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Chapter

2D Elastostatic Problems in
Parabolic Coordinates

Natela Zirakashvili

Abstract

In the present chapter, the boundary value problems are considered in a parabolic
coordinate system. In terms of parabolic coordinates, the equilibrium equation sys-
tem and Hooke’s law are written, and analytical (exact) solutions of 2D problems of
elasticity are constructed in the homogeneous isotropic body bounded by coordinate
lines of the parabolic coordinate system. Analytical solutions are obtained using the
method of separation of variables. The solution is constructed using its general rep-
resentation by two harmonic functions. Using the MATLAB software, numerical
results and constructed graphs of the some boundary value problems are obtained.

Keywords: parabolic coordinates, separation of variables, elasticity, boundary,
value problem, harmonic function

1. Introduction

In order to solve boundary value and boundary-contact problems in the areas
with curvilinear border, it is purposeful to examine such problems in the relevant
curvilinear coordinate system. Namely, the problems for the regions bounded by a
circle or its parts are considered in the polar coordinate system [1-4], while the
problems for the regions bounded by an ellipse or its parts or hyperbola are consid-
ered in the elliptic coordinate system [5-13], and the problems for the regions with
parabolic boundaries are considered in the parabolic coordinate system [14-16].
The problems for the regions bounded by the circles with different centers and
radiuses are considered in the bipolar coordinate system [17-19]. For that purpose,
first the governing differential equations are expressed in terms of the relevant
curvilinear coordinates. Then a number of important problems involving the
relevant curvilinear coordinates are solved.

The chapter consists of five paragraphs.

Many problems are very easily cast in terms of parabolic coordinates. To this
end, first the governing differential equations discussed in present chapter are
expressed in terms of parabolic coordinates; then two concrete (test) problems
involving parabolic coordinates are solved.

The second section, following the Introduction, gives the equilibrium equations
and Hooke’s law written down in the parabolic coordinate system and the setting of
boundary value problems in the parabolic coordinate system.

Section 3 considers the method used to solve internal and external boundary
value problems of elasticity for a homogeneous isotropic body bounded by
parabolic curves.
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Section 4 solves the concrete problems, gains the numerical results, and
constructs the relevant graphs.
Section 5 is a conclusion.

2. Problems statement
2.1 Equilibrium equations and Hooke’s law in parabolic coordinates

It is known that elastic equilibrium of an isotropic homogeneous elastic body
free of volume forces is described by the following differential equation [20]:

(A + 2u)grad div U-— urotrot U=0 (1)

where 1 = Ev/[(1+v)(1 — 2v)], p = E/[2(1 — v)| are elastic Lamé constants; v is

the Poisson’s ratio; E is the modulus of elasticity; and Uisa displacement vector.
By projecting Eq. (1) onto the tangent lines of the curves of the parabolic
coordinate system (see Appendix A), we obtain the system of equilibrium equations
in the parabolic coordinates.
In the parabolic coordinate system, the equilibrium equations with respect to the
function D, K, u, v and Hooke’s law can be written as [20-22]:

(@)D —K, =0, ()ug+7,=(x—2)/(ku) oD,

(2)
b)D,+K:=0, (d)v:—1u,= 1/y hiK.
Oy = ho Mg + (2 + 20)% 5+ [ (A + p) — pho?] (& + )],
o = ho' [(A+ 20 e + 27, + [(2+p) + ﬂho ] (& +n9)], (3)

tey = pho ' [(Ve +uy) — ho (&9 + nia)],

where k = 4(1 —v), % = hu/c?, V=hv/c?, ho =& + 2 h=hs=h, =
c\/E + n? are Lamé coefficients (see Appendix A), u, v are the components of the

displacement vector U along the tangents of 7, £ curved lines, and ¢ is the scale
factor (see Appendix A). And in the present paper, we takec =1, (k —2)/(ku) - D is
the divergence of the displacement vector, K/u is the rotor component of the
displacement vector; o, o,, and 7, = 7, are normal and tangential stresses; and

sub-indexes () . and () , denotes partial derivatives with relevant coordinates, for

)¢

example, K ; = 5z

2.2 Boundary conditions

In the parabolic system of coordinates &, 7 (—oo0 <& < o0, 0 <1< o0), exact solu-
tions of two-dimensional static boundary value problems of elasticity are
constructed for homogeneous isotropic bodies occupying domains bounded by
coordinate lines of the parabolic coordinate system (see Appendix A).

