, for some objective
criteria, solutions far away from an optimal one can be acceptable. Such solutions
can often be obtained by relatively low computational efforts even for intractable
problems.

Taking into account these considerations, here we propose a new approach and
call it multi-threshold optimization setting that takes into account different
requirements for different objective criteria, in contrary to a traditional Pareto-
optimality approach. The Pareto-optimality concept, named after an Italian scientist
Vilfredo Pareto, is a traditionally used compromise to address a complicated multi-
objective scenario. It looks for a so-called Pareto-optimal frontier of the feasible
solutions consisting of those solutions that are not dominated by any other feasible
solution (with respect to any of the given objective functions). This often requires
an inadmissible time: finding the Pareto-optimal frontier often remains an intracta-
ble (NP-hard) problem. This is always the case if at least one of the corresponding
single-criterion problems is NP-hard. Finding the Pareto-optimal set of solutions
may be NP-hard even if none of the single-criterion problem is NP-hard. Besides, it
is not evident how to choose an appropriate solution from the Pareto-optimal set of
feasible solutions, which can be very large. The multi-threshold optimization
approach is more flexible since it takes into account different requirements for
different objective criteria: in practice, some objective criteria can be more critical
than the other ones, and hence there may exist different degrees of tolerance for the
deviation of the objective value of different criteria from the optimal objective value
of the corresponding single-criterion problems.

The multi-threshold optimization problem seeks for a feasible schedule whose
objective values are acceptable for a given particular application for all objective
functions; in particular, they do not exceed (for minimization problems) or are
no smaller (for maximization problems) than the components of a threshold
vector specified by the practitioner whose ith component is some threshold value
for the ith objective function. As we observe, depending on the components of the
above vector, it might be possible to solve the multi-threshold optimization prob-
lem in a low-degree polynomial time even if all the corresponding single-criterion
problems are NP-hard. A threshold vector with specific threshold values for each
objective function is supposed to have a direct practical meaning. For practically
useful values of the threshold vector, the multi-threshold optimization problem
might be solved in a low-degree polynomial time by a kit of heuristic algorithms,
each one being designed for one of the corresponding single-criterion problems.
If the kit of heuristic algorithms fails to find a feasible solution respecting the
threshold vector, then the heuristics for NP-hard single-criterion problems can be
replaced by implicit enumeration algorithms. In fact, the replacement can be
accomplished step by step, starting from the most critical heuristics. This kind of
approach may be more practical since some objective criteria can be optimized
easier than other ones. Besides, as already noted, the practitioner may not be
interested, in general, in the minimization of each objective function but rather in
a solution of an acceptable quality for every objective function: in practice, there
may be different tolerances to the quality of the delivered solution for each
objective function, and different objective functions might be optimized with quite
different costs.

Thus our approach may lead to more efficient and practical solution of a multi-
criteria problem than the corresponding Pareto-optimal setting. In the following
sections, we give a brief comparative analysis of the Pareto-optimization approach
with our multi-threshold optimization approach illustrating its advantage on
single-machine scheduling problems.
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2. Multi-criteria optimization problems

For an extensive description of multi-criteria optimization problems and the
solution methods, the reader may have a look on a book by T’kindt and Billaut [1]
and a survey paper [2] by the same authors.

Discrete optimization problems have emerged in the late 1940s of the last cen-
tury due to the rapid growth of the industry and new rising demands in efficient
solution methods. Modeled in mathematical language, such an optimization prob-
lem has a finite set of so-called feasible solutions; each feasible solution is deter-
mined by a set of mathematically formulated restrictions that naturally arise in
practice. The quality of a feasible solution is measured by an objective function,
whose domain is the whole set of feasible solutions. Ideally, one aims to
determine a feasible solution that gives an extremal (minimal or maximal) value
to the objective function, a so-called optimal solution. Since the number of feasible
solutions is typically finite, theoretically, finding an optimal solution is trivial: just
enumerate all the feasible solutions calculating for each of the value of the
objective function and select any one with the optimal objective value. The main
issue here is that a complete enumeration of all feasible solutions is mostly
impossible in practice.

