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Chapter

Evaluation of the Synergistic 
Effect of Amikacin with 
Cefotaxime against Pseudomonas 
aeruginosa and Its Biofilm Genes 
Expression
Azza S. El-Demerdash and Neveen R. Bakry

Abstract

A total of 100 broiler chickens were examined for the presence of Pseudomonas 
aeruginosa by standard microbiological techniques. Susceptibility pattern for 
amikacin and cefotaxime was performed by Kirby-Bauer and microdilution assays. 
Then, checkerboard titration in trays was applied and FIC was measured to identify 
the type of interaction between the two antibiotics. The ability of isolates to form 
in vitro biofilm was detected by two methods, one qualitative (CRA) and the other 
quantitative (MTP), followed by investigating the effect of each antibiotic alone 
and in combination on the expression of biofilm genes. The overall isolation per-
centage of P. aeruginosa was 21%. Resistance to each antibiotic was more than 50%; 
the range of cefotaxime MIC was 8–512 μg/ml, while amikacin MIC range was 1–64 
μg/ml. The FIC index established a synergistic association between tested two drugs 
in 17 (81%) of isolates and the remaining represent partially synergism. The quali-
tative technique showed that only 66.6% of the isolates were considered biofilm 
producers, while the quantitative technique showed that 90.4% of the isolates were 
biofilm producers. Further to RT-PCR investigation, significant repression against 
biofilm-forming genes (filC, pelA, and pslA) was observed for the combination of 
antibiotics when compared with monotherapy.

Keywords: P. aeruginosa, cefotaxime, amikacin, combination therapy, biofilm,  
gene expression

1. Introduction

The infection with Pseudomonas aeruginosa is responsible for humanity in 
poultry and clinical signs including respiratory signs and septicaemia. P. aeruginosa 
produces dyspnea and cheesy deposits on the serous surfaces lining the air sacs 
and peritoneal cavity and also congestion of the internal organs, perihepatitis, 
and pericarditis [1]. Pseudomonas species are not related to disease entity except 
Pseudomonas aeruginosa that has been associated with infection in both man and 
animals. The disease of pseudomonas induces a significant economic loss to the 
farm by causing high mortality of newly hatched chickens and death of embryo at 
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a later stage [2]. Furthermore, Pseudomonas aeruginosa shows innate resistance to 
almost antibiotics in recent years [3, 4].

Due to this intrinsic resistance to antibiotics, its ability to easily develop new 
resistance, its ability to create biofilms, and the recent decline in drug discovery 
programs, P. aeruginosa infections have become an urgent worldwide health concern 
[3, 5]. Recent efforts to focus on this rising challenge comprise repositioning screens 
to recognize commercially permitted drugs with novel antimicrobial activity [6–9] 
and combinatorial drug screens to categorize combinations of traditional antibiot-
ics and novel repositionable modulators [10, 11].

Concomitant use of antibiotics (combination therapy) is recommended for 
severe infections when P. aeruginosa is the suspected pathogen, to prevent the 
development of resistance during treatment and to achieve a wide spectrum of 
activity. In addition to preventing the development of resistance, the combined use 
of antibiotics (as cephalosporins and aminoglycosides) may have synergistic effects 
and may reduce the occurrence of side effects, since each drug is used at a lower 
dose than would be used for monotherapy [12].

Concerning bacterial biofilms, Batoni et al. [13] and Grassi et al. [14] proved a 
strong interaction between the effectiveness of combination therapy and biofilms 
formed by P. aeruginosa. Therefore, the present study concerned the effect of 
cefotaxime, amikacin singly, and in combination besides validating the activity of 
them on biofilm expression of the obtained P. aeruginosa isolates.

2. Material and methods

2.1 Sampling and isolate characterization

A total of 500 samples of the liver, heart, kidney, spleen, and lung (100 each) 
was aseptically collected from 100 freshly dead and diseased with respiratory 
manifestations broiler chickens from different ages and localities in Sharkia prov-
ince, Egypt, from November 2018 to February 2019. All samples were subjected 
to conventional methods for isolation and identification of pseudomonas recom-
mended by the Health Protection Agency [15]. Pseudomonas aeruginosa isolates were 
further identified with API20E kits (BioMérieux, France).

