L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322446061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter

Real-Time Robot Software
Platform for Industrial Application

Sanghoon Ji, Donguk Yu, Hoseok Jung and Hong Seong Park

Abstract

In this study, we present the requirements of a real-time robot software (SW)
platform that can be used for industrial robots and examine whether various kinds
of existing middleware satisfy them. Moreover, we propose a real-time robot SW
platform that extends RTMIA to various industrial applications, which is
implemented on Xenomai real-time operating system and Linux. The proposed SW
platform utilizes the timer-interrupt based approach to keep strict period and the
shared memory for convenient usage, on which the shared variable is designed and
used. We verify the proposed platform by showing that the robot task and the
Programmable Logic Controller (PLC) program are performing with interlocking
each other on the presented platform.

Keywords: software platform, real-time, middleware, industrial robot, PLC

1. Introduction

A robot software (SW) platform is an execution environment that provides
various functions to easily execute various robot softwares. Therefore, a
middleware that provides such functions can be considered as a platform.

Middleware is a type of software that exists between an application and an
operating system, and it employs communication protocols on the hardware,
thereby facilitating the development applications by users and reducing the cost
and risk when developing them [1]. Several types of middleware have been applied
in the field of robotics, such as Common Object Request Broker Architecture
(CORBA) [2, 3], Real-Time CORBA (RT-CORBA) [2, 4], Data Distribution Service
(DDS) [2, 5], OPC Unified Architecture (OPC-UA) [6], Robot Operating System
(ROS) [7, 8], Open Platform for Robotic Services (OPRoS) [9-11], OpenRTM (open
robotics technology middleware) [12], open robot control software (OROCOS)
[13], XbotCore [14], and real-time middleware for industrial automation devices
[15] (hereafter, referred to as RTMIA).

A common feature of these middleware is that they support message-based
communication. Thus, a majority of middleware can be implemented in multiple
nodes, such as processes, threads, or CPU boards that support middleware-unique
communication protocol to facilitate data exchange between them. The difference
among these middleware is whether the real-time constraint is satisfied or not, from
the perspective of the application thread or process. Even in the real-time view-
point, providing real-time from a communication point of view is different from
providing real-time from a (application) process point of view. In general, the term

1 IntechOpen

Industrial Robotics - New Paradigms

“real-time” in this study indicates the real-time used in the process viewpoint.
Hence, middleware must be able to control user-created programs using processes
or threads.

Even though middleware such as CORBA, RT-CORBA, OPRoS, openRTM,
OROCOS, XbotCore, and RTMIA control threads, in other middleware such as
OPC-UA, ROS, and DDS, the control of threads or processes is implemented by the
operating system. Hence, they do not directly control threads or processes. Except
CORBA, all of the above-mentioned thread controlling middleware satisfy the real
time constraint. However, if they are analyzed in detail, RT-CORBA, OPRoS,
openRTM, and OROCOS have conditions to satisfy the real time, in which the
execution type is limited to thread type and threads can be controlled in the time
range such as over 1 ms [8] or 10 ms [11]. In [14] EtherCAT-based robot real-time
SW platform is proposed, which is a Xenomai-based robot control middleware that
satisfies the hard real-time requirements and is designed to perform 1 kHz control
loops in a multi-axis system consisting of 33 axes. RTMIA is middleware that can
execute control loops in 100 ps and can simultaneously control both processes and
threads in real-time.

OPC-UA, ROS, and DDS are a kind of communication middleware. That is, they
do not satisfy the real time requirement since they are in charge of the data
exchange part between multiple nodes. Note that ROS 2.0 utilizes DDS. OPC-UA is
a middleware that performs data exchange among various robots and controls
devices such as the FMS controller or the server on the upper level. OPC-UA is not a
middleware that can be used for robot control like ROS. The use cases of ROS shows
that most types of the user program are process types rather than thread types. In
other words, the thread type provided by the real-time middleware is reluctant to
be used because their basic usage forms may introduce inconvenience and unfamil-
iarity for robot software developers. ROS has big advantage of using the conven-
tional programming method, which users are familiar with, and utilizes the ready-
made existing robot program. However, ROS must use ‘sleep()’ function for peri-
odic processing. ‘sleep()’ function does not always wake up at the correct time,
resulting in time shift occurrence. Accumulation of such shifts cause loss of some
periods, which may lead to states that cannot be controlled properly. In order to
avoid such situation, some constraints must be kept to strictly control the number
of applications and the execution environment.

The current trend of commercial PLC-related products [16, 17] shows that
platforms such as CODESYS [16] and TwinCAT [17] control robot systems, includ-
ing grippers, by embedding robot motion control SWs to PLC SWs. The feature of
these platform is that they use the robot block language proposed by PLCopen [18],
while their principal advantage is the ability to link robots to related automation
devices efficiently using PLC program. However, the types of robots that can be
controlled through these platforms are still limited. To solve this, the platform
should simultaneously perform both PLC function blocks, including robot function
blocks, and robot (task) programs defined directly by users or robot developers.

In this study, we presented the requirements of the real-time robot SW platform
for industrial robots and examined whether various types of existing middleware
satisfy them. Additionally, we extend the RTMIA [15] and propose a real-time robot
SW platform that can be used for various industrial applications and satisfies the
presented requirements. We implemented our proposed platform on the Xenomai
real-time operating system and Linux, and verify it via a few practical examples,
wherein the interlocking programs of robot task and PLC are simultaneously
performed.

The remainder of the study is organized as follows. In Section 2, we present the
requirements of the real-time robot SW platform for industrial applications and

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

discuss whether various kinds of existing middleware satisfy them. Section 3 pre-
sents the implementation of the real-time robot SW platform, and Section 4
describes the practical results obtained by mutually interlocked work of programs
of robot task and PLC on the proposed platform. Finally, Section 5 concludes the
study.

2. Operation requirements and analysis of real-time robot SW platform

For a real-time robotic SW platform for various industrial applications, we must
know the characteristics (period, etc.) of the data used for processing periods and
events. Referring to the data presented in [19], the data used in the manufacturing
robot can be roughly described as in Table 1. It may differ slightly from other
classifications because it is categorized based on type and period (or delay time) of
control/sensor data.

In fact, the data generated at each level in Table 1 is used as basis for the target
data. For example, upon recognizing an obstacle at level 4, its position data is used
to generate a level 3 position profile that provides relevant position data of level 2,
based on which, at level 1, a position control loop moves the motor to the desired
position by controlling the speed or torque of the motor. That is, data of each level is
interlocked with each other in terms of control.

A real-time robot SW platform should satisfy the following requirements.

R1: Support data exchange

R2: Real time support (strict period execution and sporadic performance
support)

R3: Supports thread and process types for user defined programs

R4: Easy configuration of applications (robot control SW, PLC SW, vision
inspection SW, non-real-time SW, etc.)

R5: Support multiple periods.

R6: Threads or processes running in the same period are classified by priority.

R7: Check and handle the event through the event handler.

R1 serves as a communication middleware by providing a method for exchang-
ing data between configured applications. R2 supports real time operation and
requires a minimal amount of jitter to perform periodic operations. It must also be
able to handle real-time events. For instance, conditions for use in various control
loop programs are strict periodic execution conditions, including the program for
directly controlling the motor without using a separate controller, and sporadic to
handle emergency event such as an emergency stop. In many cases, such execution
condition is required. In particular, the 100 ps period can be used to control the
motor current. R3 uses threads for real-time support, but also allows the process to

Level Data type Period (delay time)

4 Obstacle recognition, object recognition, device status Seconds

3 Position profiles Hundreds of ms

2 Position data Tens of ms

1 Motor torque and speed control data 100 ps
Table 1.

Types of control/sensor data used in manufacturing vobots and their associated periods (delays).

Industrial Robotics - New Paradigms

be used for soft real-time execution. Process support, as mentioned earlier, is about
using legacy programs. R4 does not control the developed application software
modules in a hard-coded program, but rather configures them by freely setting the
period, priority, application name, etc. through a configuration file.

R5 and R6 are about the execution period. As shown in Table 1, various execu-
tion periods are required. For example, in the case of motor control, if the order of
sensor reading (RS), control value generation (GC), and motor value writing (WM)
are different, the value sampled in the previous period is used. In other words,
when RS, GC, and WM are executed, the control value can be read within one
period and sent to the motor. However, when operating in the order of GC, RS, and
WM, the control value calculated using the value read in the previous period affects
the motor. That is, the previous value without using the current motor related data
may affect the motor control. Therefore, to avoid such effects, it is necessary to set
the execution priority of SW module within the same period so that they can
operate in the order of RS, GC, and WM.

R7 relates to how to handle events. Depending on the event behavior utilized by
the operating system, there exist interrupt-based and program-based event han-
dling methods. Interrupt-based events can be used if the HW interrupt can be
controlled directly, however, modern operating systems prevent such handling for
system stability. Therefore, it is common to introduce an event handler to first
check whether an event has occurred, and further handle it. Even those
manufacturing robots can generate and handle relevant events such as when there is
an emergency stop switch, or the maximum value of sensor input or output exceeds
a certain limit. Meanwhile, the processing time for these events is also important.
Emergency stop switches should be used as quickly as possible because they are
related to safety.

The comparison of the results of whether the existing middleware satisfy each of
the presented requirements, is presented in Table 2.

Requirement ROS RT- OPRoS openRTM OROCOS XbotCore CODESYS RTMIA
number CORBA

R1 0 0 0 0 0 0 0
R2 General A 0? 0 0 0 0 0
periodof X A\ yAN yaN AN /\ (1 ms) n.a 6]
100 ps (25ms) (10 ms) (10 ms) (10 ms)
R3 Ap? o] At At At At n.a o]
R4 AN 0 0 0 0 JAN 0
R5 A! 0 0 0 0 0 0
R6 X X X X X X n.a X
R7 A X X X X n.a X

n.a, not available.

O, support; X, not support; , support under some constraints.
Leverage OS features rather than middleware.

°Realtime only supports threads.

%p means only process type.

“t means only thread type.

®All source code is public, but all applications are compiled/linked.

Table 2.
Comparing existing middleware to platform requirements.

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

3. Implementation and motion analysis of real-time robot SW platform

In general, multiple periods are controlled by using the greatest common divisor
(GCD) and the least common multiple (LCM) of the periods. If the period, which is
the greatest common divisor, is less than the minimum period provided by the
middleware, the multiple periods must be adjusted so that the GCD period is equal
to or greater than the minimum period. The smaller the provided period, the better
it is because it can be used for various applications. Let the GCD period be the basic
period and the LCM period be the macro period [15]. Table 3 illustrates a periodic
scheduling table using GCD/LCM based on Figure 1.

The middleware must be implemented to execute the periodic threads and
processes, the sporadic threads and processes, as well as the non-real-time pro-
cesses, as shown in Figure 1. Periodic threads and processes should be executed
within given periods, while sporadic threads and processes should be executed
within the deadline once the corresponding events occur. An example of this
behavior is shown in Figure 2. Of course, non-real-time modules are executed only
when execution time remains in a period. As shown in Figure 2, periodic execution
has the highest priority, followed by sporadic execution. After the execution of
periodic modules, sporadic execution checks whether the event occurs and if true,
the event handler invokes the corresponding event processing function to handle it.
These operations demonstrate that requirements R2, R3, R5, R6, and R7 are satis-
fied. Especially, we use time-based interrupts to keep the period strict and calculate
the n-th jitter, as shown in Eq. (1) [15]:

Jn=B —T,=Ty+n =period —T, (1)

where

Ty the first execution time of the target module (reference time)

F: start time of the n-th period, indicated by T, + n * period

T,: start time of the n-th module

period: basic period

From Eq. (1) and Figure 2, we can observe that it is important to keep the period
(n=0,1,2, ...) correctly. There are two approaches to implement the periodic
execution: use timer interrupt and use the sleep function. The second method is the
most frequently used one and its usage can be described as follows: after executing
the SW modules, the operating system sleeps during the remaining time until the
next period. However, this method has a disadvantage that the remaining time
period does not keep up correctly, leading to increasing jitter. Therefore, in this
study, we use a method of implementing period based on timer interrupts. That is,
the minimum period is the minimum interval of the timer interrupt generated by
the operating system. This allows middleware to be designed to meet requirements

No. of basic Execution time Execution module Macro period
period (ms) (in priority)
0 0 cntr3 > cntr2 > cntrl > cntr4 Repeat basic periods every
1 0.1 cntr3 > cntr2 0.5 ms
2 0.2 cntr3 > cntr2
3 0.3 cntr3 > cntr2
4 0.4 cntr3 > cntr2
Table 3.

Periodic scheduling table for Figure 1.

Industrial Robotics - New Paradigms

<?xml version="1.0" encoding="UTF-8"?>
<!-- filename: file to be loaded and executed by middleware -->
<!-- moduletype: process{exe type), thread{so or dll type) -->
<l-- operationtype: periodic, sporadic, non-real -->
<!-- period: nano sec -->
<I-- priority: the lowest value is the highest priority -->
<!I-- property: input parameters needed to execute the module -->
<root>
<module> <!-- periodic module with period of 100 us -->
<filename>./cntrl.so</filename>
<moduletype>thread</moduletype>
<operationtype>periodic</operationtype>
<period>500000</period>
<priority>3</priority>
<property>
<value name="intialize_value">5</value>
</property>
</module>
<module>
<filename>./cntr2.so</filename>
<moduletype>thread</moduletype>
<operationtype>periodic</operationtype>
<period>100000</period>
<priority>2</priority>
</module>
<module>
<filename>./cntr3.so</filename>
<moduletype>thread</moduletype>
<operationtype>periodic</operationtype>
<period>100000</period>
<priority>1</priority>
</module>
<module>
<filename>./cntrd.exe</filename>
<moduletype>process</moduletype>
<operationtype>periodic</operationtype>
<period>500000</period>
<priority>4</priority>
</module>
<module> <!-- sporadic module with deadline of 100 us -->
<filename>./eventl.so</filename>
<moduletype>thread</moduletype>
<operationtype>sporadic</operationtype>
<deadline>1000000</deadline>
<priority>1</priority>
</module>
<module>
<filename>./visionEvt.exe</filename>
<moduletype>process</moduletype>
<operationtype>sporadic</operationtype>
<deadline>100000000</deadline>
<priority>2</priority>
</module>
<module> <!-- non-real-time module -->
<filename>./nonReaTime.exe</filename>
<moduletype>process</moduletype>
<operationtype>non-real</operationtype>
</module>
<froot>

Figure 1.
Example of module.xml.

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

Execution of i Toaq T
event handler() A s e T
e Jas2 =0
eriodic ¥ Fre bt 3
r'F:\odules mw - %M_ﬁme
xecution | xecution .
(thread] k B, = Faa, SESUROD ni2
i 1
prinats; involﬁel the correspondingl threads if events occur :
and ;énd signal to sporadic processes *j
1 1 I
1) 1 . I)
sporadic : Exelcutmnl : E"ec”t"’l” 1 !EXECt:ItIOn . |
modules ' I] 1 | f | time
I P, P ! Pasa
(thread/ : n+1 |
process) I i
1 I
] Exegution Execution
non-real-time i | | |
modules ; i . : Fl time
(process) : B Poa ! n+2
continue to execute the module in the
next period if it is not finished in the
current period
Figure 2.

Example of execution timing diagram of SW modules.

R2 and R5. In addition, the platform should be designed using the POSIX (Portable
Operating System Interface) standard.

The real-time robot SW platform should be able to exchange data or remotely
perform necessary functions among periodic SW module, sporadic SW module and
non-real-time SW module. This is because only cooperation between SW modules
can achieve the desired result. For this purpose, the proposed middleware imple-
ments a method of obtaining the desired results by performing exchange of data
and remote functions using shared memory. The advantage of using shared mem-
ory is that it is easy to maintain data consistency and to use the data. In other words,
when SW modules including input module write input data to shared memory,
other SW modules read them and calculate the control values at the same time. And
if necessary, the module writes the result to shared memory for other modules to
use the data. In addition, it provides a shared function in the shared memory
method so that other SW modules can use the shared functions of the modules.

Of course, when using shared memory, the problem of mutual exclusion between
threads is solved.

A file named .glb is used to define shared variables that are implemented using
shared memory. For example, if a file called knuRobot.glb is created as shown in
Figure 3, a conversion function creates the header file and a .cpp function to access
shared variables. The difference from existing shared variable is that, just like global
variables, the shared variable that resides in shared memory can be used in all the
software modules. This method makes the program very simple. Example programs
that use shared variables in Figure 3 are shown in Figures 4 and 5, in which,

// knuRobot.glb
namespace knu.Robot;
uint32_t tick;
struct {

double x; double y; double z
} joints[10]

Figure 3.
Example code of a file defined shared variables.

Industrial Robotics - New Paradigms

// output.cpp
#include <indurop/indurop.h> // header file for Middleware
#include <indurop/generated.h> // generated by .glb

using namespace knu::Robot;
void onRun() {
INDUROP_TYPEOF(joints)::value_type v = joints[0];
irpzprintf("joints[0] = {%lf, %lf, %Iff¥n", v.x, vy, v.z);
}
INDUROP_MODULE(run = &::onRun)

Figure 4.
Example program 1 that reads and prints shaved variable defined in Figure 3.

// modify.cpp
#include <indurop/indurop.h> // header file for Middleware

#include <indurop/generated.h> // generated by .glb
using namespace knu:Robot;

void onRun() {
tick = tick + 10;
INDUROP_TYPEOF(joints):value_type v = joints[0];
v.x += tick; vy += tick; v.z += tick;
joints[0] = v;

}

INDUROP_MODULE(run = &:onRun)

Figure 5.
Example program 2 to update shaved variables defined in Figure 3.

“#include <indurop/generated.h>” is a header file that should be added when
shared variables are used, which is generated from .glb file during preprocessing.
Therefore, simply by adding “indurop/generated.h”, the variables ‘tick’ and ‘joints
[10]” defined in the knuRobot.glb file can be accessed. The INDUROP_MODULE
statement in Figures 4 and 5 represents information about the module’s name,
description, author, license, and callback function. The middleware periodically
executes the module, where the function to be called is specified as “run = &::
onRun.” Furthermore, ‘run’ is the tag name of the periodically called callback
function and “&:onRun” defines the address of the function “void onRun()”
presented in each figure. Using INDUROP_TYPEOF (argument) in Figure 5, the
same data type as the variable defined in .glb file can be created and used.

The event handler in Figure 5 is invoked using the basic period in Figure 2. In
other words, it is invoked after executing periodic modules and before processing
the sporadic service. Event handlers can be implemented using sporadic threads or
sporadic processes. The algorithm of the event handler is shown in Figure 6.

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

Figures 7 and 8 show examples of sporadic thread and process-related programs
that allow event handling, respectively.

Figure 6 depicts an algorithm that describes the event handler’s operation. It can
execute the thread program of Figure 7 and the process program of Figure 8. The
event handler first calls the thread’s ‘condition()’ function and if the execution
result is true, calls the ‘run()’ function to handle the event. Then it sends signal to
the processes to handle the event occurred. In case of thread, event handling
function can be specified separately, but, in this study, ‘run()’ function is used for
simplicity, whose example is shown in Figure 7. Figure 8 shows an example of a
process that handles an event. In this example, it utilizes signal because the process
cannot be called directly from an event handler. Figures 7 and 8 also illustrate the
use of shared variables.

eventHandler()
{
for (all threads enrolled to event scheduler) {
call the functions ‘condition()’ of sporadic threads,
if (the result of condition() is true)
invoke run() of the corresponding thread
}
for (all processes enrolled to event scheduler) {

send signal to each process

Figure 6.
Algorithm for event handler.

#include <indurop/generated.h> // generated by .glb
extern "C" int condition(){
if(joint[0].x >= 180){ // event is occurred
return 1;
} else{

return O;

}

extern "C" void run(void){

// process the corresponding event

Figure 7.
Example code of a sporadic thread program handled by an event handler.

Industrial Robotics - New Paradigms

//sporadic-process’
#include <indurop/indurop.h>
#include <fstream>

int condition(event){
iflevent <0 || event >= 180)
return 1; // occur event
else
return O;
}
int main(int argc, char* argv(]){
double y_pos;
channel:Handle handle; // connection channel for event handler
irpzinitPeriodExe(); // enrollment of signal to event handler

// connect channel to process for shared variables ;

while(){
irp:waitPeriod(); // wait signal from event handler
read_ret = read(handle, “joint[1].y", sizeof(y_pos), &y_pos);
// read value from shared variable named “joint[1].y" in Fig. 3
if (condition(y_pos))
processkvent(y_pos) ;
ki

return O;

}

void processEvent(double event)

{

// process event

}

Figure 8.
Example code of a sporadic process program handled by an event handler.

4. Robot system integrating robot controller and PLC

The XML file in Figure 9 is a configuration file consisting of programs of robot
task, PLC, and an input/output data processing. As shown in Figure 9, the program
consists of three periodic threads, where the period of all SW modules is 10 ms.
main.so consists of a ladder program, which is converted to C/C++ program, and a
C++ program that calls the program, which is shown in Figure 12. The robot task
program in Figure 13 is stored in Robot.so. The reason why we only used thread
type is that, comparing to process type, it runs more precisely with real-time. The
execution order is as follows: the input/output data processing module, the robot
task module, and the PLC module. Of course, users can modify the execution order
by changing priorities of modules. Once this configuration file is processed, the
robot system will operate as shown in Figure 10, which can be configured and
operated with the process.

Defined in Figure 11, shared variables are used in the integrated application
system of Figure 10, in the PLC ladder program in Figure 12 and also in the robot
control program in Figure 13. The name space ‘PLC_ROBOT’ is used in Figure 13,
which makes the program look more sophisticated. As shown in Figures 11 and 13,

10

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

<?xml version="1.0" encoding="UTF-8" ?>
<root>
<module>
<filename>./build/main.so</filename>
<moduletype>thread </moduletype>
<operationtype> periodic</operationtype >
<period>10000000 </period>
<priority>3</priority>
<property>

<value name="counter">5</value>
</property>
</module>
<module>
<filename> /build/Rocbot.so</filename>
<moduletype>thread </moduletype>
<operationtype>periodic</operationtype>
<period>10000000 </period>
<priority>2</priority>
<property>

<value name="counter">5</value>
</property>
</module>
<l--module>
<filename>/usr/local/InduRoP/lib/libiodispat.so </filename>
<moduletype >thread </moduletype>
<operationtype> periodic</operationtype >
<period>10000000 </period>
<priority>1</priority>
<property>

<value name="config">/home/rcmain1/cmd_Demo/ioconfig.xml</value>
</property>
</module!-->
</root>

Figure 9.
Configuration xml file for integrated application system.

Figure 10.
Results from integrated application systems.

the name space ‘PLC_ROBOT" indicates that shared variables are utilized. The PLC
ladder program shown in Figure 12 is converted to C/C++ function named
‘POU_PROGRAM()’ and made into a thread to run. Through this, various types of

11

Industrial Robotics - New Paradigms

namespace PLC_ROBOT;
short 10 // PLC input point O

short 11 // PLC input point 1
short O0 // PLC output point 0

....... // Code omitted

#define MAX_JOINTS 6
struct {

unsigned short NAXESGROUP;
short MotionDone;

short Busy;
short eState;

short bRuntimeService;
short bJob_RobotMoving;

unsigned long
unsigned long

dCurloint[6];
dCmdJoint[6];

unsigned long dWorldPos[6];
unsigned long dUserPos[6];
unsigned long dBasePos[6];

unsigned long
unsigned long
unsigned long
unsigned char

struct

// Motion command interpreting

// servo current joint angle //// 6 --> MAX_JOINTS
// servo command joint angle //// 6 --> MAX_JOINTS
// world position (command position)

// User position (command position)

// Base position (command position)

dJointSpeed|6]; // 6 --> MAX_JOINTS

dBaseSpeed[6];
dWorldSpeed][6];

nposelNFO[6]; // 6 --> MAX_JOINTS
} ROBOT_MODULE_STATE; // External Information

{
int32_t eOpCode;
unsigned short t_pl;

unsigned long
unsigned short

unsigned short

p_Mid;

t_speed;
p_Target;

// position level
// speed

} ROBOT_MODULE_SERVICE; // To ROBOT MODULE

...... // Code omitted

struct {
uint16_t error;
uint16_t status;
int8_t mode;
int32_t position;
} AXIST_IN;
Figure 11.

Shared variables used in integrated application systems.

1 ACT_MC Powerd Local ACT_MC_Power
2 MovePTP10 Local MovePTP1
in External BOOL
an External BOOL
L Futernal RONE
e e
KYN(M

... // Code omitted

#include <indurop/indurop.h>
#include <indurop/generated.h>
#include "POUS.h"

extern "C" void initialize(irp:Property
const& property)

{

std:cout <<"[PLC_IO_TEST]" <<std:end|;
}

void start()

{
POU_lInitialize();
}

void run()

{
POU_PROGRAM(); //call ladder program

}
... // Code omitted

Figure 12.

PLC ladder program example using shaved variable.

12

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

.. // Code omitted

#include <indurop/indurop.h>
#include <indurop/generated.h>

#include "platferm.h"”

#include "KinematicFunction.h™
#include "MotionControl.h"
#include "MotionPlan.h”

void start()

{

inti, j, k

int nRetCode;

std::cout <<"[START]" <<std:zendl;

PLC_ROBOT:ROBOT_MODULE_STATE.eState = plcRobot.eState = ROBOT_GROUP_DISABLED;
PLC_ROBOT:ROBOT_MODULE_SERVICE.eOpCode = SVC_AD_GROUP_ENABLE;

PLC_ROBOT: msgRcbotServiceEditNum=1;

plcRobot.plcRobotinfo.nRobotAxis = 6;

for (k=0; k<6; k++)
PLC_ROBOT:ROBOT_MODULE_STATE.dCurJoint[k] = 0.0;
}

void run()

{

inti,j, k

int nRetCode;
int32_t joint[6];

joint[0] = PLC_ROBOT:AXIS1_IN.position / 1320000 * 360;
joint[1] = PLC_ROBOT:AXIS2_IN.position / 1320000 * 360;
joint[2] = PLC_ROBOT:AXIS3_IN.position / 1320000 * 360;
joint[3] = PLC_ROBOT:AXIS4_IN.position / 1320000 * 360;
joint[4] = PLC_ROBOT:AXIS5_IN.position / 1320000 * 360;
joint[5] = PLC_ROBOT:AXIS6_IN.position / 1320000 * 360;

for (k=0; k<6; k++)
plcRobot.dCuroint[k] =PLC_ROBOT::ROBOT_MODULE_STATE.dCurJoint[k] = (unsigned long),

if (PLC_ROBOT:msgRcbotServiceEditNum!=0) {

msgRobotService[0].eOpCode=

(OPCODE_ROBOT_SERVICE)((int) PLC_ROBOT::ROBOT_MODULE_SERVICE.eOpCode);
msgRobotService[0].arg.eOpCode = OPCODE_MOV]J;

msgRobotService[0].arg. ARG_CMD.argMOVE.t_speed.dValue= 50;
//:-ROBOT_MODULE_SERVICE.t_speed;

nRetCode = Handling_Robot_Service(&msgRobotService[0]);
if(PLC_ROBOT::ROBOT_MODULE_STATE.MotionDone==1)
PLC_ROBOT:msgRobotServiceEditNum = 0;

... // Code omitted
N=5:// N is Gear Ratio

PLC_ROBOT:AXIS1_OUT.position = N*1320000 * joint[0] / 360;
PLC_ROBOT:AXIS2_OUT.position = N*1320000 * joint[1] / 360;
PLC_ROBOT:AXIS3_OUT.position = N*1320000 * joint[2] / 360;
PLC_ROBOT:AXIS4_OUT.position = N*1320000 * joint[3] / 360;
PLC_ROBOT:AXIS5_OUT.position = N*1320000 * joint[4] / 360;
PLC_ROBOT:AXIS6_OUT.position = N*1320000 * joint[5] / 360;

}

Figure 13.
Robot joint control SW module.

13

Industrial Robotics - New Paradigms

PLC programs can be operated. Threads that link shared variables to I/O modules
are defined in the libiodispat.so, which is illustrated in the third part of Figure 11,
and the middleware executes the thread. If the thread libiodispat.so periodically
reads sensing data from the input module and stores into shared variables, then
control threads of robot of Robot.so and PLC of main.so access shared variables.

5. Conclusions

In this study, we presented seven requirements of real-time robot SW platform
that can be used for industrial robot and examined whether existing middleware
such as ROS, OPROS, openRTM, and RTMIA [15] satisfy these requirements. In
particular, communication middleware such as ROS has a disadvantage of demand-
ing the user to have more knowledge about the real-time operating system to use
the industrial robot but advantage that its usage is simpler because it does not
manage execution of processes and/or threads. On the other hand, OPRoS,
openRTM, and OROCOS manage the execution of threads for periodic execution
but does not control the execution of processes.

In this study, we proposed the real-time robot SW platform that satisfied the
presented seven requirements R1-R7 by extending RTMIA and demonstrated its
implementation on the Xenomai real-time operating system and Linux. The pro-
posed SW platform utilized the timer-interrupt based approach to keep strict period
and the shared memory for convenient usage.

We applied our method to a practical robot system, wherein the programs of
PLC and the robot were used simultaneously, and their corresponding operating
results were also presented. In this implementation, PLC ladder program and robot
control program were managed using period of 10 milliseconds. As the
implemented application was simple, it was not shown that event handling and
execution of periodic processes were working well. But they did work well. That is,
it can be known that the proposed platform satisfied requirements R1-R7. As a
result, the platform proposed in this study was verified.

The other advantage of this study is the method to access shared variable. It can
be known that it is generally easy and convenient to read and write the shared
variables using the conventional variable access method when the shared variables
defined in other threads are accessed. Hence the proposed method for accessing of
shared variables is designed for multiple processes or threads to have mutually
exclusive access to shared variables using the conventional variable access method.
And it is shown that the proposed method for accessing of shared variables is
working well.

Future work may include investigating a robotic platform that optimally
operates multiple threads in multicore systems. And the proposed platform will be
implemented on the uC/OS.

Acknowledgements
This work was partially supported by KITECH research fund and Korea Evalua-

tion Institute of Industrial Technology (KEIT) grant funded by the Ministry of
Trade, Industry & Energy (KOREA) (No. 20004535 and No. 20005055).

14

Real-Time Robot Software Platform for Industrial Application
DOI: http://dx.doi.org/10.5772/intechopen.91014

Author details
Sanghoon Jit, Donguk Yu?, Hoseok Jung1 and Hong Seong Park>*

1 Convergent Technology R&D Division, Robot R&D Group, Korea Institute
of Industrial Technology, Gyeonggi-do, South Korea

2 Navcours, Daejeon, South Korea

3 Department of Electrical and Electronic Engineering, Kangwon National
University, Gangwon-do, South Korea

*Address all correspondence to: hspark@kangwon.ac.kr

IntechOpen

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

15

Industrial Robotics - New Paradigms

References

[1] Mahmoud QH. Middleware for
Communication. Chichester: John Wiley
and Sons, Ltd.; 2004. DOI: 10.1002/
0470862084

[2] Pérez H, Gutiérrez J]. Mint: A survey
on standards for real-time distribution
middleware. ACM Computing Surveys.
2014;46(4):49. DOI: 10.1145/2532636

[3] OMG. CORBA Core Specification.
v3.3 [Internet]. 2012. Available from:
https://www.omg.org/spec/ CORBA/3.3/

[4] OMG. Real-time CORBA
Specification. v1.2 [Internet]. 2005.
Available from: https://www.omg.org/
spec/RT/About-RT/

[5] OMG. Data Distribution Service for
Real-Time Systems. v1.4 [Internet].
2015. Available from: https://www.omg.
org/spec/DDS/

[6] OPC Foundation. OPC Unified
Architecture Specification Part 1:
Overview and Concepts. 2017. Available
from: https://opcfoundation.org/
developer-tools/specifications-unified-
architecture/part-1-overview-and-
concepts

[71 Open Source Robotics Foundation.
ROS (Robot Operating System)
[Internet]. Available from: www.ros.org

[8] Kay], Tsouroukdissian AR. "Real-
time Performance in ROS 2,"
ROSCon2015 [Internet]. 2015. Available
from: https://roscon.ros.org/2015/prese
ntations/RealtimeROS2.pdf

[9] OPRoS (Open Platform for Robotic
Services). [Internet]. Available from:
https://github.com/opros-wiki/OPRoS_
v1.1_Components/wiki/Open-
Platform-for-Robotic-Services

[10] Han S, Kim M, PHS. Mint: Open
software platform for robotic services.
IEEE Transactions on Automation
Science and Engineering. 2012;9(3):

16

467-481. DOI: 10.1007/978-3-
319-11900-7

[11] Lee D, AH. Mint: Real-time
characteristics analysis and
improvement for OPRoS component
scheduler on windows NT operating
system. Journal of Institute of Control,
Robotics and Systems (in Korean). 2011;
17(1):38-46. DOI: 10.5302/].ICROS.
2011.17.1.38

[12] openRTM (open Robotics
Technology Middleware). [Internet].
Available from: http://openrtm.org/

[13] OROCOS (Open Robot Control
Software) project. [Internet]. Available
from: http://www.orocos.org/

[14] Muratore L, Laurenzi A,

Hoffman EM, Rocchi A, Caldwell DG,
Tsagarakis NG. Mint: On the design and
evaluation of XBotCore, a cross-robot
real-time software framework. Journal
of Software Engineering for Robotics.
2017;8(1):164-170. DOI: 10.6092/
JOSER_2017_08_01_p164

[15] Park HS. Real-time scheduling
method for middleware of industrial
automation devices. In: Open Access
Peer-Reviewed Chapter—Online First.
2019. DOI: 10.5772/intechopen.86769

[16] CODESYS. [Internet]. Available
from: https://www.codesys.com

(171 TWINCAT. [Internet]. Available
from: https://www.beckhoff.com/
twincat/

[18] PLCopen. [Internet]. Available
from: https://plcopen.org/

[19] Meier L, