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Chapter

Vortices on Sound Generation and
Dissipation in Musical Flue
Instruments
Shigeru Yoshikawa

Abstract

Musical flue instruments such as the pipe organ and flute mainly consist of the
acoustic pipe resonance and the jet impinging against the pipe edge. The edge tone
is used to be considered as the energy source coupling to the pipe resonance.
However, jet-drive models describing the complex jet/pipe interaction were pro-
posed in the late 1960s. Such models were more developed and then improved to
the discrete-vortex model and vortex-layer model by introducing fluid-dynamical
viewpoint, particularly vortex sound theory on acoustic energy generation and
dissipation. Generally, the discrete-vortex model is well applied to thick jets, while
the jet-drive model and the vortex-layer model are valid to thin jets used in most
flue instruments. The acoustically induced vortex (acoustic vortex) is observed near
the amplitude saturation with the aid of flow visualization and is regarded as the
final sound dissipation agent. On the other hand, vortex layers consisting of very
small vortices along both sides of the jet are visualized by the phase-locked PIV and
considered to generate the acceleration unbalance between both vortex layers that
induces the jet wavy motion coupled with the pipe resonance. Vortices from the jet
visualized by direct numerical simulations are briefly discussed.

Keywords: edge tone, pipe tone, jet wave, jet-drive model, discrete-vortex model,
vortex-layer model, vortex sound theory, flow visualization, acoustically induced
vortex, PIV, direct numerical simulation

1. Introduction

Musical wind instruments have a mechanism converting the direct energy of the
fluid flow into the alternative energy of the sound. Such a system is called the self-
sustained oscillation system. The fluid flow that drives the instruments may be
regarded as the aerodynamical sound source or aeroacoustical source. Wind instru-
ments are a very extensive subject of research over the vibration theory, acoustics,
and fluid dynamics. The interaction between the resonance of the instrument
[called generically flue instruments such as an organ pipe, flute, and recorder in this
chapter (see Figure 1)] and the jet as the aeroacoustical source will be adequately
described in this chapter.

Fluid flow brings about vortices and then generates the sound as well. However,
one of the essential characteristics of wind instruments is the resonance, which is an
acoustic mechanism amplifying very small perturbations to periodic disturbances
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with large amplitudes. Any synchronization is then required, and it is realized by
the suitable phase relation between the flow (or the jet) driving wind (or flue)
instruments and the acoustic wave propagating in the instruments. For example, in
the case of flue instruments, if the air flow enters into the pipe at the instant when
the acoustic pressure near the edge takes a relatively large positive value, acoustic
power (given by the product of the alternating volume flow and the acoustic
pressure) becomes positive, and the sound is sustained.

However, a big dissatisfaction to the above viewpoint is the assumption of the
existence of the sound at the starting point. Therefore, exactly saying, acoustical
theory above is not sound generation theory but sound regeneration theory. The
viewpoint of positive feedback between the jet and the pipe and the time-domain
formulation based on the pipe reflection function [1] are both sound regeneration
theory [2]. Musical instrument acoustics has treated such regeneration theories and
phenomena as chief objects of research. This is because the resonance is acoustically
essential, and we may consider that the resonance controls fluid movement as the
energy source. It will be open to the charge of being imperfect combustion that
sound existence is presupposed at the starting point when we try to answer how flue
instruments produce their sounds.

Then, if we introduce a thesis, “the vortex itself is the true sound source,” of the
vortex sound theory [3] to flue instruments, is the problem solved? Flue instru-
ments do not seem to be such an obedient subject. Certainly, the vortex sound
theory is satisfactorily valid to the edge tone, where the jet-edge system has no pipe
that gives the resonance or the acoustic feedback; instead the fluid-dynamical
feedback between the edge and the flue (flow issuing slit) is a main mechanism of
sound generation.

Moreover, there are a few non-negligible differences other than the acoustic
resonance between the edge tone and the pipe tone (or flue tone). First is the
amplitude magnitude when the jet oscillates against the edge. The oscillation
amplitude of the edge-tone jet is as small as two to three times the jet thickness.
On the other hand, the pipe-tone jet in an organ pipe often exceeds 10 times the jet
thickness. The edge in an organ pipe (or flue instruments) is just a partition wall
which separates the inside from the outside of the pipe. It may be said that the
direct jet-edge interaction time is quite short compared with a tonal period in flue
instruments. Large vortices visible behind the pipe edge are, so to speak, odds and
ends of the jet driving the pipe. We should pay more attention toward invisible (for
our naked eyes) vortices carried along the jet to the edge.

Second is the difference in the jet-edge configuration. The configuration is
usually symmetrical in the edge tone. In other words, the jet center surface corre-
sponds to the edge tip. Alternate small vortices continuously appear above and
beneath the edge. On the other hand, the edge is usually displaced upward in organ

Figure 1.
An organ flue pipe as a typical example of the musical flue instruments and its important parameters. d, the
flue-to-edge distance (or cutup, jet length); h, the jet thickness (or height of the flue exit); R, the pipe inner
radius. The origin of the coordinate system is located at the center of the flue exit surface.
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pipes (see Figure 1). The flute may have such asymmetry depending on the player.
This jet-edge divergence is called the offset, which is one of important parameters to
adjust the tone color of flue instruments.

Also, we should relevantly notice largely different flow-acoustic interactions
involved in various vortex-related sound generations. A thin jet and a sharp edge
are used for the edge tone [4–6]. A thick (or semi-infinite) jet usually drives a wall-
mounted cavity to produce its resonance called the cavity tone [7–9]. A thin jet
drives a sharp edge (called the labium) of the resonant pipe to produce an organ
pipe tone [1, 2, 10, 11]. A thin jet drives a thick edge with an angle of about 60° in
the flute [1]. A thin jet issuing from a flue with the chamfer drives a sharp edge in
the recorder [12, 13]. In addition, jet velocity widely extends from a few meters per
second to about 50 m/s for these tone productions. Flow condition is laminar or
turbulent. The Strouhal number St = fd/U0 (f the sounding frequency; d the flue-to-
edge distance; and U0 the jet velocity at the flue exit) extends from about 0.05 to 5.
Generally, a thin edge tends to enhance higher harmonics. As St has higher values,
the jet flow, which drives the resonant pipe, tends to break down into discrete
vortices [10, 14].

Although the vortex is essential in flow-excited sound generation, it may operate
as an important source of acoustic energy dissipation in various flow-acoustic
interactions [3, 15–17]. In the context of musical instruments, the acoustically
induced vortex shedding at the edge is a key damping mechanism to determine the
final amplitude of the steady-state flue instrument tones [16, 17]. Hence, sound
dissipation and generation in flow-acoustic interactions are widely dominated by
the vortex shedding at the edge [3].

Howe [18] assumes that a compact vortex core with relatively large size
appearing alternately just above and below the pipe edge is created by the interac-
tion between the jet velocity vector U and the cross-flow velocity (acoustic recip-
rocating velocity) vector u at the mouth opening formed between the flue and the
edge. This vortex core with the vorticity ω ¼ ∇�Uð Þ is then considered to drive the
air column in the pipe. The sound excitation by this periodic vortex shedding at
the edge is controlled by the product of the aeroacoustic source term div ω� Uð Þ
and the potential function representing the irrotational cross-flow u at the mouth.

This discrete-vortex model of Howe is successfully applied to analyze and
evaluate both cavity-tone generation [9] and tone generation in flue instruments
[10, 14] when the jet is thick and the condition d/h < 2 (d the width of the mouth
opening or the flue-to-edge distance and h the jet thickness) is satisfied. On the
other hand, when the condition d/h > 2 is satisfied for thin jets, a jet-drive model on
the basis of the intrinsic jet instability [19, 20] is applied instead of the discrete-
vortex model [21]. This jet-drive model has been developed in the field of acoustics
[1, 2, 11, 20, 22–27].

Although the jet-drive model has been proven to be effective for an explanation
of sound generation by the thin jet, there remain rooms for improvement in apply-
ing the vortex sound theory for another explanation of sound generation by the thin
jet in flue instruments because small vortices may be produced along the boundaries
by the mixing process between the jet flow and the surrounding still air. The
boundary layer consisting of small vortices is called the vortex layer, which can act as
the source of an accelerating force to oscillate the jet. Based on such a viewpoint, the
vortex-layer model was proposed recently [28].

In Section 2, the jet-drive, discrete-vortex, and vortex-layer models are
described. Acoustically induced vortices (simply, acoustic vortices) on sound dissi-
pation are discussed with the aid of flow visualization in Section 3. The jet vortex
layer on sound generation in an organ pipe is visualized by the particle image
velocimetry (PIV), and the microstructure of the vortex layer is demonstrated in
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Section 4, and some examples of jet vortices are also introduced from experiments
and simulations. Conclusions are given in Section 5.

2. Models on sound generation in flue instruments

2.1 Jet-drive model

2.1.1 Volume-flow drive vs. pressure (momentum) drive

Jet motion in an organ pipe model when the jet drive is operating at the steady
state is depicted in Figure 2. The air jet smoked with incense sticks is observed by a
stroboscope and recorded on a VTR (8-mm video cassette) as analog data [2]. The
pipe length L is 500 mm, the flue-to-edge distance (cutup length) d 10.2 mm, and
the jet thickness h at the flue exit 2.2 mm [2, 17]. The blowing pressure is 200 Pa
(the jet velocity at the flue exit is estimated from Bernoulli’s law to be 18.3 m/s). The
sounding frequency is 285 Hz. One period T of the jet motion is divided by 9 in
Figure 2.

As shown in Figure 2, the jet oscillates up and down. It does not break into
vortices but keeps a diaphragm-like shape in the jet-drive operation. Large vortex-
like air observed above the edge will not take a part in the sound generation. It is a
kind of odds and ends of the jet driving the pipe. Also, it should be noticed that the
jet behaves like an amplifying wave as inferred from the first six frames [29].

When the jet enters the pipe passing through the mouth area between the flue
exit and the edge, the jet provides the pipe with the acoustic volume flow q(t) that is
roughly approximated by the product of jet velocity Ue, jet breadth b, and jet lateral
displacement ξe tð Þ (these quantities are given at the edge):

q tð Þ≈ �Uebξe tð Þ, (1)

where t is the time. The minus sign is needed from the definition that ξe tð Þ is
positive outward and q tð Þ is positive inward. Eq. (1) defines the volume-flow model
that was first proposed by Helmholtz [30] and utilized by many researchers after-
wards for small amplitudes of jet oscillation [1, 2, 10–13, 20, 21, 24–27]. At the same
time, the jet provides the pipe with the acoustic pressure produced by the momen-
tum exchange with still air in the pipe:

p tð Þ ¼ ρU2
e Sj=Sp
� �

, Sj ≈ bξe tð Þ, (2)

where ρ is the air density, Sj the temporally varying cross section of the jet
entering the pipe from the edge, and Sp the pipe cross section. Eq. (2) defines the jet
pressure of the jet momentum model, which was first proposed by Rayleigh [19]
and utilized by many researchers afterwards [1, 2, 10–13, 21–27]. Opposing
Helmholtz, Rayleigh insisted that the momentum drive should be effective. This
is based on that the pipe is open and the acoustic power is produced by the
product of the acoustic particle velocity near the pipe edge and the driving pressure
given by the jet. However, the acoustic pressure considerably remains near the
pipe edge due to the end correction. As a result, the volume-flow drive of Helmholtz
is usually predominant except for the jet drive with very high blowing pressures
[1, 2, 10, 21, 24, 25, 27].

The jet-drive model based on the volume-flow drive and the pressure drive was
first formulated by Elder [24] by deriving the so-called jet momentum equation and
then simplified by Fletcher [25]. They assumed a small control volume with length
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∆x below the pipe edge. The turbulent mixing takes place over this control volume.
The loss of jet momentum there will result in the simple pressure rise at the inner
plane of the control volume. The net force on the control volume due to this
pressure rise can then be equated to the rate at which jet momentum changes in the
control volume [24]. In other words, just as “the momentum difference equals to
the force impulse,” the momentum-flow-rate difference gives the force that
accelerates the mass of the control volume.

Figure 2.
Stroboscopically visualized jet oscillation at the steady state caused by the jet drive of an organ pipe model made
with the acrylic resin.
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It should be noticed that there is an appreciable phase difference between the
volume-flow drive and the pressure drive. This phase difference is not well under-
stood from Eqs. (1) and (2). The acoustic impedance or admittance should be
introduced to connect these equations. According to Fletcher [1], this phase
difference ϕ, which gives the phase lag of the pressure drive, is given by:

ϕ ¼ � tan �1 Ue=ωΔLð Þ, (3)

where ω is the angular frequency and ΔL the effective mouth length including
the open end correction. Since ωΔL>Ue in usual cases, ϕ is quite small. However,
as mentioned above, ϕ becomes appreciably large when the high blowing pressure is
applied. See [1, 2, 10, 24–27] for more discussion on the complex jet/pipe interac-
tion in flue instruments and on the conditions of the phase and amplitude for sound
regeneration.

2.1.2 Jet wave and its amplification

Each frame in Figure 2 does not show the path of air particle, but corresponds to
the snapshot of the position of air particle at a given instant. Therefore, each frame
indicates the streak line in the fluid-dynamical sense. On the other hand, the jet
particle pass (pass line) may be determined as soon as the jet issues from the flue to
the acoustic field in the mouth [26]. If the jet pass line can be determined, the jet
deflection shape as the streak line may be estimated by considering the transit time
of the particle issued from the flue exit [2, 26]. However, in the field of musical
acoustics, the image visualizing the jet oscillation at the steady state in Figure 2
has been called the jet wave, which seems to give the transverse displacement
(in z direction) of the jet (cf. Figure 1).

It is assumed that the jet displacement may be expressed as a superposition of
a progressive wave due to the jet instability [19, 20] and a spatially uniform
oscillation induced by acoustic velocity u through the mouth as follows [1, 31]:

ξ x, tð Þ ¼ u=ωð Þ � cosh μxð Þ sin ω t� x=Uph

� �� �

þ sin ωtð Þ
� �

, (4)

where ξ x, tð Þ denotes the transverse displacement of the jet at distance x from
the flue exit. Also, μ and Uph denote the amplification factor and phase speed of the

instability wave, respectively, while u is the transverse acoustic velocity of the
mouth field. The jet displacement ξe tð Þ in Eqs. (1) and (2) is given by ξ x ¼ d, tð Þ.
It should be noted that ξ xð Þ and u are positive in the external (positive z) direction.
Both μ and Uph are functions of x in a rigorous sense. Also, it is important that ω

in Eq. (4) corresponds to the fundamental of a sound generated. When very high
blowing pressures are applied, the effect of the second harmonic is significant and
the jet strikes the edge downward twice a period. Such an effect is excluded in
Eq. (4). Also, an important parameter, jet thickness h is not included in Eq. (4),
and a thin jet (d/h > 2) is assumed. Although Eq. (4) lacks its physical basis and
experimental confirmation, it is a simple and practical representation of the jet
deflection that describes our current knowledge. So, we postulate in this chapter
that Eq. (4) is valid in the acoustical sense.

The envelope of positive and negative peak displacements is yielded from
Eq. (4) as follows:

ξenv xð Þ ¼ � u=ωð Þ cosh 2
μxð Þ � 2 cosh μxð Þ cos ωx=Uph

� �

þ 1
� �1=2

: (5)
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Since the cos ωx=Uph

� �

dependence diminishes as μx becomes larger than one, it

may be reasonable to approximate the second term in square bracket of Eq. (5) as
2 cosh μxð Þ. We then obtain the following simple expression [29]:

ξenv xð Þ≈ � u=ωð Þ cosh μxð Þ � 1½ �: (6)

Figure 3 shows the transverse displacements of the jet oscillation and their
approximated envelopes (indicated by the broken line) at the steady state which are
calculated by Eqs. (4) and (6), respectively. The following parameter values are
supposed: the mouth-field strength u=ω ¼ 1 (mm), μ ¼ 0:20 (mm�1), ω=2π ∙ 133
(rad/s), k ¼ ω=Uph ¼ 0:073þ 0:01x (mm�1), Uph x ¼ 0ð Þ ¼ U0 ¼ 11:5 (m/s). The

slowdown of Uph is assumed so that k may be proportional to x in order to make

calculation easier. For more detailed information, refer to [29].
The jet displacements from t = (3/10)T to t = (8/10)T in Figure 3 almost

correspond to those from t = (2/9)T to t = (7/9)T in Figure 2, though the flue-to-
edge distance d is not the same (d = 10.2 mm in Figure 2 and d = 15.8 mm in
Figure 3). This good correspondence proves the effectiveness of the displacement
model based on Eq. (4).

It is possible to directly estimate μ from Eq. (4) by applying it to the experi-
mental data. However, such an approach needs exact information about Uph and a
time reference. Another much simpler method to estimate μ is to apply Eq. (6) to
the experimental data. The result is shown in Figure 4 for the first mode of an organ
pipe model with L = 50.0 cm and d = 10.2 mm (cf. Figure 2) [29]. If a high-speed
digital video camera is used instead of a stroboscope, the frames showing the jet
waves such as given in Figure 2 are digitally memorized, and then the digital
superposition of these data yields a direct superposition of jet waves.

Figure 3.
The jet displacements calculated at the instants from 3 T/10 to 8 T/10 and their approximated envelope
(the negative envelope is also indicated).
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Digitally superposed jet waves are shown in frames (a), (b), and (c) for different
blowing pressures in Figure 4, where the x axis is drawn straightforwardly from the
flue center labeled as “0,” and label “e” indicates the edge position. Frame (d) on
the right of Figure 4 illustrates how the jet envelope function is derived. The
envelope of jet center-planes (indicated by dotted lines in Figure 4) is almost
parallel to the outer fringe of the superposed jet waves as long as significant
spreading of the jet can be neglected by using thin smokes for visualization. More
details on the estimation of μ from flow visualization are given in [29].

In Figure 4(d) the estimated envelope is shown by dots on a template, that
is, curves of jet envelope function cosh μxð Þ � 1 for various μ values assuming that
u=ω = 1. Figure 4(d) suggests a close fit of the dotted line to an envelope curve with
μ = 0.24 mm�1 when the magnitude ratio of the dotted line to that curve is about
1.3. This ratio determines u=ω = 1.3 mm from Eq. (6).

Flow visualization suggests the following general trends from the result summa-
rized in Figure 5 on a particular experimental model of the organ pipe:

1.The amplification factor μ tends to decrease and saturate to a given value as the
oscillation of each mode shifts toward higher blowing velocities, although the
data on the second mode are not sufficient.

2.The averaged amplification factor is roughly estimated as 0.24 mm�1.

3.The mouth-field strength u=ω, which means the displacement amplitude of
the acoustic field at the mouth, tends to increase and saturate to a given value
as the oscillation of each mode shifts toward higher blowing velocities.

It should be noted here that the estimate of μ based on Eq. (6) tends to be a little
larger (about 10%) than that based on Eq. (4). However, this estimation error is
roughly equivalent to the resolution of the experimental data [29].

In order to confirm the validity of our digital superposition explained above,
u=ω was determined from measurements of the acoustic particle velocity u with a
hot-wire anemometer (its sensing part is 1-mm long and 5 μm in diameter) and of
the sounding frequency ω=2π (about 280 Hz in the first mode) with a microphone
located inside the pipe. It is important to avoid exposing the hot-wire probe to the

Figure 4.
Digitally superposed jet waves for different blowing pressures (a)–(c) and an illustration of how to derive the
amplification factor μ and the mouth-field strength u=ω (d). The envelope of jet center-planes is estimated by
the red dotted line that best fits to the green template curve with μ = 0.24 mm�1 and u=ω = 1. The amplitude
ratio of the dotted line to the green line determines u=ω = 1.3 mm.
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jet flow for the measurement of u because u ≪U0. Therefore, after carrying out a
preliminary experiment to select proper positions of the probe, the rms acoustic
particle velocity urms was measured as the rms output voltage Vrms of the hot-wire

anemometer (u ¼
ffiffiffi

2
p

urms) [29]. The result of u=ω is indicated by the closed square
in Figure 5.

Comparing the values of u=ω measured using the hot-wire anemometer with
those estimated from flow visualization, we may see a good agreement between
them. This agreement implies that the method of deriving the envelope function of
the jet wave is valid and sufficiently accurate. However, we had particular difficulty
in obtaining a smooth jet-wave envelope near saturation, and the estimated data of
μ and u=ω were lacking in Figure 5. This was due to other jet waves which were
generated by the second harmonic and superposed upon the jet waves generated by
the fundamental.

The origin of the jet-wave amplification is the jet instability. The applicability of
the spatial and temporal theories on the jet instability [1, 32–34] to organ pipe jets
can be discussed. If we assume a Poiseuille flow at the flue exit and a subsequent
Bickley jet, the spatial theory [32, 33] seems to be relevant to organ pipe jets [29].

2.1.3 Jet-drive model for large jet displacements

The jet-drive model described above has supposed small displacements of the
jet at the pipe edge. However, as demonstrated in Figures 2–4, the jet displacement
is too large to apply Eqs. (1) and (2) to the sound generation in flue instruments in
rigorous sense. According to Dequand et al. [21] and Verge et al. [27], a jet-drive
model reasonable for large jet displacements is explained and roughly formulated
below.

As understood from Figures 2 and 3, the passage time of the jet from one side to
the other side of the edge seems to be very short compared to the oscillation period.
In other words, the jet seems to be instantaneously switching from the inside to the
outside of the pipe and vice versa. Then, the jet volume flow may be assumed to be
split into two complementary antiphase monopole sources qin [¼ qj j exp iωtð Þ)] and
qout (¼ �qin) whose temporal waveforms are rectangular pulses with the same

Figure 5.
The amplification factor μ and the mouth-field strength u=ω of the organ pipe jet as functions of the jet velocity
U0 at the flue exit [29]. The symbols ○ and □ indicate μ and u=ω estimated from the digital superposition
based on the jet visualization, respectively. The symbol ■ indicates u=ω measured by a hot-wire anemometer
and a microphone.
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amplitude qj j [27]. These sources are supposed to be placed at a distance ϵ from the
edge tip at the lower and upper sides of the edge.

The acoustic pressure pj tð Þ is derived from the potential difference across the

mouth induced by two monopole sources [21, 27]:

pj tð Þ ¼ �ρ δj=bd
� �

dq=dtð Þ, (7)

where ρ is the air density, b the jet (or mouth) breadth, d the flue-to-edge
distance (or the mouth length), and δj the effective distance between the two
monopole sources. If ϵ≪ d, we have from [27].

δj=d≈ 4=πð Þ
ffiffiffiffiffiffiffiffiffiffi

2ϵ=d
p

: (8)

In the limit of thin jets d=h≫ 1ð Þ, where h denotes the jet thickness at the flue
exit, ϵ ¼ he (the jet thickness at the edge) is assumed [27].

The power generated by the source is calculated by assuming that the source is in
phase with the acoustic volume flow qm tð Þ ¼ dξm=dtð Þdb ¼ udb through the mouth
opening, where ξm denotes the particle displacement over the mouth opening [21].
This qm is supposed to be a local two-dimensional incompressible flow. The above
in-phase relation between the pressure source pj and the acoustic volume flow qm
gives the condition for which the oscillation amplitude has a maximum as a function
of the blowing pressure.

The time average over an oscillation period T of the power generated by the jet
drive above is given as follows [21]:

Πjet

	 


¼ pjqm

D E

≈ 8=πTð Þρ
ffiffiffiffiffiffiffiffiffiffiffiffi

2he=d
p

U0hebd dξm=dtj j: (9)

In addition to the thin jet assumption d=h≫ 1ð Þ, we have to suppose that the jet
does not break down into discrete vortices. This is only reasonable for the first
hydrodynamic mode (St ¼ fd=U0 <0:3). The validity of Eq. (9) will be discussed in
Section 3 after deriving the acoustic energy loss due to vortex shedding at the edge.

2.2 Discrete-vortex model

2.2.1 Discrete-vortex model based on the vortex shedding at the edge

On the basis of the two-dimensional theory, Howe [18] proposed a discrete-
vortex model on sound generation in flute-like instruments. He assumed that a
compact vortex core appearing alternately just above and beneath the edge was
created by the interaction with the acoustic cross-flow velocity u [dξm=dt in Eq. (9)
corresponds to one-dimensional (z direction) component] at the mouth opening
(see Figure 6). That is, instead of the jet oscillation over the mouth explained in the
previous section, a point vortex is produced at the edge. Then, this vortex core is
assumed to drive the air column in the pipe. A discrete-vortex model for thick jets
assumes that a discrete vortex is generated from the flow separation at the flue exit
corner [9, 10, 21], while Howe [18] attached greater importance to the flow sepa-
ration (vortex shedding) at an opposing sharp edge due to the acoustic cross-flow.

The sound excitation by the periodic vortex shedding at the edge is controlled by
the product of the aeroacoustic source term div ω� vð Þ and the potential function
ϕ y
� �

representing the irrotational cross-flow into and out of the mouth as expressed

by the following integral [18]:
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I tð Þ ¼
ð

div ω� vð Þϕ y
� �

d3y ¼ �
ð

ω� vð Þ ∙ ∇ϕ y
� �

d3y, (10)

where the vorticity ω is defined as rot v and the velocity v is the superposition of
the jet mean flow velocity U directing against the edge and the time-dependent
cross-flow velocity u that is specified by reciprocating potential flow through the
mouth opening (see Figure 6). That is, v is given by:

v ¼ U þ u: (11)

Also, y denotes the source region (vortical field) of the pipe mouth over which

the integral of Eq. (10) is performed. The specific form of ϕ y
� �

is given as ϕ ∗

2 y
� �

of

Eq. (10.42) in [18].
According to [3], the power density supplied from the acoustic field to the

vortical field around the edge is given by:

1=2ð Þ ∂=∂tð Þ ρv2
� �

¼ ρ ω� vð Þ ∙u: (12)

Therefore, if ω� vð Þ ∙u>0, it may be said that the energy of the acoustic field is
absorbed by the vortical field. As a result, an acoustically induced vortex or acoustic
vortex is generated [16, 17]. The generation of it satisfies the phase relation in which
a clockwise-rotating vortex appears above the edge when u directs into the pipe [see
Figure 12(b) in Section 3.2.1]. This phase relation is contrary to that illustrated in
Figure 6. A discrete vortex of Howe’s type has not been observed in sound genera-
tion of flue instruments where jets are used in normal conditions [16, 17, 20–27, 29].

Howe [3, 35] then proposed the acoustic dissipation formula:

ΠD tð Þ≈
ððð

ρ ω� vð Þ ∙udV, v≈U: (13)

This equation determines the rate of dissipation of acoustic energy, where ∇ϕ
in Eq. (10) is now simply denoted by u. Also, V denotes a volume enclosing the
vorticity formed in the flow field. This ΠD of Eq. (13) can be negative in oscillation
systems: If the phase of vorticity production enables a steady transfer of energy to
the oscillation from a mean flow, the self-sustained oscillation can be maintained.

Hence, the acoustic generation formula may be proposed:

ΠG tð Þ≈ �
ððð

ρ ω� Uð Þ ∙udV,ω ¼ rotU, (14)

Figure 6.
Conceptual sketch of a discrete-vortex model (the vortex shedding at the edge) for sound generation in flue
instruments proposed by Howe [18].
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where the vorticity ω is simply given as rotU. If the time average ΠG tð Þh i is
positive, the vorticity production from the jet flow supplies the acoustic power to
the resonant pipe.

2.2.2 Discrete-vortex model based on the vortex shedding at the flue exit

When the jet is thick, the jet flow is not fully deflected into the resonant pipe. It
is then difficult to apply the jet-drive model to thick jets. As the jet becomes thicker
and thicker, the two shear layers at both sides of the jet tend to behave indepen-
dently of each other. Meissner [9] described both shear layers in terms of discrete
vortices (see Figure 7). He used the jet with h ¼ 2:7 mm (not so very thick). This jet
excited a cavity resonator (its cross section: 40 mm � 28 mm; its depth: 12, 14, 16,
18, and 20 cm). The distance from the nozzle exit to the opposing orifice edge
corresponding to the flue-to-edge distance d was set to be 8 mm (d=h ¼ 2:96). The
orifice width was 28 mm, and the edge thickness 2 mm.

Meissner [9] found experimental results as follows: In stage I
(5:9 m=s<U0 < 8:3 m=sÞ, the frequency increased fast with the jet speed, and a
frequency increment was proportional to the jet speed just as in the edge-tone
generation [36, 37]. Similar phenomenon often appears at the very first stage in
sound generation of flue instruments [1, 23]. In stage II (8.3m=s<U0 < 16:1 m=s),
an increase in the frequency was still observed, but a frequency growth was much
smaller. The experimental results obtained for different cavity depths correlated
reasonably well because data points corresponding to this stage approximately lay
in one curve [9].

The cavity-tone generator shown in Figure 7 can be considered as a simplified
model of the ocarina. It is assumed that vorticity generation begins immediately
after the jet issues from the nozzle exit due to flow separation. The vorticity of both
shear layers is concentrated into line vortices traveling along straight lines with the
convection velocity Uc. In the case of asymmetric vortex formation as shown in
Figure 7, a configuration of vortices will be similar to that in the conventional
Kármán vortex street. Thus, Uc may be approximated as that of an infinite
street [9].

Figure 7.
Vortex shedding in a cavity-tone generator [9], which can be considered as a simplified mechanical model of the
ocarina. h ¼ 2:7 mm and d ¼ 8 mm.
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Uc ¼ U0=2ð Þ tanh πh=λvð Þ, (15)

where λv is the distance between successive vortices in the lower and the upper
line vortices and h is the distance between both lines which is equal to the jet
thickness. It is also noted that the circulation Γ of the vortex increases linearly with

the time according to Γ tð Þ ¼ 1=2ð ÞU2
0t.

In the case of flue instruments with thick jets (d=h< 2) [21], a new vortex is
formed at the inner shear layer (on the resonant pipe side) each time the acoustic
velocity dξm=dt changes sign from directed toward the outside to directed toward
the inside of the resonator (acoustic pressure in the resonator takes the minimum).
A new vortex is formed at the outer shear layer half an oscillation period T=2ð Þ later
(acoustic pressure in the resonator takes the maximum). In the steady state of
oscillation, the circulation of the jth vortex (j = 1, 2, 3, … .) at the inner shear layer

Γ
jð Þ

in and at the outer shear layer Γ
jð Þ

out can be written as [21].