2.2 Antibiotic susceptibility testing

2.2.1 Disk diffusion method

The antimicrobial susceptibility test of the isolates was performed by Kirby-
Bauer disk diffusion test [16]. In brief, each test isolate was swabbed uniformly 
onto the surface of Mueller-Hinton agar plates. Antibiotic sterile disks including 
cefotaxime (CTX: 30 μg) and amikacin (AK: 30 μg) were then placed on to the agar 
surface of the plate. Following incubation, the inhibition zones, in millimeters, were 
measured in duplicate and scored as sensitive, intermediate, and resistant categories 
by the critical breakpoints recommended by the Clinical and Laboratory Standards 
Institute (CLSI) [17].

2.2.2 Preparation of antibiotic stock solution

Standard powder forms of cefotaxime and amikacin were stored at 4°C till usage. 
The stock solution of each antibiotic was prepared by weighing and consequently 
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dissolving suitable amounts of the antibiotics reaching a concentration of 1000 μg/mL 
in Mueller-Hinton broth.

2.2.3 Determination of the minimum inhibitory concentration (MIC)

MIC values of antibiotics were determined by the microdilution method 
following the recommendations of Papich [18]. Stock solutions of antibiotics 
were prepared and added to the bottom of a 96-well microtiter plate (Nunc Inc., 
Roskilde, Denmark). 100 mL of this solution was added to the first well of the 
96-well plate and serially diluted. 100 mL of an overnight culture of P. aeruginosa 
was added to each well at a final concentration of 5 × 105 CFU/mL (colony-forming 
units per milliliter). The microtiter plates were incubated at 35°C for 24 h and the 
MIC determined as the lowest concentration of antibiotics showing no visible 
bacterial growth.

2.2.4 Test for synergism

The synergistic effect of the antibiotic combinations was detected using a 
checkerboard dilution assay [19]. The initial concentration of each drug should 
be fourfold greater than the desired concentration (MIC concentration) and then 
diluted twofold. In a screw cap test tube, 0.25 mL of broth of each two drugs to be 
tested was added to 0.5 mL of broth containing a suspension of the organism to be 
tested to reach the final volume of 1 mL. The inoculum of the bacterial suspension 
(in 0.5 mL of broth) should be approximately 2 × 105 colony-forming unit (CFU) 
to produce a final inoculum of 1 × 105 CFU per mL after the addition of an equal 
volume of the antimicrobial solutions. Each test composed of 36 tubes set hori-
zontally and vertically, 6 rows in one direction contained twofold serial dilutions 
of antibiotic 1, and 6 rows in the other direction contained twofold serial dilutions 
of antibiotic 2; two additional rows contained twofold serial dilution of antibiotic 
1 or antibiotic 2 alone. The tubes were incubated at 37°C for 24 and 48 h, the tubes 
were read as those showing turbidity (+) and those showing no turbidity (−). A 
fractional inhibitory concentration index was used to interpret the results.

2.2.5 Estimation of FIC index

FIC of each agent was calculated by dividing the MIC of the drug in combina-
tion by the MIC of the drug alone. The sum of both FICs (ƩFIC = FIC of antibiotic 
A + FIC of antibiotic B) in each well was used to categorize the combined activity 
of antimicrobial agents at the given concentrations as synergistic (ƩFIC <= 0.5), 
partially synergistic (ƩFIC >0.5 and < 1), additive (ƩFIC = 1), indifferent (ƩFIC >1 
and < 4), and antagonistic (ƩFIC > = 4) [20].

