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Chapter

Aliasing Compromises
Staggered-Rotamer Analysis of
Polypeptide Sidechain Torsions
Jürgen M. Schmidt

Abstract

Circular undersampling and the ensuing aliasing effect are demonstrated to
compromise nuclear magnetic resonance (NMR)-based molecular torsion-angle
analysis referring to experimental 3J-coupling constants when employing the
staggered-rotamer model, also known as Pachler model. This popular model is
flawed insofar as it systematically produces counterintuitive probabilities for the
two minor constituents out of the total three rotamers, to the effect that the appar-
ent circular mean direction of the molecular bond conformation is inflected about
its main rotamer angle, a situation that apparently went unnoticed for more than
50 years. The principal reason for systematic errors lay in the model’s ill-conceived
attempt to resolve the bimodal 3J-coupling-angle dependency by a mere three dis-
crete points on the circle, thereby conflicting with the Nyquist-Shannon sampling
theorem. An anti-aliasing approach is being offered that helps improve the results.

Keywords: circular distribution, directional data, probability density, torsion angle
conformation, staggered-rotamer equilibria, discrete Fourier transform,
sampling theorem, undersampling, anti-aliasing, vicinal coupling constants, 3J,
aminoacid sidechain, protein structure

1. Introduction

Atom-atom bonds in a molecule often give rise to rotational degrees of freedom,
also known as torsion angles. A torsion angle, also known as dihedral angle, is
formed by three consecutive bonds in a molecule and defined by the angle between
the two outer bonds projected onto a plane perpendicular to the central bond
(Figure 1).

Finding out how two parts on either side of a rotatable bond relate to each other,
that is, assigning a value to the torsion angle, presents one of the challenges in
molecular structure determination. A molecule adopting different geometric
arrangements—without breaking or making bonds—is said to exhibit distinguish-
able conformers. Nuclear magnetic resonance (NMR) spectroscopy [2] is uniquely
positioned to help characterize not only static molecular structure, but also dynam-
ical processes that involve interconversion between conformers on a short, typically
nanosecond timescale. Studying torsion-angle geometry and dynamics by NMR
benefits from the measurement of 3J coupling constants [3]. Typically on the order
of a few Hertz, these are magnetic interaction parameters between atoms X and Y in
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the three-bond, four-atom fragment X-A-B-Y constituting dihedral angle θXY about
bond AB. In essence, 3JXY coupling interaction is strongest when bonds XA and BY
are orientated parallel (θXY = �180°) and weakest if perpendicular (θXY � �90°).
A secondary smaller maximum exists for θXY = �0°.

1.1 The Karplus curve

Karplus [4] formulated a universal empirical relation as to how a 3J coupling
constant depends on the intervening torsion angle:

3JXY θð Þ ¼ C0 þ C1 cos θ þ Δθð Þ þ C2 cos 2θ þ 2Δθð Þ (1)

Karplus coefficient C0 signifies the average coupling strength obtained for a
complete torsion-angle revolution. The C2 term lends the Karplus curve its bimodal
shape and determines the undulation depth. The C1 term adds a unimodal compo-
nent that affects the difference between primary and secondary maxima. Typically,
C1 is negative in order for the primary coupling-constant maximum to appear in the
so-called trans conformation, when the X-A-B-Y angle is at �180° and the atom-
atom interaction is strongest.

We here focus on biomolecular structure analysis of the so-called χ1 torsion in
aminoacid residues, the constituent units of polypeptide and protein chains [1],
where the value of χ1 refers to the dihedral angle θN’Cγ about the bond between
carbons Cα and Cβ (Figure 2). It is imperative to understand, that for each of the up
to nine possible atom-pair combinations formed from X = N0, C0, or Hα (“front”)
and Y = Cγ, Hβ2, or Hβ3 (“rear”), the phase parameter Δθ in the Karplus curve must

Figure 1.
Basic torsion-angle fragment depicted for various angles of rotation. IUPAC-IUB recommendations [1] assign
positive angles to clockwise twists about the central bond of a torsion. Identical torsion-angle sign and value
result regardless of viewing down the central bond ‘front-to-rear’ or ‘rear-to-front’.