Γ
jð Þ

in tð Þ ¼ 1=2ð ÞU2
0 t� j� 1ð ÞT½ � for j� 1ð ÞT ≤ t≤ jT, (16)

Γ
jð Þ

in tð Þ ¼ 1=2ð ÞU2
0T for t> jT, (17)

Γ
jð Þ

out tð Þ ¼ � 1=2ð ÞU2
0 t� 2j� 1ð Þ T=2ð Þ½ �,

for 2j� 1ð Þ T=2ð Þ≤ t≤ 2jþ 1ð Þ T=2ð Þ
(18)

Γ
jð Þ

out tð Þ ¼ � 1=2ð ÞU2
0T for t> 2jþ 1ð Þ T=2ð Þ: (19)

The acoustic power generated by the vortices is calculated by Eq. (14). The
average of it over the oscillation period T is as follows:

Πvortexh i ¼ � 1=Tð Þ
ð

T

0

ð

VS

ρ ω� Uð Þ ∙udVdt, (20)

where the volume integration is taken over the source region of volume VS. The
vorticity field ω ¼ rotU takes into account the contribution of each vortex at the
shear layers [21]:

ω x, y, tð Þ ¼
X

j

Γ
jð Þ

in tð Þδ x� x
jð Þ

in tð Þ
� �

þ Γ
jð Þ

out tð Þδ x� x
jð Þ

out tð Þ
� �h i

, (21)

where x defines a two-dimensional (2-D) point (x, y), x
jð Þ

in tð Þ the position of the

jth vortex at the inner shear layer, and x
jð Þ

out tð Þ the position of the jth vortex at the
outer shear layer.

It is first necessary to know the position and the circulation of vortices in order
to calculate Πvortexh i from Eqs. (20) and (21). It was done by time-domain simula-
tions in [38]. For the sake of paper space, see the details described in [38].

2.3 Flow visualization and some discussion

2.3.1 Jet-wave drive vs. discrete-vortex drive

Dequand et al. [21] visualized the steady-state periodic flow in the mouth of the
resonator by applying a standard Schlieren technique. They used three types of
flute-like mouth configuration with a common edge of 60°, a common sharp edged
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flue exit, a common flue-to-edge distance d = 24 mm, and different flue channel
height (i.e., jet thickness) h = 4, 14, and 30 mm (d/h = 6, 1.7, and 0.8). The pipe
length L was 552 mm. The initial jet velocity U0 had, respectively, 16.3, 14, and
14.5 m/s (St = 0.19, 0.22, and 0.22). Figure 8 summarizes their result by rough
illustration, though the flow inside the pipe is not so clear in [21].

Frames in the left column [(a), (c), and (e)] show flow conditions at the phase
of u ¼ 0 (the instant from the positive to the negative), while frames in the right
column [(b), (d), and (f)] show flow conditions at the next phase of u ¼ 0 (the
instant from the negative to the positive). Note that the positive u indicates the
upward (outward) acoustic velocity here, but it indicates the downward (inward)
acoustic velocity in [21]. Also, the flow visualization of each case is shown by eight
frames consisting of one oscillation period [21].

The jet-wave drive illustrated in Figure 8(a) reveals that the jet enters into the
pipe at the instant when the acoustic pressure p (t) is maximum because the phase

Figure 8.
Illustrations of flow visualization by Dequand et al. [21]. Top two (a) and (b) have h = 4 mm, middle two
(c), and (d) h = 14 mm, and bottom two (e) and (f) h = 30 mm. The sinusoidal wave inserted in each frame
depicts the acoustic velocity u in the mouth, and the dot gives its instantaneous phase. Note that u is positive
upward (outward) here, but u is positive downward (inward) in [21].
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of p (t) is delayed from u (t) by 90° at the resonance. Therefore, the positive
acoustic power p tð Þ ∙ q tð Þh i is generated, where q tð Þ denotes the acoustic volume
flow into the pipe [see Eq. (1)]. The positive acoustic power is also generated at the
instant given in Figure 8(b). As the result, the volume-flow drive in the jet-drive
model is satisfied very well.

The discrete-vortex drive illustrated in Figure 8(e) indicates that the upper
vortex is just created at the upper flue exit corner and the lower vortex reaches to
the pipe edge in a fully developed shape. Also, Figure 8(f) indicates that the lower
vortex is just created at the lower flue exit corner and the upper vortex is reached to
the pipe edge in a fully developed shape. As a result, the positive acoustic power
given by Eq. (20) or Eq. (14) is generated [see Figure 9(b) below].

Two illustrations of Figure 8(c) and (d) correspond to a boundary condition
between the jet-wave drive and the discrete-vortex drive. Then, the lower and
upper large vortices are located halfway between the flue exit and the edge. This is
probably due to an opposing effect between both drives.

Figure 9 summarizes the phase relation between the physical quantities
involved in the jet-wave drive (a) and the discrete-vortex drive (b). The red dot on
the sinusoidal curve of u corresponds to the phase of u in Figure 8. The time scale is
converted to the integer by 12(t/T). The magnitude of physical quantities is arbi-
trary. The jet-wave drive indicates the antiphase relation between the jet displace-
ment ξe tð Þ at the edge and the acoustic pressure p tð Þ in the resonant pipe. This result
endorses the acoustic power generation in good manner (note that u and ξe are
defined positive upward).

In the discrete-vortex drive, the horizontal arrow connects the vortex creation at
the flue exit and the vortex arrival at the edge as shown in Figure 9(b). Since the
upper vortex rotates anticlockwise, the vector direction of ω�U in Eq. (20) is
upward (positive z direction). During the passage of the upper vortex from the flue
exit to the pipe edge, the acoustic cross-flow u in z direction has negative values.
Hence, Πvortexh i of Eq. (20) takes a positive value during the latter half of an
oscillation period. Similarly, the lower vortex produces positive Πvortexh i during the
former half of an oscillation period. As a result, discrete vortices will create positive
Πvortexh i in an oscillation period. In other words, the vortex configurations illus-
trated in Figure 8(e) and (f)may create the acoustic power for sound generation in
flue pipes.

Figure 9.
Phase relation between the physical quantities involved in the jet-wave drive (a) and the discrete-vortex drive
(b). Their amplitudes are arbitrary. The red dot on the curve of u corresponds to the phase of u in Figure 8. The
horizontal arrow in (b) connects the vortex creation at the flue exit and the vortex arrival at the pipe edge. Note
that the positive direction of u and ξ

e
is upward (outward) and the phase of p is delayed from u by 90° at the

resonance.
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2.3.2 Edge tone vs. pipe tone

The edge tone is a dipole source, whose acoustic pressure directly correlates with
the vortex generation. That is, when the jet impinges the edge by moving from the
downward to the upward, a vortex rotating clockwise is produced just below the
edge, and another vortex rotating anticlockwise exists downstream above the edge.
This configuration of the vortex pair generates the maximum acoustic pressure
above the edge and the minimum acoustic pressure below the edge. When the jet
impinges the edge by moving from the upward to the downward, a vortex rotating
anticlockwise is produced just above the edge, and another vortex rotating clock-
wise exists downstream below the edge. This configuration of the vortex pair
generates the maximum acoustic pressure below the edge and the minimum acous-
tic pressure above the edge [2, 39]. Although Eq. (14) cannot be applied to the edge
tone since there is no acoustic feedback (i.e., u = 0), the acceleration ω�U given by
vortex rotation and jet velocity should be involved in the edge-tone generation. As a
result, the edge tone satisfies:

phase pe tð Þ
� �

� phase ξe tð Þ½ �≈ � π=2, (22)

where pe tð Þ denotes the acoustic pressure below or above the edge. This phase
relation is clearly different from that of the pipe tone shown in Figure 9(a):

phase p tð Þ½ � � phase ξe tð Þ½ �≈ π: (23)

The difference between the edge tone and the pipe tone is reflected in Eqs. (22)
and (23) in good manner.

2.3.3 Feedback loop gain and time delay of the jet wave in the jet-drive model

Let us consider the feedback loop to find out the time delay of the jet wave
which fulfills the phase condition for sound generation. As mentioned in Section
2.1.2, the jet particle pass may be determined as soon as the jet issues from the flue
to the acoustic field in the mouth [26]. At that instant, the initial transverse dis-
placement ξf tð Þ of the jet at the flue exit is supposed to be non-zero and related with
the acoustic velocity uf tð Þ at the flue exit as follows [38, 40]:

ξf tð Þ=h ¼ uf tð Þ=U0, (24)

where h and U0 are the jet thickness and jet velocity at the flue exit, respectively.
The starting point of the feedback loop is uf tð Þ, which creates ξf tð Þ. The jet
displacement travels to the pipe edge as the jet wave, and we have at the edge [21].

ξe tð Þ ¼ eμdξf t� τjw
� �

¼ h=U0ð Þeμduf t� τjw
� �

, (25)

which yields the acoustic pressure pj tð Þ at the pipe entrance according to Eq. (7)

in which q tð Þ≈ � Uebξe tð Þ from Eq. (1). Note that Eq. (25) largely simplifies Eq. (4)
by considering the essential elements (spatial amplification and phase velocity) of
the jet wave. The quantity τjw denotes the time delay of the jet wave when it travels
from the flue exit to the edge (τjw ¼ d=UphÞ.

The acoustic pressure pj tð Þ drives the pipe and yields its resonance. As a result,

uf tð Þ at the starting point is fed back through the input admittance Y ωð Þ of the pipe.
The Fourier transform of pj tð Þ is thus given by:
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Pj ωð Þ ¼ ρhδj=d
� �

iωð Þeμde�iωτjwUf ωð Þ, (26)

where Uf ωð Þ is the Fourier transform of uf tð Þ and Ue ¼ U0 is assumed by
neglecting the jet spreading for simplicity [41]. The feedback loop gain G ωð Þ is thus
defined as

G ωð Þ ¼ Y ωð Þ Pj ωð Þ=Uf ωð Þ
� �

: (27)

Hence, the phase condition for the self-sustained (feedback) oscillation is:

phase G ωð Þ½ � ¼ phase Y ωð Þ½ � þ π=2� ωτjw ¼ �2mπ (28)

That is, the time delay τjw of the jet wave must satisfy:

ωτjw ¼ phase Y ωð Þ½ � þ π=2þ 2mπ

¼ phase Y ωð Þ½ � þ mþ 1

4

 �

2π,
(29)

where �2mπ is abandoned because ωτjw is always positive and m (= 0, 1, 2, … .)
denotes the hydrodynamic mode number. Usually, sound generation in flue pipes
occurs for m ¼ 0. Since phase Y ωð Þ½ � ¼ π=2 at the pipe resonance (see Figure 9), we
finally have:

τjw ¼ π=ω ¼ T=2 (30)

for the first modem ¼ 0. Therefore, it may be said that flue instruments are well
excited when the time delay of the jet wave is around half an oscillation period.
More detailed discussion is given in [38, 41]. Although the amplitude condition for
sound generation can be calculated from Eq. (27), we do not have the space enough
to do that.

2.3.4 Time delay of vortex convection in the discrete-vortex model

According to Figure 9(b), the upper and lower vortices created at the flue exit
arrive at the pipe edge with a time delay of T=2, respectively. As explained in
Section 2.3.1 the convection of these two vortices may create the acoustic power
Πvortexh i defined by Eq. (20) for sound generation in flue pipes. Thus, the time delay
of vortex convection τdv in the discrete-vortex model is:

τdv ¼ d=Uc ¼ T=2: (31)

This Eq. (31) just corresponds to Eq. (30) in the jet-drive model. Therefore,
both models provide the same dependence of the oscillation frequency on the jet
velocity.

Although τdv is easily derived from Figure 9(b), it will be desirable to consider
τdv based on the phase balance such as in Eq. (29). The sound generation by the
periodic pulse-like force (produced by each vortex arrival) at the edge will be
maximum when the pulse is in phase with the maximum of acoustic velocity u at
the edge. Since the vortex arrival occurs at the zero-crossing of u [see Figure 9(b)],
the instant of the maximum u is given by τdv � T=4, which should be balanced with
the delay due to the input admittance Y ωð Þ of the resonant pipe. Then, we have the
following phase balance by allowing a time delay of m periods:
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τdv � mþ 1

4

 �

T ¼ phase Y ωð Þ½ �=ω: (32)

This equation is the same as Eq. (29) when it is divided by ω. A similar deriva-
tion of Eq. (32) is given in [38]. When m = 0, Eq. (31) is given from Eq. (32).

2.3.5 Aspect ratio d/h of the jet

The aspect ratio d/h (jet length/jet thickness) is an essential parameter that
discriminates the jet-drive model from the discrete-vortex model as indicated in
Figure 8 based on [21]. The value of d/h = 1.7 set up in Figure 8(c) and (d) seems
to be more favored by the discrete-vortex model. The critical aspect ratio that
discriminates both models is d/h = 2.3 in more rigorous sense [21, 38].

Dequand et al. [21] calculated dξm=dtj jmax=U0 as a function of d/h for both
models, and experimental data on the flue exit with chamfered edges and the pipe
edge with 15° were plotted on the calculated diagram (see Figure 12 in [21]). In very

rough sense, the solution curve of the jet-drive model is proportional to d=hð Þ�1, and

that of the discrete-vortex model is proportional to d=hð Þ1=2. The crossing of the two
curves occurs near d/h = 2.3, and the experimental data approximately fit the
discrete-vortex solution below this crossing and better fit the jet-drive solution
above the crossing. Also, the experimental curve of data points indicates the
maximum value at the crossing or the critical aspect ratio. It was experimentally
confirmed on four kinds of the flue-edge geometry (see Figure 10 in [21]). Fur-
thermore, Auvray et al. [38] extended similar calculation for different oscillation
regimes (m = 0, 1; f = f1, f2) (see Figure 8 in [38]). According to [38], the critical
aspect ratio depends on the hydrodynamic jet mode m. For an eolian regime (m = 1,
f = f2), the critical aspect ratio is much larger (d=h ffi 13).

2.4 Vortex-layer model

Howe [18] and Dequand et al. [21] proposed the discrete-vortex model driven
by thick jets (d/h < 2) as explained in Section 2.2. However, there seems to be a
room for the vortex even in the sound generation of flue instruments driven by
thin jets that satisfy d/h > 2. Since an actual jet has a velocity profile as indicated
by the broken line in Figure 10(a), the vorticity can be formed along the boundary
between the jet and the surrounding fluid. As the result, a layer (or sheet) of
vorticity is organized along an immediate vicinity of the jet. The upper layer con-
sists of the positive vorticity (the counterclockwise-rotating tiny vortices), and the
lower layer consists of the negative vorticity (the clockwise-rotating tiny vortices).
This physical picture depicted in Figure 10(a)may be called the vortex-layer model
on the sound generation in musical flue instruments [2, 28].

It should be carefully noted that actual sound generation is three-dimensional
(3-D) as inferred from the volume integral of Eq. (14), but our vortex-layer model
illustrated in Figure 10(a) assumes the two-dimensionality (2-D). This 2-D
assumption corresponds to the 2-D assumption of U and u that has been conven-
tionally made in acoustical models. See Figures 10 and 11 in [28] on the 3-D nature
of U and u. The PIV observation on a plane sheet by the laser (see Section 4.1 and
Figure 14) is based on the 2-D assumption above.

Since u is periodic, the time average ΠG tð Þh i should be null if ω� U is stationary
in time as shown in Figure 10(b). However, since the actual jet has any fluctuation,
if ω�U has a component that changes temporarily in accordance with temporal
change of u, non-zero value of ΠG tð Þh imay be expected from the unbalance between
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the upper and lower vortex layers. Hence, the sound generation in flue pipes may be
yielded by the interaction between the jet vortex layer and the acoustic mouth flow.
In this sense, ω�U and (ω� UÞ ∙umay be called the aeroacoustical source term (with
the same dimension as the acceleration) and the acoustic generation term, respectively.

Helmholtz [30] already suggested the importance of the jet vortex layer. His
vortical surface (or stratum) that has a very unstable equilibrium acts as “an accel-
erating force with a periodically alternating direction” to reinforce the inward and
outward velocity at the pipe entrance. Interestingly enough, this physical picture of
Helmholtz is very similar to the jet vortex-layer model shown in Figure 10 [2, 28]. It
should be recognized that the volume-flow drive first proposed by Helmholtz [30]
is based on his physical concept of the vortex layers formed along the jet flow.

3. Vortices on sound dissipation

3.1 Sound dissipations in linear acoustics

Let us briefly discuss the mechanisms of sound dissipation (or absorption) in
flue instruments because the self-sustained musical instruments must overcome the
acoustic dissipations involved in them. At first let us consider within the field of
linear acoustics and start from sound dissipation in free space.

3.1.1 Classical absorption and molecular absorption in free space

In free space, the classical sources of dissipation are internal friction and heat
conduction. Both phenomena tend to equalize the local variations of the particle

Figure 10.
Conceptual sketch of the vortex-layer model on sound generation in flue instruments [2, 28]: (a) the vortex
layers (consisting of tiny vortices) along both sides of the jet flow and (b) the generation and cancelation of the
aeroacoustical source term ω�U. The dashed line depicts a lateral profile of the jet velocity U.
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velocity and temperature accompanying the acoustic wave [42]. As a result, the
acoustic energy is removed from the acoustic wave.

The equations on dissipation due to internal friction were derived by
G. Stokes in 1845 and those on dissipation due to heat conduction by G. Kirchhoff
in 1868. A plane sound wave is exponentially damped in the direction of propaga-
tion (x direction): e�αx. The coefficient αF of the dissipation due to internal
friction is [42]

αF ¼ 2ω2=3c3
� �

η=ρð Þ, (33)

where c is the propagating sound velocity, η the dynamic viscosity, and ρ the air
(or generally, gas) density. The coefficient αH due to heat conduction in gases is of
the same order of magnitude as αF and is proportional to ω2 [42]. The distance
within which the sound level falls by 1 dB (an amplitude decrease of about 11%) due
to classical absorption is very large in air (1-kHz wave gives 5 km; 10-kHz wave
50 m) [42]. Therefore, classical dissipation is almost negligibly weak.

The major source of strong dissipation in free space is molecular sound absorp-
tion. The translational and rotational energies of gas molecule are very quickly
increased by a sudden impact, while the oscillatory energy builds up gradually at
the expense of the translational and rotational energies [42]. The delay in reaching
thermal equilibrium is called relaxation, and its time constant is called the relaxa-
tion time τR . The source of molecular absorption in air is oscillatory relaxation of
oxygen. The relaxation frequency (defined as 1=2πτR) of pure oxygen is very low
(about 10 Hz). However, the water vapor content of air greatly shortens the relax-
ation time and shifts the absorbing range into the audio frequencies (see Figure 3.7
in [42]). The acoustic dissipation in moist air is significantly greater than the
classical absorption given by αF þ αH.

3.1.2 Sound dissipation at the internal wall of a long pipe

Next let us consider the dissipation in the confined air instead of in free air. If a
sound wave propagates in a long pipe where sound reflection can be neglected, it
suffers additional losses because of internal friction and heat conduction in the
boundary layer next to the wall. The acoustic particle velocity parallel to the pipe
axis is zero at the internal wall surface because of friction (called no-slip condition).
Its maximum value is not reached until the distance from the wall amounts to a
quarter of viscosity wavelength λvw (see Figure 3.10 in [42]). This λvw characterizes
the thickness of the wall boundary layer and is given by

λvw ¼ 2πδ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2η=ωρ
p

≈ 1:4 cms�1=2
� �

=
ffiffiffi

f
q

, (34)

where δ is the skin depth and the equation of the right-hand side is for the air
with the kinematic viscosity η=ρ = 1.5 � 10�5 m2 sec�1 [42].