2.3 Phenotypic characterization of biofilm production

2.3.1 Congo red agar test

Freeman et al. [21] have described a simple qualitative method to detect 
biofilm production by using a Congo red agar (CRA) medium. CRA medium was 
prepared with brain heart infusion agar (Oxoid, UK) 37 g/L, sucrose 50g/L, and 
Congo red indicator (Oxoid, UK) 8 g/L. The first Congo red dye was prepared as a 
concentrated aqueous solution and autoclaved (121°C for 15 min) separately from 
the other medium constituents. Then, it was added to the autoclaved brain heart 
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infusion agar with sucrose at 55°C. In this test, the Congo red dye was used as a 
pH indicator, showing black coloration at pH ranges between 3.0 and 5.2. Plates 
with the Congo red agar medium were seeded and incubated in an aerobic envi-
ronment for 24–48 h at 37°C. Isolates were interpreted according to their colony 
phenotypes. Black colonies with dry constancy and rough surface and edges were 
suspected as a positive sign of slime formation, while both black colonies with a 
smooth, round, and shiny surface and red colonies of dry texture and rough edges 
and surface were suspected as intermediate slime producers. Red colonies with 
smooth, round, and shiny surfaces were indicators for negative slime formation.

2.3.2 Quantitative detection of biofilm by microtiter plate method

The biofilm assay is performed by using flat-bottom microtiter plates (Techno 
Plastic Products, Switzerland) as described by O’Toole [22]. P. aeruginosa isolates 
were grown at 37 ̊C in tryptic soy broth (TSB; Oxoid, UK). The bacterial cells 
were then pelleted at 6000 g for 10 min, and the cell pellets were in 5 mL of fresh 
medium. The optical densities (ODs) of the bacterial suspensions were measured 
using a spectrophotometer (Model 6305, Jenway Ltd., Essex, UK) and normalized 
to an absorbance of 1:00 at 600 nm. The cultures were diluted 1:40 in fresh TSB, 
and 200 μL of cells were aliquoted into a 96-well polystyrene microtiter plate and 
inoculated for 24 h at 37°C without agitation. After incubation at 37°C for 24 h, the 
planktonic cells were aspirated, and the wells were washed three times with sterile 
phosphate-buffered saline (PBS). The plates were inverted and allowed to dry for an 
hour at room temperature.

For biofilm quantification, 200 μL of 0.1% aqueous crystal violet solution was 
added to each well, and the plates were allowed to stand for 15 min. The wells 
were subsequently washed three times with sterile PBS to wash off the excess 
crystal violet. Crystal violet bound to the biofilm was extracted with 200 μL of 
an 80:20 (v/v) mixture of ethyl alcohol and acetone, and the absorbance of the 
extracted crystal violet was measured at 545 nm on ELISA reader (stat fax 2100, 
USA). A negative control, crystal violet binding to wells was measured for wells 
exposed only to the medium with no bacteria. All biofilm assays were performed 
in triplicate. The interpretation of biofilm production was according to the criteria 
described by Stepanović et al. [23]. Based on these criteria, optical density cutoff 
value (ODc) is defined as an average OD of negative control +3 × SD (standard 
deviation) of the negative control. The ability to produce biofilm of each P. aeru-
ginosa isolate was classified according to the following criteria: OD ≤ ODc = not 
a biofilm producer, ODc < OD ≤ 2x ODc = weak biofilm producer, 2x 
ODc < OD ≤ 4x ODc = moderate biofilm producer, and 4x ODc < OD = strong 
biofilm producer.

2.4 Molecular evaluation

2.4.1 DNA extraction

DNA extraction from isolates was performed using the QIAamp DNA Mini Kit 
(Qiagen, Germany, GmbH) with modifications from the manufacturer’s recom-
mendations. Concisely, 10 μL of proteinase K and 200 μL of lysis buffer were added 
to 200 μL of the sample suspension and incubated at 56°C for 10 min. Then, 200 μL 
of 100% ethanol was added to the lysate followed by washing and centrifugation 
according to the manufacturer’s recommendations. Nucleic acid was eluted with 
100 μL of elution buffer.
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2.4.2 PCR amplification of biofilm virulence genes

The obtained DNA was examined for the presence of biofilm in a 25 μL reaction 
comprising 12.5 μL of EmeraldAmp Max PCR Master Mix (Takara, Japan), 1 μL of 
each primer of 20 pmol concentration, 4.5 μL of water, and 6 μL of DNA template. 
The reaction was implemented in an Applied Biosystems 2720 Thermal Cycler 
for the investigation of the presence of biofilm genes. The properties of all used 
primers, as well as amplicon length and cycling conditions, were synopsized by 
Ghadaksaz et al. [24] and listed in Table 1.

