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Chapter

2D Elastostatic Problems in
Parabolic Coordinates
Natela Zirakashvili

Abstract

In the present chapter, the boundary value problems are considered in a parabolic
coordinate system. In terms of parabolic coordinates, the equilibrium equation sys-
tem and Hooke’s law are written, and analytical (exact) solutions of 2D problems of
elasticity are constructed in the homogeneous isotropic body bounded by coordinate
lines of the parabolic coordinate system. Analytical solutions are obtained using the
method of separation of variables. The solution is constructed using its general rep-
resentation by two harmonic functions. Using the MATLAB software, numerical
results and constructed graphs of the some boundary value problems are obtained.

Keywords: parabolic coordinates, separation of variables, elasticity, boundary,
value problem, harmonic function

1. Introduction

In order to solve boundary value and boundary-contact problems in the areas
with curvilinear border, it is purposeful to examine such problems in the relevant
curvilinear coordinate system. Namely, the problems for the regions bounded by a
circle or its parts are considered in the polar coordinate system [1–4], while the
problems for the regions bounded by an ellipse or its parts or hyperbola are consid-
ered in the elliptic coordinate system [5–13], and the problems for the regions with
parabolic boundaries are considered in the parabolic coordinate system [14–16].
The problems for the regions bounded by the circles with different centers and
radiuses are considered in the bipolar coordinate system [17–19]. For that purpose,
first the governing differential equations are expressed in terms of the relevant
curvilinear coordinates. Then a number of important problems involving the
relevant curvilinear coordinates are solved.

The chapter consists of five paragraphs.
Many problems are very easily cast in terms of parabolic coordinates. To this

end, first the governing differential equations discussed in present chapter are
expressed in terms of parabolic coordinates; then two concrete (test) problems
involving parabolic coordinates are solved.

The second section, following the Introduction, gives the equilibrium equations
and Hooke’s law written down in the parabolic coordinate system and the setting of
boundary value problems in the parabolic coordinate system.

Section 3 considers the method used to solve internal and external boundary
value problems of elasticity for a homogeneous isotropic body bounded by
parabolic curves.
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Section 4 solves the concrete problems, gains the numerical results, and
constructs the relevant graphs.

Section 5 is a conclusion.

2. Problems statement

2.1 Equilibrium equations and Hooke’s law in parabolic coordinates

It is known that elastic equilibrium of an isotropic homogeneous elastic body
free of volume forces is described by the following differential equation [20]:

λþ 2μð Þgrad divU
!
� μ rot rotU

!
¼ 0 (1)

where λ ¼ Eν= 1þ νð Þ 1� 2νð Þ½ �, μ ¼ E= 2 1� νð Þ½ � are elastic Lamé constants; ν is

the Poisson’s ratio; E is the modulus of elasticity; and U
!

is a displacement vector.
By projecting Eq. (1) onto the tangent lines of the curves of the parabolic

coordinate system (see Appendix A), we obtain the system of equilibrium equations
in the parabolic coordinates.

In the parabolic coordinate system, the equilibrium equations with respect to the
function D, K, u, v and Hooke’s law can be written as [20–22]:

að ÞD,ξ � K,η ¼ 0, cð Þu,ξ þ v,η ¼ κ � 2ð Þ= κμð Þ � h20D,

bð ÞD,η þ K,ξ ¼ 0, dð Þv,ξ � u,η ¼ 1=μ � h20K:
(2)

σηη ¼ h�1
0 λu,ξ þ λþ 2μð Þv,η
�

þ λþ μð Þ � μh�2
0

� �

ξuþ ηvð Þ
�

,

σξξ ¼ h�1
0 λþ 2μð Þu,ξ þ λv,η
�

þ λþ μð Þ þ μh�2
0

� �

ξuþ ηvð Þ
�

,

τξη ¼ μh�1
0 v,ξ þ u,η
� �

� h�2
0 ξvþ ηuð Þ

� �

,

(3)

where κ ¼ 4 1� νð Þ, u ¼ hu=c2, v ¼ hv=c2, h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ η2
p

, h ¼ hξ ¼ hη ¼

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ η2
p

are Lamé coefficients (see Appendix A), u, v are the components of the

displacement vector U
!

along the tangents of η, ξ curved lines, and c is the scale
factor (see Appendix A). And in the present paper, we take c ¼ 1, κ � 2ð Þ= κμð Þ �D is
the divergence of the displacement vector, K=μ is the rotor component of the
displacement vector; σξξ, σηη and τξη ¼ τηξ are normal and tangential stresses; and
sub-indexes ðÞ,ξ and ðÞ,η denotes partial derivatives with relevant coordinates, for

example, K,ξ ¼
∂K
∂ξ
.

2.2 Boundary conditions

In the parabolic system of coordinates ξ, η �∞< ξ<∞, 0≤ η<∞ð Þ, exact solu-
tions of two-dimensional static boundary value problems of elasticity are
constructed for homogeneous isotropic bodies occupying domains bounded by
coordinate lines of the parabolic coordinate system (see Appendix A).