The losses occurring in the wall boundary layer due to viscous friction and heat
conduction (the wall is considered as a surface with a constant temperature and the
thermal change followed by the acoustic wave should be null at the wall surface)
attenuate sound waves in pipes. A parameter to appropriately express the sound
attenuation in a pipe is the ratio of the pipe radius R to the boundary layer thickness
(or the skin depth) δ. This ratio defines the quality factor Q or the inverse of the loss

factor ζ (generally, Q ¼ ζ�1 ¼ R=δ). The values of Q for viscous friction and heat
conduction are, respectively, given as [1, 43].
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Qv ¼ ωρ=2ηð Þ1=2R,Q t ¼ ωρCp=2κ
� �1=2

γ � 1ð Þ�1R, (35)

where η denotes the viscosity of the air, Cp the specific heat at constant pressure,
κ the thermal conductivity, and γ the ratio of specific heats. The ratio of thermal loss

to viscous loss is given by Q t
�1=Qv

�1 ¼ 0:46 for the air.
The attenuation constant αw of a round pipe is a function of the frequency f (in

hertz) and the pipe radius R (in meters) [1, 42, 43]:

The attenuation constant α in total is given by adding Qrad
�1 in Eq. (36):

αw ¼ ω=2cð Þ Qv
�1 þ Q t

�1
� �

≈ 3:1� 10�5 f 1=2=R
� �

in m�1

¼ 2:7 � 10�4 f 1=2=R
� �

in dBm�1,
(36)

where αw is approximately evaluated in m�1 and dBm�1. The conversion is done
by the relation αw in dBm�1ð Þ ¼ 20 log e� αw m�1ð Þ ¼ 8:68 αw m�1ð Þ based on the
exponential decay. For example, the modern flute with R≈ 10 mm indicates
αw ≈0:85 dBm�1 for f ¼ 1000 Hz. This attenuation is much larger than that occurs
in free air, but still small enough. For example, tubes many meters long formerly
were used on ships to transmit commands from the bridge to the engine room [42].
This large but still small enough magnitude of αw is the right reason why musical
flue instruments and other wind instruments work out well. In order to suppress
sound propagation in tubes (or in air conditioning systems) from the viewpoint of
noise control, the tube walls should be covered with sound-absorbing material.

3.1.3 Finite cylindrical pipe: acoustic resonance and sound radiation

Since most musical flue instruments are of finite length, the sound wave that
propagates in the instrument bore is reflected at both open ends. As a result, the
acoustic resonance occurs if the energy enough to overcome all dissipations is
supplied to the bore. The acoustical condition of the bore is characterized by the
input impedance or admittance in which wall boundary losses defined by αw is
involved. However, the reflection is not complete, and a little of the acoustic energy
confined in the bore escapes to free space. This is sound radiation, which is another
source of sound dissipations in the bore.

If the resonance condition is given by kL ¼ nπ (k ¼ ω=c denotes the wave
number and n ¼ 1, 2, 3, … :) and the source strength of radiation at each open end is
the same, we have the value of Q for sound radiation as follows [43]:

Q rad ¼ n=ωn
2

� �

πc0c=R
2

� �

, (37)

where ωn is the angular frequency at the nth mode resonance, c0 the sound speed
in free space, and c the sound speed in the bore (c is a little smaller than c0 due to
wall boundary losses [1, 43]).

Generally, the loss factor or the inverse of Q is defined as [43, 44].

Q�1 ¼ 1

2π

time average of the power lost from the bore

time average of the power stored in the bore
: (38)

Therefore,

Πradh i= ΠBh i ¼ 2πQrad
�1, (39)
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where Πradh i denotes the time average of the power lost from the bore by sound
radiation and ΠBh i the time average of the power stored in the bore. For f = 300 Hz
and R = 25 and 15 mm, we have Q rad ¼ 164 and 454, respectively. We can thus
understand that the radiated power is very little from the evaluated values
Πradh i= ΠBh i ¼ 0:038 and 0:014. This implies that the first priority is clearly offered
to the resonance in wind instruments. Sound radiation is only the faint leakage of
the power stored in the bore. In spite of it, we can easily hear instrument tones.

α ¼ αw þ αrad ¼ ω=2cð Þ Qv
�1 þ Q t

�1 þQ rad
�1

� �

, (40)

where αrad indicates the attenuation constant due to sound radiation. Also, the

total Q�1 defined by Eq. (38) is equal to Qv
�1 þ Q t

�1 þQ rad
�1

� �

. Since Q (called the
quality factor) indicates the sharpness or height of the resonance, it is adequate to

show Q instead of Q�1 for wind instruments. Figure 11 depicts Q as a function of f
for the bores of the clarinet, flute, and bass flute. We may well understand that
wind instruments with cylindrical bores have appreciably high Q values over their
playing ranges.

3.2 Acoustically induced vortices as the final dissipation agent

The above description in 3.1 on sound dissipations is correct within the scope of
linear acoustics. Then, as the input energy from the player continues to increase, the
output energy (viz., the sound level) from the instrument keeps increasing. How-
ever, in actual wind instruments, the saturation of the output energy necessarily
occurs. In other words, sound generation is nonlinear.

An important source of the saturation in flue instruments is acoustically induced
vortices (simply, acoustic vortices) at the pipe edge. These acoustic vortices work as
the final dissipation agent that determines the final amplitude of the saturated sound.

3.2.1 Visualization of acoustic vortices and their modeling

Jet and vortex behaviors during attack transients in organ pipe models were
studied intensively using a high-speed video camera and a smoked jet in [17].
Experimental procedures are described in [17, 29]. Figure 12(a) and (b) is the
visualization result which shows the exterior vortex (a) is rotating clockwise and
the interior vortex (b) is rotating anticlockwise (the blowing pressure is about

Figure 11.
The quality factor Q as a function of f for cylindrical bore instruments. The bore radius R = 7.3, 9.5, and
17 mm for the clarinet, flute, and bass flute, respectively.
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150 Pa just before the steady state and the sounding frequency 283 Hz). These
vortices are making up an acoustic dipole. We can see the same rotation of the
interior vortex in Figure 12(c). That vortex was recognized as acoustic vortex in
[16] (the steady-state blowing pressure was 270 Pa and the sounding frequency
477 Hz). Therefore, the vortices in Figure 12(a) and (b) may be regarded as
acoustic vortices, too. An interior vortex is produced in Figure 12(a) when the jet
just crosses the edge from the outside to the inside, while that in Figure 12(c) is
produced when the jet is deflected to the inside. This difference may be due to
various causes. A long flue-to-edge distance d (=10.2 mm), almost null offset of the
edge, a very slow buildup of the blowing pressure, and a low final blowing pressure
were used in [17], while a much shorter d, a large offset, a quick buildup of the
blowing pressure, and a much higher final pressure were used in [16].

These acoustic vortices shedding from the edge are considered to serve as a
significant source of the sound energy dissipation in large-amplitude nonlinear
oscillation [16]. According to Figure 5 [the same organ pipe model was used in
Figures 5, 12(a) and (b)], the acoustic particle velocity at the mouth is estimated as
2.3 m/s for the jet blowing velocity of 15.8 m/s (corresponding to the jet blowing
pressure of 150 Pa). The acoustic velocity is thus about 15% of the flow velocity and
seems to be large enough to cause nonlinear oscillations.

A physical modeling of the acoustic vortex generation in organ flue pipes is
shown in Figure 13 in comparison with the hydrodynamic vortex generation. A
typical hydrodynamic vortex formed above the edge at the starting transient rotates
anticlockwise as shown in Figure 13(a). At this time the vorticity vector ω is in the
negative y direction and ω�U is in the positive z direction (upwards) when the jet
velocity U is in the positive x direction. On the other hand, an acoustic vortex
formed above the edge [see Figure 12(a)] rotates clockwise as shown in
Figure 13(b). Then, ω� U is in the negative z direction. Since the jet oscillates from
the upward to the downward in Figure 12(a), the acoustic particle velocity u takes
negative maximum amplitude as known from Figure 9(a). This condition is indi-
cated by the dashed line around the mouth area in Figure 13(b). As a result, the
inner product ω�Uð Þ ∙u becomes positive and the absorption of sound energy by
the vortex is caused according to Eq. (13). Half a period later, an acoustic vortex
rotating anticlockwise is formed below the edge as shown in Figures 12(b) and 13(c),
and ω�U as well as u is in the positive z direction. Hence, ω� Uð Þ ∙u is positive
again as shown in Figure 13(c), and sound energy absorption takes place at the
pre-steady state or the steady state.

Although the jet deflection shown in Figure 12(c) is negative, the jet might be
moving upward [the phase of ξe may be around 12 t=Tð Þ ¼ 1 in Figure 9(a)] and
then u as well as ω� U is possibly upward as shown in Figure 13(c). Also, the
effects of the pressure drive [cf. Eqs. (2) and (3)] should be considered because of

Figure 12.
Visualized examples of acoustic vortices. (a) and (b): Visualized using a high-speed video camera and a smoked
jet when the jet blowing pressure is 150 Pa and the sounding frequency 283 Hz [17]; (c): Visualized by means
of a standard Schlieren technique when jet blowing pressure is 270 Pa and the sounding frequency 477 Hz [16].
Note that the jet-edge configuration and the buildup of the blowing pressure in frames (a) and (b) are quite
different from those in frame (c). Also, frames (a) and (b) appear just before the steady state (at the
“pre-steady state” in [17]), while frame (c) appears at the steady state.
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quite high blowing pressure. The phase lag due to the pressure drive canmake the
acoustic velocity in the case ofFigure 12(c)morepositive as inferred fromFigure 8(a).
Then, ω� Uð Þ ∙u>0will be realized in better fashion.

Interestingly enough, the acoustic vortices shown in Figure 12(a) and (b) were
not observed at the steady state in [17]. Instead of that, we observed a steadily
deflecting jet, particularly its penetration into the pipe as captured in Figure 13 in [17].
According to this result, we may consider that the acoustic vortex is formed to lead
the finally saturated amplification of the jet stability wave by absorbing the final
excess in the acoustic energy generation occurring at the pre-steady state. The acous-
tic vortex may be then conveyed by the jet flow into the region where the vorticity
can no longer continue to interact with the acoustic field [35]. Since the completely
steady state has already reached the energy balance, any more acoustic vortices seem
to be not needed. Instead, the acoustic vortices will be strongly needed just before the

Figure 13.
Schematic of vortex formation in organ flue pipes. (a): A hydrodynamic vortex formed at the initial phase of the
starting transient; (b) and (c): An acoustic vortex formed at the pre-steady state [17].
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completely steady state or at the pre-steady state. Also, the acoustic vortex should be
discussed from the common viewpoint of acoustic power dissipation and radiation of
high-amplitude jet noise at duct termination [3, 15, 35, 44].

3.2.2 Acoustic power balance between vortex layers and acoustic vortices

Acoustic power generation by the unbalance between the upper and lower
vortex layers (cf. Section 2.4) will be balanced with acoustic power dissipations by
the wall boundary effects (cf. Section 3.1.2), sound radiation (cf. Section 3.1.3), and
acoustic vortices in the sense of time average:

ΠG tð Þh i ¼ Πα tð Þh i þ ΠD tð Þh i, (41)

where ΠG tð Þ is given by Eq. (14) with ω ¼ ωvl concerning the vortex layer, Πα tð Þ
is the power lost from the bore that is given by the total attenuation constant of
Eq. (40), and ΠD tð Þ is given by Eq. (13) with ω ¼ ωav concerning the acoustic
vortex. A more exact description of ΠG tð Þ derived from the unbalance between the
upper and lower vortex layers will be given in Section 4.1.