2.4.3 Analysis of the PCR products

The products of PCR were separated by electrophoresis on 1.5% agarose gel 
(AppliChem, Germany, GmbH) in 1× TBE buffer at room temperature using gradi-
ents of 5 V/cm. For gel analysis, 20 μL of the products were loaded in each gel slot. 
A GelPilot 100 bp DNA ladder (Qiagen, Germany, GmbH) and GeneRuler 100 bp 
ladder (Fermentas, Germany) were used to verify the size of fragments. The gel was 
photographed by a gel documentation system (Alpha Innotech, Biometra), and the 
data were assessed through computer software.

2.4.4 Quantitative analysis of biofilm gene expression

Biofilm gene expression was analyzed by quantitative real-time PCR (qRT-
PCR), and the 16S rRNA housekeeping gene of Pseudomonas aeruginosa served 
as internal control with primer sequence F: GGGGGATCTTCGGACCTCA, R: 
TCCTTAGAGTGCCCACCCG to normalize the expressional levels between samples. 
Primers were utilized in a 25 μL reaction containing 12.5 μL of the 2× QuantiTect 
SYBR Green PCR Master Mix (Qiagen, Germany, GmbH), 0.25 μL of RevertAid 
Reverse Transcriptase (200 U/μL) (Thermo Fisher), 0.5 μL of each primer of 
20 pmol concentration, 8.25 μL of water, and 3 μL of RNA template. The reaction 
was performed in a Stratagene MX3005P real-time PCR machine with specific con-
ditions mentioned in Table 2. To estimate the variation of gene expression on the 
RNA of the different samples, the Ct of each sample was compared with that of the 
positive control group according to the “ΔΔCt” method stated by Yuan et al. [25].

2.5 Statistical analysis

Data analysis was performed by SPSS version 22 for windows. A t-test was used 
to detect statistical differences of the experiments including antibiotic combination 
treatment versus single antibiotic therapy. Moreover, one-way ANOVA was used 
for contrasting the influence of these remedies on the fold change of biofilm gene 
expression. A P ≤ 0.05 value was suspected as statistically significant.

3. Results

3.1 The recovery rate of isolation and identification

Pseudomonas spp. were isolated from 34 of 100 examined broiler chickens 
(34%) as shown in Table 3. They were further identified by standard microbiologi-
cal techniques, and an API giving an overall prevalence of 21% was identified as 
Pseudomonas aeruginosa.
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Target gene Primer sequences Amplified segment (bp) Primary 

denaturation

Amplification (35 cycles) Final 

extension
Secondary 

denaturation

Annealing Extension

PslA TCCCTACCTCAGCAGCAAGC 656 94°C, 5 min 94°C, 30 s 60°C, 40 s 72°C, 45 s 72°C, 10 min

TGTTGTAGCCGTAGCGTTTCTG

PelA CATACCTTCAGCCATCCGTTCTTC 786 94°C, 5 min 94°C, 30 s 60°C, 40 s 72°C, 45 s 72°C, 10 min

CGCATTCGCCGCACTCAG

FliC TGAACGTGGCTACCAAGAACG 180 94°C, 5 min 94°C, 30 s 56.2 °C, 30 s 72°C, 30 s 72°C, 7 min