There are two distinct classes of combinatorial optimization problems, the class
P of polynomially solvable ones and the intractable NP-hard problems. For a
problem from the class P, there exists an efficient (polynomial in the size of the
problem) algorithm, whereas no such algorithm exists for an NP-hard problem (the
number of feasible solutions of an NP-hard optimization problem grows exponen-
tially with the size of the input). It is widely believed that it is very unlikely that an
NP-hard problem can be solved in polynomial time. Hence, it is natural to develop
approximation solution methods.

Multi-criteria optimization problems are optimization problems with two or
more different objective criteria. For the majority of such problems, there exists no
single solution which optimizes (minimizes or maximizes) all the objective func-
tions. In this sense, different objectives are contradictory, and hence, it is not
straightforward to understand which feasible solution to the problem is optimal:
a multi-criteria optimization problem typically has no optimal solution. In this
situation, one may look for a solution which attains an acceptable value for each
objective function or a solution which is not dominated by any other solution, in
the sense that there is no other feasible solution which attains better objective values
for all objective functions. We shall refer to the first and second versions of the
multi-criteria optimization problem as multi-threshold optimization and Pareto-
optimization versions and define them more formally below.

Let the k objective functions over the set F of feasible solutions of a given
multi-criteria optimization problem be f 1, … , f k. Since these functions might be
mutually contradictory, there may exist no feasible solution minimizing/
maximizing all objective functions simultaneously. Without loss of generality, let us
consider from now on the minimization version of our multi-criteria optimization
problem.

Let F ∗
i be the optimal value for a single-criterion problem with the objective to

minimize function f i, and let Ai be some threshold value for the objective function
f i, i ¼ 1, … , k.

In the multi-threshold optimization version, we look for a feasible solution σ

such that f i σð Þ≤Ai for each i ¼ 1, … , k.
A commonly used dominance relation for the Pareto-optimization version is

defined as follows.
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A solution σ1 ∈F dominates a solution σ2 ∈F if f i σ1ð Þ< f i σ2ð Þ for i ¼ 1, … , k; in
fact, we allow ≤ instead of < for all values of i except one requiring to have at least
one strict inequality.

Now σ ∈F is a Pareto-optimal solution if no other solution from the set F
dominates the solution σ. We shall refer to the set of all such feasible solutions as
Pareto-optimal set. Forming a Pareto-optimal set of feasible solutions may be not
easy. For instance, let, for k ¼ 2, f 1 σ1ð Þ≤ f 1 σ2ð Þ; then solution σ2 is dominated by
solution σ1 if f 2 σ1ð Þ< f 2 σ2ð Þ. This condition can be verified in polynomial time for
any pair of solutions σ1 and σ2 (given that the corresponding optimization problem
is from the class NP). However, whenever the number of feasible solutions grows
exponentially with the length of the input (which is the case for NP-hard prob-
lems), the explicit evaluation of all possible pairs of feasible solutions (which is
unavoidable for finding a dominant solution) would lead us to an exponential-time
performance. In particular, if one of the single-criterion problems is NP-hard,
finding a Pareto-optimal set for the multi-objective setting will take an exponential
time.

Theorem 1 The problem of finding a Pareto-optimal set of feasible solutions for
a multi-objective optimization problem with the objective functions f 1, … , f k is NP-
hard if one of the corresponding single-criterion problems is NP-hard.

Proof. We basically reformulate the above reasoning. Consider a bi-criteria
optimization problem with k ¼ 2. Consider the set SA of feasible solutions with
f 1 σð Þ ¼ A for all σ ∈ SA and some threshold value A of function f 1 (without loss of
generality assume that SA 6¼ Ø). A Pareto-optimal solution from the set SA must
attain the minimum possible value of function f 2 as otherwise it will be dominated
by one that attains this value. Then we arrive at a single-criterion optimization
problem with the objective function f 2, which is NP-hard.

From the first glance, the multi-threshold optimization version of a multi-
criteria optimization problem may seem to be easier than the Pareto-optimality
version. This is, in part, correct, but considering a threshold vector with arbitrary
components, in general, we will also arrive at an intractable problem as the decision
version of an NP-hard single-criterion optimization problem is NP-complete. In
particular, suppose that we are given a single-criterion optimization problem with
the objective to minimize the function f i (i∈ 1, … , kf g). If this problem is NP-hard,
then its decision version, given a threshold value A of function f i, if there is a
feasible solution σ ∈F with f i σð Þ≤A, is NP-complete. Hence, if one of the single-
criterion optimization problems is NP-hard, then the multi-threshold optimization
version of the corresponding multi-criteria optimization problem is also NP-hard.

At the same time, finding a Pareto-optimal set of feasible solutions may be NP-
hard even if none of the single-criterion problem is NP-hard, i.e., they are solvable
in polynomial time. Can the multi-threshold optimization version of a multi-criteria
optimization problem be solved in polynomial time, if all the corresponding single-
criterion optimization problems are polynomial? In other words, suppose that the
single-criterion problem of finding a feasible solution attaining the minimum value
of the objective function f i for i ¼ 1, … , k can be solved in polynomial time. Then
clearly, the decision version that seeks for a feasible solution σ ∈F with f i σð Þ≤A is
also polynomially solvable.

Unlike the Pareto-optimization problem, the multi-threshold optimization
problem may be solvable in polynomial time even if all the corresponding single-
criterion problems are NP-hard; whether it is solvable in polynomial time or not

essentially depends on the particular threshold vector A ¼ A1, … ,Ak
� �

. As we shall
argue in the next sections, depending on the particular threshold values for each
objective function, it might be possible to solve the multi-threshold optimization
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problem in a low-degree polynomial time even if all the corresponding single-
criterion problems are NP-hard. The given threshold values for each objective
function may have a direct practical meaning. For practically useful values of the
threshold vector A, the corresponding instance of the multi-threshold optimization
problem might be solved in a low-degree polynomial time though it may be
NP-hard, in general (for an arbitrary threshold vector, see Section 3).

3. Some basic single-criterion scheduling problems

In the rest of this chapter, we illustrate the Pareto-optimality and the multi-
threshold optimization approaches for scheduling problems. For recent developments
in multi-criteria optimization for scheduling problems, the reader is referred to a
recent survey by Nagar et al. [3] and Parveen and Ullah [4] and for some earlier
works approximately until the year 2005 to the earlier cited work by T’kindt and
Billaut [1].

The scheduling problems arise in various practical circumstances. Examples of
such problems are job shop problems in industry, scheduling of information and
computational processes, and traffic scheduling and servicing of cargo trains, ships,
and airplanes. There are scheduling problems of diverse types and different com-
plexities. Saying generally, one deals with two primary notions: job (or task) and
machine (or processor). A job is a part of the whole work to be done; a machine is the
means for the performance of a job. A common restriction in scheduling problems is
that a machine cannot handle more than one job at a time. Each job j is characterized
by its processing time pj, i.e., it needs this prescribed time on a machine. A job may

have other parameters as well, which may yield additional restrictions and/or can be
employed by an objective function. For instance, the release time rj of job j is the
time moment when job j becomes available (it cannot be scheduled before that
time). The due date dj of job j is the desirable completion time for job j (there may
exist a penalty for the late or for the early completion of that job). A job preemption
might be allowed, i.e., it might be split into portions, each portion being assigned
at a different time interval to the machine(s). A (feasible) schedule assigns each job j
to the machine(s) at the specified time moment(s) no less than rj with the total
duration of pj so that no two jobs are assigned to the machine at any time moment

(i.e., the job execution intervals cannot overlap in time). A job is late (on time,
respectively) if it is completed after (at or before, respectively) its due date.

