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Chapter

Dietary Intervention to Reduce  
E. coli Infectious Diarrhea in 
Young Pigs
Peng Ji, Xunde Li and Yanhong Liu

Abstract

Postweaning piglets are immediately imposed to remarkable environmental 
and psychosocial stressors, which adversely affect their intestinal development 
and health and predispose them to diarrhea. The ratio of postweaning mortality 
is 6–10% and may rise up to 20% with poor management strategies. Diarrhea per 
se accounts for 20–30% of cases of mortality in weanling pigs. E. coli postweaning 
diarrhea is one of the most important causes of postweaning diarrhea in pigs. This 
diarrhea is responsible for huge economic losses due to high mortality and morbid-
ity, weight loss, and cost of medication. Burgeoning evidence suggested feed-based 
intervention are one of the promising measures to prevent postweaning diarrhea 
and to enhance overall health of weaned pigs. Although the exact protective mecha-
nisms may vary and are still not completely understood, a number of feed ingre-
dients or feed additives are marketed to assist in boosting intestinal immunity and 
regulating gut microbiota. The promising results have been demonstrated in several 
nutrients (i.e., functional amino acids, organic acids, micro minerals, nondigestible 
carbohydrates, and antimicrobial peptides), non-nutrients (i.e., phytochemicals 
and probiotics), and many other feed additives. The efficiencies of each candidate 
may differ based on their exact modes of action, the basal diet formulation, and the 
health status of pigs.

Keywords: dietary intervention, E. coli infectious diarrhea, ETEC, young pigs

1. Introduction

Escherichia coli (E. coli), a Gram-negative rod-shaped bacterium, was first 
discovered in 1885 by Theodor Escherich, who noted that E. coli are highly preva-
lent in the intestinal microflora of healthy individuals and have potential to cause 
disease when directly inoculated into extraintestinal sites. Diarrheagenic E. coli can 
be further divided into six groups: enterotoxigenic E. coli (ETEC), enteropathogenic  
E. coli, enterohemorrhagic E. coli, enteroinvasive E. coli, diffusely adhering E. coli, 
and enteroaggregative E. coli [1]. Different groups of diarrheagenic E. coli express 
different virulence genes, exhibit different adhesion characteristics, and therefore 
have different mechanisms of pathogenicity. This book chapter only covers the 
infection caused by ETEC.

ETEC is the major etiological agent causing acute watery diarrhea in post-
weaning piglets. The duration of diarrheal symptom may be shortened by 
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antibiotic treatment, but ETEC is relative refractory to common antibiotics. 
A growing evidence suggested some nutritional components (e.g., functional 
amino acids, nondigestible carbohydrates, etc.) and non-nutrients (e.g., phy-
tochemicals, probiotics, etc.) may provide preventive benefits to control ETEC 
infection. In general, the compounds listed above are supplemented into animal 
feed with small amount, also named as feed additives. The exact protective 
mechanisms are largely unknown and may differ for each compound. However, 
based on the literature review, these feed additives may alleviate ETEC infec-
tion by targeting at least one of the following mechanisms: (1) modification of 
intestinal microbiota by directly killing pathogens or competitively inhibiting 
the binding of pathogens and toxins to gut epithelium and (2) regulation or 
stimulation of host immunity that may include intestinal mucosal immunity and 
systemic immune defense.

2. E. coli infectious diarrhea

E. coli postweaning diarrhea is an important cause of death in weaned pigs. This 
diarrhea is responsible for economic losses due to mortality, morbidity, decreased 
growth performance, and cost of medication [2, 3]. ETEC are the most predomi-
nant types of pathogenic E. coli that cause diarrhea in both preweaning and post-
weaning piglets [4, 5].

2.1 Clinical signs

Clinical signs of ETEC infection in pigs include reduced appetite, depres-
sion, weakness, rapid dehydration, watery diarrhea (light orange-colored feces), 
anorexia, and shock due to hypovolemia and electrolyte imbalance [6, 7]. Cyanotic 
discoloration may appear on the tip of the nose, the ears, and the abdomen. The 
rectal temperature of infected pigs is generally normal. Pigs may spontaneously 
recover within 1 week if the infection is mild. However, severe infection may cause 
death within 12 hours, even without the symptoms of diarrhea. Dehydration of 
the carcass and distension of the small intestine by colorless mucoid fluid are most 
common necropsy characteristics for ETEC-infected pigs. During ETEC infection, 
bacteria normally line the epithelial cells of the intestine rather than invade the 
mucosa; gross and histological lesions, therefore, may not be directly caused by 
the bacteria. However, physiological changes in the intestine may be caused by the 
toxins released by ETEC [8, 9].

2.2 The pathogenesis of E. coli infection

There are two major virulence factors involved in the pathogenesis of ETEC 
infection, including the expression of fimbriae that enable the attachment of 
bacteria to the small intestinal epithelial cells, and the production of toxins by the 
colonized ETEC [10–12]. In addition, other structural components from E. coli, such 
as capsular polysaccharides, cell wall lipopolysaccharides (LPS), and iron-binding 
proteins, may also be involved in the pathogenesis of ETEC [13]. The endotoxins 
produced by ETEC could induce intestinal physiological changes, which are lead-
ing to the disrupted water and fluid absorption and ion secretion, finally causing 
dehydration and acidosis. The bacterial structural components could also initial a 
cascade of immune stimulation, resulting in intestinal inflammation and systemic 
inflammation [14, 15].

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


3

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

2.2.1 Fimbriae of E. coli

Fimbriae are proteinaceous appendages located at the outer membrane of the 
bacterial cells. They are straight or kinky shapes. The major role of fimbriae is to 
facilitate the adhesion and colonization of ETEC at the small intestinal mucosa 
[16–18]. The adhesion of bacteria is extremely important for ETEC infection. It will 
stabilize the location of bacteria in the intestinal lumen, which allow the pathogens 
with better access to luminal nutrition, facilitate the secretion and delivery of 
endotoxins through epithelium, and help the bacteria penetrate into the tissue if 
needed [16–18]. Diarrheagenic ETEC may express many kinds of fimbria, includ-
ing F4 (K88), F5 (K99), F6 (987p), F18, etc.; F4 (K88) and F18 ETEC are the most 
common pathogenic ETEC in young pigs.

F4 fimbriae are typically identified in ETEC isolated from pre- and postweaning 
pigs. F4 ETEC tend to colonize throughout the whole segments of the small intes-
tine in pigs [19]. F4 fimbriae are encoded by the fae operon, which comprises genes 
coding for several regulatory proteins, distal tip protein, minor subunits, and a 
major subunit, FaeG, that enable F4+ ETEC binding to specific receptors on intes-
tinal brush border cells [2, 3, 20]. There are three naturally occurring serological 
variants of F4 fimbriae, including F4ab, F4ac, and F4ad. They are interchangeable 
by changing a residue stretch in the FaeG protein. However, F4ac variant is the most 
common F4 fimbriae variant expressed in porcine pathogenic ETEC in the United 
States [2, 3]. The adhesion receptors of F4 fimbriae appear to be glycoconjugates, 
including glycoproteins and glycolipids, which have been identified from the brush 
borders of epithelial cells, intestinal membranes, and mucosa [21, 22]. It is interest-
ing to note that F4ad adhesin appears to preferentially bind to glycolipids, whereas 
F4ab and F4ac adhesins preferentially bind to glycoproteins [22–24].

F18 fimbriae are associated with E. coli strains isolated from postweaning 
diarrhea and edema disease in pigs. These fimbriae are long flexible appendages 
that show a characteristic zigzag pattern [16]. Based on morphological, serological, 
functional, and genetic characteristics, two antigenic variants of F18 fimbriae were 
determined and designated: F18ab and F18ac [25]. F18ab-positive strains are usually 
isolated from cases of edema disease, whereas F18ac-positive strains are associated 
with cases of postweaning diarrhea [16, 26]. F18 fimbriae are composed of protein 
subunits (FedA) with molecular weights of approximately 15.1 kDa [27]. Five 
structural genes (fedA, fedB, fedC, fedE, and fedF) encoded on a plasmid have been 
identified [28]. Among these genes, fedE and fedF genes are essential for F18 adhe-
sion and fimbrial length [29]. However, receptors for F18 fimbriae actually increase 
with age and have not been detected in newborn pigs [30]. This may in part explain 
the reason why ETEC strains carrying F18 are more prevalent in weaned pigs.

2.2.2 Toxin effects

After adhering to the small intestinal surface, ETEC induce enteric infectious 
disease and diarrhea through release of enterotoxins, which stimulate copious 
secretion by the small intestinal mucosa. The enterotoxins include heat-labile toxin, 
heat-stable toxin, LPS, and Shiga toxins.

Heat-labile toxins. Heat-labile toxin mainly accumulates in the periplasmic 
space, with limited amount appears on the surface of the bacteria. Heat-labile toxin 
consists of a single A subunit and five B subunits. The binding of B subunits to the 
monosialotetrahexosylganglioside (GM1) ganglioside on the cell surface facilitates 
the translocation of a fragment of A domain into the cell, which then activates 
the adenylate cyclase system and increases the expression of cyclic adenosine 
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monophosphate (cAMP) [12]. Several physiological changes are mediated by the 
increased cAMP. First, cAMP stimulates the phosphorylation of the cystic fibrosis 
transmembrane conductance regulator (CFTR), inducing chloride secretion from 
the apical region of enterocytes [31]. Second, cAMP stimulates the activation of an 
apical chloride channel and a basolateral Na/K/2Cl cotransporter, which results in 
the release of prostaglandin E2 and vasoactive intestinal peptide and loosening of 
tight junctions [32, 33]. These activities all contribute to increased chloride secre-
tion, reduced sodium absorption, and a concomitant massive loss of water into the 
intestinal lumen. The effect of heat-labile toxin is irreversible [12].

2.2.2.1 Heat-stable toxins

Heat-stable toxins in porcine isolates are further classified as STa and STb [32]. 
STa is a small, non-immunogenic protein with a molecular weight of approximately 
2 kDa [34]. The major receptor for STa is a particular transmembrane form of gua-
nylate cyclase (GC-C) [35]. Therefore, STa can stimulate the GC-C system, leading 
to excessive levels of cyclic guanosine monophosphate (cGMP) in enterocytes. 
Signals resulting from cGMP accumulation induce the activation of CFTR, elevated 
secretion of Cl- and water in crypt cells, but reduced Na+ and Cl− absorption from 
cells at the tips of villi [11]. Heat-stable toxin a mainly induces small intestinal fluid 
secretion in newborn but not in weaned pigs [4].

Heat-stable toxin b is a 48-amino acid protein with a molecular weight of 
approximately 5.1 kDa [36]. STb is antigenically and genetically unrelated to STa 
and is poorly immunogenic [37]. Production of STb is restricted to porcine ETEC 
[13]. The mechanisms of action and molecular characteristics of STb are still less 
known than heat-labile toxins and STa. STb does not stimulate an increase in 
intracellular levels of either cAMP or cGMP, either Na+ or Cl− [38], but stimulates 
the secretion of HCO3− from intestinal epithelial cells [10, 39]. Heat-stable toxin 
b causes mild histological damage in the intestinal epithelium, including loss of 
villous epithelial cells and villous atrophy. This damage may be responsible for 
impaired absorption of fluids [40]. Another proposed mechanism of action is 
that STb could increase the level of prostaglandins by opening a G-protein-linked 
receptor-operated calcium channel in the plasma membrane and elevating intracel-
lular Ca++ [41, 42]. STb can induce small intestinal fluid secretion in newborn and 
weaned pigs [4].

2.2.2.2 LPS

Lipopolysaccharide is the major surface component of the outer membrane of 
most Gram-negative bacteria, including ETEC [43]. LPS consists of three distinct 
regions, lipid A, core oligosaccharides, and the O-antigen polysaccharide with the 
structural variability from low to high. Lipid A is the primary immunostimulatory 
component of LPS and is highly recognized by numerous cellular signaling path-
ways in the innate immunity. The receptors that respond to LPS are mainly located 
on the cells in the innate immune system, such as macrophages and endothelial cells 
[44]. Therefore, LPS not only contributes to the physiological membrane functions 
but also plays an important role in the pathogenesis of Gram-negative bacterial 
infection [44]. The pathogenic impacts of LPS are mainly through stimulating 
immune cells of the host, resulting in the release of large amounts of cytokines. The 
CD14, expressed on monocytes or macrophages, are highly involved in this process. 
Briefly, the soluble CD14 (sCD14) and LPS-binding protein facilitate the interac-
tion of LPS and the membrane CD14 (mCD14). After binding to mCD14 in the cell 
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surface, LPS is recognized by TLR4-MD-2 complex, which transduces intracellular 
LPS signals via several signal pathways [45], ultimately resulting in the activation of 
NFκB and subsequently the release of inflammatory cytokines [15].

2.2.2.3 Shiga toxin

Some ETEC strains that cause postweaning diarrhea possess additional genes 
that encode Shiga toxin, allowing them to cause edema disease as well [4]. Similar to 
heat-labile toxin, Shiga toxin is also a protein toxin, consisting of one A subunit and 
five B subunits. However, Shiga toxin has completely different mechanisms infect-
ing cells, in comparison with heat-labile toxins. Briefly, Shiga toxin first binds to 
the cells that possess the glycolipid receptors, globotriaosylceramide (Gb)3 or Gb4 
[46, 47]. After binding, Shiga toxin is transported to the Golgi apparatus through 
endocytosis. The Golgi apparatus further transports Shiga toxin to the endoplasmic 
reticulum, where the subunit A is cleaved by trypsin and is separated into A1 and 
A2 subunits. The A1 subunit is released into the cytosol and subsequently impacts 
ribosomes [14]. Shiga toxin can inhibit protein synthesis and induce synthesis of 
cytokines, including IL-1, IL-6, IL-8, and TNF-α [47, 48]. In addition, Shiga toxin 
also induces DNA degradation and release of the cellular contents that facilitate 
proteolytic attack on neighboring cells, contribute to cell apoptosis, and have a toxic 
effect in the whole organism [14].

3. Dietary intervention on E. coli infectious diarrhea

Nutrients are compounds in feed ingredients that are essential to animal mainte-
nance and production, by providing animals with energy, the building components 
for repair and growth, and the substances to regulate biological processes. Nutrients 
are generally grouped into six major classes: water, carbohydrates, proteins, lipids, 
minerals, and vitamins. With the exception of carbohydrates, all five classes of 
nutrients are indispensable and have to be provided through animal feed. In addi-
tion, a group of specific nutrients, such as functional amino acids, nondigestible 
carbohydrates, short-chain fatty acids (SCFA), and several micro minerals, has 
beneficial effects on animal health and performance beyond their nutritional 
contributions. Recently, a novel concept, non-nutrients, is illuminated to describe 
a group of dietary compounds, which has no nutrient contribution to animals, but 
have physiological activities beyond the nutritional pyramid, formulation prac-
tices, and feeding methods that similarly alter physiological condition. Emerging 
evidence suggested that several non-nutrient feed additives (i.e., plant extracts, 
probiotics, enzymes, etc.) improved animal health through modulating microbial 
ecology in the digestive tract and/or enhancing immune responses of animals to 
enteric infections.

3.1 Functional amino acids

Amino acids are defined as organic substances that contain both amino and 
carboxyl groups. Amino acids are classified according to their molecular weights, 
chemical structures, the composition of nitrogen and sulfur, and physiological 
functions. The 20 common proteinogenic amino acids shared by all animal spe-
cies are further categorized into indispensable, semi-dispensable (conditional 
essential), and dispensable amino acids, dependent on their dietary essential-
ity. Functional amino acids are defined with a group of amino acids that are 
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traditionally classified as dispensable amino acids, but with extra biological func-
tions [49]. The well-investigated functional amino acids are the arginine family, 
which includes arginine, glutamine, glutamate, aspartate, proline, etc. The basic 
functions of these amino acids have been well summarized by Wu et al. [49, 50], 
which include but not limited to (1) providing substrates for the synthesis of tissue 
protein; (2) impacting hormone synthesis and secretion; (3) regulating endothelial 
function, vasodilation, and blood flow; (4) affecting nutrient metabolism; and (5) 
maintaining acid-base balance and whole-body homeostasis.

Large amounts of literature have reported the impacts of dietary supplementa-
tion of functional amino acids on health and performance of newly weaned pigs. 
For example, supplementation of 0.2 to 1% L-arginine could enhance growth 
performance and alleviate the negative effects of different insults or challenges 
in young pigs [51–54]. Administration of proline was shown to improve mucosal 
proliferation, intestinal morphology, as well as intestinal tight junction of weaned 
pigs [55]. Dietary supplementation of glutamine or dipeptides that are composed 
of glutamine has shown positive impacts on intestinal integrity, enzyme activities, 
and growth performance of weaned pigs [56–58]. Several mechanisms are highly 
involved in the benefits of the arginine family on intestinal health of weaned pigs, 
which could prevent the intestinal dysfunction caused by E. coli infectious diar-
rhea in weaned pigs. First, these amino acids could provide major fuel for small 
intestinal epithelial cell proliferation and provide energy required for intestinal 
ATP-dependent metabolic processes [59]. Second, catabolism of these amino acids 
provides precursors or substrates for the synthesis of nitric oxide, polyamines, and 
creatine, which are important regulators in blood flow, intestinal integrity and 
secretion, and epithelial cell repair and migration [60–62]. Third, glutamine is 
also a major substrate for glutathione synthesis, which is an important endogenous 
antioxidant in cells regulating the homeostasis of free radicals [63]. Fourth, these 
amino acids could enhance intestinal secretory IgA production via regulating the 
intestinal microbiota and immunity [53, 64].

3.2 Fatty acids

Dietary fat and lipids are extremely important for animal health and production. 
They have three major fundamental roles in swine nutrition by providing energy, 
compound lipids, and steroids to animals. Triglycerides and free fatty acids are the 
primary forms of metabolic energy storage and transport in the animal body. Short-
chain fatty acids and medium-chain fatty acids (MCFA) have recently attracted 
increased research attention as potential candidates to reduce enteric infectious 
disease in animal production due to their potential antimicrobial activities [65–67].

SCFA are fatty acids with a chain of less than six carbon atoms, which are 
primarily produced by hindgut fermentation of dietary fiber. The most abundant 
SCFA in the gastrointestinal tract are acetic (C2), propionic (C3), and butyric acid 
(C4). They are the major fuel source for colonocytes and are essential for maintain-
ing the normal metabolism of colon mucosa, including colonocyte growth and 
proliferation [68, 69]. Butyric acid has received particular attention and has been 
widely investigated to enhance disease resistance of weaned pigs. Addition of this 
acid directly to a swine diet may be limited because of its pungent odor and unpalat-
able flavor. Thus, the salt form (sodium or calcium) or glyceryl form (monobutyrin 
or tributyrin) of butyric acid has been adopted in animal feed industry. One major 
advantage of glyceryl forms in comparison with salt forms is that they stay intact in 
the stomach and are slowly released as butyrate and/or monobutyrin in the small 
intestine where pancreatic lipase appears [70]. Many research have confirmed the 
positive protective effects of sodium butyrate or tributyrin on intestinal health of 
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weaned pigs, as they reduced diarrhea, enhanced gut integrity, and improved over-
all immunity of newly weaned pigs [71–74]. The mechanisms resulting in improved 
disease resistance of weaned pigs are highly associated with the antimicrobial 
activities of SCFA; however, other mechanisms may be also involved. Butyric acid 
could penetrate into epithelial cells either by simple diffusion or monocarboxyl-
ate transporter [75]. Butyric acid could also bind to G-protein-coupled receptor 
expressed in epithelial cells or immune cells. The binding will mediate a cascade of 
immune regulation and regulate large amount of gene expression [76–78].

MCFA are saturated fatty acids containing 6 to 12 carbon atoms, including 
caproic (C6), caprylic (C8), capric (C10), and lauric acids (C12). MCFA are natu-
rally occurred lipids that are enriched in animal milk fat and in the oil fraction of 
various plants, such as coconuts, palm kernels, and Cuphea seeds. Similar to SCFA, 
MCFA have unpleasant smell; therefore, they are commonly used in their glyceryl 
forms in animal feed. MCFA may have particular nutritional and metabolic effects 
on young animals due to their rapid digestion, passive absorption, and obligatory 
oxidation [79, 80]. Although the evidence for the favorable energetic attributes of 
MCFA is strong, the results of in vivo studies using weaned pigs have been incon-
sistent [81]. However, the beneficial effects of MCFA on gut health of weaned pigs 
have been suggested, as they could influence intestinal morphology and physiology, 
gut microbiome, and intestinal immunity [80]. More research is necessary in the 
future to explore the influences of MCFA on disease resistance of weaned pigs.

3.3 Micro minerals

Minerals required in smaller quantities are called micro minerals or trace miner-
als, which include Zn, Cu, Mn, Fe, Se, and others. Micro minerals have confirmed 
physiological roles and are needed for normal bodily functions of pigs. However, 
unlike most other minerals, Cu and Zn have antimicrobial properties, and they 
are, therefore, often added to animal feed in quantities greater than the amount of 
nutritional requirements.

Zinc serves as a component or an activator of several metalloenzymes and 
is involved in many intracellular and intercellular signaling pathways. Zinc also 
plays important roles in skin and wound healing and in regulating immune system 
[82]. Zinc deficiency in weaned pigs leads to growth retardation, loss of appetite, 
skeletal abnormalities, and parakeratosis if Zn concentration in feed is much lower 
than the requirement of 80–100 mg/kg for nursery pigs [83–85]. However, phar-
macological levels (2000–3000 mg/kg) of inorganic Zn in the form of ZnO have 
been widely adopted to control postweaning diarrhea and enhance feed intake and 
overall growth performance [86–89]. The benefits of pharmacological Zn on dis-
ease resistance of weaned pigs are likely related to several mechanisms: enhance-
ment of intestinal integrity [90], regeneration of injured intestinal mucosa, 
stability of intestinal microbiota diversity [91], reduction of intestinal permeability 
[92], and modulation of intestinal immunity [93]. However, more recent research 
indicate that feeding pharmacological ZnO could reduce the digestibility of Ca 
and P, reduce the effectiveness of microbial phytase in pig diet, and increase the 
abundance of multiresistant bacteria in weaned pigs [94–96]. Inclusion of phar-
macological levels of ZnO has recently been banned in the European Union due to 
increased Zn pollution from pigs fed with high Zn diets. Meantime, animal feed 
industry and nutritionists are actively working together to search alternatives that 
could replace pharmacological ZnO. For instance, low dose of organic Zn sources 
(i.e., 125 mg/kg of Zn-methionine) has been confirmed to have beneficial effects 
that are equivalent to addition of pharmacological ZnO due to their greater bio-
availability [97, 98].
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Copper is also an essential component of several metalloenzymes including 
cytochrome oxidase and lysyl oxidase. Copper is highly involved in oxidation-
reduction reactions, transport of oxygen and electrons, antioxidant system, and 
many other metabolic functions, including cellular respiration, tissue pigmenta-
tion, hemoglobin formation, and connective tissue development [82]. In general, 
neonatal pigs only require 5–6 mg/kg of Cu for normal metabolism [85, 99], and 
Cu requirement decreases as animal gets older. Cu deficiency may lead to critical 
dysfunctions and hypocuprosis in pigs [100]. Pigs may also suffer from microcytic 
anemia and bone abnormalities [101, 102]. Addition of pharmacological levels of 
Cu (125–500 mg/kg) in pig diets has been a common practice to reduce postwean-
ing diarrhea and improve growth performance [103–106]. The beneficial effects 
of pharmacological Cu have been attributed to its bacteriostatic and bactericidal 
properties [107, 108]. Similar to zinc, many Cu forms could be used in animal feed, 
including copper sulfate (CuSO4), copper chloride (CuCl2), tribasic copper chloride 
(Cu2(OH)3Cl), and copper citrate. Copper sulfate and copper chloride are the most 
common supplementing forms. Tribasic copper chloride has been suggested to have 
similar bioavailability but less negative impacts on phosphorus digestibility and 
intestinal microbiota than copper sulfate [109–111]. Chelated Cu, such as Cu citrate, 
has greater availability than inorganic Cu sources, which may be used in animal feed 
as low dose, resulting in reduced Cu excretion [112].

3.4 Prebiotics and probiotics

Prebiotics are a category of nutritional compounds that may not share similar 
structures but have the ability to improve the growth of beneficial microorganism 
in the gastrointestinal tract. Gibson et al. [113] offered a definition of prebiotics, 
which contains three key aspects: resistance to digestion, fermentation by the large 
intestinal microbiota, and a selective effect on the microbiota associated with 
health-promoting effects. Most well-studied prebiotics are nondigestible oligosac-
charides or polysaccharides [114]. For instance, inulin-type prebiotics are a group of 
nondigestible carbohydrates that mainly comprise fructose, including inulin, oligo-
fructose, and fructo-oligosaccharides. They are commonly used in the pig industry 
and human foods [115]. Galactooligosaccharides that exist in human milk have been 
reported to have prebiotic effects by enhancing colonic health of breast-fed infants 
[116]. Many other naturally occurring prebiotics have been reported as well, includ-
ing polydextrose, trans-galactooligosaccharides, xylo-oligosaccharides, lactulose, 
pyrodextrins, and isomalto-oligosaccharides. However, a few other nondigestible 
carbohydrates are not categorized as prebiotics (e.g., mannan-oligosaccharides, 
β-glucan etc.), but manifest health-promoting functions [117]. For example, a 
growing evidence demonstrates that β-glucans, either produced by bacteria or 
extracted from different sources (i.e., cereal, algae, and fungi), could boost host 
immunity, therefore enhancing disease resistance of human and animals [118–120].

Probiotics, also known as direct-fed microbials, are live microorganisms and, 
when administered in adequate amounts, confer a health benefit on the host [121]. 
Probiotics are categorized into three main groups, including Bacillus, lactic acid-
producing bacteria, and yeast [122]. Based on the Food and Drug Administration 
instruction, the term probiotics is used for human microbial products, whereas the 
term direct-fed microbials is used for the US feed industry. However, “probiotics” 
are interchangeably used with human and animal feed worldwide. Bacillus-based 
probiotics are spore-forming, which makes them thermostable and able to survive 
at low pH. Bacillus-based probiotics have been identified as potent producers of 
extracellular fiber-degrading enzymes, which may aid nutrient digestion and utili-
zation [123]. Lactic acid-producing bacteria are not spore-forming; therefore, their 
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survival during feed processing is of concern [124]. Lactic acid-producing bacteria 
dominate the gastrointestinal tract of the nursing pig [125], which helps reduce 
the pH in the gut by producing lactic acid through fermentation, inhibiting enteric 
pathogens [126], and improving host immunity [124, 127]. However, after weaning 
of pigs, the concentration of lactic acid-producing bacteria diminishes; therefore, 
supplementation of weaned pig diets with lactic acid-producing probiotics may be 
beneficial [122]. Yeast include a broad range of products that may be available in pig 
feed, including whole live yeast cells, heat-treated yeast cells, ground yeast cells, 
purified yeast cell cultures, and yeast extracts. The efficacy of yeast-based products 
varies depending on their forms. Yeast or yeast-based product supplementation may 
boost feed intake and overall growth performance, augment mucosal immunity, 
promote intestinal development, adsorb mycotoxins, reduce postweaning diarrhea, 
and modulate gut microbiota in weaned pigs [128–131].

The most notable effect of prebiotics and probiotics is their modification of 
intestinal microbiota. They may control or prevent pathogenic bacterial infection 
by specifically stimulating the growth of beneficial microorganisms in the intestine. 
The beneficial microorganisms may include but not limited to Bifidobacteria and 
Lactobacilli, which have confirmed benefit to suppress the growth of pathogenic 
microorganisms, such as E. coli, through the potential mechanisms described below. 
For example, the desired bacteria produce SCFA and lactic acid, which may indi-
rectly and specifically kill or inhibit the growth of pathogens [132]. The production 
of acids may reduce the pH of the intestinal environment, which is unsupportive of 
the growth of several pathogens [133]. The desired bacteria may produce antimi-
crobial compounds such as bacteriocins or antibiotics [134]. The desired bacteria 
compete the available nutrients against pathogens [135].

Many research articles have been published on the impacts of prebiotics and 
probiotics on infectious diseases in young pigs. For instance, supplementation of 
8% inulin reduce the incidence and severity of postweaning diarrhea, probably by 
increasing SCFA production in the cecum and proximal colon [136]. The addition 
of fructo-oligosaccharide prevented the mortality and morbidity of weaned pigs 
infected with K88 ETEC [137]. Supplementation of β-glucan originated from differ-
ent sources (yeast or algae) could enhance the resistance of pigs against K88 or F18 
ETEC infection [120, 138]. The α-ᴅ-mannans from yeast could bind to mannose-
specific receptors that are present on many bacteria such as E. coli and Salmonella 
spp., which prevents adhesion of these pathogens to the mannose-rich glycoproteins 
lining the intestinal lumen [128]. Indeed, pigs supplemented with live yeast or a 
yeast fermentation product had reduced disease-related stress, diarrhea scores, 
duration of diarrhea, and shedding of E. coli and enhanced intestinal integrity in 
pigs challenged with ETEC [139–141]. Supplementation of Bacillus subtilis also 
enhanced disease resistance and growth performance and reduced diarrhea of 
weaned pigs infected with F18 ETEC [142].

3.5 Phytochemicals

Phytochemicals are secondary plant metabolites that are either naturally 
obtained from plant materials or directly synthetized. Phytochemicals are used in 
solid powder form, as crude extracts, or as concentrated extracts. The extracts are 
further classified as essential oils or oleoresins based on the extraction methods. 
Essential oils are volatile lipophilic substances obtained by cold extraction or 
distillation, whereas oleoresins are derived by nonaqueous solvents [143]. A few 
examples of well-known phytochemicals are curcumin, flavonoids, phenolic acids, 
isoflavones, carotenoids, etc. The major bioactive compounds in phytochemi-
cals are polyphenols, terpenoids, alkaloids, or sulfur-containing compounds. 
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However, the composition and concentration of bioactive compounds in different 
phytochemicals may vary a lot, completely depending on the types of plant, the 
parts of plant, geographical origins, growing conditions, harvesting seasons, 
processing techniques, and storage conditions [144]. The in vitro biological prop-
erties of many phytochemicals have been well investigated, including antimicro-
bial, antioxidant, anti-inflammatory, and antiviral effects [145–148]. Therefore, 
phytochemicals have been largely applied in food processing, cosmetics, and other 
areas related to human nutrition and health.

Various phytochemicals have been reported to exhibit a broad spectrum of anti-
microbial activities against Gram-negative and Gram-positive bacteria [149–151]. 
The potential mechanisms of action of antimicrobial activities of phytochemicals 
are described below. Many phytochemicals are lipophilic, which could damage bac-
terial membrane, eventually causing the leakage of intracellular materials and cell 
death [152–156]. In addition, the phenolic compounds possess strong antibacterial 
properties by inhibiting virulence factors, such as enzymes and toxins [157–159]. 
Lastly, certain bioactive components may also prevent the development of virulent 
structure (i.e., flagella) in bacteria, therefore inhibiting ETEC adhesion and toxin 
binding [160, 161].

Our previously published research reported that dietary supplementation of 
10 mg/kg of capsicum oleoresin, garlic botanical, or turmeric oleoresin reduced the 
frequency of diarrhea and enhanced disease resistance of pigs infected with F18 
ETEC [162]. The active components in these phytochemicals are capsaicin, propyl 
thiosulfonates, and curcuminoides, respectively. The results of gene expression 
profiles in ileal mucosa indicated that supplementation of these phytochemicals 
modified the expression of genes related to mucin production, cell membrane 
integrity, and antigen processing and presentations in ETEC-infected pigs [163]. 
In addition to the enhanced intestinal mucosal health, pigs fed with those phyto-
chemicals had less recruitment of macrophages and neutrophils in the ileum [162]. 
These observations also suggest that the weaned pigs supplemented with those 
phytochemicals actually had less gut inflammation than infected control. The gene 
expression profile analysis by microarray also confirmed the reduced gut inflam-
mation by feeding those phytochemicals to weaned pigs [163]. The phytochemicals 
discussed above can be naturally obtained from seasonings that are commonly used 
in kitchen. Many other phytochemicals have been thoroughly investigated to against 
ETEC infection as well. For example, the anti-diarrheal activity of back or green tea 
extract has been revealed, because the reduced net fluid and electrolyte losses were 
observed when F4 ETEC-infected jejunal segments were perfused with black or 
green tea extract [164]. The administration of cranberry extract (1 g/L) in drinking 
water also reduced the diarrhea of F18 ETEC-infected piglets [165].

3.6 Antimicrobial peptides

Antimicrobial peptides, also called host defense peptides, are polypeptides that 
are naturally occurring molecules in various organisms from prokaryotes to mam-
mals. Antimicrobial peptides can be synthesized as recombinant molecules, such 
as recombinant lactoferrin, or can be isolated from bacteria, insects, vertebrates, or 
plants, such as bovine lactoferrin and plant defensins [166, 167]. Most of antimicro-
bial peptides are cationic (positively charged) and amphiphilic (hydrophobic and 
hydrophilic). Antimicrobial peptides were firstly discovered in the 1980s. They can 
be classified into different groups based on the different amino acid components, 
structures, and biological function. The antimicrobial peptides derived from mam-
mals are mainly classified into two families, defensins or cathelicidins. Defensins 
are further subgrouped into α-, β-, and θ-defensins according to the spacing 
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patterns of their cysteine residues [168]. Defensins are more abundant in epithelial 
cells and phagocytic cells, whereas cathelicidins are highly expressed in mammalian 
neutrophils [169].

Antimicrobial peptides possess a strong and wide-spectrum activity against 
Gram-negative and Gram-positive bacteria, as well as against parasites, fungi, and 
viruses [170]. One potential advantage of antimicrobial peptides is that they may 
kill pathogenic bacteria that are resistant to specific medically important antibiotics 
[168, 171]. Most antimicrobial peptides are small, positively charged, and amphipa-
thic molecules that allow them to actively interact with bacterial membranes 
through different models, such as barrel-stave model, carpet model, or toroidal pore 
model [172, 173]. These properties will also allow them to disrupt cell membrane 
structure, penetrate into cells, regulate intracellular signaling pathways, and ulti-
mately cause bacterial cell death. Many research findings have demonstrated that 
antimicrobial peptide treatment could inhibit protein and nucleic acid synthesis, 
suppress bacterial cell wall synthesis, as well as inhibit enzyme activities in bacteria 
[174]. In addition to their antibacterial properties, antimicrobial peptides may 
also act as epithelial “preservatives” or immunomodulators to protect host against 
enteric infectious agents [166, 175, 176].

The protective effects of antimicrobial peptides on infectious diarrhea and intes-
tinal integrity have been reported in weaned pigs [177, 178]. For example, feeding 
0.4% of a mixture of bovine lactoferrin, plant defensins, and active yeast increased 
intestinal integrity and reduced gut permeability of weaned pigs [178]. Addition 
of cecropin AD reduced incidence of diarrhea and enhanced intestinal Lactobacilli 
counts in E. coli-challenged piglets [177]. The regulation of gut microbiota may 
also attribute to the potential benefits of antimicrobial peptides. Supplementation 
of recombinant lactoferrin or lactoferramoin-lactoferricin reduced the total viable 
counts of E. coli and Salmonella but enriched the abundance of Lactobacillus and 
Bifidobacterium in the colon of weaned pigs [179, 180].

3.7 Lysozyme

Lysozyme, also known as muramidase or N-acetylmuramide glycanhydrolase, is 
an antimicrobial enzyme that is naturally present in body fluids of all mammalian 
species [181–183]. Lysozyme could catalyze the hydrolysis of its natural substrate 
peptidoglycan that is the major component of bacterial cell wall. The hydrolysis of 
peptidoglycan eventually results in cell lysis. Gram-positive bacteria have cell walls 
composed of thick layers of peptidoglycan; they are, therefore, more sensitive to the 
enzymatic degradation of lysozyme [184]. However, a growing evidence supports 
that lysozyme also displays bactericidal activity against a variety of Gram-negative 
strains through non-enzymatic mechanisms [184–186]. For instance, lysozyme has 
been found to act synergistically with antimicrobial peptides, lactoferrin, in killing 
Gram-negative bacteria, such as E. coli [181, 187]. In addition to its antimicrobial 
activity, lysozyme also exhibited anti-inflammatory property that was mediated 
through inhibiting neutrophil migration and shown the ability to modulate intesti-
nal microbiota [188].

Consumption of lysozyme-rich milk significantly enhanced the relative abun-
dance of Bifidobacteriaceae and Lactobacillaceae in feces of weaned pigs [189]. Those 
bacterial families are known for their health-promoting functions in lower gastro-
intestinal tract of human and pigs. Interestingly, consumption of lysozyme-rich 
milk reduced the relative abundance of bacteria (Mycobacteriaceae, Streptococcaceae, 
Campylobacterales) that are associated with diseases in pig feces [189]. In another 
trial from the same research group, feeding of lysozyme milk reduced the incidence 
of diarrhea and reduced total bacteria translocation into the mesenteric lymph 
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nodes by 83% in ETEC (O149:F4 strain)-infected pigs [190]. Feeding lysozyme-rich 
milk also tended to reduce fecal Enterobacteriaceae family, in which many prevalent 
enteric pathogens such as E. coli and Salmonella belong to [190]. Similar results were 
also reported in one animal trial focusing on human lysozyme-rich milk [191]. In 
this experiment, neonatal pigs were used and infected with F4 ETEC. Consumption 
of human lysozyme-rich milk (approximately 1300 mg/L lysozyme) increased 
survival rate, reduced diarrhea, and facilitated the recovery of infected pigs [191]. 
Lysozyme treatment also increased the relative abundance of Lactobacillus in feces 
and enhanced intestinal integrity and mucosa immunity of these neonatal pigs [191].

4. Conclusions

Accumulating evidence has confirmed the importance of nutritional interven-
tions, including modified feeding strategies and nutrient supplements, in the con-
trol of diarrheal diseases, and preventing enteric infection as the use of antibiotics 
will be progressively restricted in many countries. Interest is particularly growing 

Strain1 Dietary supplements Outcome Reference

K88 Milk from human lysozyme 
transgenic goats

Reduced diarrhea, reduced 
bacterial translocation in 
mesenteric lymph nodes

Brundige et al. [193]; 
Cooper et al. [194]; 
Garas et al. [190]

K88 Chito-oligosaccharide Reduced diarrhea Liu et al. [195]

K88 Combination of raw potato 
starch and probiotic E. coli 
strains

Reduced diarrhea, enhanced gut 
microbial diversity

Krause et al. [196]

K88, 
F18

Probiotics: Pediococcus 

acidilactici, Saccharomyces 

cerevisiae boulardii, Bacillus 

subtilis

Reduced ETEC attachment to ileal 
mucosa, upregulated inflammatory 
responses in the gut

Kim et al. [142]; 
Daudelin et al. [197]

K88 Saccharomyces cerevisiae 
fermented products

Enhanced appetite and ileal digesta 
bacteria richness, reduced ETEC 
adhering to the mucosa and colonic 
ammonia

Kiarie et al. [139, 140]

K88 Probiotics: Lactobacillus 

plantarum CJLP243
Enhanced growth performance, 
reduced diarrhea, reduced gut 
inflammation, enhanced gut 
barrier function

Lee et al. [198]; Yang 
et al. [199]

K88 Phytogenics Enhanced growth performance Devi et al. [200]

K88 Nucleotides Enhanced growth performance 
and nutrient digestibility, reduced 
diarrhea

Li et al. [201]

F18 Clays (smectite, zeolite, 
kaolinite)

Reduced diarrhea, enhanced gut 
integrity

Song et al. [202]; 
Almeida et al. [203]

F18 Phytochemicals (capsicum 
oleoresin, garlic botanical, 
turmeric oleoresin)

Reduced diarrhea, enhanced gut 
morphology, decreased systemic 
and gut mucosal inflammation

Liu et al. [162, 163]

K88, 
F18

β-glucan Enhanced gut barrier function, 
reduced systemic inflammation

Stuyven et al. [138], 
Kim et al. [120]

1Modified from Liu and Ji [192].

Table 1. 
Dietary interventions on enterotoxigenic Escherichia coli infection of weaned pigs.

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


13

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

Author details

Peng Ji1, Xunde Li2 and Yanhong Liu3*

1 Department of Nutrition, University of California, Davis, CA, USA

2 School of Veterinary Medicine, University of California, Davis, CA, USA

3 Department of Animal Science, University of California, Davis, CA, USA

*Address all correspondence to: yahliu@ucdavis.edu

in the use of probiotics and/or prebiotics to increase the populations of target 
microbes in the digestive tract, thereby improving gut health and performance of 
animals. Phytochemicals can be an additional tool that producers use to keep pigs 
healthy and reduce the negative impacts of disease. Dietary supplementation of 
certain phytochemicals may enhance disease resistance of pigs by improving gut 
mucosal integrity and optimizing immune response. There are much more candi-
dates of feed additives/nutritional interventions, which may be effective in regulat-
ing intestinal environments and immunity and alleviating postweaning enteric 
infection (Table 1) [192]. It is very important to keep in mind that the efficiencies 
of each candidate may differ on the basis of their modes of action, the basal diet 
formulation, and the health status of pigs.

Conflict of interest

The authors declare no conflict of interest.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


14

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

[1] Torres AG, Zhou X, Kaper JB. 
Adherence of diarrheagenic Escherichia 
coli strains to epithelial cells. Infection 
and Immunity. 2005;73(1):18-29

[2] Fairbrother JM, Nadeau E, Gyles CL. 
Escherichia coli in postweaning diarrhea 
in pigs: An update on bacterial types, 
pathogenesis, and prevention strategies. 
Animal Health Research Reviews. 
2005;6(1):17-39

[3] Nagy B, Fekete PZ. Enterotoxigenic 
Escherichia coli in veterinary medicine. 
International Journal of Medical 
Microbiology. 2005;295(6-7):443-454

[4] Nagy B, Fekete PZ. Enterotoxigenic 
Escherichia coli (ETEC) in farm 
animals. Veterinary Research. 
1999;30(2-3):259-284

[5] Hampson DJ. Postweaning 
Escherichia coli diarrhea in pigs. In: 
Gyles CL, editor. Escherichia coli in 
Domestic Animals and Humans. 
Guildford: CAB International; 1994. 
pp. 171-191

[6] Sarmiento JI, Casey TA, Moon HW.  
Postweaning diarrhea in swine: 
Experimental model of enterotoxigenic 
Escherichia coli infection. American 
Journal of Veterinary Research. 
1988;49(7):1154-1159

[7] Nollet H, Deprez P, Van Driessche E, 
Muylle E. Protection of just weaned 
pigs against infection with F18+ 
Escherichia coli by non-immune plasma 
powder. Veterinary Microbiology. 
1999;65(1):37-45

[8] Faubert C, Drolet R. Hemorrhagic 
gastroenteritis caused by Escherichia 
coli in piglets: Clinical, pathological 
and microbiological findings. The 
Canadian Veterinary Journal = 
La revue veterinaire canadienne. 
1992;33(4):251-256

[9] Berberov EM, Zhou Y, Francis DH,  
Scott MA, Kachman SD, Moxley RA. 
Relative importance of heat-labile 
enterotoxin in the causation of 
severe diarrheal disease in the 
gnotobiotic piglet model by a strain 
of enterotoxigenic Escherichia coli 
that produces multiple enterotoxins. 
Infection and Immunity. 
2004;72(7):3914-3924

[10] Weikel CS, Guerrant RL. STb 
enterotoxin of Escherichia coli: Cyclic 
nucleotide-independent secretion. 
Ciba Foundation Symposium. 
1985;112:94-115

[11] Forte LR, Thorne PK, Eber SL, 
Krause WJ, Freeman RH, Francis SH, 
et al. Stimulation of intestinal Cl− 
transport by heat-stable enterotoxin: 
Activation of cAMP-dependent protein 
kinase by cGMP. The American Journal 
of Physiology. 1992;263(3 Pt 1): 
C607-C615

[12] O’Brien ADRKH. Protein 
toxins of Escherichia coli and 
Salmonella. In: Neidhart FC, 
Curtiss R, Ingraham JL, Lin ECC, 
Low KB, Magasanik B, Reznikoff WS, 
Riley M, et al., editors. Escherichia coli 
and Salmonella: Cellular and Molecular 
Biology. Washington, DC: ASM Press; 
1996. pp. 2788-2802

[13] Gyles CL. Escherichia coli. In: 
Gyles CL, Charles O. Thoen editor. 
Pathogenesis of Bacterial Infections 
in Animals. Ames, IA: Iowa State 
University Press; 1993. p. 164-187

[14] Sandvig K. Shiga toxins. 
Toxicon : Official Journal of the 
International Society on Toxinology. 
2001;39(11):1629-1635

[15] Bannerman DD, Goldblum SE.  
Mechanisms of bacterial 
lipopolysaccharide-induced endothelial 

References

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


15

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

apoptosis. American Journal of 
Physiology Lung Cellular and Molecular 
Physiology. 2003;284(6):L899-L914

[16] Nagy B, Whipp SC, Imberechts H, 
Bertschinger HU, Dean-Nystrom EA, 
Casey TA, et al. Biological relationship 
between F18ab and F18ac fimbriae 
of enterotoxigenic and verotoxigenic 
Escherichia coli from weaned pigs with 
oedema disease or diarrhoea. Microbial 
Pathogenesis. 1997;22(1):1-11

[17] Isaacson RE, Fusco PC, Brinton CC, 
Moon HW. In vitro adhesion of 
Escherichia coli to porcine small 
intestinal epithelial cells: Pili as adhesive 
factors. Infection and Immunity. 
1978;21(2):392-397

[18] Morris JA, Thorns C, Scott AC, 
Sojka WJ, Wells GA. Adhesion in vitro 
and in vivo associated with an 
adhesive antigen (F41) produced by 
a K99 mutant of the reference strain 
Escherichia coli B41. Infection and 
Immunity. 1982;36(3):1146-1153

[19] Nagy B, Moon HW, Isaacson RE. 
Colonization of porcine small intestine 
by Escherichia coli: Ileal colonization and 
adhesion by pig enteropathogens that 
lack K88 antigen and by some acapsular 
mutants. Infection and Immunity. 
1976;13(4):1214-1220

[20] Van den Broeck W, Cox E, 
Oudega B, Goddeeris BM. The F4 
fimbrial antigen of Escherichia coli and 
its receptors. Veterinary Microbiology. 
2000;71(3-4):223-244

[21] Blomberg L, Krivan HC, 
Cohen PS, Conway PL. Piglet ileal 
mucus contains protein and glycolipid 
(galactosylceramide) receptors 
specific for Escherichia coli K88 
fimbriae. Infection and Immunity. 
1993;61(6):2526-2531

[22] Grange PA, Erickson AK, Levery SB,  
Francis DH. Identification of an 
intestinal neutral glycosphingolipid 

as a phenotype-specific receptor 
for the K88ad fimbrial adhesin of 
Escherichia coli. Infection and Immunity. 
1999;67(1):165-172

[23] Erickson AK, Baker DR, 
Bosworth BT, Casey TA, Benfield DA, 
Francis DH. Characterization of 
porcine intestinal receptors for the 
K88ac fimbrial adhesin of Escherichia 
coli as mucin-type sialoglycoproteins. 
Infection and Immunity. 1994; 
62(12):5404-5410

[24] Jin LZ, Zhao X. Intestinal receptors 
for adhesive fimbriae of enterotoxigenic 
Escherichia coli (ETEC) K88 in swine—A 
review. Applied Microbiology and 
Biotechnology. 2000;54(3):311-318

[25] Rippinger P, Bertschinger HU, 
Imberechts H, Nagy B, Sorg I, 
Stamm M, et al. Designations F18ab 
and F18ac for the related fimbrial types 
F107, 2134P and 8813 of Escherichia 
coli isolated from porcine postweaning 
diarrhoea and from oedema 
disease. Veterinary Microbiology. 
1995;45(4):281-295

[26] Wittig W, Klie H, Gallien P, 
Lehmann S, Timm M, Tschape H. 
Prevalence of the fimbrial antigens 
F18 and K88 and of enterotoxins and 
verotoxins among Escherichia coli 
isolated from weaned pigs. Zentralblatt 
fur Bakteriologie: International 
Journal of Medical Microbiology. 
1995;283(1):95-104

[27] Imberechts H, De Greve H,  
Lintermans P. The pathogenesis 
of edema disease in pigs. A 
review. Veterinary Microbiology. 
1992;31(2-3):221-233

[28] Smeds A, Hemmann K, Jakava- 
Viljanen M, Pelkonen S, Imberechts H, 
Palva A. Characterization of the 
adhesin of Escherichia coli F18 
fimbriae. Infection and Immunity. 
2001;69(12):7941-7945

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


16

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

[29] Imberechts H, Wild P, Charlier G,  
De Greve H, Lintermans P, Pohl P. 
Characterization of F18 fimbrial genes 
fedE and fedF involved in adhesion and 
length of enterotoxemic Escherichia coli 
strain 107/86. Microbial Pathogenesis. 
1996;21(3):183-192

[30] Nagy B, Casey TA, Whipp SC, 
Moon HW. Susceptibility of porcine 
intestine to pilus-mediated adhesion 
by some isolates of piliated 
enterotoxigenic Escherichia coli increases 
with age. Infection and Immunity. 
1992;60(4):1285-1294

[31] Thiagarajah JR, Verkman AS. CFTR 
pharmacology and its role in intestinal 
fluid secretion. Current Opinion in 
Pharmacology. 2003;3(6):594-599

[32] Nataro JP, Kaper JB. Diarrheagenic 
Escherichia coli. Clinical Microbiology 
Reviews. 1998;11(1):142-201

[33] De Haan L, Hirst TR. Cholera 
toxin: A paradigm for multi-functional 
engagement of cellular mechanisms 
(review). Molecular Membrane Biology. 
2004;21(2):77-92

[34] Lallier R, Bernard F, Gendreau M, 
Lazure C, Seidah NG, Chretien M, et al. 
Isolation and purification of Escherichia 
coli heat-stable enterotoxin of porcine 
origin. Analytical Biochemistry. 
1982;127(2):267-275

[35] Schulz S, Green CK, Yuen PS, 
Garbers DL. Guanylyl cyclase is a 
heat-stable enterotoxin receptor. Cell. 
1990;63(5):941-948

[36] Arriaga YL, Harville BA, 
Dreyfus LA. Contribution of individual 
disulfide bonds to biological action 
of Escherichia coli heat-stable 
enterotoxin B. Infection and Immunity. 
1995;63(12):4715-4720

[37] Dubreuil JD. Escherichia coli STb 
enterotoxin. Microbiology (Reading, 
England). 1997;143(Pt 6):1783-1795

[38] Weikel CS, Nellans HN, 
Guerrant RL. In vivo and in vitro 
effects of a novel enterotoxin, STb, 
produced by Escherichia coli. The 
Journal of Infectious Diseases. 
1986;153(5):893-901

[39] Argenzio RA, Liacos J, 
Berschneider HM, Whipp SC, 
Robertson DC. Effect of heat-stable 
enterotoxin of Escherichia coli and 
theophylline on ion transport in porcine 
small intestine. Canadian Journal 
of Comparative Medicine: Revue 
Canadienne de Medecine Comparee. 
1984;48(1):14-22

[40] Whipp SC, Kokue E, 
Morgan RW, Rose R, Moon HW. 
Functional significance of histologic 
alterations induced by Escherichia 
coli pig-specific, mouse-negative, 
heat-stable enterotoxin (STb). 
Veterinary Research Communications. 
1987;11(1):41-55

[41] Dreyfus LA, Harville B, 
Howard DE, Shaban R, Beatty DM, 
Morris SJ. Calcium influx mediated 
by the Escherichia coli heat-stable 
enterotoxin B (STB). Proceedings of 
the National Academy of Sciences 
of the United States of America. 
1993;90(8):3202-3206

[42] Harville BA, Dreyfus LA. 
Involvement of 5-hydroxytryptamine 
and prostaglandin E2 in the intestinal 
secretory action of Escherichia coli 
heat-stable enterotoxin B. Infection and 
Immunity. 1995;63(3):745-750

[43] Alexander C, Rietschel ET. Bacterial 
lipopolysaccharides and innate 
immunity. Journal of Endotoxin 
Research. 2001;7(3):167-202

[44] Raetz CR, Whitfield C.  
Lipopolysaccharide endotoxins. 
Annual Review of Biochemistry. 
2002;71:635-700

[45] Wiese A, Brandenburg K, Ulmer AJ, 
Seydel U, Muller-Loennies S. The 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


17

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

dual role of lipopolysaccharide as 
effector and target molecule. Biological 
Chemistry. 1999;380(7-8):767-784

[46] Sandvig K, van Deurs B. 
Endocytosis, intracellular transport, 
and cytotoxic action of Shiga toxin 
and ricin. Physiological Reviews. 
1996;76(4):949-966

[47] Paton JC, Paton AW. Pathogenesis 
and diagnosis of Shiga toxin-
producing Escherichia coli infections. 
Clinical Microbiology Reviews. 
1998;11(3):450-479

[48] Hughes AK, Stricklett PK, 
Kohan DE. Shiga toxin-1 regulation 
of cytokine production by human 
glomerular epithelial cells. Nephron. 
2001;88(1):14-23

[49] Wu G. Amino acids: Metabolism, 
functions, and nutrition. Amino Acids. 
2009;37(1):1-17

[50] Wu G, Bazer FW, Davis TA, 
Jaeger LA, Johnson GA, Kim SW, et al. 
Important roles for the arginine family 
of amino acids in swine nutrition 
and production. Livestock Science. 
2007;112(1):8-22

[51] Kim SW, Wu G. Dietary arginine 
supplementation enhances the growth 
of milk-fed young pigs. The Journal of 
Nutrition. 2004;134(3):625-630

[52] Hernandez A, Hansen CF, 
Mullan BP, Pluske JR. L-arginine 
supplementation of milk liquid or dry 
diets fed to pigs after weaning has a 
positive effect on production in the 
first three weeks after weaning at 21 
days of age. Animal Feed Science and 
Technology. 2009;154(1):102-111

[53] Wu X, Ruan Z, Gao Y, Yin Y,  
Zhou X, Wang L, et al. Dietary 
supplementation with L-arginine 
or N-carbamylglutamate enhances 
intestinal growth and heat shock 
protein-70 expression in weanling pigs 

fed a corn- and soybean meal-based 
diet. Amino Acids. 2010;39(3):831-839

[54] Wu L, Liao P, He L, Feng Z, 
Ren W, Yin J, et al. Dietary L-arginine 
supplementation protects weanling pigs 
from deoxynivalenol-induced toxicity. 
Toxins. 2015;7(4):1341-1354

[55] Wang J, Li GR, Tan BE, Xiong X,  
Kong XF, Xiao DF, et al. Oral 
administration of putrescine and proline 
during the suckling period improves 
epithelial restitution after early weaning 
in piglets. Journal of Animal Science. 
2015;93(4):1679-1688

[56] Wu G, Meier SA, Knabe DA. Dietary 
glutamine supplementation 
prevents jejunal atrophy in weaned 
pigs. The Journal of Nutrition. 
1996;126(10):2578-2584

[57] Li Y, Li J, Jiang J, Li N,  
Wang X, Wang Z, et al. Glycyl-
glutamine-supplemented long-
term total parenteral nutrition 
selectively improves structure 
and function in heterotopic small-
bowel autotransplantation in the 
pig. Transplant International: 
Official Journal of the European 
Society for Organ Transplantation. 
2003;16(12):866-871

[58] Jiang ZY, Sun LH, Lin YC, Ma XY, 
Zheng CT, Zhou GL, et al. Effects 
of dietary glycyl-glutamine on 
growth performance, small intestinal 
integrity, and immune responses 
of weaning piglets challenged with 
lipopolysaccharide. Journal of Animal 
Science. 2009;87(12):4050-4056

[59] Burrin DG, Reeds PJ. Alternative 
fuels in the gastrointestinal tract. 
Current Opinion in Gastroenterology. 
1997;13(2):165-170

[60] Zhan Z, Ou D, Piao X, Kim SW,  
Liu Y, Wang J. Dietary arginine 
supplementation affects microvascular 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


18

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

development in the small intestine 
of early-weaned pigs. The Journal of 
Nutrition. 2008;138(7):1304-1309

[61] Eklou-Lawson M, Bernard F, 
Neveux N, Chaumontet C, Bos C, 
Davila-Gay AM, et al. Colonic luminal 
ammonia and portal blood L-glutamine 
and L-arginine concentrations: A 
possible link between colon mucosa 
and liver ureagenesis. Amino Acids. 
2009;37(4):751-760

[62] Tan B, Xiao H, Xiong X, 
Wang J, Li G, Yin Y, et al. L-arginine 
improves DNA synthesis in LPS-
challenged enterocytes. Frontiers 
in Bioscience (Landmark Edition). 
2015;20:989-1003

[63] Wang J, Chen L, Li P, Li X, Zhou H, 
Wang F, et al. Gene expression is altered 
in piglet small intestine by weaning and 
dietary glutamine supplementation. 
The Journal of Nutrition. 
2008;138(6):1025-1032

[64] Wu M, Xiao H, Liu G, Chen S, 
Tan B, Ren W, et al. Glutamine promotes 
intestinal SIgA secretion through 
intestinal microbiota and IL-13. 
Molecular Nutrition & Food Research. 
2016;60(7):1637-1648

[65] Ruzin A, Novick RP. Equivalence 
of lauric acid and glycerol monolaurate 
as inhibitors of signal transduction 
in Staphylococcus aureus. Journal of 
Bacteriology. 2000;182(9):2668-2671

[66] Mallo JJ, Balfagon A, Gracia MI, 
Honrubia P, Puyalto M. Evaluation of 
different protections of butyric acid 
aiming for release in the last part of the 
gastrointestinal tract of piglets. Journal 
of Animal Science. 2012;90(Suppl 4): 
227-229

[67] Kovanda L, Zhang W, Wei X, 
Luo J, Wu X, Atwill ER, et al. In vitro 
antimicrobial activities of organic acids 
and their derivatives on several species 
of Gram-negative and Gram-positive 

bacteria. Molecules (Basel, 
Switzerland). 2019;24(20):3770-3783

[68] Rossi R, Pastorelli G, Cannata S, 
Corino C. Recent advances in the use of 
fatty acids as supplements in pig diets: 
A review. Animal Feed Science and 
Technology. 2010;162(1):1-11