Table 1. 
Primer sequences, target genes, amplicon sizes, and cycling conditions.
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Target 

gene

Reverse 

transcription

Primary 

denaturation

Amplification (40 cycles) Dissociation curve (1 cycle) Reference

Secondary 

denaturation

Annealing Extension Secondary 

denaturation

Annealing Final 

denaturation

16S 

rRNA

50°C, 30 min 94°C, 15 min 94°C, 15 s 52°C, 30 s 72°C, 30 s 94°C, 1 min 52°C, 1 min 94°C, 1 min Spilker et al. [26]

pslA 60°C, 30 s 60°C, 1 min

pelA 60°C, 30 s 60°C, 1 min Ghadaksaz et al. [24]

fliC 56.2 °C, 30 s 56.2 °C, 1 min

Table 2. 
Target genes and cycling conditions for SYBR green rt-PCR.
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3.2 Antimicrobial activity

According to the disk diffusion method, 76.2% of isolates were resistant to 
cefotaxime, 14.3% were intermediate, and 9.5% were sensitive. Regarding amikacin, 
57.2% of isolates were resistant, 9.5% were intermediate, and 33.3% were sensitive. 
Of interest, 57.2% of isolates were resistant to both tested antibiotics.

According to the microdilution assay, the range of cefotaxime MIC was 8–512 μg/mL, 
while the amikacin MIC range was 1–64 μg/mL as depicted in Table 4.

In the checkerboard technique, the interaction between the combination of 
cefotaxime and amikacin against Pseudomonas aeruginosa was predominantly 
synergistic, although there were few partially synergistic. Thus no growth or 
turbidity clearly illustrated the extensive activity of aminoglycoside which was 
enforced by the second drug: cefotaxime resulting in an antibacterial effect. The 
synergistic activities of the antimicrobial combinations are detailed in Table 4. 
The combination of amikacin and cefotaxime exerted synergetic effect against 17 
isolates, and 4 isolates were partially synergistic. FIC index values ranged from 
0.18 to 0.75. Statistical analysis of one sample test revealed no significant difference 
between synergism effects among all isolates indicating strong synergy between 
both antibiotics where P-value = 0.088. Antagonism was not detected against any 
isolate in our study.

3.3 Congo red test

About 66.6% of the isolates were positive for biofilm production with varying 
degrees. Out of 21 P. aeruginosa isolates, 19%, 28.6%, and 19% were strong, inter-
mediate, and negative biofilm producers, respectively. The morphology of all types 
of colonies is illustrated in Figure 1.

3.4 Microtiter plate test (MTP)

Biofilm quantification analyses showed that 90.4% of the isolates were biofilm 
producers, indicating that this technique was more efficient than Congo red agar 
for the detection of biofilm production. The obtained isolates of this study had the 
following results for the categories of biofilm production: 9.6% were non-adherent, 
33.4% weakly adherent, 42.8% moderately adherent, and 14.2% strongly adherent 
as shown in Figure 2.

A comparison of results obtained by the CRA method versus that of MTP 
assay is declared in Table 5. Out of 21 biofilm P. aeruginosa isolates by the CRA 
method, 19 isolates were positive by the MTP approach but with various levels of 

Sample No. of 

examined 

samples

Pseudomonas spp. isolates P. aeruginosa isolates

No. Frequency No. Frequency

Freshly dead 28 11 39% 11 39%

Diseased chicks

Young (1–10 days)

33 20 60% 9 27%

Old broilers 

(11–35 days)

39 3 7.6% 1 2.5%

Total 100 34 34% 21 21%

Table 3. 
The incidence of Pseudomonas aeruginosa isolated from examined samples.
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production (3 strong, 7 moderate, 9 weak), and only 2 isolates were factual nega-
tive by both assays.

3.5  Detection of biofilm genes in strong biofilm P. aeruginosa isolates by 
conventional multiplex PCR

All strong biofilm producers P. aeruginosa isolates of code numbers (1, 4, 21) 
were harbored all examined biofilm genes and gave their characteristic bands as 
shown in Figure 3.

3.6  Quantitative assessment effect of each antibiotic alone and in combination 
on biofilm gene expression

By RT-PCR, comparing the amount of examining biofilm gene products before 
and after each treatment with a sub-inhibitory concentration (SIC) of each 
antibiotic alone and combination, results revealed that the amount of examining 

Isolates 

no.