In the single-machine scheduling problems, there is a single machine on which
all the jobs are to be scheduled. The majority of single-machine single-criterion
scheduling problems are NP-hard, although there are polynomially solvable cases as
well. For instance, if the objective function is the maximum job completion time
called the makespan and denoted by Cmax, then the problem of minimizing Cmax,
commonly abbreviated by 1kCmax according to the standard Graham’s notation for
scheduling problems, is straightforwardly solvable if each job j has a single param-
eter pj (the processing time): schedule the jobs in any order without creating

machine idle time before the first scheduled job and between any pair of jobs. It is
very easy to see that this list scheduling algorithm gives an optimal solution. If each
job j has also a release time rj (the problem 1∣rj∣Cmax), then scheduling the jobs in
any order may not be good, but still there is a very simple greedy way to arrange
them optimally: just order the jobs with non-decreasing release times and iteratively
assign the next job from the list to the machine at the completion time of the
previously assigned job or at the release time of the former job, whichever
magnitude is larger.
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Minimizing the makespan becomes more complicated with even two machines
or if each job j has an additional job parameter called the delivery time qj, which is an

extra amount of time needed for job j for its full completion once it is already
completed on the machine (the delivery of each job is accomplished independently
of the machine immediately after its completion on the machine). Thus, job j will
take pj time on the machine and then an additional time qj for its full completion

(during which another job might be assigned to the machine). Then the maximum
job completion time in the schedule σ (the makespan) is:

Cmax σð Þ ¼ max
j∈ σ

sj σð Þ þ pj þ qj

n o

: (1)

The objective is to find a feasible schedule in which the maximum job comple-
tion time is the minimum possible one.

If there are no job release times, i.e., all jobs are released simultaneously (the
problem 1∣qj∣Cmax), then the makespan can be minimized by the well-known

Jackson heuristic [5]: first arranging the jobs in a non-increasing order of their
delivery times and then scheduling them without leaving machine idle times, simi-
larly as we did for the above versions. With job release times, however, the problem
1∣rj, qj∣Cmax becomes strongly NP-hard. Besides the Cmax criterion, there are a

number of other commonly used objective functions for scheduling problems. For
instance, if for every job j its due date dj is given, then several objective criteria can
be used to measure the solution quality.

The lateness of a job j in a schedule σ:

Lj σð Þ ¼ dj � sj σð Þ þ pj

� �

(2)

(note that sj σð Þ þ pj is the completion time of job j in the schedule σ). One of the

most commonly used due date oriented objective functions is the maximum job
lateness

Lmax σð Þ ¼ max
j∈ σ

Lj: (3)

The objective is to find a feasible schedule σ in which the maximum job lateness
Lmax is the minimum possible one. This problem 1∣rj∣Lmax is, in fact, equivalent to
the abovementioned one 1∣rj, qj∣Cmax with job delivery times, and hence, it is also

strongly NP-hard [7].
Another common due date-oriented objective function is the number of late jobs

(the ones completed after their due date)

X

j∈ σ

Uj σð Þ, (4)

where Uj σð Þ is a 0–1 function taking the value 1 if job j is late in the schedule σ
and the value 0 otherwise. The objective here is to find a feasible schedule with the
minimum possible value

P

j∈ σ
Uj σð Þ, equivalently, one maximizing the through-

put, i.e., the number of jobs completed by their due dates (this model is motivated
by applications in real-time overloaded systems, where the job due dates are crucial
in a way that if a job is late, then it might rather be postponed for an undefined
period of time in favor of other jobs which might be completed on time). Similarly
to the above problems, if all jobs are simultaneously released, then the problem
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1k
P

Uj is polynomially solvable (by the algorithm of Moore and Hodgson); how-
ever, with job release times, the problem 1∣rj∣

P

Uj is again strongly NP-hard.
Hoogeveen [6] has considered the no machine idle time version in a bi-criteria

setting. Instead of minimizing the lateness, he has introduced the so-called target
start time sj of a job j: sj is the desirable starting time for job j, similarly as the due
date dj is the desirable completion time for the job j. Together with the minimization
of the maximum job lateness, the minimization of the maximum job promptness
(the difference between the target and real start times of that job) can be consid-
ered. The above reference gives an algorithm that finds a Pareto-optimal set of
feasible solutions for this bi-criteria scheduling problem.

4. Basic multi-criteria scheduling problems

We can combine the objective functions described in the previous section and
obtain the corresponding multi-criteria scheduling problems. We consider these
multi-criteria problems from the point of view of multi-threshold optimization and
Pareto-optimization approaches.