The elastic body occupies the following domain (see Figures 1 and 2):

að Þ D1 ¼ 0< ξ< ξ1, 0< η< η1f g, bð Þ D ¼ �ξ1 < ξ< ξ1, 0< η< η1f g, (4)

að Þ Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g, bð Þ Ω ¼ �ξ1 ≤ ξ< ξ1, η1 ≤ η<∞f g: (5)
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Boundary conditions that appear in the chapter have the following form:

for ξ ¼ ξ1 : að Þ σξξ ¼ F1
ið Þ ηð Þ, τξη ¼ F

ið Þ
2 ηð Þ or bð Þu ¼ G1

ið Þ ηð Þ, v ¼ G
ið Þ
2 ηð Þ,

(6)

for η ¼ η1 : að Þ σηη ¼ Q1
ið Þ ξð Þ, τξη ¼ Q

ið Þ
2 ξð Þ or bð Þu ¼ H1

ið Þ ξð Þ, v ¼ H
ið Þ
2 ξð Þ,

(7)

for ξ ¼ 0 : að Þv ¼ 0, σξξ ¼ 0 or bð Þu ¼ 0, τξη ¼ 0, (8)

for η ¼ 0 : að Þu ¼ 0, σηη ¼ 0, or bð Þv ¼ 0, τξη ¼ 0, (9)

for ξ1 ! �∞ : σηη ! 0, τξη ! 0, u ! 0, v ! 0: (10)

for η ! ∞ : σηη ! 0, τξη ! 0, u ! 0, v ! 0, (10a)

where Fi,Q i i ¼ 1, 2ð Þ with the first derivative and Gi,Hi with the first and
second derivatives can be decomposed into the trigonometric absolute and uniform
convergent Fourier series.

Figure 1.
(a) D1 ¼ 0< ξ< ξ1, 0< η< η1f g domain bounded by parabolic curve η ¼ η1 and line y = 0 and
(b) D ¼ �ξ1 < ξ< ξ1, 0< η< η1f g domain bounded by parabola η ¼ η1.

Figure 2.
Infinite domain (a) Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g bounded by parabolic curve η ¼ η1 and line y = 0 and
(b) Ω ¼ �ξ1 < ξ< ξ1, η1 < η<∞f g bounded by parabola η ¼ η1.
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Boundary conditions on the linear parts ξ ¼ 0 and η ¼ 0 of the consideration
area enable us to continue the solutions continuously (symmetrically or anti-
symmetrically) in the domain, that is, the mirror reflection of the consideration area
in a relationship y ¼ 0 line (see Figures 1b and 2b).

3. Solution of stated boundary value problems

In this section we will be considered internal and external problems for a homo-
geneous isotropic body bounded by parabolic curves.

3.1 Interior boundary value problems

Let us find the solution of problems (2), (3), (4a) (see Figure 1a), and (7)–(10)

in class C2 Dð Þ (for D area shown in Figure 1b). The solution is presented by two
harmonious φ1 and φ2 functions (see Appendix B). From formulas (B11)–(B13),
after inserting α ¼ η1 and making simple transformations, we will obtain:

u ¼ � η φ1,η � φ2,ξ

� �

þ κ � 1ð Þφ
� �

ξþ
η21
η

φ1,ξ þ φ2,η

� �

� κ � 1ð Þφ2

� �

η,

v ¼
η21
η

φ1,η � φ2,ξ

� �

þ κ � 1ð Þφ1

� �

ηþ η φ1,ξ þ φ2,η

� �

� κ � 1ð Þφ2

� �

ξ;

(11)

D ¼
κμ

h20
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

, K ¼
κμ

h20
φ1,η � φ2,ξ

� �

ξþ φ1,ξ þ φ2,η

� �

η
� �

,

where

1

h2
φi,ξξ þ φi,ηη

� �

¼ 0, i ¼ 1, 2: (12)

The stress tensor components can be written as

h20
2μ

σηη ¼ �
η21
η

φ1,ξξ þ φ2,ξη

� �

�
κ

2
φ1,η �

κ � 2

2
φ2,ξ

� �

η

þ η φ1,ξη � φ2,ηη

� �

þ
κ � 2

2
φ1,ξ �

κ

2
φ2,η

� �

ξ

�
η21 � η

ξ2 þ η2
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

, (13)

h20
2μ

τξη ¼
η21
η

φ1,ξη � φ2,ξξ

� �

þ
κ � 2

2
φ1,ξ �

κ

2
φ2,η

� �

η

þ η φ1,ξξ þ φ2,ξη

� �

�
κ

2
φ1,η �

κ � 2

2
φ2,ξ

� �

ξ

�
η21 � η

ξ2 þ η2
φ1,η � φ2,ξ

� �

ξþ φ1,ξ þ φ2,η

� �

η
� �

,

h20
2μ

σξξ ¼
η21
η

φ1,ξξ þ φ2,ξη

� �

�
κ � 4

2
φ1,η �

κ þ 2

2
φ2,ξ

� �

η

� η φ1,ξη � φ2,ξξ

� �

þ
κ þ 2

2
φ1,ξ �

κ � 4

2
φ2,η

� �

ξ

þ
η21 � η

ξ2 þ η2
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

:
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From (12) by the separation of variables method, we obtain (see Appendix A)

φi ¼
X

∞

n¼1

φin, i ¼ 1, 2, (14)

where

φ1n ¼¼ A1n cosh nηð Þ cos nξð Þ, φ2n ¼¼ A2n sinh nηð Þ sin nξð Þ

or

φ1n ¼¼ A1n sinh nηð Þ sin nξð Þ, φ2n ¼¼ A2n cosh nηð Þ cos nξð Þ:

For n ¼ 0: φ10 ¼ A10 þ a02ξþþa03ηþ a04ξη, φ20 ¼ A20 þ b02ξþ b03ηþ b04ξη,
where A10, a02, … , b04 are constant coefficients. When n ¼ 0 and 0< ξ< ξ1, then
the terms ξ, η and ξη will not be contained in φ10 and φ20. If the foregoing solutions
are presented in expressions of φ10 and φ20, then it would be impossible on ξ ¼ ξ1 to
satisfy the boundary conditions, and grad φi0 ¼ φi0,ξ þ φi0,η

� �

=h i ¼ 1, 2ð Þ will not

be bounded in the point M 0, 0ð Þ.
Provision. We are introducing the following assumptions:

1.ξ1 is a sufficiently great positive number (see Appendix C).