MIC 

of 

CTX

MIC 

of 

AK

MIC of 

CTX in 

combination

MIC of 

AK in 

combination

FIC of 

CTX

FIC 

of 

AK

Ʃ FIC Interpretation

1 256 32 32 2 0.125 0.06 0.18 Synergistic

2 8 1 2 0.25 0.25 0.25 0.5 Synergistic

3 32 2 2 1 0.06 0.5 0.56 Partially 

synergistic

4 128 64 32 16 0.25 0.25 0.5 Synergistic

5 32 64 8 16 0.25 0.25 0.5 Synergistic

6 32 64 8 8 0.25 0.125 0.375 Synergistic

7 64 64 16 4 0.25 0.06 0.31 Synergistic

8 8 4 2 1 0.25 0.25 0.5 Synergistic

9 64 64 16 16 0.25 0.25 0.5 Synergistic

10 128 64 16 16 0.125 0.25 0.375 Synergistic

11 32 64 2 32 0.06 0.5 0.56 Partially 

synergistic

12 32 64 8 16 0.25 0.25 0.5 Synergistic

13 16 4 2 1 0.125 0.25 0.375 Synergistic

14 128 64 8 8 0.06 0.125 0.18 Synergistic

15 256 64 16 8 0.06 0.125 0.18 Synergistic

16 256 32 64 2 0.25 0.06 0.31 Synergistic

17 32 8 8 4 0.25 0. 5 0.75 Partially 

synergistic

18 16 4 4 2 0.25 0.5 0.75 Partially 

synergistic

19 16 4 2 1 0.25 0.25 0.5 Synergistic

20 256 64 64 16 0.25 0.25 0.5 Synergistic

21 512 64 64 8 0.125 0.125 0.25 Synergistic

Table 4. 
MIC of CTX and AK alone and in combination and FIC index against P. aeruginosa by the checkerboard 
method.
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gene products was relatively increased in untreated samples with drugs than those 
treated, which leads to high threshold cycle (Ct) value in treated than untreated. 
Interestingly, we found that drug combination was more effective in significantly 
reducing the expression of biofilm genes than each antibiotic alone.

Statistical data assessed that fold changes in pslA, pelA, and filC gene expression 
after treatment with SIC of cefotaxime and amikacin alone were (0.599:0.752:0.597 

Figure 1. 
Investigation of biofilm producer P. aeruginosa using CRA method: (A) dry black colonies,  
(B) smooth black colonies, (C) dry red colonies, and (D) smooth red colonies.

Figure 2. 
Microtiter plate method showing none, strong, moderate, and weak biofilm producers differentiated by crystal 
violet stain in 96-well tissue culture plate.
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fold) and (0.348:0.354:0.296 fold), respectively, which were significantly higher 
(P ≤ 0.05) than a fold change in same gene expression after combination treatment 
(0.132:0.211:0.158 fold) as shown in Table 6 and Figure 4.

Sample code no. CRA No. MTP

Strong Moderate Weak None

1, 16, 20, 21 Dry black 4 2 2 0 0

4, 7, 9, 10, 14, 15 Smooth black 6 1 3 2 0

3, 5, 6, 17 Dry red 4 0 2 2 0

2, 8, 11, 12, 13, 18, 19 Smooth red 7 0 0 5 2

Table 5. 
CRA versus MTP methods for detection of biofilm formation by P. aeruginosa.

Figure 3. 
Agarose gel electrophoresis of biofilm genes: Lanes 1, 6, and 12, positive controls; lanes 5, 11, and 16, negative 
controls; lane 8, DNA ladder (100 bp); lanes 2–4, positive isolates for filC gene; lanes 7, 9, and 10, positive 
isolates for pelA gene; and lanes 13–15, positive isolates for pslA gene.