Figure 2.
Staggered-rotamer states for aminoacid sidechain torsion χ1 viewed down its central Cα

dCβ bond. Most
aminoacids exhibit two Hβ protons oriented trans or gauche with respect to Hα as indicated by a shorthand [5].
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be either 0° or +120° or �120°. This crucially sets up and determines the invariable
three-point sampling of the Karplus curve in the situation of χ1.

1.2 The staggered-rotamer model

Pachler [6] employed 3JHαHβ2/
3JHαHβ3 coupling data pairs in order to quantify

populations of conformational states in ethane-like compounds, such as those
encountered in aminoacid sidechains. According to Pachler’s model, the torsion χ1
in the aminoacid sidechain is considered to adopt one of three, or to hop between
two or between all three so-called staggered rotamers, characterized by nominal χ1
angle values of �60°, �180°, or +60° (Figure 2). An alternative set of angles
comprising �120°, �0°, and +120° would give rise to eclipsed rotamers, which,
however, are unfavorable in view of molecular energy and, thus, are disregarded for
reasons of limited or vanishing lifetime. Both Pachler model and staggered-rotamer
model are synonymous.

The Pachler model allows one to deduce probabilities for each of the three
staggered states once a pair of experimental 3J coupling constants is available.
Historically, hydrogen-hydrogen coupling constants JHαHβ2 and JHαHβ3 were the
first ones accessible to measurement [7], heteronuclear coupling constants were
alternatively used later [8]. Accordingly:

P�60 ¼ JHαHβ2 � J�60°

� �

= J180 � J�60°ð Þ
P180 ¼ JHαHβ3 � J�60°

� �

= J180 � J�60°ð Þ
Pþ60 ¼ 1� P�60 � P180

(2)

Eq. (2) derives staggered-rotamer probabilities from the measured JXY coupling
constants by interpolating between specific coupling values J180° and J�60°, also
designated as Jtrans and Jgauche, respectively, that correspond to the specified fixed
geometries for the θXY angle.

The Pachler model sets up the experimental observable as the corresponding
probability-weighted state-averaged value of J (indicated by brackets):

Jh i ¼ P180 � J180 þ Pþ60 � Jþ60 þ P�60 � J�60 (3)

Both models, the dependency of 3J couplings on the torsion angle according to
Karplus (continuous model) and the dependency of the torsion-angle distribution
on relative 3J coupling-constant pairs according to Pachler (discrete model), form
an indispensable basis of many a biomolecular NMR structure investigation.

2. Theory

2.1 Continuous-discrete model interconversion

Sets of probabilities, associated with the three staggered rotamers in the tradi-
tional Pachler model of aminoacid sidechain torsion-angle variability, transform
into equivalent continuous angle distributions and, vice versa, discrete staggered-
rotamer probabilities can be computed from any given angular direction in contin-
uous circular space.

Mean direction θ and concentration R of a continuous angle distribution convert
into corresponding normalized probabilities for three discrete-state samples evenly
distributed on the circle, according to [9],
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P�60 ¼ 1=3ð Þ 1þ R cos θ �
ffiffiffi

3
p

R sin θ
n o

P180 ¼ 1=3ð Þ 1� 2R cos θf g
Pþ60 ¼ 1=3ð Þ 1þ R cos θ þ

ffiffiffi

3
p

R sin θ
n o

(4)

Conversely, discrete staggered-rotamer probabilities aggregate into the circular
mean direction of a continuous angle distribution,

tan θ ¼
ffiffiffi

3
p

Pþ60 � P�60ð Þ= 3 Pþ60 þ P�60ð Þ � 2f g (5)

and its circular order parameter (concentration) runs between 1 (static fixed
angle) and 0 (rotational average),

R ¼ 1þ 3 P2
x þ P2

y � Px � Py þ PxPy

� �n o1=2
(6)

where Px and Py signify any pair out of the three probabilities P�60, P180, and P+60.

2.2 Three-point discrete Fourier transforms

Three-point discrete Fourier transforms (DFT) using kernel, ω = exp.(�i2π/N),
such that a phase of –i/N turns equates to 120° phase rotation if N = 3, are expressed
in matrix form as [10]

M0

M1

M2

2

6

4

3

7

5
¼

1 1 1

1 ω1 ω2

1 ω2 ω4

2

6

4

3

7

5
�

m0

m1

m2

2

6

4

3

7

5
(7)

Using complex operator i = (�1)1/2, transforms rest on conjugate operators
ω1 = ω+ = �(1/2) (1 + i√3) and ω2 = ω� = �(1/2) (1 – i√3), where ω+ω� = 1.
Critically, ω4 = ω1 also. Factors (1/2) and (i√3/2) identify with cos(π/3) and
isin(π/3), respectively, such that Eq. (7) recasts as

M0 ¼ m0 þm1 þm2

M1 ¼ m0 � m1 þm2ð Þ cos π=3ð Þ � i m1 �m2ð Þ sin π=3ð Þ
M2 ¼ m0 � m1 þm2ð Þ cos π=3ð Þ þ i m1 �m2ð Þ sin π=3ð Þ

(8)

While constituent M0 represents pure real data, M1 and M2 form a complex-
conjugate pair sharing identical real parts. Sums, cosθ = (m1 + m2), and differences,
sinθ = i(m1 – m2), respectively, form the real and imaginary components of the
circular direction in the continuous-discrete model transformation of Eq. (5).

Swapping ω and its conjugate yields the inverse transform, including
normalization, as

m0

m1

m2

2

6

4

3

7

5
¼ 1

3

1 1 1

1 ω2 ω1

1 ω1 ω2

2

6

4

3

7

5
�

M0

M1

M2

2

6

4

3

7

5
(9)

Now consider probabilities at the N = 3 equispaced samples on the circle, that is,
P180 = M0/3, P�60 = M1/3, and P+60 = M2/3 inserted in Eq. (9), informing the first
three modes pm = 0,1,2 of a circular probability density, generically given by
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pm ¼ N�1
X

k

cos mθk � i sinmθkð Þ (10)

Continuous-discrete model interconversion is transparent regarding Fourier
transform. Combining circular modes p, the transforms of the P domain, yields the
circular mean direction as the first circular moment,1

tan θ ¼ p1 � p2
� �

= p1 þ p2
� �

(11)

and the (squared) circular order parameter, related to auto-correlation [9], as
the second circular moment,

R2 ¼ p1 � p2 (12)

The zero-th mode quotes the trivial chance of finding the direction at all,

p0 ¼ 1 ¼ P180 þ P�60 þ Pþ60 (13)

First and second modes, respectively, then supposedly represent amplitudes of
features occurring once-per-cycle (m = 1) and twice-per-cycle (m = 2),

p1 ¼ P180 � 1=2ð Þ P�60 þ Pþ60 � i
ffiffiffi

3
p

P�60 � Pþ60ð Þ
n o

p2 ¼ P180 � 1=2ð Þ P�60 þ Pþ60 þ i
ffiffiffi

3
p

P�60 � Pþ60ð Þ
n o (14)

However, these are conjugates of the same circular frequency! Thus, mode p2 does
not reflect twice the rate of p1. This peculiarity is unique to the 3-point DFT and
ambiguates the meaning of single and double phase advances through the circle
(Figure 3), because if, and only if N = 3, the following identities hold:

exp ∓i2π=3ð Þ ¼ exp �i4π=3ð Þ; cos π=3ð Þ ¼ � cos 2π=3ð Þ; sin π=3ð Þ ¼ sin 2π=3ð Þ (15)

implying ω+2 = ω�1, ω�2 = ω+1.

1 In analogy to linear statistics, circular modes are series of multiple-angle arguments, whereas circular

moments are power series in the trigonometric operators. Moments are simple combinations of modes,

the inverse does not hold.

Figure 3.
Directional ambiguity in circular 3-point systems due to degeneracy in circular modes 1 and 2.
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Apparently, periodic wrapping equates the double angular speed, ω2, to the
conjugate of the single angular speed, ω�, thereby folding—under sign inversion—
samples M1 and M2 onto each other, as visualized in Figure 4.

All issues regarding sampling-rate doubling, sign change in the real portion of
the complex numbers, and data-pair ambiguity hold for both forward and inverse
three-point transforms. Both setups produce identical results, making
reconstructing clockwise and counterclockwise arrangements of the circular sam-
ples, or P+60 and P�60, for that matter, somewhat impossible. Entirely independent
of input and output data, the effects arise solely from the transformation operator
and are, therefore, model-inherent.

Regarding the unique case of three staggered rotamers, let us also consider
Karplus coefficients C0 = m0, C1 = m1, and C2 = m2 subjected to three-point DFT
according to Eq. (7) and obtain precisely those specific J-coupling values needed to
compute the state-averaged J value of Eq. (3):

Jtrans ¼ J180 ¼ C0 � C1 þ C2

Jgauche ¼ J�60 ¼ C0 þ C1=2� C2=2
(16)

Inverse-transforming the values of Jtrans and Jgauche, inserted as J180 = M0/3,
J+60 = M1/3, and J�60 = M2/3 into Eq. (9), recovers the three coefficients (i.e.,
modes) of the Karplus Eq. (1).

Mathematically, this looks clean and entirely reversible. In analogy to the modes
of the circular probability density in Eq. (14), the DFT obtained for both J+60 and
J�60 inserted in Eq. (3) would necessarily result in complex-conjugate numbers.
And yet, deliberately ignored was the fact that theoretical as well as experimentally

Figure 4.
Main panel: effective Karplus-curve manifold generated by aliasing cosθ and cos 2θ modes. Typical coefficients
(C0, C1, C2) and a phase offset of Δθ = 0° apply to 3JHαHβ3 in aminoacid sidechains. The original (non-aliased)
Karplus curve is shown in black. Aliased unimodal (red) and bimodal (blue) curves, respectively, result from
coefficient C2 folding onto C1 and, vice versa, C1 folding onto C2. Associated with staggered rotamers are those
invariant focal points Jtrans and Jgauche through which all curves pass. Small panels: sampling properties of
rotamer models in contexts of 3-point and 6-point discrete Fourier transforms of Karplus curves. Each
coefficient Cm as the mth circular mode (bars) connects with an effective circular sampling rate in units of (2π
rad)�1, m being the periodicity of that component. Bottom: sampling the bimodal coupling-angle dependency at
three 120°-equispaced (e.g., staggered-rotamer) angles corresponds to rate 1.5 π

�1 rad�1 (dotted line), too low
to resolve the higher C2 mode. Consequently, C2 inverts and folds into the lower frequency band and stacks onto
or aliases the negative C1 mode (red bar). The original C2 amplitude appears blanked. Reconstructed from such
distorted coefficients, the mis-sampled Karplus curve appears purely unimodal. Top: alternatively, C1 folds
under sign inversion onto the C2 mode (blue bar), generating a purely bimodal curve. Middle: aliasing of the
high mode is avoided with a 6-state staggered-eclipsed 60°-equispaced rotamer model that samples the circle at
twice the rate of 3 π

�1 rad�1 (dash-dotted line).
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observed J-coupling constants are generally considered real data and, therefore, J
values for gauche+ and gauche� states are ordinarily identical. Clockwise and coun-
terclockwise orientations become indistinguishable once again. At any rate,
disregarding imaginary components amounts to loss of information, introducing a
subtle irreversibility into the staggered-rotamer analysis that cannot be corrected.

3. Results

3.1 Worked example: selected sidechain rotamers in a protein

In the course of extensive protein-structure studies by NMR, 3J coupling con-
stants related to aminoacid sidechain torsions were measured in a variety of pro-
teins. Ongoing investigations target sidechain χ1 torsion structure in ribonuclease
T1 (RNase T1), an enzyme of 104 aminoacids size, experimental 3J coupling data of
which are deposited with the BMRB [11]. Applying up to nine available coupling
constants as experimental constraints, two models, a continuous single-state torsion
angle and the discrete staggered-rotamer populations, were least-squares fitted for
each aminoacid in the enzyme. Exemplifying the present issues, RNase T1 contains
three histidines, each of which adopts a different predominant staggered state with
only little dispersion about their respective circular mean direction. Accordingly,
the torsions lock χ1 conformations near �180° in His27 (as evident from a large
trans-3JN’Cγ coupling constant, Figure 2), near +60° in His40° (large trans-3JHαCγ),
and near �60° in His92 (large trans-3JC’Cγ).

The predominant χ1 rotamer in His92 is populated at P�60 = 92%, with only
negligible or minor contributions from P180 = 0% and P+60 = 8%, which together
make for a circular mean direction of �56° (Figure 5). The single-state model
converges at �72°, somewhat “mirrored” or inflected about the ideal �60°
staggered state.

The His27 torsion noticeably tilts away from the ideal �180° staggered angle,
circular mean direction from the discrete model being �160°. However, a χ1 value
of +158° results from fitting a continuous single-state angle and would infer a
primary �180° and a secondary +60° rotamer, broadly at 3:1 proportion [9]. Yet,
populations emerging from staggered-rotamer analysis (P�60 = 23%, P180 = 89%,
P+60 = �12%) suggest �60° as the more significant secondary constituent. This,
together with a decidedly negative probability for the +60° rotamer, results in an
“opposite” circular mean direction, again inflected about the constituent �180°
state.

Similarly, discrete staggered-state populations in His40 emerge as P�60 = 0%,
P180 = 22%, and P+60 = 78%, making for a circular mean direction of approximately
+76°, while χ1 converges at +36° in the continuous model. In the staggered-rotamer
model, a mean direction deviating from +60° toward smaller angle values would
command a significant contribution from the �60° state to the overall average.
Once again, the discrete model suggests the less plausible �180° conformer.

Even though both fitted models agree as regards the main conformer in each
case, state populations of the minor conformers in the staggered-rotamer model
seem always somewhat counterintuitive. Deviating from a single ideal staggered
state, the inflection phenomenon in the discrete model consistently manifests as a
false apparent mean direction in the rotationally opposite sense, off in terms of
degrees by—approximately—as much as the correct mean direction derived from
the continuous model deviates from that nearest ideal staggered state. How do we
know it is the staggered-rotamer model delivering wrong results and not the con-
tinuous model? Because were the angle tilted to the “opposite/other side,” the
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corresponding set of probabilities (top panel of Figure 6) would generate a value of
J typically in disagreement with the experimental value, for example, for 3JHαHβ3, as
read off the Karplus curve for the given angle (bottom panel of Figure 6).

Such discrepancy is not limited to specific aminoacid residue types; rather, it is
seen—without exception—in all rotamer studies. Revisiting 3J data collected for a
different protein, Desulfovibrio vulgaris flavodoxin [12], confirmed suspicion that a
systematic issue would be at work. Invariably, counterintuitive admixtures of
rotamers are calculated for all non-ideally staggered sidechain conformations.

3.2 A compromise fix: anti-aliasing

Anti-aliasing signifies any procedure that attempts to ameliorate adverse effects
from aliasing due to coarse sampling. Anti-aliasing applied in, for example, image
processing helps smoothen jagged lines and edges that result from digitizing con-
tinuum data into discrete samples [13]. Generally, such approaches form weighted
averages over a number of adjacent data points and, therefore, are irreversible data
manipulation.

Anti-aliasing applied to the discrete rotamer model helps restore some bimodal
curve feature in the distorted coupling angle relationship and would also minimize
unrealistic negative excursions in the probability parameters. Considering that
Eq. (2) introduces into the traditional interpretation of staggered rotamers a strict
one-to-one correspondence between each coupling and precisely one, and only one,
staggered-state population, this permits the remaining two population parameters
to be manipulated at will without interfering with that respective correspondence,
offering an opportunity to diminish differential probability and improve the
population parameters generally. The approach taken here represents the improved
symmetrical, balanced variant of the range-bound probability fitting devised in [9]
by manipulating all probability parameters equally and simultaneously:

Figure 5.
Conventionally optimized discrete staggered-rotamer probabilities for histidines in RNase T1, and the effect of
anti-aliasing applied to these. Probabilities P�180 (red), P�60 (green), and P+60 (blue) shown as area-
proportional circles, and dials indicate the effective circular mean direction obtained from these. Crosses mark
torsion angles that best fit the J-coupling data using a continuous variable-angle single-state model. Anti-
aliasing improves the probabilities insofar as apparent mean directions for the modified sets are closer to a
staggered state than for the original and also agree better with torsion angles from the single-state fit result. Anti-
aliasing helps inflect the apparent mean direction about the nearest staggered angle toward the opposite side.
Most noticeably, His27 is an example of a predominant trans rotamer with clockwise deflection of its apparent
circular mean direction, chiefly due to the conventionally fitted negative probability of the +60° state (open
circle). Anti-aliasing reverts the apparent mean into a counterclockwise direction and also inverts the
implausible value of P+60.
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aaP�60 ¼ P�60 þ z �P�60P180=2� P�60Pþ60=2þ P180Pþ60ð Þ
aaP180 ¼ P�60 þ z �P�60P180=2þ P�60Pþ60 � P180Pþ60=2ð Þ
aaPþ60 ¼ Pþ60 þ z þP�60P180 � P�60Pþ60=2� P180Pþ60=2ð Þ

(17)

Underlying the anti-aliasing principle in Eq. (17) is the observation that the
smallest probability derived from the Pachler model is always too small, if not
negative, while that of the main rotamer is always too large. Therefore the small P
value is being raised (one positive increment) at the expense of both other param-
eters, from which half the amount each is being taken off (two negative half incre-
ments). Applying the correction in turn to each set gives rise to the anti-aliasing
matrix in Eq. (17). Normalization is critically ensured as each product term added
(or subtracted) is being subtracted (or added) elsewhere.

Values between 0.5 and 1.5 for the anti-aliasing parameter z range form a
reasonable compromise between such diverse effects as differential probability,
negative probability, and unimodality of the coupling-angle dependence [9].
By choosing z = 1, all eclipsed-state populations amount to one-third, making these
situations indistinguishable from the complete rotational-average limit. Contras-
ting the conventional staggered-rotamer model, the anti-aliased model typically
inverts and reduces differential probability between the two minor rotamers
(Figure 7).

Aliasing affects primarily the probabilities, yet, consequently also any back-
calculated—as opposed to experimental—coupling values. Only the mean
conformation-averaged calculated J couplings remain invariant when inserting
anti-aliased probabilities aaP into Eq. (3), equaling those obtained with the
unmodified P values.

Figure 6.
Top: concerted change in staggered-rotamer probabilities P with varying circular mean direction for torsion χ1
according to Eq. (2); bottom: state-averaged aminoacid 3JHαHβ3 coupling derived from these probabilities when
aggregated according to Eq. (3). The decidedly unimodal constructed curve (solid line) tracks exclusively the
trans rotamer probability P2, thus, failing to reproduce the bimodal angle dependency of J in direct response to
an angle sweep according to the original Karplus curve (dashed line) of Eq. (1). Annotated RNase-histidine
examples highlight large differential probability between the minor rotamer pairs (top) as well as
counterintuitive coupling values (bottom) as seen for all deflections from ideal staggered states (shaded zones).
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In an attempt to improve the coupling estimates, anti-aliasing can be
implemented in two possible ways:

i. Applied as post-processing procedure, the fitted probabilities are being
modified (anti-aliased) according to Eq. (17), and coupling estimates in
Eq. (3) amended in accordance with the updated values of Px,y,z. As least-
squares parameter optimization already minimizes the discrepancy
between observed and calculated J coupling values, any subsequent
parameter modification will invariably increase the overall fit error in J.
After all, we are interested less in the fit error than we are in plausible and
acceptable molecular descriptions.

ii. Applied during data fitting, anti-aliasing and optimization of the
probability parameters will interfere and cancel somewhat. Again,
optimization strives to minimize the difference between observed and
calculated J values; only this time, the instantaneous fit error feeds back on
the continual probability-parameter adjustment, counteracting the anti-
aliasing due to the model-inherent divergence between calculated and true
coupling-angle dependence.