[69] Bedford A, Gong J. Implications 
of butyrate and its derivatives for gut 
health and animal production. Animal 
Nutrition (Zhongguo Xu Mu Shou Yi 
Xue Hui). 2018;4(2):151-159

[70] Xiong X, Tan B, Song M, Ji P, Kim K, 
Yin Y, et al. Nutritional intervention for 
the intestinal development and health 
of weaned pigs. Frontiers in Veterinary 
Science. 2019;6:46

[71] Lu JJ, Zou XT, Wang YM. Effects 
of sodium butyrate on the growth 
performance, intestinal microflora 
and morphology of weanling pigs. 
Journal of Animal and Feed Sciences. 
2008;17(4):568-578

[72] Fang CL, Sun H, Wu J, Niu HH, 
Feng J. Effects of sodium butyrate on 
growth performance, haematological 
and immunological characteristics of 
weanling piglets. Journal of animal 
physiology and animal nutrition. 
2014;98(4):680-685

[73] Hou Y, Wang L, Yi D, Ding B,  
Chen X, Wang Q , et al. Dietary 
supplementation with tributyrin 
alleviates intestinal injury in 
piglets challenged with intrarectal 
administration of acetic acid. 
The British Journal of Nutrition. 
2014;111(10):1748-1758

[74] Huang C, Song P, Fan P, Hou C,  
Thacker P, Ma X. Dietary sodium 
butyrate decreases postweaning 
diarrhea by modulating intestinal 
permeability and changing the 
bacterial communities in weaned 
piglets. The Journal of Nutrition. 
2015;145(12):2774-2780

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


19

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

[75] Cuff M, Dyer J, Jones M, Shirazi- 
Beechey S. The human colonic 
monocarboxylate transporter isoform 
1: Its potential importance to colonic 
tissue homeostasis. Gastroenterology. 
2005;128(3):676-686

[76] Thangaraju M, Cresci GA, Liu K,  
Ananth S, Gnanaprakasam JP, 
Browning DD, et al. GPR109A is 
a G-protein-coupled receptor for 
the bacterial fermentation product 
butyrate and functions as a tumor 
suppressor in colon. Cancer Research. 
2009;69(7):2826-2832

[77] Fontenelle B, Gilbert KM. 
n-butyrate anergized effector CD4+ 
T cells independent of regulatory 
T cell generation or activity. 
Scandinavian Journal of Immunology. 
2012;76(5):457-463

[78] Zeng X, Sunkara LT, Jiang W, 
Bible M, Carter S, Ma X, et al. Induction 
of porcine host defense peptide 
gene expression by short-chain fatty 
acids and their analogs. PLoS One. 
2013;8(8):e72922

[79] Odle J. New insights into 
the utilization of medium-chain 
triglycerides by the neonate: 
Observations from a piglet model. The 
Journal of Nutrition. 1997;127(6): 
1061-1067

[80] Zentek J, Buchheit-Renko S, 
Ferrara F, Vahjen W, Van Kessel AG, 
Pieper R. Nutritional and physiological 
role of medium-chain triglycerides and 
medium-chain fatty acids in piglets. 
Animal Health Research Reviews. 
2011;12(1):83-93

[81] Hanczakowska E. The use of 
medium-chain fatty acids in piglet 
feeding—A review. Annals of Animal 
Science. 2017;17(4):967

[82] McDowell LR. Minerals in Animal 
and Human Nutrition. New York, NY: 
Academic Press; 1992

[83] Ku PK, Ullery DE, Miller ER. Zinc 
deficiency and tissue nucleic acid and 
protein concentration. In: Mills CF, 
editor. Trace Element Metabolism 
in Animals. Edinburgh, UK: E. & S. 
Livingstone; 1970. pp. 158-164

[84] Fernandez-Madrid F, Prasad AS, 
Oberleas D. Effect of zinc deficiency 
on collagen metabolism. The Journal 
of Laboratory and Clinical Medicine. 
1971;78(5):853

[85] NRC. Nutrient Requirements of 
Swine. 11th revised ed. Washington, 
DC: Natl. Acad. Press; 2012

[86] Hahn JD, Baker DH. Growth 
and plasma zinc responses of young 
pigs fed pharmacologic levels of 
zinc. Journal of Animal Science. 
1993;71(11):3020-3024

[87] Hill GM, Mahan DC, Carter SD,  
Cromwell GL, Ewan RC, Harrold RL,  
et al. Effect of pharmacological 
concentrations of zinc oxide with or 
without the inclusion of an antibacterial 
agent on nursery pig performance. 
Journal of Animal Science. 
2001;79(4):934-941

[88] Case CL, Carlson MS. Effect 
of feeding organic and inorganic 
sources of additional zinc on growth 
performance and zinc balance in 
nursery pigs. Journal of Animal Science. 
2002;80(7):1917-1924

[89] Starke IC, Pieper R, Neumann K, 
Zentek J, Vahjen W. The impact of high 
dietary zinc oxide on the development 
of the intestinal microbiota in weaned 
piglets. FEMS Microbiology Ecology. 
2014;87(2):416-427

[90] Pearce SC, Sanz Fernandez MV, 
Torrison J, Wilson ME, Baumgard LH, 
Gabler NK. Dietary organic zinc 
attenuates heat stress-induced 
changes in pig intestinal integrity and 
metabolism. Journal of Animal Science. 
2015;93(10):4702-4713

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


20

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

[91] Katouli M, Melin L, Jensen-Waern M, 
Wallgren P, Mollby R. The effect of zinc 
oxide supplementation on the stability 
of the intestinal flora with special 
reference to composition of coliforms 
in weaned pigs. Journal of Applied 
Microbiology. 1999;87(4):564-573

[92] Zhang B, Guo Y. Supplemental 
zinc reduced intestinal permeability 
by enhancing occludin and zonula 
occludens protein-1 (ZO-1) expression 
in weaning piglets. The British Journal 
of Nutrition. 2009;102(5):687-693

[93] van Heugten E, Spears JW,  
Kegley EB, Ward JD, Qureshi MA.  
Effects of organic forms of zinc on 
growth performance, tissue zinc 
distribution, and immune response 
of weanling pigs. Journal of Animal 
Science. 2003;81(8):2063-2071

[94] Walk CL, Srinongkote S, 
Wilcock P. Influence of a microbial 
phytase and zinc oxide on young 
pig growth performance and serum 
minerals. Journal of Animal Science. 
2013;91(1):286-291

[95] Walk CL, Wilcock P, Magowan E.  
Evaluation of the effects of 
pharmacological zinc oxide and 
phosphorus source on weaned piglet 
growth performance, plasma minerals 
and mineral digestibility. Animal: 
An International Journal of Animal 
Bioscience. 2015;9(7):1145-1152

[96] Ciesinski L, Guenther S, Pieper R, 
Kalisch M, Bednorz C, Wieler LH. High 
dietary zinc feeding promotes 
persistence of multi-resistant  
E. coli in the swine gut. PloS One. 
2018;13(1):e0191660

[97] Ward TLAG, Louis GF, Pollman DS. 
Zinc-methionine improves growth 
performance of starter pigs. Jornal of 
Animal Science. 1996;74(Suppl 1):182

[98] Mavromichalis I, Webel DM, 
Parr EN, Baker DH. Growth-promoting 

efficacy of pharmacological doses of 
tetrabasic zinc chloride in diets for 
nursery pigs. Canadian Journal of 
Animal Science. 2001;81(3):387-391

[99] Underwood EJ. Trace Elements in 
Human and Animal Nutrition. 4th ed. 
New York: Academic Press; 1977

[100] Suttle NF. Mineral Nutrition of 
Livestock. 4th ed. Oxon, UK: CABI 
Publishing; 2010

[101] Baxter JH, Van Wyk JJ, Follis RH 
Jr. A bone disorder associated with 
copper deficiency. II. Histological 
and chemical studies on the bones. 
Bulletin of the Johns Hopkins Hospital. 
1953;93(1):25-39

[102] Hart EB, Steenbock H, Waddell J,  
Elvehjem CA. Iron in nutrition. 
VII. Copper as a supplement to iron for 
hemoglobin building in the rat. 1928. 
The Journal of Biological Chemistry. 
2002;277(34):e22

[103] Zhao J, Harper AF, Estienne MJ,  
Webb KE Jr, McElroy AP, Denbow DM. 
Growth performance and intestinal 
morphology responses in early weaned 
pigs to supplementation of antibiotic-
free diets with an organic copper 
complex and spray-dried plasma 
protein in sanitary and nonsanitary 
environments. Journal of Animal 
Science. 2007;85(5):1302-1310

[104] Perez VG, Waguespack AM, 
Bidner TD, Southern LL, Fakler TM, 
Ward TL, et al. Additivity of effects 
from dietary copper and zinc on growth 
performance and fecal microbiota of 
pigs after weaning. Journal of Animal 
Science. 2011;89(2):414-425

[105] Ma YL, Zanton GI, Zhao J,  
Wedekind K, Escobar J, Vazquez- 
Anon M. Multitrial analysis of the 
effects of copper level and source on 
performance in nursery pigs. Journal of 
Animal Science. 2015;93(2):606-614

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


21

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

[106] Kloubert V, Blaabjerg K, 
Dalgaard TS, Poulsen HD, Rink L, 
Wessels I. Influence of zinc 
supplementation on immune parameters 
in weaned pigs. Journal of Trace 
Elements in Medicine and Biology: 
Organ of the Society for Minerals 
and Trace Elements (GMS). 
2018;49:231-240

[107] Stahly TS, Cromwell GL, 
Monegue HJ. Effects of the dietary 
inclusion of copper and(or) antibiotics 
on the performance of weanling 
pigs. Journal of Animal Science. 
1980;51(6):1347-1351

[108] Hojberg O, Canibe N, Poulsen HD, 
Hedemann MS, Jensen BB. Influence of 
dietary zinc oxide and copper sulfate 
on the gastrointestinal ecosystem 
in newly weaned piglets. Applied 
and Environmental Microbiology. 
2005;71(5):2267-2277

[109] Cromwell GL, Lindemann MD, 
Monegue HJ, Hall DD, Orr DE Jr. 
Tribasic copper chloride and copper 
sulfate as copper sources for weanling 
pigs. Journal of Animal Science. 
1998;76(1):118-123

[110] Banks KM, Thompson KL, 
Rush JK, Applegate TJ. Effects of copper 
source on phosphorus retention in 
broiler chicks and laying hens. Poultry 
Science. 2004;83(6):990-996

[111] Pang Y, Applegate TJ. Effects 
of copper source and concentration 
on in vitro phytate phosphorus 
hydrolysis by phytase. Journal of 
Agricultural and Food Chemistry. 
2006;54(5):1792-1796

[112] Armstrong TA, Cook DR, 
Ward MM, Williams CM, Spears JW. 
Effect of dietary copper source (cupric 
citrate and cupric sulfate) and 
concentration on growth performance 
and fecal copper excretion in weanling 
pigs. Journal of Animal Science. 
2004;82(4):1234-1240

[113] Gibson GR, Probert HM, Loo JV, 
Rastall RA, Roberfroid MB. Dietary 
modulation of the human colonic 
microbiota: Updating the concept of 
prebiotics. Nutrition Research Reviews. 
2004;17(2):259-275

[114] Macfarlane S, Macfarlane GT, 
Cummings JH. Review article: Prebiotics 
in the gastrointestinal tract. Alimentary 
Pharmacology & Therapeutics. 
2006;24(5):701-714

[115] Kelly G. Inulin-type prebiotics—A 
review: Part 1. Alternative Medicine 
Review: A Journal of Clinical 
Therapeutic. 2008;13(4):315-329

[116] Boehm G, Jelinek J, Stahl B, 
van Laere K, Knol J, Fanaro S, et al. 
Prebiotics in infant formulas. Journal of 
Clinical Gastroenterology. 2004;38(6 
Suppl):S76-S79

[117] Zeković DB, Kwiatkowski S, 
Vrvić MM, Jakovljević D, Moran CA. 
Natural and modified (1→3)-β-D-
glucans in health promotion and 
disease alleviation. Critical Reviews in 
Biotechnology. 2005;25(4):205-230

[118] Samuelsen AB, Schrezenmeir J,  
Knutsen SH. Effects of orally 
administered yeast-derived beta-
glucans: A review. Molecular Nutrition 
& Food Research. 2014;58(1):183-193

[119] Soltanian S, Stuyven E, Cox E, 
Sorgeloos P, Bossier P. Beta-glucans 
as immunostimulant in vertebrates 
and invertebrates. Critical Reviews in 
Microbiology. 2009;35(2):109-138

[120] Kim K, Ehrlich A, Perng V, 
Chase JA, Raybould H, Li X, et al. 
Algae-derived β-glucan enhanced gut 
health and immune responses of weaned 
pigs experimentally infected with a 
pathogenic E. coli. Animal Feed Science 
and Technology. 2019;248:114-125

[121] World Heath Organization, Food 
and Agriculture Organization of 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


22

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

the United Nations, United Nations 
University. Protein and amino acid 
requirements in human nutrition. 2007. 
Report of a joint FAO/WHO/UNU 
expert consultation (WHO Technical 
Report Series 935)

[122] Stein HH, Kil DY. Reduced use 
of antibiotic growth promoters in 
diets fed to weanling pigs: Dietary 
tools, part 2. Animal Biotechnology. 
2006;17(2):217-231

[123] Ferrari E, Jarnagin A, Schmidt BF. 
Commercial production of extracellular 
enzymes. In: Sonenshein AL, 
Hoch JA, Losick R, editors. Bacillus 
subtilis and Other Gram-Positive 
Bacteria. Washington, DC: American 
Society for Microbiology; 1993. 
pp. 917-937

[124] de Lange CFM, Pluske J, Gong J, 
Nyachoti CM. Strategic use of feed 
ingredients and feed additives to 
stimulate gut health and development 
in young pigs. Livestock Science. 
2010;134(1):124-134

[125] Richards JD, Gong J, de 
Lange CFM. The gastrointestinal 
microbiota and its role in monogastric 
nutrition and health with an emphasis 
on pigs: Current understanding, 
possible modulations, and new 
technologies for ecological studies. 
Canadian Journal of Animal Science. 
2005;85(4):421-435

[126] Vandenbergh PA. Lactic acid 
bacteria, their metabolic products 
and interference with microbial 
growth. FEMS Microbiology Reviews. 
1993;12(1):221-237

[127] Niers LE, Timmerman HM, 
Rijkers GT, van Bleek GM, van 
Uden NO, Knol EF, et al. Identification 
of strong interleukin-10 inducing lactic 
acid bacteria which down-regulate T 
helper type 2 cytokines. Clinical and 
Experimental Allergy: Journal of the 

British Society for Allergy and Clinical 
Immunology. 2005;35(11):1481-1489

[128] Kogan G, Kocher A. Role of yeast 
cell wall polysaccharides in pig nutrition 
and health protection. Livestock 
Science. 2007;109(1):161-165

[129] Sauer N, Eklund M, Roth S, Rink F, 
Jezierny D, Bauer E, et al. Short-term 
effect of dietary yeast nucleotide 
supplementation on small intestinal 
enzyme activities, bacterial populations 
and metabolites and ileal nutrient 
digestibilities in newly weaned pigs. 
Journal of Animal Physiology and 
Animal Nutrition. 2012;96(4):700-708

[130] Shen YB, Piao XS, Kim SW, 
Wang L, Liu P, Yoon I, et al. Effects 
of yeast culture supplementation on 
growth performance, intestinal health, 
and immune response of nursery 
pigs. Journal of Animal Science. 
2009;87(8):2614-2624

[131] Jiang Z, Wei S, Wang Z, Zhu C, 
Hu S, Zheng C, et al. Effects of different 
forms of yeast Saccharomyces cerevisiae 
on growth performance, intestinal 
development, and systemic immunity in 
early-weaned piglets. Journal of Animal 
Science and Biotechnology. 2015;6:47

[132] Toure R, Kheadr E, Lacroix C, 
Moroni O, Fliss I. Production 
of antibacterial substances by 
bifidobacterial isolates from infant stool 
active against listeria monocytogenes. 
Journal of Applied Microbiology. 
2003;95(5):1058-1069

[133] Gibson GR, Wang X. Regulatory 
effects of bifidobacteria on the 
growth of other colonic bacteria. 
The Journal of Applied Bacteriology. 
1994;77(4):412-420

[134] Corr SC, Li Y, Riedel CU,  
O’Toole PW, Hill C, Gahan CG. 
Bacteriocin production as a mechanism 
for the antiinfective activity of 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


23

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

Lactobacillus salivarius UCC118. 
Proceedings of the National Academy 
of Sciences of the United States of 
America. 2007;104(18):7617-7621

[135] Gibson GR, McCartney AL, 
Rastall RA. Prebiotics and resistance to 
gastrointestinal infections. The British 
Journal of Nutrition. 2005;93(Suppl 1): 
S31-S34

[136] Halas D, Hansen CF, Hampson DJ, 
Mullan BP, Wilson RH, Pluske JR. Effect 
of dietary supplementation with inulin 
and/or benzoic acid on the incidence 
and severity of post-weaning diarrhoea 
in weaner pigs after experimental 
challenge with enterotoxigenic 
Escherichia coli. Archives of Animal 
Nutrition. 2009;63(4):267-280

[137] Bunce TJ, Howard MD, Kerley MS, 
Alee GL, Pace LW. Protective effect 
of fructooligosaccharide (FOS) 
in prevention of mortality and 
morbidity from infectious E. coli K:88 
challenge. Journal of Animal Science. 
1995;63(Suppl 1):69

[138] Stuyven E, Cox E, 
Vancaeneghem S, Arnouts S, Deprez P, 
Goddeeris BM. Effect of beta-glucans on 
an ETEC infection in piglets. Veterinary 
Immunology and Immunopathology. 
2009;128(1-3):60-66

[139] Kiarie E, Bhandari S, Scott M, 
Krause DO, Nyachoti CM. Growth 
performance and gastrointestinal 
microbial ecology responses of piglets 
receiving Saccharomyces cerevisiae 
fermentation products after an 
oral challenge with Escherichia coli 
(K88). Journal of Animal Science. 
2011;89(4):1062-1078

[140] Kiarie E, Scott M, Krause DO, 
Khazanehei H, Khafipour E, 
Nyachoti CM. Interactions of 
Saccharomyces cerevisiae fermentation 
product and in-feed antibiotic on 
gastrointestinal and immunological 
responses in piglets challenged with 

Escherichia coli K88+. Journal of Animal 
Science. 2012;90(Suppl 4):1-3

[141] Trckova M, Faldyna M, Alexa P, 
Sramkova Zajacova Z, Gopfert E, 
Kumprechtova D, et al. The effects 
of live yeast Saccharomyces cerevisiae 
on postweaning diarrhea, immune 
response, and growth performance 
in weaned piglets. Journal of Animal 
Science. 2014;92(2):767-774

[142] Kim K, He Y, Xiong X, Ehrlich A, 
Li X, Raybould H, et al. Dietary 
supplementation of Bacillus subtilis 
influenced intestinal health of 
weaned pigs experimentally infected 
with a pathogenic E. coli. Journal of 
Animal Science and Biotechnology. 
2019;10(1):52

[143] Gadde U, Kim WH, Oh ST, 
Lillehoj HS. Alternatives to antibiotics 
for maximizing growth performance 
and feed efficiency in poultry: A review. 
Animal Health Research Reviews. 
2017;18(1):26-45

[144] Windisch W, Schedle K, 
Plitzner C, Kroismayr A. Use of 
phytogenic products as feed additives 
for swine and poultry. Journal of Animal 
Science. 2008;86(14 Suppl):E140-E148

[145] Baydar NG, Özkan G, Sağdiç O.  
Total phenolic contents and 
antibacterial activities of grape (Vitis 
vinifera L.) extracts. Food Control. 
2004;15(5):335-339

[146] Sokmen M, Serkedjieva J, 
Daferera D, Gulluce M, Polissiou M, 
Tepe B, et al. In vitro antioxidant, 
antimicrobial, and antiviral activities 
of the essential oil and various extracts 
from herbal parts and callus cultures 
of Origanum acutidens. Journal of 
Agricultural and Food Chemistry. 
2004;52(11):3309-3312

[147] Dundar E, Olgun EG, Isiksoy S,  
Kurkcuoglu M, Baser KH, Bal C.  

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


24

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

The effects of intra-rectal and 
intra-peritoneal application of 
Origanum onites L. essential oil on 
2,4,6-trinitrobenzenesulfonic acid-
induced colitis in the rat. Experimental 
and Toxicologic Pathology: 
Official Journal of the Gesellschaft 
fur Toxikologische Pathologie. 
2008;59(6):399-408

[148] Liu Y, Song M, Che TM, Bravo D, 
Pettigrew JE. Anti-inflammatory effects 
of several plant extracts on porcine 
alveolar macrophages in vitro. Journal of 
Animal Science. 2012;90(8):2774-2783

[149] Hammer KA, Carson CF, 
Riley TV. Antimicrobial activity of 
essential oils and other plant extracts. 
Journal of Applied Microbiology. 
1999;86(6):985-990

[150] Dorman HJ, Deans SG. 
Antimicrobial agents from plants: 
Antibacterial activity of plant volatile 
oils. Journal of Applied Microbiology. 
2000;88(2):308-316

[151] Wong SY, Grant IR, Friedman M,  
Elliott CT, Situ C. Antibacterial 
activities of naturally occurring 
compounds against Mycobacterium 
avium subsp. paratuberculosis. Applied 
and Environmental Microbiology. 
2008;74(19):5986-5990

[152] Carson CF, Mee BJ, Riley TV. 
Mechanism of action of Melaleuca 
alternifolia (tea tree) oil on 
Staphylococcus aureus determined 
by time-kill, lysis, leakage, and 
salt tolerance assays and electron 
microscopy. Antimicrobial Agents and 
Chemotherapy. 2002;46(6):1914-1920

[153] Burt S. Essential oils: Their 
antibacterial properties and potential 
applications in foods—A review. 
International Journal of Food 
Microbiology. 2004;94(3):223-253

[154] Xu J, Zhou F, Ji BP, Pei RS, Xu N.  
The antibacterial mechanism of 

carvacrol and thymol against Escherichia 
coli. Letters in Applied Microbiology. 
2008;47(3):174-179

[155] Trombetta D, Castelli F,  
Sarpietro MG, Venuti V,  
Cristani M, Daniele C, et al. 
Mechanisms of Antibacterial 
Action of Three Monoterpenes. 
2005;49(6):2474-2478

[156] Sikkema J, de Bont JA, 
Poolman B. Mechanisms of membrane 
toxicity of hydrocarbons. 
Microbiological Reviews. 
1995;59(2):201-222

[157] Farag RS, Daw ZY, Hewedi FM, 
El-Baroty GSA. Antimicrobial activity 
of some Egyptian spice essential 
oils. Journal of Food Protection. 
1989;52(9):665-667

[158] Lambert RJ, Skandamis PN, 
Coote PJ, Nychas GJ. A study of the 
minimum inhibitory concentration 
and mode of action of oregano 
essential oil, thymol and carvacrol. 
Journal of Applied Microbiology. 
2001;91(3):453-462

[159] Ankri S, Mirelman D. 
Antimicrobial properties of allicin 
from garlic. Microbes and Infection. 
1999;1(2):125-129

[160] Burt SA, van der Zee R, 
Koets AP, de Graaff AM, van Knapen F, 
Gaastra W, et al. Carvacrol induces 
heat shock protein 60 and inhibits 
synthesis of flagellin in Escherichia coli 
O157:H7. Applied and Environmental 
Microbiology. 2007;73(14):4484-4490