We start by considering a bi-criteria problem with two objective functions, Cmax

and Lmax obtained from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣Lmax,
respectively (note that in the first problem, no job delivery times are given).

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimummaximum job lateness. Both of these
problems are strongly NP-hard [7].

With the multi-threshold (bi-threshold) optimization approach, we are given

two threshold values A1 and A2 on the functions Cmax and Lmax, respectively. We
would like to know if there exists a feasible schedule σ such that

Cmax σð Þ≤A1 (5)

Lmax σð Þ≤A2
: (6)

As to condition (5), let us first construct a feasible schedule σ0 in which the jobs
are arranged in a non-decreasing order of their release times and are scheduled in
this order without leaving unavoidable machine idle time. Recall that the schedule
σ
0 (obtained in this way in O n log nð Þ time) is optimal for the problem 1∣rj∣Cmax.

Hence, if Cmax σ
0ð Þ>A1, then there exists no (bi-threshold optimal) schedule σ with

Cmax σð Þ≤A1 and we return a “no” answer. Otherwise, we know that there exists a

feasible schedule σ0 with Cmax σð Þ≤A1. In fact, if Cmax σ
0ð Þ ¼ A1, then there are many

such feasible schedules (we may introduce idle time intervals of a required total
length in the schedule σ arbitrarily between neighboring jobs in different ways
obtaining different feasible schedules satisfying inequality (5)). Let us denote the
set of these feasible schedules by SA1 .

Now it remains to verify condition (6), i.e., we wish to know if, among all
schedules from the set SA1 , there is one satisfying condition (6). In general, it may

take an exponential time to answer this question for an arbitrary value A2 since
the corresponding decision problem is NP-complete. At the same time, it also might

be possible to obtain an answer in polynomial time, depending on the value of A2.
The easiest way is to construct a greedy solution σ

00 to the problem obtained, for
instance, by the earlier mentioned Jackson heuristic. It is well-known that the
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schedule σ00 minimizes the function Cmax. Hence, if Lmax σ
00

� �

≤A2, then we return

the schedule σ00 with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible

schedule σ from the set SA1 with Lmax σð Þ≤A2. This may take an exponential time (as
the second single-criterion problem 1∣rj∣Lmax is NP-hard).

Combining the objective function Cmax with
P

jUj, we obtain another bi-criteria

problem from the single-criterion problems 1∣rj∣Cmax and 1∣rj∣
P

jUj, respectively.

With the Pareto-optimization approach, we need to solve two relevant prob-
lems: (1) among all feasible schedules with a given maximum job lateness, find one
with the minimum makespan, and (2) vice versa, among all feasible schedules with
a given makespan, find one with the minimum number of late jobs. Both of these
problems remain strongly NP-hard.

With the bi-threshold optimization approach, we are given two threshold values

A1 and A3 on the functions Cmax and
P

jUj, respectively. We would like to know if

there exists a feasible schedule σ satisfying inequality (1) and the following
inequality:

X

j

Uj σð Þ≤A3
: (7)

Condition (5) can be treated as above. As to condition (7), we need to verify if,
among all schedules from the set SA1 , there is one satisfying this condition. As for
condition (6), in general, it may take an exponential time to verify condition (7)

for an arbitrary value A3, since the corresponding decision problem with a single
objective function

P

jUj is NP-complete [8]. But it again might be possible to obtain

an answer in polynomial time. Instead of Jackson’s heuristic that we used for con-
dition (6), now we use an extended version of the algorithm of Moore and Hodgson
for the problem 1k

P

Uj. Recall that the latter algorithm is designed for simulta-
neously released jobs. It sorts all jobs in a non-decreasing order of their due dates
and includes them in this order whenever the last included job completes by its due
date. Otherwise, from the last block of the continuously scheduled jobs (there will
be only one such block for simultaneously released jobs), it discards a longest job
and repeats the same step until all jobs are considered in this way. Note that all the
included jobs are completed on time. Finally, it adds the discarded jobs at the end of
the resultant partial schedule in any order without leaving machine idle times (these
jobs are late).