2.The boundary conditions given on η ¼ η1, i.e., stresses or displacements equal

zero at interval ~ξ1 < ξ< ξ1.

3.When stresses are given on η ¼ η1, the main vector and main moment equal
zero.

It is clear that

D ¼ κ σξξ þ σηη
� �

=4, σξξ ¼ 4D=κ � σηη:

By ultimately opening expressions σηη and τξη (in details), we can demonstrate
that at point M 0, 0ð Þ, σηη and τξη (and naturally, σξξ, too) are determined, i.e., they
are finite.

When at η ¼ η1 u and v are given, then it is expedient to take instead of them as
their equivalent the following expressions:

1

h20
u � η1 þ v � ξð Þ ¼ η1 φ1,ξ þ φ2,η

� �

� κ � 1ð Þφ2,

1

h20
u � ξ� v � η1ð Þ ¼ η1 φ1,η � φ2,ξ

� �

þ κ � 1ð Þφ1,

(15)

and if at η ¼ η1
h20
2μ σηη and

h20
2μ σξη are given, then instead of them we have to take

their equivalent following expressions:

1

2μ
σηη � η1 � σξη � ξ
� �

¼ �η1 φ1,ξξ þ φ2,ξη

� �

�
κ

2
φ1,η �

κ � 2

2
φ2,ξ,

1

2μ
σηη � ξþ σξη � η1
� �

¼ η1 φ1,ξη � φ2,ξξ

� �

þ
κ � 2

2
φ1,ξ �

κ

2
φ2,η:

(16)

Considering the homogeneous boundary conditions of the concrete problem, we
will insert φ1 and φ2 functions selected from the (14) in the right sides of (15) or
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(16), and we will expand the left sides in the Fourier series. In both sides expres-
sions which are with identical combinations of trigonometric functions will equate
to each other and will receive the infinite system of linear algebraic equations to
unknown coefficients A1n and A2n of harmonic functions, with its main matrix
having a block-diagonal form. The dimension of each block is 2� 2, and determi-
nant is not equal to zero, but in infinite the determinant of block strives to the finite
number different to zero.

It is very easy to establish the convergence of (11) and (13) functional series on

the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g by construction of the corresponding uniform
convergent numerical majorizing series. So we have the following:

Proposal 1. The functional series corresponding to (11) and (13) are absolute

and uniform by convergent series on the area D ¼ �ξ1 ≤ ξ≤ ξ1, 0≤ η≤ η1f g.

3.2 Exterior boundary value problems

We have to find the solution of problems (2), (3), (5a) (see Figure 2a), (7), (8),

(10), and (100), which belongs to the class C2
Ωð Þ (see region Ω on Figure 2b). The

solution is constructed using its general representation by harmonic functions φ1, φ2

(see Appendix B). From formulas (B11)–(B13), following inserting α ¼ η1 and
simple transformations, we obtain the following expressions:

u ¼ � φ1,ξ þ φ2,η

� �

η1 þ φ1,η � φ2,ξ

� �

ξ
� �

η� η1ð Þ � κ � 1ð Þφ1 þ φ3,η

� �

ξ� κ � 1ð Þφ2 � φ3,ξ

� �

η,

v ¼ φ1,ξ þ φ2,η

� �

ξ� φ1,η � φ2,ξ

� �

η1
� �

η� η1ð Þ þ κ � 1ð Þφ1 þ φ3,η

� �

η� κ � 1ð Þφ2 � φ3,ξ

� �

ξ,

(17)

D ¼
κμ

h20
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

, K ¼
κμ

h20
φ1,η � φ2,ξ

� �

ξþ φ1,ξ þ φ2,η

� �

η
� �

,

where

1

h2
φi,ξξ þ φi,ηη

� �

¼ 0, i ¼ 1, 2, 3: (18)

The stress tensor components can be written as:

h20
2μ

σηη ¼ φ1,ξξ þ φ2,ξη

� �

η1 þ φ1,ξη � φ2,ξξ

� �

ξ
� �

η� η0ð Þ

þ
κ

2
φ1,η þ

κ � 2

2
φ2,ξ � φ3,ξξ

	 


η

þ
κ � 2

2
φ1,ξ �

κ

2
φ2,η þ φ3,ξη

	 


ξ

þ
η2 � η21

ξ2 þ η2
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

,

h20
2μ

τξη ¼ φ1,ξξ þ φ2,ξη

� �

ξ� φ1,ξη � φ2,ξξ

� �

η‘1
� �

η� η1ð Þ �
κ

2
φ1,η þ

κ � 2

2
φ2,ξ � φ3,ξξ

	 


ξ

þ
κ � 2

2
φ1,ξ �

κ

2
φ2,η þ φ3,ξη

	 


ηþ
η2 � η21

ξ2 þ η2
φ1,η � φ2,ξ

� �

ξ� φ1,ξ þ φ2,η

� �

η
� �

,

(19)
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h20
2μ

σξξ ¼ � φ1,ξξ þ φ2,ξη

� �

η1 þ φ1,ξη � φ2,ξξ

� �

ξ
� �

η� η0ð Þ

�
κ � 4

2
φ1,η þ

κ þ 2

2
φ2,ξ � φ3,ξξ

	 


η�
κ þ 2

2
φ1,ξ �

κ � 2

2
φ2,η þ φ3,ξη

	 


ξ

�
η2 � η21

ξ2 þ η2
φ1,η � φ2,ξ

� �

η� φ1,ξ þ φ2,η

� �

ξ
� �

If u and v are given for η ¼ η1, then we take φ3 ¼ 0, and when h20
2μ σηη and

h20
2μ σξη is

given for η ¼ η1, then φ3 ¼
κ�2
2

Ð

φ2dξ.
From (18), by the separation of variables method, we obtain

φi ¼
X

∞

n¼1

φin, i ¼ 1, 2, 3, (20)

where

φ1n ¼ B1ne
�nη sin nξð Þ, φ2n ¼ B2ne

�nη cos nξð Þ, φ3n ¼
κ � 2

2n
B2ne

�nη sin nξð Þ

or

φ1n ¼ B1ne
�nη cos nξð Þ, φ2n ¼ B2ne

�nη sin nξð Þ, φ3n ¼ �
κ � 2

2n
B2ne

�nη cos nξð Þ:

When n ¼ 0, then φ10 ¼ A10 þ a02ξþ a03ηþ a04ξη, φ20 ¼ A20 þ b02ξþ b03ηþ
b04ξη, where A10, a02, … , b04 are constants. From limited of functions φi0 i ¼ 1, 2ð Þ
in η ! ∞ and satisfying boundary condition for ξ ¼ ξ1, it implies that a02 ¼ 0,
b02 ¼ 0, a03 ¼ 0, b03 ¼ 0, a04 ¼ 0, b04 ¼ 0. Therefore, φ10 ¼ 0, φ20 ¼ A20 or
φ10 ¼ A10, φ20 ¼ 0.

Provision. As in the previous subsection we make the following assumptions:

• ξ1 is a sufficiently large positive number (see Appendix C).

• At η ¼ η1 given boundary conditions, i.e., displacements or stresses on interval
~ξ1 < ξ< ξ1, will equal zero.

• When stresses are given on η ¼ η1, the main vector and main moment will
equal zero.

When u and v are given at η ¼ η1, then instead of them, it is expedient to take
the following expressions as their equivalent:

1

h20 κ � 1ð Þ
uξ� vη1ð Þ ¼ φ1, �

1

h20 κ � 1ð Þ
uη1 þ vξð Þ ¼ φ2, (21)

and if at η ¼ η1
h20
2μ σηη and

h20
2μ σξη are given, then instead of them we have to take

the following expressions as their equivalent:

1

2μ
σηη � η1 � σξη � ξ
� �

¼
κ

2
φ1,η,

1

2μ
σηη � ξþ σξη � η1
� �

¼
κ � 2

2
φ1,ξ � φ2,η:

(22)
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Just like that in the previous subsection, considering the homogeneous boundary
conditions of the concrete problem, we will insert φ1 and φ2 functions selected from
(20) in Eq. (21) or (22), and we will expand the left sides in the Fourier series. Both
sides of the expressions, which show the identical combinations of trigonometric
functions, will equate to each other and will receive the infinite system of linear
algebraic equations to unknown coefficients A1n and A2n of harmonic functions,
with its main matrix having a block-diagonal form. The dimension of each block is
2� 2, and the determinant does not equate to zero, but in the infinity, the determi-
nant of block tends to the finite number different from zero.

As in the previous subsection, we received the following:
Proposition 2. The functional series corresponding to (17) and (19) are absolute

and a uniformly convergent series on region Ω ¼ �ξ1 ≤ ξ≤ ξ1, η1 ≤ η<∞f g.

4. Test problems

In this section we will be obtained numerical results of internal and external
problems for a homogeneous isotropic body bounded by parabolic curves when
normal stress distribution is applied to the parabolic border.

4.1 Internal problem

We will set and solve the concrete internal boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
isotropic body in the area Ω1 ¼ 0< ξ< ξ1, 0< η< η1f g (see Figure 1a), which sat-
isfies boundary conditions (7a), (8a), (9a), and (10).

From (14), (8a), and (9a)

φi ¼
X

∞

n¼1

φin, i ¼ 1, 2, (23)

where φ1n ¼¼ A1n sinh nηð Þ sin nξð Þ, φ2n ¼¼ A2n cosh nηð Þ cos nξð Þ:
By inserting (23) in (11) and (13), we will receive the following expressions for

the displacements:

u ¼
X

∞

n¼1

� nηξ cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þξ sinh nηð ÞA1n½ � sin nξð Þf

þ nη21 sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þη cosh nηð ÞA2n

� �

cos nξð Þ
�

,

v ¼
X

∞

n¼1

nη21 cosh nηð Þ A1n þ A2nð Þ þ κ � 1ð Þη sinh nηð ÞA1n

� �

sin nξð Þ
�

þ nηξ sinh nηð Þ A1n þ A2nð Þ � κ � 1ð Þξ cosh nηð ÞA2n½ � cos nξð Þg,

(24)

but for the stresses the following:

h20
2μ

σηη ¼
X

∞

n¼1

n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ
κ

2
A1n �

κ � 2

2
A2n

	 
� �

sin nξð Þ




þ n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ
κ � 2

2
A1n �

κ

2
A2n

	 
� �

cos nξð Þ

�
η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�

,
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h20
2μ

τξη ¼
X

∞

n¼1

n2η21 cosh nηð Þ A1n þ A2nð Þ þ nη sinh nηð Þ
κ � 2

2
A1n �

κ

2
A2n

	 
� �

cos nξð Þ




� n2ηξ sinh nηð Þ A1n þ A2nð Þ þ nξ cosh nηð Þ
κ

2
A1n �

κ � 2

2
A2n

	 
� �

sin nξð Þ

�
η21 � η2

ξ2 þ η2
nξ cosh nηð Þ A1n þ A2nð Þ sin nξð Þ þ nη sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�

,

(25)

h20
2μ

σξξ ¼
X

∞

n¼1

� n2η21 sinh nηð Þ A1n þ A2nð Þ þ nη cosh nηð Þ
κ � 4

2
A1n �

κ þ 2

2
A2n

	 
� �

sin nξð Þ




� n2ηξ cosh nηð Þ A1n þ A2nð Þ þ nξ sinh nηð Þ
κ þ 2

2
A1n �

κ � 4

2
A2n

	 
� �

cos nξð Þ

þ
η21 � η2

ξ2 þ η2
nη cosh nηð Þ A1n þ A2nð Þ sin nξð Þ � nξ sinh nηð Þ A1n þ A2nð Þ cos nξð Þ½ �

�

:

We have to solve problem (2), (7a), (8a), and (9a) when Q1 ξð Þ ¼ P and
Q2 ξð Þ ¼ 0, i.e., at η ¼ η1 boundary the normal load 1

2μ σηη ¼
P
h20
is given, but tangent

stress is equal to zero. From (16), and (23), we obtain the following equations:

X

∞

n¼1

n2η1 sinh nη1ð Þ A1n þ A2nð Þ � n cosh nη1ð Þ
κ

2
A1n �

κ � 2

2
A2n

	 
� �

sin nξð Þ ¼
Pη1

ξ2 þ η21
,

X

∞

n¼1

n2η1 cosh nη1ð Þ A1n þ A2nð Þ þ n sinh nη1ð Þ
κ � 2

2
A1n �

κ

2
A2n

	 
� �

cos nξð Þ ¼
Pξ

ξ2 þ η21
:

From here an infinite system of the linear algebraic equations with unknown A1n

and A2n coefficients is obtained:

n2η1 sinh nη1ð Þ � n
κ

2
cosh nη1ð Þ

� �

A1n

h

þ n2η1 sinh nη1ð Þ þ n
κ � 2

2
cosh nη1ð Þ

	 


A2n

�

¼ ~F1n,

n2η1 cosh nη1ð Þ þ n
κ � 2

2
sinh nη1ð Þ

	 


A1n

�

þ n2η1 cosh nη1ð Þ � n
κ

2
sinh nη1ð Þ

� �

A2n

i

¼ ~F2n, n ¼ 1, 2, …

(26)

where ~F1n and ~F2n are the coefficients of expansion into the Fourier series

f 1 ξð Þ ¼
P

∞

n¼1

~F1n sin nξð Þ and f 2 ξð Þ ¼
P

∞

n¼1

~F2n cos nξð Þ, respectively, f 1 ξð Þ ¼ Pη1
ξ2þη21

and

f 2 ξð Þ ¼ Pξ
ξ2þη21

functions.

As seen, the main matrix of system (26) has a block-diagonal form, dimension of
each block is 2� 2. Thus, two equations with two A1n and A2n unknown values will
be solved. After solving this system, we find A1n and A2n coefficients, and in putting
them into formulas (24) and (25), we get displacements and stresses at any points
of the body.

Numerical values of displacements and stresses are obtained at the points of the
finite size region bounded by curved lines η ¼ η1 and ξ ¼ ξ1 (see Figure 1a), and
relevant 3D graphs are drafted. The numerical results are obtained for the following
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data: ν ¼ 0:3, E ¼ 2� 106kg=cm2, P ¼ �10kg=cm2, 0:1≤ η1 ≤ 3, ξ1 ¼ 2 ∗ π, ξ1 ¼
4 ∗ π, and ξ1 ¼ 6 ∗ π. Numerical calculations and the visual presentation are made by
MATLAB software.

Figures 3 and 4 show the distribution of stresses and displacements in the region
bounded by curved lines η ¼ η1 and ξ ¼ ξ1k≔ξ1 (see Figure 1a), when (7a), (8a),
and (9a) boundary conditions are valid and normal stress is applied to the parabolic
boundary. Following conditions (8a) and (9a), at points of the linear parts ξ ¼ 0
and η ¼ 0 of consideration area σξξ 0, ηð Þ, σηη ξ, 0ð Þ stresses and u ξ, 0ð Þ, v 0, ηð Þ
displacements equal zero which is seen in Figures 3 and 4.

4.2 External problem

We will set and solve the concrete external boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous

Figure 3.
Distribution of stresses in the region bounded by curved lines η ¼ η1 and ξ ¼ ξ1.

Figure 4.
Distribution of displacements in the region bounded by curved lines η ¼ η1 and ξ ¼ ξ1.

10

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…



isotropic body in the region Ω1 ¼ 0< ξ< ξ1, η1 < η<∞f g, which satisfies the fol-
lowing boundary conditions: (7a), (8a), (10), and (100).

From (20) and (8a)

φi ¼
X

∞

n¼1

φin, i ¼ 1, 2, 3, (27)

where φ1n ¼ B1ne
�nη sin nξð Þ, φ2n ¼ B2ne

�nη cos nξð Þ, φ3n ¼
κ�2
2n B2ne

�nη sin nξð Þ.

By inserting (27) in (17) and (19), we will obtain the following expressions for
displacements:

u ¼
X

∞

n¼0

�ne�nη B1n � B2nð Þη1 cos nξð Þ þ B1n � B2nð Þξ sin nξð Þ½ � η� η1ð Þf

�e�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �ξ sin nξð Þ �
κ

2
e�nηB2nη cos nξð Þ

o

,

v ¼
X

∞

n¼1

ne�nη B1n � B2nð Þξ cos nξð Þ þ B1n � B2nð Þη1 sin nξð Þ½ � η� η1ð Þf

þe�nη κ � 1ð ÞB1n � κ � 2ð ÞB2n½ �η sin nξð Þ �
κ

2
e�nηB2nξ cos nξð Þ

o

,

(28)

and for the stresses, we obtain the following formula:

h20
2μ

σηη ¼
X

∞

n¼1

�n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ
�

�ne�nη κ

2
B1nη sin nξð Þ �

κ � 2

2
B1n þ B2n

	 


ξ cos nξð Þ

� �

�
η2 � η21

ξ2 þ η2
ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �

�

,

h20
2μ

τξη ¼
X

∞

n¼1

�n2e�nη B1n � B2nð Þξ sin nξð Þ � B1n � B2nð Þη1 cos nξð Þ½ � η� η1ð Þ
�

�ne�nη κ

2
B1nξ sin nξð Þ �

κ � 2

2
B1n þ B2n

	 


η cos nξð Þ

� �

,

�
η2 � η21

ξ2 þ η2
ne�nη B1n � B2nð Þ ξ sin nξð Þ þ η cos nξð Þ½ �

�

,

(29)

h20
2μ

σξξ ¼
X

∞

n¼1

n2e�nη B1n � B2nð Þη1 sin nξð Þ þ B1n � B2nð Þξ cos nξð Þ½ � η� η1ð Þ
�

þne�nη κ � 4

2
B1n þ 2B2n

	 


η sin nξð Þ þ
κ þ 2

2
B1nξ cos nξð Þ

� �

þ
η2 � η21

ξ2 þ η2
ne�nη B1n � B2nð Þ η sin nξð Þ þ ξ cos nξð Þ½ �

�

:

Next, we will obtain the numerical results of the following example.
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We have to solve problem (2), (7a), and (8a), when Q1 ξð Þ ¼ P and Q2 ξð Þ ¼ 0,
i.e., at η ¼ η1 boundary the normal load 1

2μ σηη ¼
P
h20
is given, but tangent stress is

equal to zero. From (22) and (27), we obtain the following equations:

X

∞

n¼1

ne�nη1
κ

2
B1n sin nξð Þ ¼ �

Pη1
ξ2 þ η21

,
X

∞

n¼1

ne�nη1
κ � 2

2
B1n þ B2n

	 


cos nξð Þ

¼
Pξ

ξ2 þ η21
:

Consequently, we obtain the infinite system of the linear algebraic equations
with unknown B1n and B2n coefficients:
P

∞

n¼1
ne�nη1 κ

2B1n sin nξð Þ ¼ �
P

∞

n¼1

~P1n sin nξð Þ,
P

∞

n¼1
ne�nη1 κ�2

2 B1n þ B2n

� �

cos nξð Þ

¼
X

∞

n¼1

~P2n cos nξð Þ,

i.e.,

ne�nη1
κ

2
B1n ¼ �~P1n, ne�nη1

κ � 2

2
B1n þ B2n

	 


¼ ~P2n, n ¼ 1, 2, … : (30)

Hence,

B1n ¼ �
2

κn
enη1~P1n, B2n ¼

enη1

n
~P2n þ

κ � 2

κ
~P1n

	 


,

Figure 5.
Stresses and displacements at points M2 ξ1, η1ð Þ for ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π, and ξ1 ¼ 6 ∗ π, when 0:01≤ η1 ≤ 3.

12

Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable…



where ~P1n and ~P2n are the coefficients of expansion into the Fourier series of

functions f 1 ξð Þ ¼ � Pη1
ξ2þη21

and f 2 ξð Þ ¼ Pξ
ξ2þη21

, respectively (f 1 ξð Þ, according to sinuses,

and f 2 ξð Þ, according to cosines).
As it can be seen, the main matrix of system (30) has a block-diagonal form, and

the dimension of each block is 2� 2. Thus, two equations with two B1n and B2n

unknown values will be solved. After solving this system, we find the values of B1n

and B2n coefficients and put them into formulas (28) and (29) to get displacements
and stresses at any points of the body.

Numerical results are obtained for some characteristic points of the body, in
particular, M1 0, η1ð Þ, M2 ξ1, η1ð Þ points (see. Figure 2a), for the following data:

ν ¼ 0:3, E ¼ 2 ∗ 106kg=cm2, P ¼ �10kg=cm2, 0:01≤ η1 ≤ 3, ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π,
and ξ1 ¼ 6 ∗ π.

The above-presented graphs (see Figures 5 and 6) show how displacements and
stresses change at some characteristic points of body, namely, at points

M
jð Þ

1 0, η
jð Þ

1

� �

and M
jð Þ

2 ξ1, η
jð Þ

1

� �

j ¼ 1, 2, … , 8ð Þ, when 0:01≤ η1 ≤ 3 (see Figure 7).

From the presented results, we obtain the following:

• At points M
jð Þ

1 0, η
jð Þ

1

� �

, max utj j< max unj j, vt ¼ vn ¼ 0:

Figure 6.
Tangential stress and normal displacements at points M1 0, η1ð Þ for ξ1 ¼ 2 ∗ π, ξ1 ¼ 4 ∗ π, and ξ1 ¼ 6 ∗ π,
when 0:01≤ η1 ≤ 3.
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• At points M
jð Þ

2 ξ1, η
jð Þ

1

� �

, max σtξξ

�

�

�

�

�

�> max σnξξ

�

�

�

�

�

�, max utj j> max unj j,

max vtj j< max vnj j:

• When ξ1 ! ∞, then displacements and stresses tend to zero, that is,
the boundary conditions (10) are satisfied.

• When η1 ! ∞, then displacements and stresses tend to zero, that is, the
boundary conditions (100) are satisfied.

• When η1 ! 0 (in this case there is a crack), then (a) at points M
jð Þ

1 0, η
jð Þ

1

� �

tangential stresses and normal displacements tend to ∞, but other components
equal to zero. It can be seen from the boundary conditions (8a) (b) at points

M
jð Þ

2 ξ1, η
jð Þ

1

� �

that all components of the displacements and stresses tend to ∞.

Here superscript t and n denote the tangential and normal displacement or the
stress, respectively.

5. Conclusion

The main results of this chapter can be formulated as follows:

• The equilibrium equations and Hooke’s law are written in terms of parabolic
coordinates.