Genes Isolate no. Fold change

Cefotaxime Amikacin Cefotaxime-amikacin combination

PslA 1 0.5212 0.3209 0.0890

2 0.6830 0.3121 0.1869

3 0.5946 0.4118 0.1216

PelA 1 0.7371 0.4506 0.2535

2 0.8526 0.3276 0.2253

3 0.6690 0.2852 0.1550

FliC 1 0.6071 0.3322 0.2176

2 0.5471 0.2643 0.1708

3 0.6373 0.2932 0.0884

Table 6. 
Results of RT-PCR showing expression of biofilm genes in P. aeruginosa isolates before and after treatment 
with SIC of each antibiotic alone and in combination.



Gene Expression and Phenotypic Traits

12

4. Discussion

Pseudomonas aeruginosa is considered to be an opportunistic organism that 
produces respiratory infection, sinusitis, keratitis/keratoconjunctivitis, and septi-
cemia, and it becomes an infection when it is introduced into tissues of susceptible 
hosts [27]. The bacterium is widely distributed in the environment, as it can utilize 
a wide range of materials for its nutrients while only requiring a limited amount 
of nutrients to survive [28]. Moreover, biofilm production has been considered 
to be an important determinant of pathogenicity in P. aeruginosa infections [29]. 
The formation of biofilms facilitates chronic bacterial infections and reduces the 
efficacy of antimicrobial therapy [29–31]. The situation is getting very concerning, 
the World Health Organization has declared it to be a “critical priority pathogen,” 
on which research and development of novel antibiotics should be focused [32]. For 
this reason, this work designed to find repositionable candidate’s antibiotics against 
P. aeruginosa biofilms, which are disreputable for their intensified drug resistance.

Here we isolated 21 P. aeruginosa from 100 broiler chickens suffering from 
respiratory manifestations (21%). These findings were close to that (20%) reported 
earlier in India [1]. Many studies showed different prevalence rates of P. aeruginosa 
isolates in broilers worldwide: in Iraq, a low rate of 6% was reported [33], while 
in Nigeria, a high rate of 75% was reported [34]. These differences in prevalence 
rates may reflect the considerable disparity in the sampling scheme, sample types, 
pseudomonas detection protocol, and geographic location.

In the current investigation, all the isolates were tested against cefotaxime and 
amikacin to determine the antibiotic susceptibility patterns. A high-resistance rate 
was detected for both antibiotics at which 76.2% were resistant to cefotaxime and 
57.2% to amikacin. This might be due to the indiscriminate use of antibiotics in the 
feed of broiler breeders or other environmental possibilities [35].

The increased observance of multiple resistances (mainly to beta-lactam antibi-
otics) in pseudomonas isolates is making it increasingly difficult to treat infections 
caused by this pathogen. Resistance to antimicrobials in pseudomonas strains 
develops via several mechanisms, including the production of specific enzymes 
(b-lactamases, enzymes that modify aminoglycosides, for example), changes in 
cell-membrane permeability, and active efflux systems [36].

Interpretative reading was used to detect the bactericidal activity of each anti-
biotic against isolates with cefotaxime MICs of 8–512 and amikacin MICs of 1–64. 
These data are reinforced by findings from other countries, including Kuwait [37], 
Canada [38], China [39], and the USA [40].

Synergy testing has shown evidence of an interaction of two antibiotics in 
combination against pseudomonas bacterial isolates where statistical analysis 
provides important insights into drug synergism where the FIC index calculations 

Figure 4. 
Expression curves of each biofilm gene after different treatments by SYBR green RT-PCR, (A) PslA gene, (B) 
PelA gene and (C) FilC gene.
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exemplified a significant synergism of both drugs achieving an enhanced overall 
effect which is substantially greater than the sum of their ones. These results were 
consistent with the previous studies of Saiman [41], Dundar and Otkun [42], and 
Hawkey et al. [43]. The possible explanation for this synergism is the ability of 
beta-lactam cefotaxime to penetrate the outer membrane of pseudomonas bacteria 
which thereby increases the permeability of the bacterium to the aminoglycoside 
amikacin binding to 30S ribosome inhibiting the protein synthesis, thus leading to a 
synergistic effect in the in vitro studies [44].

To investigate the effect of a synergistic combination of the repositionable drugs 
against P. aeruginosa biofilms, we detected their effect on the expression of screened 
biofilm genes.

In this study, biofilm production was examined qualitatively, depending on 
colony morphology of 21 P. aeruginosa isolates inoculated on Congo red agar. Some 
differences between researches were apparent concerning the interpretation of CRA 
test results. In that respect, both bright black colonies [45] and black colonies [46] 
were considered as a positive result. However, Cucarella et al. [47] described the dry 
crystalline surface (rough colony morphology) as a positive result, disregarding the 
color (black or pink). Such discrepancy when interpreting the results may be possible 
since the test itself was not originally designed for investigating P. aeruginosa isolates 
as reported by Freeman et al. [21]. In this investigation, according to Osman et al. 
[48], isolates that produced black/rough colonies were verified as strong biofilm-
forming, while isolates producing red/smooth colonies were described as non-biofilm 
formers. The smooth black and dry red colonies were respected as indefinite findings.

The qualitative technique revealed that only 66.6% of the isolates were 
considered biofilm producers, while the biofilm quantitative technique (MTP 
method) revealed that 90.4% of the isolates were biofilm producers, indicating 
that the quantitative technique was more efficient than the qualitative technique 
for the detection of biofilm production. There was also high biofilm production 
by the evaluated tested isolates of P. aeruginosa.

Biofilms are surface-associated communities embedded within an extracellular 
matrix [49]. The extracellular matrix consists of polysaccharides, proteins, nucleic 
acids, and lipids and is a distinguishing feature of biofilms, capable of functioning as 
both a structural scaffold and a protective barrier [45]. Extracellular polysaccharides 
are a crucial component of the matrix and carry out a range of functions including 
promoting attachment to surfaces and other cells, building and maintaining biofilm 
structure, as well as protecting the cells from antimicrobials and host defenses [50, 51].

P. aeruginosa produces at least two extracellular polysaccharides that can be 
important in biofilm development and is accompanied by gene regulation [52–54].

 Conventional PCR was carried out for detection of pelA and pslA genes which 
were involved in the formation of polysaccharide components of biofilm among 
tested isolates and were expressed heavily in all of them (100%). These data matched 
with previous studies of Wei and Ma [55], Vasiljević et al. [56], and Emami et al. [57].

Moreover, Suriyanarayanan et al. [58] mentioned that the effects of fliC phos-
phorylation on biofilm attachment and dispersal led to two conclusions. Both initial 
attachment and detachment during the dispersal stage were delayed by the loss of fliC 
phosphorylation in static and dynamic flow biofilms. As each of these processes still 
proceeded in the lack of phosphorylation, it suggested that fliC phosphorylation regu-
lates the timing and rate of these processes without affecting biofilm architecture. These 
investigations were parallel with our results where fliC detected in all tested isolates.

Regarding the qRT-PCR results, the suppressing effects in fold change of 
previously mentioned biofilm gene expression were detected for drug combina-
tion in comparison with each antibiotic alone. Exposure to each antibiotic caused 
a decreased level of biofilm expression ranging between 0.1- and 0.7-fold changes, 
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while the repression was strong and most significant with amikacin-cefotaxime 
combination treatment with fold change reaching 0.08, i.e., the consequence of 
treatment on the average expression profile among all biofilm involving genes 
constituting the bacterial communities studied. As described in this paper and 
by others [59–61], sub-MICs of combinations have potent effects on attenuating 
biofilm formation which are totally different from each antibiotic alone.

5. Conclusion

The treatment of biofilm-related P. aeruginosa infections in the poultry industry 
has become an important part of antimicrobial chemotherapy because biofilms are 
not affected by therapeutic concentrations of antibiotics permitting attachment of 
other pathogens. Our study proved that using a combination of antimicrobial agents 
including cefotaxime and amikacin represents a profound synergism, significant 
antibiofilm, and a suitable candidate in combatting this fierce infection.
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