In practice, parameters optimized following option (ii) converged nearer to
those obtained in the original, aliased fit, while more significant corrective effects
are seen when adopting option (i).

As circular folding tends to equalize the meaning of both first and second mode
coefficients of the Karplus curve, one might equally (or alternatively) employ
jointly the C2 coefficient with an additional folded (mirrored and inverted) C1

coefficient. This would connect with twice the angular speed, which happens to

Figure 7.
Top: staggered-rotamer probabilities for an angle sweep anti-aliased using z = 1 in Eq. (17); bottom:
dependency of the state-averaged 3JHαHβ3 coupling according to Eq. (3) when using anti-aliased staggered-
rotamer probabilities, re-introducing into the coupling-angle dependency a certain bimodal feature (solid line),
approaching that in the original Karplus curve (dashed line). Other graph features as described in Figure 6
legend.
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coincide with the single speed of opposite sign (Eq. (14)). This condition is identical
to anti-aliasing using z = 2.

Anti-aliasing is irreversible, as the sequence order in two recursions, z = +1/�1
vs. –1/+1, does make a difference. The latter results in two equal Jtrans maxima,
much like applying z = +2 once, and four Jgauche values for all other 60° intervals. The
probabilities are more peaked at the top and flatter at the bottom. The former
sequence produces flat tops in both P and J profiles and peaked bottoms, even
though Jtrans and Jgauche are correctly reproduced, and all eclipsed states show Jmean.

As multiple couplings are considered in real applications, the final outcome is a
balanced compromise between all contributing parts.

4. Discussion and conclusion

In principle, conversion of data into a model encounters one of four possible
situations (Figure 8), depending on the ratio between the number of independent
experimental observations and the number of model parameters to determine.
Focusing here on aminoacid geometry:

i. Normally, if many data are available and accurate, the analysis outcome is
most likely reliable, as is the case with the polypeptide mainchain ϕ torsion
angle, where six J-coupling constants were collected, associated with phases
densely spaced at 60° intervals on the circle, allowing to determine the
torsion-angle parameter with high accuracy [14].

ii. A number of model variables that exceeds the number of experimental
observables renders analysis generally impossible, owing to too few data.

iii. At most, interpretation of insufficient data would produce some artificial
result. Indications are that this might be the case with polypeptide
mainchain ψ torsion analysis, where a mere three J-coupling constants are
accessible for sampling rotamer probabilities associated with three phases
at 120° intervals, similar to the present work, yet one more experimental
observable to refer to.

Figure 8.
Possible pathways for conversion of experimental data into abstract or theoretical model parameters.
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iv. Finally, the present case of polypeptide sidechain χ1 torsion analysis would
not normally suffer any data shortage in determining a single angle
parameter, given a principal theoretical parameter over-determination
from up to nine experimental observables. Rather, the analysis procedure
itself produces the notoriously distorted artificial outcome. This work
demonstrated the mathematical reasoning as to why implausible
probabilities are being obtained regardless of an overwhelming data supply.

Attempting to extract meaningful parameters of mean direction and dispersion
by digitizing the bimodal J-coupling angle dependency through a “bottleneck” of
only three staggered-rotamer angles must appear error-prone. In many ways, this
seems tantamount to the proverbial “square peg in a round hole.” It is hoped that
the issues and pitfalls connected with circular three-point sampling and transforms,
demonstrated here in a biochemical context, would inspire a fresh look at applica-
tions in other disciplines in mathematics, physics, or engineering.
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