• The solution of the equilibrium equations is obtained by the method of
separation of variables. The solution is constructed using its general
representation by harmonic functions.

• In parabolic coordinates, analytical solutions of 2D static boundary value
problems for the elasticity are constructed for homogeneous isotropic finite
and infinite bodies occupying domains bounded by coordinate lines of
parabolic coordinate system.

Figure 7.
Infinite region bounded by parabola marked with points, when obtaining the above-presented numerical results.
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• Two concrete internal and external boundary value problems in stresses are
set and solved.

The bodies bounded by the parabola are common in practice, for example, in
building, mechanical engineering, biology, medicine, etc., the study of the
deformed state of such bodies is topical, and consequently, in my opinion, setting
the problems considered in the chapter and the method of their solution is interest-
ing in a practical view.

Notations

x, y Cartesian coordinates
ξ, η parabolic coordinates
E and v modulus of elasticity and Poisson’s ratio
λ, μ elastic Lamé constants

U
!

u, vð Þ displacement vector

σξξ, σηη, τξη ¼ τηξ normal and tangential stresses

Appendix

A. Some basic formulas in parabolic coordinates

In orthogonal parabolic coordinate system ξ, η(�∞< ξ<∞, 0≤ η<∞, see
Figure A1) [23, 24]; we have

hξ ¼ hη ¼ h ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ η2
q

, x ¼ c ξ2 � η2
� �

=2, y ¼ cξη,

where hξ, hη are Lame's coefficients of the system of parabolic coordinates, c is a
scale coefficient, x, y are the Cartesian coordinates.

The coordinate axes are parabolas

y2 ¼ �2cξ20 x� cξ20=2
� �

, ξ0 ¼ const, y2 ¼ �2cη20 xþ cη20=2
� �

, η0 ¼ const:

Laplace’s equation Δf ¼ 0, where f ¼ f ξ, ηð Þ, in the parabolic coordinates has the
form

f ,ξξ þ f ,ηη

� �

=c2 ξ2 þ η2
� �

¼ 0:

We have to find solution of the equation in following form

f ¼ X ξð Þ � E ηð Þ,

and then by separation of variables, we will receive

1

c2 ξ2 þ η2
� �

X}

X
þ
E0

E

� �

¼ 0:

From here

X}þmX ¼ 0, E}�mE ¼ 0,
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where m is any constant, their solutions are [25]

X ¼ C1 cos mξð Þ þ C2 sin mξð Þ, E ¼ C3e
mη þ C4e

�mη

¼ C ∗

3 cosh mηð Þ þ C ∗

4 sinh mηð Þ:

So

f ξ, ηð Þ ¼ C3e
mη þ C4e

�mηð Þ C1 cos mξð Þ þ C2 sin mξð Þð Þ

or

f ξ, ηð Þ ¼ C ∗

3 cosh mηð Þ þ C ∗

4 sinh mηð Þ
� �

C1 cos mξð Þ þ C2 sin mξð Þð Þ,

B. Solution of system of partial differential equations

We solve the system of partial differential equations (2).
We have introduced φ1 harmonic function, and if we take

að Þ D ¼
κμ

h20
φ1,ηη� φ1,ξξ
� �

, bð ÞK ¼
κμ

h20
φ1,ηξþ φ1,ξη
� �

, (B1)

then Eqs. (2a) and (2b) will be satisfied identically, while Eqs. (2c) and (2d) will
receive the following form:

að Þ u,ξ þ v,η ¼ κ � 2ð Þ φ1,ηη� φ1,ξξ
� �

, bð Þv,ξ � u,η ¼ κ φ1,ηξþ φ1,ξη
� �

, (B2)

að Þ u,ξ þ v,η ¼ κ � 2ð Þ φ1,ηη� φ1,ξξ
� �

, bð Þ v� κφ1ηð Þ,ξ ¼ uþ κφ1ξð Þ,η: (B3)

From equation (B3b) imply that exists such type harmonic function φ, for which
fulfill the following

u ¼ φ,ξ � κφ1ξ, v ¼ φ,η þ κφ1η: (B4)

Considering (B4), from Equation (B3a), the following will be obtained:

h2Δφ ¼ φ,ξξ þ φ,ηη ¼ κφ1 þ κφ1,ξξ� κφ1 � κφ1,ηηþ κ � 2ð Þ φ1,ηη� φ1ξξ
� �

¼ 2 φ1,ξξ� φ1,ηη
� �

: (B5)

Figure A1.
Parabolic coordinate system.
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General solution of the system (B2) can be written in the form u ¼ ψ1, v ¼ ψ2,
where

ψ1,ξ þ ψ2,η ¼ 0, ψ2,ξ � ψ1,η ¼ 0:

The full solution of equation system (B2) is written in the following form:

u ¼ φ,ξ � κφ1ξþ ψ1, v ¼ φ,η þ κφ1ηþ ψ2, (B6)

where φ is the partial solution of the (B5).
If we take κ ¼ const, then

φ ¼
ξ2 � η2

2
φ1,

and (B6) formula will receive the following form:

u ¼
ξ2 � η2

2
φ1,ξ � κ � 1ð Þφ1ξþ ψ1, v ¼

ξ2 � η2

2
φ1,η þ κ � 1ð Þφ1ηþ ψ2:

From here

u ¼
ξ2 � η2

2
φ1,ξ þ ξηφ1,η

	 


� ξηφ1,η � κ � 1ð Þφ1ξþ ψ1,

v ¼
ξ2 � η2

2
φ1,η � ξηφ1,ξ

	 


þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:

Without losing the generality, the expression in brackets can be taken as zero,
because we already have in u and v of the solutions Laplacian (we mean ψ1 and ψ2).
Therefore, the solutions of system (2) are given in the following form:

að Þ h20D ¼ κμ φ1,ηη� φ1,ξξ
� �

, bð Þh20K ¼ κμ φ1,ηξþ φ1,ξη
� �

,

cð Þu ¼ �ξηφ1,η � κ � 1ð Þφ1ξþ ψ1, dð Þv ¼ ξηφ1,ξ þ κ � 1ð Þφ1ηþ ψ2:
(B7)

Now we have to write down three versions of ψ1 and ψ2 function representation.
In the first version

ψ1 ¼ φ1,η þ ~φ1,η þ φ2,η, ψ2 ¼ φ1,ξ þ ~φ1,ξ þ φ2,ξ, (B8)

φ1, ~φ1,φ2 are harmonic functions; in addition, φ1, ~φ1 are selected so that at η ¼ α,
where α ¼ η1 or α ¼ η2, the following equations will be satisfied:

�ξηφ1,η � κ � 1ð Þφ1ξþ φ1,η þ ~φ1,η ¼ 0, ξηφ1,ξ þ κ � 1ð Þφ1ξþ φ1,ξ þ ~φ1,ξ ¼ 0,

In the second version

ψ1 ¼ �α
ξ2 � η� αð Þ2

2
φ1,ξ þ ξηφ1,η

 !

þ
ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

ψ2 ¼ α ξηφ1,ξ �
ξ2 � η� αð Þ2

2
φ1,η

 !

þ
ξ2 � η2

2
φ2,η � ξηφ2,ξ,

(B9)
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where φ2 is the harmonic function.
In the third version

ψ1 ¼ �α2
ξ2 � η2

2
φ1,ξ þ ξηφ1,η

	 


þ
ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

ψ2 ¼ α2 ξηφ1,ξ �
ξ2 � η2

2
φ1,η

	 


þ
ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B10)

Inserting (B8) in (B7c and d), we will get

að Þu ¼ �ξηφ1,η � κ � 1ð Þφ1ξþ φ1,η þ ~φ1,η þ φ2,η,

bð Þv ¼ ξηφξþ κ � 1ð Þφ1ξþ φ1,ξ þ ~φ1,ξ þ φ2,ξ:
(B11)

Inserting (B9) in (B7c and d), we will have

að Þu ¼ �α
ξ2 � η� αð Þ2

2
φ1,ξ þ ξηφ1,η

 !

� ξηφ1,η � κ � 1ð Þφ1ξþ
ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

bð Þv ¼ α ξηφ1,ξ �
ξ2 � η� αð Þ2

2
φ1,η

 !

þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ
ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B12)

Inserting (B10) in (B7c and d), we will get

að Þu ¼ �α2
ξ2 � η2

2
φ1,ξ þ ξηφ1,η

	 


� ξηφ1,η � κ � 1ð Þφ1ξþ
ξ2 � η2

2
φ2,ξ þ ξηφ2,η,

bð Þv ¼ α2 ξηφ1,ξ �
ξ2 � η2

2
φ1,η

	 


þ ξηφ1,ξ þ κ � 1ð Þφ1ηþ
ξ2 � η2

2
φ2,η � ξηφ2,ξ:

(B13)

C. Finding of ξ1

After the boundary value problem with relevant boundary conditions on
ξ ¼ ξ1 ¼ ξ11 is solved, the following condition is examined: F11=F10 < ε:

ε is a sufficiently small positive number given in advance (ε ¼ 0, 001� 0, 0001).

F11 ¼

ð

η1

0

σξξ
�

�

�

�þ σηη
�

�

�

�þ τξη
�

�

�

�

� �

hdη

2

4

3

5

ξ¼ξ1

, F10 ¼

ð

η1

0

σξξ
�

�

�

�þ σηη
�

�

�

�þ τξη
�

�

�

�

� �

hdη

2

4

3

5

ξ¼g~ξ1

:

g number will be selected so that on boundary η ¼ η1, point M g~ξ1, η1
� �

should

correspond to the highest value of expression σηη g~ξ1, η1
� �� �2

þ τξη g~ξ1, η1
� �� �2

(when

stresses are given) or to the highest value of expression u g~ξ1, η1
� �� �2

þ v g~ξ1, η1
� �� �2

(when displacements are given).
If condition F11=F10 < ε is not valid forξ1 ¼ ξ11, the same problem will be solved

at the beginning, but ξ1 ¼ ξ12 will be used instead of ξ1 ¼ ξ11. In addition, ξ12 > ξ11.
Then, if condition F12=F10 < ε is not still valid, we will continue with the boundary
problem, where ξ1 ¼ ξ13; besides, ξ13 > ξ12 > ξ11, and we will examine condition
F13=F10 < ε. The process will be over at the kth stage, if condition F1k=F10 < ε is valid.
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Finding such ξ1 ¼ ξ1k, for which F1k=F10 < ε.

Distance l between surfaces ξ ¼ ξ1 and ξ ¼ ~ξ1, which gives the guarantee for
condition F1k=F10 < ε to be valid in the parabolic coordinate system, will be taken
along the axis of the parabola , and the following expression will be obtained:

ξ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l=cþ ~ξ
2

1

q

:

By relying on the known solutions of the relevant plain problems of elasticity, it
is purposeful to admit that l=c ¼ 4, 5, 6, … , which allows finding ξ1 from the
relevant equation. Let us note that when l=c ¼ 4, we will denote value ξ1 by ξ11,
when l=c ¼ 5; by ξ12, when l=c ¼ 6; by ξ13, etc. If after selecting ξ1 ¼ ξ1k, inequality
F1k=F10 < ε is valid; in order to check the righteousness of the selection, it is neces-
sary to once again make sure that, together with condition F1k=F10 < ε, condition
ε>F1k=F10 > F1kþ1=F10 >F1kþ2=F10 > … is valid, too.
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