We modify the above algorithm by considering the jobs in the order as they
are released, but order each group of currently released jobs similarly by non-
decreasing due dates and accomplish the same steps for each such group of the
already released jobs. Although the modified algorithm, in general, does not guar-
antee optimality, it may typically deliver a near-optimal solution to the version
1∣rj∣

P

Uj with job release times. Let us denote the schedule delivered by the
extended Moore and Hodgson algorithm by σ‴. It can be readily verified that the

schedule σ‴ minimizes the function Cmax. Hence, if
P

jUj σ‴ð Þ≤A2, then we return

the schedule σ‴ with a “yes” answer. Otherwise, the answer may be “yes” or may
also be “no.” In this case, we need more costly calculations to seek for a feasible

schedule σ from the set SA1 with
P

jUj σð Þ≤A2, which, similarly as for the earlier

bi-criteria problem, may take an exponential time.
Finally, combining all the three objective functions Cmax, Lmax, and

P

jUj,

we obtain a more complicated three-criteria scheduling problem. Finding
the Pareto-optimal set of feasible solutions obviously remains NP-hard. The
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by-threshold problem gets also less accessible but still more flexible than the Pareto-
optimality version, again essentially depending on the threshold values. We again
consider the three conditions (5), (6), and (7) that come from the corresponding
single-criterion problems and the set of feasible schedules SA1 yielded by inequality
(1). Using the fact that both schedules σ00 and σ‴ are from the set SA1 , it will suffice
to verify whether

X

j

Uj σ
00ð Þ≤A3 (8)

or

Lmax σ‴ð Þ≤A2
: (9)

Intuitively, it is clear that the closer is A3 to n (the total number of jobs) and

the larger is A2, the more probable it is that these inequalities will hold. Hence, the
by-threshold problem will be solved in O n log nð Þ time (remind that the time
complexity of all the three heuristics that we use for the creation of the schedules σ0,
σ
00, and σ‴ is O n log nð Þ). If any of the conditions (6), (7), (8), or (9) is not satisfied,

then an implicit enumeration algorithm that generates feasible schedules respecting

the thresholds A2 and A3 can be applied.

5. Conclusions

We have seen that a multi-threshold optimization problem may solve practical
multi-criteria problems in polynomial time while delivering a solution with an
acceptable quality for a given threshold vector, which reflects real needs of a
particular real-life application. We have compared the multi-threshold optimization
problem with the Pareto-optimization problem for three basic multi-criteria
scheduling problems on a single machine. It is clear that, in many multi-criteria
applications, a practitioner may not be interested in a Pareto-optimal set of feasible
solutions: an analysis of the set of Pareto-optimal solutions containing all non-
dominated feasible solutions might be beyond the interest and capacity of the
practitioner. In practice, a feasible solution that attains some threshold value for
each objective function is required. For instance, take an automobile manufacturing
and the three objective functions Cmax, Lmax, and

P

jUj considered in the previous

section. Clearly, the manufacturer is interested in minimizing the total production
time Cmax, whereas he imposes a maximum possible lateness in the production of
each car (which might be far above the minimum possible lateness), and there is a
maximum admissible number of cars whose production might be late and be
delayed for an infinitive amount of time (according to the current demand on the
product). Two heuristic algorithms that we have considered in the previous section,
in practice, may well deliver such solutions while minimizing the total production
time. It is well-known that Jackson’s heuristic, in practice, delivers near-optimal
solutions with a value of the objective function close to the optimum [9]. At the
same time, if the threshold for the criterion

P

jUj is not too small, the solution

delivered by the heuristic may also satisfy the threshold condition for that criterion.
In fact, it might be possible to combine Jackson’s heuristic with Moore and
Hodgson’s one in such a way that the resultant heuristic would provide a solution
with the desired thresholds for both objective functions with some high probability.
The construction of such heuristics that deliver a solution respecting the threshold
vector for two or more objective criteria is an interesting line for further research.
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We have illustrated the multi-threshold optimization approach on a few single-
machine scheduling problems, though the approach can obviously be applied, in
general, for different kinds of multi-objective optimization problems.
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