3.2.3 Acoustic losses due to vortex shedding at the edge

In the framework of the jet-drive model, Dequand et al. [21] assumed that the
separation of the acoustic flow qm tð Þ ¼ dξm=dtð Þdb occurs at the edge by following
Verge et al. [12]. This acoustic flow separation causes a free jet [45].

Although they neglect the effects of the separation of the jet flow and their
viewpoint is different from the modeling illustrated in Figure 13, it seems to be
worth taking into consideration. The effects of vortices can be represented by a
fluctuating pressure pv across the mouth [12, 21]:

pv ¼ � 1=2ð Þρ qm=cvdb
� �2

sign qm
� �

, (42)

where cv (= 0.6) is the vena contracta factor of the free jet. The time-averaged
power losses due to the acoustic vortex shedding at the edge is then given as [21].

Πlosth i ¼ pvqm
	 


¼ � 1=2Tð Þ ρdb=cv
2

� �

ðT

0
dξm=dtð Þ2 dξm=dtj jdt, (43)

where it is assumed that the dissipation occurs during the entire period T.
Therefore, the power dissipation given by Eq. (43) may be considered as an

upper limit approximation, and by neglecting Πα in Eq. (41), it can be roughly
balanced with the power generation by the jet drive given by Eq. (9) [12, 21]:

Π jet

	 


þ Πlosth i≈0: (44)

If the integral in the right-hand side of Eq. (43) can be replaced with a product

of dξm=dtð Þmax
2 dξm=dtj j and an appropriate division of T by supposing a

rectangular-like waveform of ξm tð Þ, we have the following relation between
the maximum acoustic velocity dξm=dtð Þmax over the mouth, the Strouhal number
St ¼ fd=U0, and the aspect ratio d=h of the jet [12, 21]:

dξm=dtð Þmax=U0

� �2 � St h=dð Þ3=2: (45)
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This interesting non-dimensional relation was almost confirmed by the experi-
ment on thin jets (d=h> 2) for the four different flue-edge geometries (see Figure 11
in [21]). The maximum of non-dimensional amplitude dξm=dtð Þmax=U0 reached for
the edge with an angle of 60° is 20% higher than that obtained for the edge with an
angle of 15°. This difference in amplitude can reflect the difference between the
flute and the recorder. The recorder with a sharper edge probably brings about
stronger losses due to vortex shedding at the edge.

4. Vortices on sound generation

In this section let us consider what the cause of the jet oscillation is for thin jets
(d=h> 2). Fletcher’s displacement model of Eq. (4) [1, 31] has no definite physical
basis, and Coltman’s velocity model [22, 23] lacks in quantitative analysis. The
present author proposed an acceleration model based on the pressure difference
between the upper and lower surfaces of the jet [26]. Although this model could not
involve the effects of the jet instability [20], it could successfully predict the possi-
bility of underwater organ pipes [46]. Therefore, another acceleration model based
on the vorticity generation is greatly expected [28].

4.1 Vortex layer along the jet visualized by PIV

A great advantage of PIV is to yield global and quantitative information on the
flow-acoustic interaction. The PIV was already successfully applied to the experi-
mental research of the edge-tone generation [6], where the complicated jet-edge
interaction was investigated to accurately localize the vortex cores (dipole sources)
just before the edge. Also, it was applied to measure the flow velocity and acoustic
particle velocity [47]. Measurements of both quantities are required to consider
sound generation based on the vortex sound theory.

4.1.1 Measurement requirements

Since the vortex sound theory hypothesizes an irrotational potential flow for u
[18], the measurement should meet the requirement for this potential flow. How-
ever, actual acoustic cross-flow u in flue instruments tends to yield a non-potential
flow through any nonlinear process at large-amplitude conditions. Hence, the mea-
surement should be carried out at low amplitudes to assure the potential flow.
Moreover, the PIV cannot evaluate the contribution from the harmonics but only
estimates the instantaneous flow magnitude on a plane sheet illuminated by the
laser. Hence, the acoustic cross-flow should be measured based on the acoustical
field with a waveform as sinusoidal as possible.

Both requirements of (1) a potential flow and (2) a sinusoidal flow for u are not
easily fulfilled at the same time in rigorous manner. A practical way seems to be a
measurement at appropriate low amplitudes (the drive at piano level was better
than that at pianissimo level [28]). Bamberger [48–50], who first introduced the PIV
into the field of musical acoustics, carried out his measurement at mezzo-forte level
by driving a flute at a very high pitch of about 1150 Hz. This sounding condition
seems to satisfy the sinusoidal flow condition because a very high tone of the flute
almost consists of only the fundamental. This is due to the cutoff frequency around
2 kHz of the column resonance of the modern flute [51]. However, it is uncertain
whether the requirement of the irrotational potential flow on u is satisfied or not.
On the other hand, an organ pipe with a low-frequency resonance (at about 195 Hz)
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is driven at low amplitudes to satisfy the requirement of the potential and sinusoidal
flow on u simultaneously [28].

Since uj j≪ Uj j, it is very difficult to measure the distribution of u over the
mouth area using the PIV when the pipe is driven by the air jet. Therefore, both
measurements of u and U should be separately carried out. Of course, U cannot be
measured without using the jet. On the other hand, u can be measured by resonat-
ing the pipe externally, for example, by using an inverse exponential horn [28, 49].
A larger cross section of this horn is firmly fitted to the loudspeaker diaphragm, and
a smaller cross section is coupled to the pipe end with a distance larger than the end
correction to maintain the resonance pattern of the pressure distribution along the
air column. The loudspeaker is driven by an oscillator to generate a sinusoidal wave
in the pipe with the same frequency and amplitude as those when the jet drives the
pipe. The organ pipe is thus driven by this loudspeaker horn system when u is
measured.

Also, in order to experimentally examine the generation of the vortex sound
based on Eq. (14), both measurements of u and U must be carried out at the same
condition as exactly as possible. That is, these vectors must be measured at the same
phase of the generating sound and at the same measurement area by using the same
organ pipe. However, since u and U cannot be measured simultaneously, the jet
drive and the loudspeaker horn drive must be switched as quickly as possible while
maintaining the same sounding condition and the same measurement condition.
The phase-locked PIV measurement on u and U (see Figure 14) is thus essentially
important to evaluate Eq. (14). Since uj j≪ Uj j, u should be first measured using the
horn drive at a given phase of the sound, and the U is measured at the same phase
by quickly switching the horn drive to the jet drive.

4.1.2 Measurement procedures

PIV measurement of u and U was carried out twice (Trials 1 and 2) in [28]. The
fundamental frequencies of the pipe tone were 192.0 Hz and 192.1 Hz, respectively
(the cutoff frequency of the horn was designed to be about 150 Hz). The averaged
sound levels were 59.0 dB and 59.3 dB, respectively. When the averaged sound level
was 57.8 dB (the pianissimo level), the third and fifth harmonics were not negligible
as compared with these trials. On the other hand, when the averaged sound level
was 60.2 dB, the second harmonic was only 10 dB lower than the fundamental.

Figure 14.
Experimental setup based on the phase-locked PIV system (the PIV itself is manufactured by Dantec dynamics).
The blower and the loudspeaker horn system are alternately used for the jet drive to measure the jet velocity and
for the horn drive to measure the acoustic cross-flow velocity, respectively [28].
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When the level was 69.4 dB, the second harmonic showed almost the same magni-
tude as the fundamental. As a result, two trials above with the piano level excitation
seem to yield good conditions satisfying the measurement requirement for u. It
should be noted that all these tones with their levels from 57.8 dB to 69.4 dB are
produced by the same first mode resonance.

The phase lock of the PIV system is easily implemented if the external trigger
signal is produced to activate the laser and the CCD camera. This is because the PIV
system can set the trigger delay almost arbitrarily through the software embedded
in the trigger signal production system shown in Figure 14. The trigger delay was
set to be (1/12)T times n (n = 0, 1, 2, ..., 11), where T denotes the period of the pipe
tone. For more details on the production of the external trigger, refer to [28]. As a
result, the phase-locked measurement of u and U is carried out at the specific
phases (Phase 0, Phase 1, Phase 2, ..., Phase 11). Note that Phase 0 is defined by the
buildup of the positive trigger pulse when the trigger delay is not applied.

In the experiment a metallic organ pipe, which was made by a German organ
builder, was measured [28]. Its cross-sectional structure (in x-z plane) around the
mouth is already shown in Figure 1, and its important geometry is as follows: the
physical pipe length L = 793 mm, the pipe inner diameter 2R = 43.6 mm, the flue-to-
edge distance d = 8.8 mm, the jet thickness h = 0.75 mm, and the mouth breadth
b = 31.9 mm. The value of d/h is 11.7, much larger than 2. It should be noted that the
edge is not very sharp like a wedge but plate-like as an extension of pipe wall,
although the edge tip is 0.4 mm thick compared to the pipe wall that is 1.0 mm
thick. Such an edge and flue are common in metal flue pipes as illustrated in
Figure 17.6 of [1].

4.1.3 Calculation of the acoustic generation formula

The PIV can derive the vorticity map from the jet velocity distribution. The
vorticity ω ¼ rot Uð Þ at a field point is calculated from the 2-D velocities at four
discrete points surrounding the point of interest. Therefore, the aeroacoustical
source term ω� U and the acoustic power generation term ω� Uð Þ∙u can be
calculated from the measurement of velocity fields u and U (see [28] on their
measurement results, which are spared in this chapter).