The elastic body occupies the following domain (see Figures 1 and 2):

(@) D1 ={0<¢é<&, 0<n<ny}, (b) D = {-& <&<éy, 0<n<m}, (4)
(a) Q1 ={0<&<éy, ny<n<oo}, (b) Q= {-& <E<Ey, ny <n<oo}. (5)
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Figure 1.
(a) D, = {0<¢&<€E,, 0 <n<n,} domain bounded by parabolic curve n = n, and line 'y = 0 and
(b) D = {—¢&, <E<¢,, 0 <n<mn, } domain bounded by parabola n = n,.

Ny "

\\\?.“f‘f%._

\/x

M, (0.7,) &=0

a)

Figure 2.
Infinite domain (a) 2, = {0 <E<E,, n, <n< oo} bounded by parabolic curve n = n, and line y = 0 and
(b) Q ={—¢&, <E<E,, n, <n<oo} bounded by parabola n = n,.

Boundary conditions that appear in the chapter have the following form:

for =& (a)oz=F ), w="F () or (b)u=G'yn), v=Gy ),

(6)

for n=mn: (a)oy=Q (&), 7 =QY () or (b)u=H (&), v=HE@),
)

for £=0: (a)v=0, 062=0 or (b)u=0, 75 =0, (8)
forn=0: (@u=0, o0,=0, or (b)v=0, 145 =0, 9)

for & — too: oy — 0, 70— 0, u—0, v—0. (10)

forn - ~: 6, —0, 17,—0, u—0, v—0, (10a)

where F;, Q; (i = 1,2) with the first derivative and G;, H; with the first and
second derivatives can be decomposed into the trigonometric absolute and uniform
convergent Fourier series.
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Boundary conditions on the linear parts £ = 0 and 5 = 0 of the consideration
area enable us to continue the solutions continuously (symmetrically or anti-
symmetrically) in the domain, that is, the mirror reflection of the consideration area
in a relationship y = 0 line (see Figures 1b and 2b).

3. Solution of stated boundary value problems

In this section we will be considered internal and external problems for a homo-
geneous isotropic body bounded by parabolic curves.

3.1 Interior boundary value problems

Let us find the solution of problems (2), (3), (4a) (see Figure 1a), and (7)-(10)
in class C*(D) (for D area shown in Figure 1b). The solution is presented by two
harmonious ¢; and ¢, functions (see Appendix B). From formulas (B11)-(B13),
after inserting a = #; and making simple transformations, we will obtain:

2
u=- [’7(401,11 - 402,5) + (k — 1>€0]5 + {%1 (§01,5 + 9”2,71) — (k= 1)y |0,

(11)
2
V= %W%m—¢u)+@—4M4n+iﬂﬁg+¢my—@—1Wﬂ&
D= Z_/; [(401,17 - 402,5)’7 - (401,5 + (Pz,q)f} , K= Z—/; [((PL” - 4’2,5)5 + ((,01,5 + (02,,7)77} ,
0 0
where
1 .
= (@i + Pigy) =0, i=12. (12)

h

The stress tensor components can be written as

hy n? K K—2
5 Om=—|— ((P1,§§ + 902,5;1) 5P T Ty P |

2u n 2
K—2 K
+ (1(p1e) — P2) + 5 Pe T 5Py <
2
n—n
- leTﬂz [((/)1,,1 - (/’2,5)’7 — ((/’1,5 + (Pz,q)f] s (13)
h? " K—2 K
ﬁfén = [;1 (401,5;1 - 602,55) + TS P 5602,”} n
K K—2
+ ’7(4’1,55 + Q”z,gq) TP T Ty P2 ¢
2
nmh—-n
- 52:_7 [(601,;7 - 602,5)5 + (4’1,5 + 402,;1)’7] )
h? 0 K—4 K+2
i”&f = {;1 (%,55 + 402,&,) Ty P T%,g] n
K+2 k—4
- ’7((01,5;7 - (Pz,gg) + 5 P1e T T P ¢
m—n
+ 21 (91, — @2.6)1 — (916 + @2, €]
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From (12) by the separation of variables method, we obtain (see Appendix A)
%= @ i=12, (14)
n=1

where
¢1, == Ay, cosh (nn) cos (n€),  ¢,, == Ay, sinh (nn) sin (n¢)
or

@1, == Aqy sinh (ny) sin (né),  @,, == Ay, cosh (nn) cos (né).

Forn = 0: 919 = A1o + a02& + +ao3n + aoaéy, pyg = Azo + bo2é + bosn + boaén,
where A1g,a02, ...,bo4 are constant coefficients. When#n = 0 and 0 < é <&, then
the terms &, 5 and &n will not be contained in ¢4 and ¢,q. If the foregoing solutions
are presented in expressions of ¢, and ¢,,, then it would be impossible on & = &; to
satisfy the boundary conditions, and grad ¢, = (o ¢ + ¢i0,,) /% (i = 1,2) will not
be bounded in the point M(0, 0).

Provision. We are introducing the following assumptions:

1.¢&; is a sufficiently great positive number (see Appendix C).

2.The boundary conditions given on = 7, i.e., stresses or displacements equal
zero at interval & < &< &y

3. When stresses are given on 7 = 1, the main vector and main moment equal
Zero.

It is clear that
D = K("éf + 0nn>/4a oze = 4D [k — oy

By ultimately opening expressions o,, and 7, (in details), we can demonstrate
that at point M(0, 0), o,, and 7z, (and naturally, o, too) are determined, i.e., they
are finite.

When at # = 5, % and ¥V are given, then it is expedient to take instead of them as
their equivalent the following expressions:

1 _

fr @-m 47 &) =ny (01 + a,y) — (k= V)py,
0
1

7o

(15)
@- &= -m) = (@1, — @2¢) + (kK — 1)y,

2 2
and if atn =1 }2’—20,1,7 and 2’—;05,7 are given, then instead of them we have to take

their equivalent following expressions:

1 K K—2

Z (0,7,7 "Ny — Ogyp + é:) = -1 ((P1,§§ + (Pz,gq) TP T Ty P

1 K—2 K (16)
W (o - &+ 05 -m) = m (01 — 02e) + T P 5%

Considering the homogeneous boundary conditions of the concrete problem, we
will insert ¢; and ¢, functions selected from the (14) in the right sides of (15) or

5



Solid State Physics - Metastable, Spintronics Materials and Mechanics of Deformable...

(16), and we will expand the left sides in the Fourier series. In both sides expres-
sions which are with identical combinations of trigonometric functions will equate
to each other and will receive the infinite system of linear algebraic equations to
unknown coefficients Ay, and A,, of harmonic functions, with its main matrix
having a block-diagonal form. The dimension of each block is 2 x 2, and determi-
nant is not equal to zero, but in infinite the determinant of block strives to the finite
number different to zero.

It is very easy to establish the convergence of (11) and (13) functional series on
the area D = {—& <& <&, 0 <y <n,} by construction of the corresponding uniform
convergent numerical majorizing series. So we have the following:

Proposal 1. The functional series corresponding to (11) and (13) are absolute
and uniform by convergent series on the area D = {—¢; <£<&, 0<n<n;}.

3.2 Exterior boundary value problems

We have to find the solution of problems (2), (3), (5a) (see Figure 2a), (7), (8),
(10), and (10’), which belongs to the class C*(Q) (see region Q on Figure 2b). The
solution is constructed using its general representation by harmonic functions ¢, ¢,
(see Appendix B). From formulas (B11)-(B13), following inserting a« = #; and
simple transformations, we obtain the following expressions:

!

=- [(%,5 =+ 602,;7)’11 + ((/’1,;7 — (Pz,g)ﬂ (n—n1) — [(K — 1) + (ﬂ3,q]f — [(K — 1), — 603,5] 1,

V= [(p1z+ 92,)& = (01, — @2.6)m | (1 —m) + [(K = Vs + @3, |1 — [(k = Doy — @3],

(17)
D=" K="
72 (91 — 92.6)1 — (016 + 92,)) €] i (91, — #22)E+ (@16 + @2,)7]
where
1 .
2 (401',55 + C”i,my) =0, 1=1,2,3. (18)

The stress tensor components can be written as:

hz
iﬁnn = [(%,gg + (/’2,&7)’71 + (401,&7 - 402,55)5] (n—no)

K K—2
<01;7+ 5 P2 T P3|

G

Pre — §02q+€035n>5

P —
+1 2 +77; [(@1y = @21 = (@16 + #2,)E],
h; K K—2
ZT&] = [((01,55 + (Pz,§q>§ — <(P1,§7, - (ﬂz,e:g)’h] (n—m)— 5P + T P P ¢

s _’71
&+

(91, = @2.2) € — (916 + @2)71]
(19)

K—2
+ 5 P 2(/’2;1+(/’35n n+——>
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—4 K+ 2 K+ 2 K—2
- T%,n + T%,g — Q3 |0 — 5 @1, — T%,q T @3¢y ¢
2
—n
7}73 [(401,;1 - 402,5)’7 - (401,5 + 902,;7)5]

2 2
If % and ¥ are given for = 51, then we take ¢3; = 0, and when }Zﬁa,m and 21—20',:,7 is

u
given for 7 = 1y, then g3 =52 [ p,dé.
From (18), by the separation of variables method, we obtain

@i =Y Oy i=1,2,3, (20)
n=1
where
_ —nn o3 . —nn . K — 2 —nn i
@1, = Bipe "sin (né),  @,, = Bye " cos (né), @3, = 5 Bone " sin (né)

or

K—2

P1n = Blneim7 Cos (7’15), Pop = anefnn sin (1’15), P3n = — n

By,e " cos (né).

When n = 0, then @9 = A10 + @028 + ao3n + a0aln, @0 = Az + b2 + bosn +
bosén, where Aqg,a02, ..., bos are constants. From limited of functions ¢;, (i = 1,2)
in 7 — oo and satisfying boundary condition for &£ = &, it implies that ag; = 0,

1702 = O, aog3y — 0, bog = 0, aog4 = 0, b04 =0. Therefore, P10 = 0, Pr0 = Azo or
P10 = A10, P20 = 0.
Provision. As in the previous subsection we make the following assumptions:

* ¢, is a sufficiently large positive number (see Appendix C).

* Aty = 5, given boundary conditions, i.e., displacements or stresses on interval
& < &< €y, will equal zero.

* When stresses are given on n = 7, the main vector and main moment will
equal zero.

When # and ¥ are given at n = 7, then instead of them, it is expedient to take
the following expressions as their equivalent:

1

hz (K . 1) (ﬁf - vﬂl) = @15
0

- m (un, + &) = @y, (21)
0

2 2
and if at 5 = }21—26,1,7 and 2’—;05,7 are given, then instead of them we have to take
the following expressions as their equivalent:

1 K
Z (017'1 "M — O&p - 5) = §(P1,n’

K—2

. (22)
ﬂ ("rm Etog- ’71) = ) P1,e — Py
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Just like that in the previous subsection, considering the homogeneous boundary
conditions of the concrete problem, we will insert ¢; and ¢, functions selected from
(20) in Eq. (21) or (22), and we will expand the left sides in the Fourier series. Both
sides of the expressions, which show the identical combinations of trigonometric
functions, will equate to each other and will receive the infinite system of linear
algebraic equations to unknown coefficients A1, and A,, of harmonic functions,
with its main matrix having a block-diagonal form. The dimension of each block is
2 x 2, and the determinant does not equate to zero, but in the infinity, the determi-
nant of block tends to the finite number different from zero.

As in the previous subsection, we received the following:

Proposition 2. The functional series corresponding to (17) and (19) are absolute
and a uniformly convergent series on region Q = {—& <E<&;, ny <n<ool.

4. Test problems

In this section we will be obtained numerical results of internal and external
problems for a homogeneous isotropic body bounded by parabolic curves when
normal stress distribution is applied to the parabolic border.

4.1 Internal problem

We will set and solve the concrete internal boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
isotropic body in the area Q; = {0 <¢&<&;, 0<y<n,} (see Figure 1a), which sat-
isfies boundary conditions (7a), (8a), (9a), and (10).

From (14), (8a), and (9a)

%= P i=1,2, (23)
n=1

where ¢, == Ay, sinh (ny) sin (né), ¢,, == Ay, cosh (nn) cos (né).
By inserting (23) in (11) and (13), we will receive the following expressions for
the displacements:

[ee]

Z —[nné cosh () (Asn + Az) + (x — 1)Esinh (ny)As,] sin (n€)
+ [7’”71 sinh (ny) (A1 + Az,) — (k — 1) cosh (nn)Az, | cos (né) },
V= Z{ [7’”7% cosh (n17) (A1 + Azn) + (k — 1) sinh (nn) A1, ] sin (né)

+[nné sinh (nn) (A1, + Az) — (k — 1)& cosh (nn)Az,] cos (né)},

(24)

but for the stresses the following:

W2 > . K K—2 .
ﬁam = ;{ [nziﬁ sinh (n1) (A1, + A2,) + nn cosh (nn) <§A1n - TAZWH sin (n¢)

+ [nznf cosh (nn) (A1, + A2,) + nésinh (nn) <K ; 2A1n — gAZnﬂ cos (né)

2

2
Gy 1108 (1) Ay + Aay) sim (n€) — e sinh () (A + Aon) cos ()] }

—a
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hg < -2
ﬁr‘f” = ;{ {nziﬁ cosh (nn) (A1, + Az,) + nysinh (nn) (K 3 Ay — §A2n>} cos (né)
— [nznf sinh (nn)(A1, + Az,) + né cosh (nn) (gAln — K;ZZAM)] sin (n&)
2_ 2
_ Zi - Zz [n& cosh (nn) (A1, + Azy) sin (né) + nn sinh (nn) (A1, + Az, ) cos (né)] } ,
(25)
2 o0
21—2655 = Z{— [nziﬁ sinh (n1) (A1, + A2,) + nn cosh (nn) <K ; 4A1n X —; 2A2n>] sin (n¢&)
n=1

— {nznf cosh (nn) (A1, + Aa,) + nésinh (nn) (K —; 2A1n L ; 4Azn>] cos (nf)

2 .2
+ Zi n ZZ [ny cosh (n7) (A, + Azy) sin (n) — né sinh (n17) (A1, + Azy) cos (né)] }

We have to solve problem (2), (7a), (8a), and (9a) when Q;(¢) = P and
Q,(&) = 0, i.e., at # = n; boundary the normal load ﬁa,m = % is given, but tangent
stress is equal to zero. From (16), and (23), we obtain the following equations:

(o]

Z [nzlyl sinh (n#n;) (A1, + A2,) — n cosh (nn;) (EAM — %AZn)} sin (né) = P

et 2 g+’
- . K—2 K P
[nznl cosh (n1n;) (A1, + Az,) + nsinh (nny;) <TA1" — EAZ")] cos (né) = 2752
n=1 5 + 771

From here an infinite system of the linear algebraic equations with unknown A4,
and A,, coefficients is obtained:

[(nznl sinh (nn;) — ng cosh (nn1)>A1n

K —

2 -
+ <n2’71 sinh (nn;) +n cosh (7’“71))14271] = F1,,

(26)

K —

[(nznl cosh (nn;) +n 2 sinh (”ﬂl))Am

+(n2771 cosh (nn,) — ng sinh (nnl))Azn] =Fy, n=12,..

where Fy, and F, are the coefficients of expansion into the Fourier series

f1&) = i Fy, sin (né) and f, (&) = i Fy, cos (nf), respectively, f,(£) = P and
n=1 n=1

Et?

() = EPT% functions.

As seen, the main matrix of system (26) has a block-diagonal form, dimension of
each block is 2 x 2. Thus, two equations with two Ay, and A,, unknown values will
be solved. After solving this system, we find A1, and A,, coefficients, and in putting
them into formulas (24) and (25), we get displacements and stresses at any points
of the body.

Numerical values of displacements and stresses are obtained at the points of the
finite size region bounded by curved lines 7 = n; and £ = &; (see Figure 1a), and
relevant 3D graphs are drafted. The numerical results are obtained for the following
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data:v = 0.3, E = 2 x 10%kg/cm?, P = —10kg/cm?, 0.1<n; <3, & = 2% 71, & =
4 % 7, and £; = 6 % 7. Numerical calculations and the visual presentation are made by
MATLAB software.

Figures 3 and 4 show the distribution of stresses and displacements in the region
bounded by curved lines n = 7, and & = £y;:=¢; (see Figure 1a), when (7a), (8a),
and (9a) boundary conditions are valid and normal stress is applied to the parabolic
boundary. Following conditions (8a) and (9a), at points of the linear parts £ = 0
and n = 0 of consideration area o (0,7), 6,,(&, 0) stresses and #(&, 0), v(0,7)
displacements equal zero which is seen in Figures 3 and 4.

4.2 External problem

We will set and solve the concrete external boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous

Figure 3.
Distribution of stresses in the region bounded by curved lines n = n, and & = &,.

Figure 4.
Distribution of displacements in the region bounded by curved lines n = n, and & = ¢,.

10
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isotropic body in the region Q; = {0 <& < ¢y, ; << oo}, which satisfies the fol-
lowing boundary conditions: (7a), (8a), (10), and (10').
From (20) and (8a)

- Z¢in; i1=1,2,3, (27)
n=1

where ¢y, = Bi,e " sin (n&), ¢,, = Ba,e ™" cos (n&), ¢s, = "z;nzBZne_"” sin (n¢).
By inserting (27) in (17) and (19), we will obtain the following expressions for
displacements:

[

u= ) {-ne™[(Bw — Bau)ny cos (ng) + By — Byn) sin (n8)](n — 1)

=0

N

—e[(k — 1)B1y — (k — 2)Bay]Esin (né) — ge_"”BZnn cos (né) }
(28)

ﬁl
]

{ne ""[(B1, — Bay)& cos (n&) + (By, — By, )1y sin (né)](n — ny)

3
I
-

+e M[(k — 1)B1, — (k — 2)By, |y sin (né) — ge_"”BZné cos (né) },
and for the stresses, we obtain the following formula:
Z{ n*e ™[(By, — By, )0y sin (n€) + (By, — By )& cos (né)](n — 1,)

2

—ne ™M EBM sin (n€) — (K ; By, + Bzﬂ) g cos (”5)]

-
&+

ne™ By, — By ) sin (n€) + £ cos (n¢)] }

" @—Z{ W2 ™ (Byy — Bay)E sin (n€) — (Bus — Bau)iy cos (nE)] (1 — 1)

—ne ™M E B, sin (né) — (% Bin + an) 1 cos (”5)} ) (29)

_’72_’7% (B, _ B )5 §+ (§>
fz—l—nzne (B1y — Bay)[ésin (né) + ncos (né)] ¢,

hZ
2,06~ Z{” e "[(Bin — Ban)ny sin (n&) + (Bi, — Ba, )& cos (né)|(n — nq)
+ne " {(K _

=
+§27’7;”€_m7(31n — By,)[nsin (n&) + & cos (néj)]}

4Bln + 232,,) nsin (né) + i 2B1n5 cos (nf)]

Next, we will obtain the numerical results of the following example.

11
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We have to solve problem (2), (7a), and (8a), when Q4 (&) = P and Q,(¢) = 0,
i.e., at # = n; boundary the normal load ﬁa,m = h% is given, but tangent stress is

equal to zero. From (22) and (27), we obtain the following equations:

o Pn, = . (k=2
Z ne Bln sin (né) = 52 7 , ; ne " (TBM + an) cos (né)
_PS

5 +’71

Consequently, we obtain the infinite system of the linear algebraic equations
with unknown By, and B,, coefficients:
>" ne ™ 5By, sin (n€) = — 3 Py, sin (né), Y ne™n (52 By, + By,) cos (né)

n=1 n=1 n=1

[ee]

= Z n €OS (né),

ie.,
K ~ K—2 ~
m_ — _ L — —
2B1n — Plna ne ) Bln +BZn - PZna n = 1, 2; cee s (30)
Hence,
7]
2 ~ e [ K—2-~
— T oni —
By, = ¢""Py,, By = Py, + Py,
Kn n K
" N Plot graph of Tee in point Mz(§1§7l1) ; Plot graph of . in point M2(§1;1,1)
ol —h—§,=2r| |
—¥—¢,=4n ol
8f £,=67 | 1 S
as e §1=47r
b ¢ =6x|1
6l
S os| Q:i > ]
al
3F
3k
2+ Al |
1k
0 5
0 0.5 1 15 2 25 3 0 0.5 1 1.5 2 25 3
7]1 7/1
Plot graph of u in point M 3 : :
05 g‘ P i P 2l(§1 7I1) Plot graph of v in point MZ(§1;W1)
*— ¢, =2 —k— ¢, =27
04 w—g =4 | g, =]
il £,=6m
03
S 0.2 >
0.1 F
ok — «
201 5 . . . \ .
0 d 0 0.5 1 1.5 2 25 3
4 74
Figure 5.

Stresses and displacements at points M, (&, ,n,) for &, =2%m, & = 4%, and &, = 6 n, when 0.01 <5, <3.
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where Py, and P, are the coefficients of expansion into the Fourier series of

functions f,(¢) = — ;J’Ziﬁ andf,(§) = ﬁ, respectively (f (), according to sinuses,
and f,(¢), according to cosines).

As it can be seen, the main matrix of system (30) has a block-diagonal form, and
the dimension of each block is 2 x 2. Thus, two equations with two By, and B,
unknown values will be solved. After solving this system, we find the values of By,
and By, coefficients and put them into formulas (28) and (29) to get displacements
and stresses at any points of the body.

Numerical results are obtained for some characteristic points of the body, in
particular, M1(0,#,), M2(&;,1,) points (see. Figure 2a), for the following data:
v=03,E=2%10%g/cm?, P = —10kg/cm?, 0.01<#, <3, & = 2% 7, & = 4% 7,
and & = 6% 7.

The above-presented graphs (see Figures 5 and 6) show how displacements and
stresses change at some characteristic points of body, namely, at points

MY (o,n§f>) and MY (gl,ngf)) (j=1,2, ..., 8), when 0.01<7, <3 (see Figure 7).

From the presented results, we obtain the following:

* At pointsng) <O,n§j)>, max [#'| < max [u"|, v/ =v"=0.

Plot graph of o, _in point M_(0;7,)
50 ; it !

of J———u + * # ¥
g +§1=27r
-50 i < 51=47r 7
§1=67r
-100 | 1
¥ o150 .
-200 4
-250 1
300 | ¥ 1
550 ; . ¢ ; ;
0 0.5 1 1.5 2 25 3
4

Plot graph of u in point M1 (O;n1)

30

* —)’(—§1=27'r
25 do—§ =4m |
§1=67'r

20 1

15

Figure 6.
Tangential stress and normal displacements at points M, (0,n,) for &, =2« m, £, = g% 7, and £, = 6 =,
when 0.01 <n, <3.
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y
n=m®

@ n=m®

\ =@
. 7T

n=m®
e

AN/
v=0, u.s=0 Mz 9(&1,m19)

My 9(0,mY)
J=1,2,..8

v X

Figure 7.
Infinite region bounded by parabola mavked with points, when obtaining the above-presented numerical vesults.

* At points Méj) (fl,ﬂgj)>, max )025‘ > max

0% |, max |u'| > max [u"],

max |v!| < max |[v"|.

* When §; — oo, then displacements and stresses tend to zero, that is,
the boundary conditions (10) are satisfied.

* When 5, — oo, then displacements and stresses tend to zero, that is, the
boundary conditions (10’) are satisfied.

* When 5; — 0 (in this case there is a crack), then (a) at points ng ) <0, ngj )>

tangential stresses and normal displacements tend to oo, but other components
equal to zero. It can be seen from the boundary conditions (8a) (b) at points

ng ) (51, ngj )) that all components of the displacements and stresses tend to co.

Here superscript t and z denote the tangential and normal displacement or the
stress, respectively.

5. Conclusion
The main results of this chapter can be formulated as follows:

* The equilibrium equations and Hooke’s law are written in terms of parabolic
coordinates.

* The solution of the equilibrium equations is obtained by the method of
separation of variables. The solution is constructed using its general
representation by harmonic functions.

* In parabolic coordinates, analytical solutions of 2D static boundary value
problems for the elasticity are constructed for homogeneous isotropic finite
and infinite bodies occupying domains bounded by coordinate lines of
parabolic coordinate system.
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* Two concrete internal and external boundary value problems in stresses are
set and solved.

The bodies bounded by the parabola are common in practice, for example, in
building, mechanical engineering, biology, medicine, etc., the study of the
deformed state of such bodies is topical, and consequently, in my opinion, setting
the problems considered in the chapter and the method of their solution is interest-
ing in a practical view.

Notations

X,y Cartesian coordinates

& n parabolic coordinates

Eandv modulus of elasticity and Poisson’s ratio
As elastic Lamé constants

U(u,v) displacement vector

Oees Opys Ty = Tpe normal and tangential stresses
Appendix

A. Some basic formulas in parabolic coordinates

In orthogonal parabolic coordinate system &, 7(—oo0 <& < o0, 0 <5< 0, see
Figure A1) [23, 24]; we have

he=hy=h=c\/&+n?, x=c(&—-n")/2, y=cén,

where k¢, h, are Lame's coefficients of the system of parabolic coordinates, ¢ is a
scale coefficient, x, y are the Cartesian coordinates.
The coordinate axes are parabolas

y? = =20 (x — c&5/2), & = comst, y* = —2cng(x +cny/2), ny = const.

Laplace’s equation Af = 0, where f = f (¢, ), in the parabolic coordinates has the
form

(Foe+f ) /(& +07) =0,
We have to find solution of the equation in following form

f=X(¢)-E),

and then by separation of variables, we will receive

# )LH_FE_ﬂ =0
62(52_“72) X El

From here

X" +mX =0, E" —mE =0,

15
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T
=]
=

Il
<
v

Figure A1.
Parabolic coordinate system.

where m is any constant, their solutions are [25]

X = Cicos (mé) + Cysin (mé), E = C3¢™ + Cqe™™
= Cj cosh (mn) 4+ C; sinh (mu).

So
f(&n) = (C3e™ + Cue”™)(Cq cos (mé) + Cy sin (m))

or

f(&n) = (C5 cosh (mn) + C; sinh (mn))(Cy cos (m&) + C; sin (mé)),

B. Solution of system of partial differential equations

We solve the system of partial differential equations (2).
We have introduced ¢, harmonic function, and if we take

(a) D= Z—f (@11 — 0166),  (B)K =" (py,,& +@1.01m), (B1)
0

2
0

then Egs. (2a) and (2b) will be satisfied identically, while Egs. (2c) and (2d) will
receive the following form:

(a) ﬁ,f + v,f’l = (K - 2) <(p1,r]7] - ¢1,§§)) (b) v,f - ﬁ,i’] = K((pl,n§ + (P1,§'7), (Bz)
(@) g+ V= (K= (P10 —01),  (b) (T —kpun) . = (@ +Kkps8),.  (B3)

From equation (B3b) imply that exists such type harmonic function ¢, for which
fulfill the following

U=q:—Kkpi&, V=g, +Kpin. (B4)
Considering (B4), from Equation (B3a), the following will be obtained:

WA = P e+ Py = KQ1 + K1 & — Kpy — K0 + (K — 2) (4’1,;1’7 — 40155)
= 2(§01,5§ - 401,;7’7)' (B5)
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General solution of the system (B2) can be written in the form # =y, ¥ = y,,
where

wietwy, =0, Wae— W1, =0
The full solution of equation system (B2) is written in the following form:
U=g@:—kpi&+yy, V=g, + ke +yy, (B6)

where ¢ is the partial solution of the (B5).
If we take k = const, then

& —n?
¢ - 2 401,

and (B6) formula will receive the following form:

E—n
2

52 _'72
2

U= P, — (K = D)p1& +yry, V= @1,y + (K = D)o + v,

From here

Without losing the generality, the expression in brackets can be taken as zero,
because we already have in # and ¥ of the solutions Laplacian (we mean y; and y,).
Therefore, the solutions of system (2) are given in the following form:

(@) hgD = xu(pyn— 1), (b)hgK = kp(@1,,& + @ren)5

(B7)
()u = ~éngy, — (k =D& +yy,  (A)V=Eneye + (k — D)gn + v,

Now we have to write down three versions of y; and y, function representation.
In the first version

W1 =yt Q1 T P2y Wy = D1+ P+ Pops (B8)

@1, 1, ¢, are harmonic functions; in addition, ¢,, ¢, are selected so that at n = a,
where a = 1, or @ = 1, the following equations will be satisfied:

—&ng, — (kK = De1é + @1, + @1, = 0, Enpre+ (k=D& + @1+ 1 =0,

In the second version

52 S — 2 52 - ’72
Y= —a (% P + é:i’]gol’n + 7 D¢ + f’?fl’z,n,
2 2 2 (B9)
£ —(n—a) &—n
Y),=a (577%,5 Ty P + D) P2y — &7402,5’
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where ¢, is the harmonic function.
In the third version

& — & —

Y= —a2< ) P1,e + 57]§01’,7 + Tfﬂz,g + 577(02,;7,

2 2 2 2 (B10)
_ 2 & —n & —n
Y =a fnng—-——i——qhﬁ -+——7;——¢;ﬂ——§n¢;a
Inserting (B8) in (B7c and d), we will get

(Q)u = —éney, — (k = Dp1& + @1, + @1, + @25

(B11)

(b)V =&neé + (x = 1)@1& + Pre + Pr e+ @r

Inserting (B9) in (B7c and d), we will have

_ £ —(n—a’ g
(@uz—ﬂ<——i%——1%¢+&wm — &gy, — (k= 1) + 2n¢u+fwmw
2 2 2 2
_ -n—a & —n
(b)V==<1<5H¢L5——————iz———l—qu) +—§n¢L¢—%(K-—1)¢ﬂ7+-——§———¢zn——énwza
(B12)
Inserting (B10) in (B7c and d), we will get
_ E—n E—n
(@uz—f( 5 PLe T SNy, —@%ﬁ—@—1W£+-,2 Ppe + ENwy s
_ £ —n E—n
(b)v = o (577401,5 Py ) T e + (k —D)ggn + 5 P2y — SNP

(B13)
C. Finding of &,
After the boundary value problem with relevant boundary conditions on

& = & = &y is solved, the following condition is examined: F11/F19 <e.
¢ is a sufficiently small positive number given in advance (¢ = 0,001 — 0, 0001).

" m
Fi1 = J(‘Ué‘f‘ + |‘7m1‘ + ‘Téfn‘)hd’? , Fio= J(‘Uff‘ + |‘7'1'7} + ‘75’7|)hd’7
0 e, 0 t=g

g number will be selected so that on boundary # = #;, point M (gzjl, ;71) should
correspond to the highest value of expression [0,7,1 (gél, 711)} ? + [75,7 (gél, 171)} ? (when

stresses are given) or to the highest value of expression [ﬁ(gél, 771)]2 +[v (gg’l, 171)]2
(when displacements are given).

If condition F11/F19 < ¢ is not valid foré; = &;;, the same problem will be solved
at the beginning, but &; = &;, will be used instead of £; = &;;. In addition, &, > &y;.
Then, if condition Fy,/Fj9 < € is not still valid, we will continue with the boundary
problem, where &; = &;3; besides, &3> &1, > &1, and we will examine condition
F13/F10 < &. The process will be over at the kth stage, if condition Fy; /F1o < ¢ is valid.
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Finding such &, = &y, for which Fy;, /F1o < e.

Distance [ between surfaces & = & and & = &;, which gives the guarantee for
condition Fy; /F19 < € to be valid in the parabolic coordinate system, will be taken
along the axis of the parabola , and the following expression will be obtained:

1= l/C+;€i-

By relying on the known solutions of the relevant plain problems of elasticity, it
is purposeful to admit that [/c = 4,5, 6, ..., which allows finding &; from the
relevant equation. Let us note that when //c = 4, we will denote value &; by &4,
when //c = 5; by &;,, when [/c = 6; by &3, etc. If after selecting &; = &y, inequality
F1r/F10 < € is valid; in order to check the righteousness of the selection, it is neces-
sary to once again make sure that, together with condition Fy,/F1 < ¢, condition
8>F1k/F10 >F1]e+1/F10 >F1k+2/F10 > ... is valid, too.
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