[161] Verhelst R, Schroyen M, 
Buys N, Niewold T. The effects of 
plant polyphenols on enterotoxigenic 
Escherichia coli adhesion and 
toxin binding. Livestock Science. 
2010;133(1):101-103

[162] Liu Y, Song M, Che TM, 
Almeida JA, Lee JJ, Bravo D, et al. 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


25

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

Dietary plant extracts alleviate diarrhea 
and alter immune responses of weaned 
pigs experimentally infected with a 
pathogenic Escherichia coli. Journal of 
Animal Science. 2013;91(11):5294-5306

[163] Liu Y, Song M, Che TM, Lee JJ, 
Bravo D, Maddox CW, et al. Dietary 
plant extracts modulate gene 
expression profiles in ileal mucosa of 
weaned pigs after an Escherichia coli 
infection. Journal of Animal Science. 
2014;92(5):2050-2062

[164] Bruins MJ, Cermak R, Kiers JL, 
van der Meulen J, van Amelsvoort JM, 
van Klinken BJ. In vivo and in vitro 
effects of tea extracts on enterotoxigenic 
Escherichia coli-induced intestinal 
fluid loss in animal models. Journal 
of Pediatric Gastroenterology and 
Nutrition. 2006;43(4):459-469

[165] Coddens A, Loos M, Vanrompay D, 
Remon JP, Cox E. Cranberry extract 
inhibits in vitro adhesion of F4 and 
F18(+)Escherichia coli to pig intestinal 
epithelium and reduces in vivo 
excretion of pigs orally challenged with 
F18(+) verotoxigenic E. coli. Veterinary 
Microbiology. 2017;202:64-71

[166] Zasloff M. Antimicrobial peptides 
of multicellular organisms. Nature. 
2002;415(6870):389-395

[167] Xiao H, Shao F, Wu M, Ren W, 
Xiong X, Tan B, et al. The application 
of antimicrobial peptides as growth 
and health promoters for swine. Journal 
of Animal Science and Biotechnology. 
2015;6(1):19

[168] Wang S, Zeng X, Yang Q , 
Qiao S. Antimicrobial peptides as 
potential alternatives to antibiotics in 
food animal industry. International 
Journal of Molecular Sciences. 
2016;17(5):603-614

[169] Selsted ME, Ouellette AJ.  
Mammalian defensins in the 
antimicrobial immune response. Nature 
Immunology. 2005;6(6):551-557

[170] Hancock RE. Cationic peptides: 
Effectors in innate immunity and novel 
antimicrobials. The Lancet Infectious 
Diseases. 2001;1(3):156-164

[171] Zhang L, Parente J, Harris SM,  
Woods DE, Hancock RE, Falla TJ. 
Antimicrobial peptide therapeutics 
for cystic fibrosis. Antimicrobial 
Agents and Chemotherapy. 
2005;49(7):2921-2927

[172] Shai Y. Mechanism of the 
binding, insertion and destabilization 
of phospholipid bilayer membranes 
by alpha-helical antimicrobial and 
cell non-selective membrane-lytic 
peptides. Biochimica et Biophysica Acta. 
1999;1462(1-2):55-70

[173] Yang L, Harroun TA, Weiss TM, 
Ding L, Huang HW. Barrel-stave model 
or toroidal model? A case study on 
melittin pores. Biophysical Journal. 
2001;81(3):1475-1485

[174] Brogden KA. Antimicrobial 
peptides: Pore formers or metabolic 
inhibitors in bacteria? Nature Reviews 
Microbiology. 2005;3(3):238-250

[175] Mansour SC, Pena OM, 
Hancock RE. Host defense peptides: 
front-line immunomodulators. Trends 
in Immunology. 2014;35(9):443-450

[176] Ren ZH, Yuan W, Deng HD, 
Deng JL, Dan QX, Jin HT, et al. Effects 
of antibacterial peptide on cellular 
immunity in weaned piglets. Journal of 
Animal Science. 2015;93(1):127-134

[177] Wu S, Zhang F, Huang Z, Liu H, 
Xie C, Zhang J, et al. Effects of the 
antimicrobial peptide cecropin AD 
on performance and intestinal health 
in weaned piglets challenged 
with Escherichia coli. Peptides. 
2012;35(2):225-230

[178] Xiao H, Tan BE, Wu MM, 
Yin YL, Li TJ, Yuan DX, et al. Effects 
of composite antimicrobial peptides 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


26

E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment

in weanling piglets challenged 
with deoxynivalenol: II. Intestinal 
morphology and function. Journal of 
Animal Science. 2013;91(10):4750-4756

[179] Wang Y-Z, Shan T-Z, Xu Z-R, 
Feng J, Wang Z-Q. Effects of the 
lactoferrin (LF) on the growth 
performance, intestinal microflora 
and morphology of weanling pigs. 
Animal Feed Science and Technology. 
2007;135(3):263-272

[180] Tang Z, Yin Y, Zhang Y, Huang R, 
Sun Z, Li T, et al. Effects of dietary 
supplementation with an expressed 
fusion peptide bovine lactoferricin-
lactoferrampin on performance, 
immune function and intestinal 
mucosal morphology in piglets weaned 
at age 21 d. The British Journal of 
Nutrition. 2009;101(7):998-1005

[181] Lonnerdal B. Biochemistry and 
physiological function of human milk 
proteins. The American journal of 
clinical nutrition. 1985;42(6):1299-1317

[182] Wiesner J, Vilcinskas A. 
Antimicrobial peptides: The ancient 
arm of the human immune system. 
Virulence. 2010;1(5):440-464

[183] Masschalck B, Michiels CW. 
Antimicrobial properties of lysozyme 
in relation to foodborne vegetative 
bacteria. Critical Reviews in 
Microbiology. 2003;29(3):191-214

[184] Ibrahim HR, Thomas U, 
Pellegrini A. A helix-loop-helix peptide 
at the upper lip of the active site 
cleft of lysozyme confers potent 
antimicrobial activity with membrane 
permeabilization action. The 
Journal of Biological Chemistry. 
2001;276(47):43767-43774

[185] Laible NJ, Germaine GR.  
Bactericidal activity of human 
lysozyme, muramidase-inactive 
lysozyme, and cationic polypeptides 
against Streptococcus sanguis and 
Streptococcus faecalis: Inhibition by 

chitin oligosaccharides. Infection and 
Immunity. 1985;48(3):720-728

[186] Ibrahim HR, Matsuzaki T, Aoki T. 
Genetic evidence that antibacterial 
activity of lysozyme is independent 
of its catalytic function. FEBS letters. 
2001;506(1):27-32

[187] Ellison RT, Giehl TJ. Killing of 
gram-negative bacteria by lactoferrin 
and lysozyme. Journal of Clinical 
Investigation. 1991;88(4):1080-1091

[188] Gordon LI, Douglas SD, 
Kay NE, Yamada O, Osserman EF, 
Jacob HS. Modulation of neutrophil 
function by lysozyme. potential 
negative feedback system of 
inflammation. Journal of Clinical 
Investigation. 1979;64(1):226-232

[189] Maga EA, Desai PT, Weimer BC,  
Dao N, Kültz D, Murray JD. 
Consumption of lysozyme-rich milk 
can alter microbial fecal populations. 
Applied and Environmental 
Microbiology. 2012;78(17):6153-6160

[190] Garas LC, Cooper CA, 
Dawson MW, Wang JL, Murray JD, 
Maga EA. Young pigs consuming 
lysozyme transgenic goat milk are 
protected from clinical symptoms 
of enterotoxigenic Escherichia coli 
infection. The Journal of Nutrition. 
2017;147(11):2050-2059

[191] Huang G, Li X, Lu D, Liu S, Suo X, 
Li Q , et al. Lysozyme improves gut 
performance and protects against 
enterotoxigenic Escherichia coli infection 
in neonatal piglets. Veterinary Research. 
2018;49(1):20

[192] Liu Y, Ji P. Dietary factors in 
prevention of pediatric Escherichia 
coli infection: A model using 
domestic piglets. ILAR Journal. 
2018;59(3):338-351

[193] Brundige DR, Maga EA, 
Klasing KC, Murray JD. Lysozyme 

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html


27

Dietary Intervention to Reduce E. coli Infectious Diarrhea in Young Pigs
DOI: http://dx.doi.org/10.5772/intechopen.91219

transgenic goats’ milk influences 
gastrointestinal morphology in 
young pigs. The Journal of Nutrition. 
2008;138(5):921-926

[194] Cooper CA, Garas Klobas LC, 
Maga EA, Murray JD. Consuming 
transgenic goats’ milk containing the 
antimicrobial protein lysozyme helps 
resolve diarrhea in young pigs. PLoS 
One. 2013;8(3):e58409

[195] Liu P, Piao XS, Thacker PA, 
Zeng ZK, Li PF, Wang D, et al. Chito-
oligosaccharide reduces diarrhea 
incidence and attenuates the 
immune response of weaned pigs 
challenged with Escherichia coli 
K88. Journal of Animal Science. 
2010;88(12):3871-3879

[196] Krause DO, Bhandari SK, 
House JD, Nyachoti CM. Response of 
nursery pigs to a synbiotic preparation 
of starch and an anti-Escherichia coli K88 
probiotic. Applied and Environmental 
Microbiology. 2010;76(24):8192-8200

[197] Daudelin JF, Lessard M, 
Beaudoin F, Nadeau E, Bissonnette N, 
Boutin Y, et al. Administration of 
probiotics influences F4 (K88)-positive 
enterotoxigenic Escherichia coli 
attachment and intestinal cytokine 
expression in weaned pigs. Veterinary 
Research. 2011;42:69

[198] Lee JS, Awji EG, Lee SJ, Tassew DD, 
Park YB, Park KS, et al. Effect of 
lactobacillus plantarum CJLP243 on 
the growth performance and cytokine 
response of weaning pigs challenged 
with enterotoxigenic Escherichia 
coli. Journal of Animal Science. 
2012;90(11):3709-3717

[199] Yang KM, Jiang ZY, Zheng CT, 
Wang L, Yang XF. Effect of lactobacillus 
plantarum on diarrhea and intestinal 
barrier function of young piglets 
challenged with enterotoxigenic 
Escherichia coli K88. Journal of Animal 
Science. 2014;92(4):1496-1503

[200] Devi SM, Lee SI, Kim IH. Effect of 
phytogenics on growth performance, 
fecal score, blood profiles, fecal 
noxious gas emission, digestibility, and 
intestinal morphology of weanling pigs 
challenged with Escherichia coli K88. 
Polish Journal of Veterinary Sciences. 
2015;18(3):557-564

[201] Li H, Zhao P, Lei Y, Li T, Kim I. 
Response to an Escherichia coli K88 oral 
challenge and productivity of weanling 
pigs receiving a dietary nucleotides 
supplement. Journal of Animal Science 
and Biotechnology. 2015;6:49

[202] Song M, Liu Y, Soares JA, Che TM, 
Osuna O, Maddox CW, et al. Dietary 
clays alleviate diarrhea of weaned 
pigs. Journal of Animal Science. 
2012;90(1):345-360

[203] Almeida JA, Liu Y, Song M, 
Lee JJ, Gaskins HR, Maddox CW, et al. 
Escherichia coli challenge and one type 
of smectite alter intestinal barrier of 
pigs. Journal of Animal Science and 
Biotechnology. 2013;4(1):52

Please use Adobe Acrobat Reader to read this book chapter for free.
Just open this same document with Adobe Reader.

If you do not have it, you can download it here.
You can freely access the chapter at the Web Viewer here.

Securing Connection...Acrobat is blocking documentloading.com

or

File cannot be found.

https://get.adobe.com/reader/
https://documentloading.com/viewer/d102e68cfaa94b1282afad95d3658f05
https://helpx.adobe.com/acrobat/using/allow-or-block-links-internet.html