The vorticity map given at Trial 1 is illustrated in Figure 15(a). Since the 2-D
velocity U was measured in x-z plane, the vorticity vector has only y direction

component [ω ¼ 0,ωy, 0
� �

]:

ωy x, zð Þ ¼ ∂Ux

∂z
x, zð Þ � ∂Uz

∂x
x, zð Þ: (46)

The vorticity is formed along the upper and lower boundaries of the jet. The
upper layer possesses the positive vorticity (the counterclockwise rotation of small
vortices) and the lower layer the negative vorticity [cf. Figure 10(a)]. These layers
may be called vorticity layers or simply vortex layers. At Phases 7 and 10, large-scaled
positive vortices are indicated before and above the edge, but these do not seem to
be important because the magnitudes of U and u there are very small. As a result,
the effects of these vortices almost completely disappear as shown in Figure 15(c).
It should be correctly recognized that vortex shedding from the edge tip
(cf. Figure 6) is never observed in Figure 15(a). This implies that Howe’s vortex-
shedding model may not be applicable to the sound generation in organ flue pipes
that are usually driven by thin jets.

The resulting aeroacoustical source term ω� U is displayed in Figure 15(b),
where the upper and lower layers of the vorticity yield the positive z and negative z
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components of ω� U, respectively. The maximum magnitude of ω� U, which is

about 2� 105 m=s2ð Þ, can be observed near the flue. The opposing vectors of ω�U
along both layers seem to almost cancel each other as depicted in Figure 10(b).
However, since ω� U has a very large acceleration, an imperfect cancelation (or a
slight unbalance) between ω� U vectors along both layers yields a significant effect
in acoustical events.

4.1.4 Generation of the acoustic power from the vortical field

Acoustic generation term ω� Uð Þ � u defined by Eq. (14) is shown in Figure 15(c).
Since u indicates the outflow at Phases 1 and 4, and inflow at Phases 7 and 10,
ω�Uð Þ � u takes the opposite sign along the vortex layer between these phases. This
sign inversion occurs near Phases 0 and 6 [28]. The maximummagnitude of ω� Uð Þ �
u appears near 1–2 millimeters downstream from the flue at Phases 3 and 8 as about

Figure 15.
Aerodynamical quantities derived from the phase-locked PIV measurement at the organ pipe mouth: (a)
vorticity ω; (b) aeroacoustical source term (acceleration) ω� U; (c) acoustic generation term ω� Uð Þ∙u.
The positions of the flue exit and the edge tip correspond to (x, z) = (2.0 mm, 2.2 mm) and (x, z) = (10.5 mm,
3.8 mm), respectively [28].
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4:2� 104 m2=s3ð Þ. The jet crosses the edge from the inside at Phase 3 and from the
outside at Phase 8 as inferred from Figure 15(c). Although the magnitude of
ω�Uð Þ � u is relatively small near the edge, it should be noted that ω�Uð Þ � u
originally has very large values in acoustical sense.

Since the volume integral defined by Eq. (14) is not easily executed, the acoustic
power generation from the vortex layer is estimated from the following surface
integral by assuming the 2-D property (see Figure 11 in [28]) of u and U:

∂ΠG tð Þ=∂y≈ �
ðð

ρ ω�Uð Þ � udxdz: (47)

This surface integral, which may be called the instantaneous 2-D vortex
sound power, is carried out at each phase, and the result is represented in
Figure 16(a) and (b) concerning Trials 1 and 2, respectively. The integral area is
restricted to 1≤ x≤ 13 mm and 1≤ z≤ 9 mm to reduce the calculation error caused
from the area irrelevant to the acoustic generation term. Also, another scale of the
ordinate is added to the right side of Figure 16 in order to give a rough estimate of
the magnitude of ΠG tð Þ. Since the mouth breadth b of our organ pipe is 31.9 mm,
ΠG tð Þ is estimated as [∂ΠG tð Þ=∂y]�0:030 (m) by assuming almost perfect 2-D
property of u and U.

Significant double-peak structure of ΠG is clearly demonstrated in Figure 16(a).
A larger peak is indicated at Phases 2, 3, and 4 when the jet crosses the edge from
the inside and moves to the outside (cf. Figure 15). On the other hand, a smaller
peak is shown at Phases 10 and 11 when the jet enters deeply into the pipe. It should
be noted that the jet crosses the edge from the outside at Phase 8 and almost null
vortex sound power is generated at Phase 8. Hence, this smaller peak occurs in a
little phase delay from the impingement of the jet against the edge. The temporal
average of ΠG estimated from the 2-D vortex sound power in Figure 16(a) will take
a definitely positive value. Therefore, it may be recognized that the acoustic power
is generated from the jet vortex layers. Although Figure 16(b) shows the charac-
teristics similar to those of Figure 16(a), the value at Phase 3 seems to be too large
and erroneous because of the instant when the jet impinges against the edge [28].

4.1.5 Dominant area for the acoustic power generation and receptivity problem

The maps of the vorticity and aeroacoustical source term definitely indicate
much larger magnitudes at the flue side as shown in Figure 15(a) and (b), respec-
tively. On the other hand, the acoustic flow velocity takes much larger magnitudes

Figure 16.
The 2-D vortex sound power (left ordinate) and vortex sound power (right ordinate) as a function of the phase:
(a) trial 1 and (b) trial 2 [28].
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at the edge side (see Figures 5(a) and 7 in [28]). It should be then discussed which
side is more dominant for the acoustic power generation.

The area for the surface integral of Eq. (47) is now set to be 2≤ x≤ 11 mm and
1≤ z≤ 6 mm. Then, this area is divided into two at x ¼ 7, 8, and 9 mm. Hence, we
have six sub-areas with the same z extent. The calculation result is demonstrated in
Figure 12 of [28]. A very sharp contrast is displayed between area 5 (2≤ x≤ 9 mm)
and area 6 (9≤ x≤ 11 mm): Area 5 yields larger negative values of ∂ΠG tð Þ=∂y at
Phases 3, 4, and 5; area 6 yields much larger positive values of ∂ΠG tð Þ=∂y at the same
phases. Hence, it may be concluded that such a small area as area 6 (very close to
the edge) is most responsible for the acoustic power generation whose instanta-
neous contributions are given from Phases 2 to 5.

Also, the phase relation between the jet displacement, the acoustic velocity, and
the acoustic pressure at the edge can be considered based on the PIV measurement
results. The result is the same as Figure 9(a) (see Figure 13 in [28]). The dominant
sound generation in our PIV experiment occurs with a phase lag of about 60� 90°
from the jet impingement against the edge [28]. This seems to verify that our
experiment satisfies the requirements for the volume-flow model.

Coltman [52] discussed the activating force for the jet wavy motion. This is the
most difficult problem in the flue instrument acoustics and is defined as the prob-
lem of the receptivity (the generation of jet oscillation by acoustic flow perturbations
at the flue exit) [10]. Our present study based on the PIV measurement demon-
strated that the aeroacoustic source term ω� U (having the dimension of the
acceleration) associated with the vortex-layer formation along the jet could activate
the jet oscillation in an organ pipe. More precisely, an incomplete cancelation (or a
net unbalance) of ω�U between both sides of the jet can activate (oscillate) the jet.

Since this ω�U can also activate the jet motion in the edge-tone generation
[3–6, 18], the vortex-layer formation may be regarded as the fluid-dynamical
mechanism common to the edge-tone generation and the pipe-tone generation. This
fluid-dynamical model, which is a leading candidate to solve the receptivity prob-
lem, may be referred to as the acceleration unbalance model [28]. In the acoustical
framework, this model can lead the volume-flow drive in an organ pipe driven by a
thin jet with relatively low blowing pressures. Helmholtz might have envisaged
such a physical picture as mentioned in Section 2.4.

4.2 Vortices from the jet visualized by direct numerical simulations

Sound generation in flue instruments is the revelation of the fluid compressibility
in low Mach number state. This is a contradicting phenomenon in fluid-dynamical
sense. Because of this, direct numerical simulations based on the Navier–Stokes
equation could not achieve satisfactory outcomes [2]. However, in the 2010s we had
many outstanding results from various viewpoints [53–55]. They are mentioning
the roles of vortices, but do not have resolution enough to discuss the almost
invisible (to our naked eyes) microstructure in the jet and its boundaries, particu-
larly vortices in jet vortex layers, which seem to be a key point to solve the recep-
tivity problem in the near future.

For the sake of page limitation, the description here is restricted to an essential
point given by Eq. (24), which manifests the importance of the acoustic velocity
uf tð Þ at the flue exit. By reformulating Fletcher’s displacement model given by
Eq. (4), Onogi et al. [56] proposed another formula that decomposed the jet oscil-
lation into hydrodynamic and acoustic displacements, which were simulated on the
basis of the 3-D compressible Navier–Stokes equations. They supposed the non-zero
initial amplitude at the flue exit and the variable oscillation center with the flow
direction for the jet displacement, although Coltman [52] strongly denied Fletcher’s
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displacement model. Their simulation results (see Figures 7, 9, and 10 and Table IV
in [56]) seem to confirm the non-zero amplitude at the flue exit, and the acoustic
feedback effects on the jet wave may be given at its starting point.

5. Conclusions

Vortices on sound generation are clearly revealed in edge tones (with thin jets,
without any resonators) and cavity tones (with thick, almost semi-infinite, jets,
with cavity resonators). Although visible, relatively large vortices are seen in flue
instruments driven by thick jets, these are in rare cases. Usually flue instruments are
driven by thin jets [(jet length d/jet thickness h) > 2]. Any visible, discrete vortices
do not appear at the flue exit and at the pipe edge in those cases. Instead, vortex
layers are formed along the jet upper and lower boundaries, and the acceleration
unbalance between them drives the jet as a whole in flue instruments.

The jet-wave drive (or the volume-flow drive) and the vortex-layer drive by
thin jets assure sound generation in good manner when the jet enters into the pipe at
the instant when the acoustic pressure is maximum. In the discrete-vortex drive by
thick jets, the acoustic cross-flow (particle velocity) takes positive and negative
values during the passage of the lower and upper vortices from the flue exit to the
pipe edge, respectively. These vortex configurations can create sound power during
the former and latter halves of an oscillation period.

On the other hand, acoustically induced vortices universally appear as the final
dissipation agent. Their role in acoustic energy balance near the saturated state in
flue instruments should be reconfirmed in more detail to exactly judge whether the
acoustic vortex is generated just at the saturated state or just before the saturated
state (at the pre-saturated state).

The receptivity problem is a key point to elucidate the sounding mechanism in
flue instruments from the fluid-dynamical viewpoint. The initial amplitudes of
acoustic quantities at the flue exit are regarded as the starting point for the acoustic
feedback effects upon the jet wave. The vortex-layer model above will then be
expected to solve this problem with the aid of direct aeroacoustical simulations.
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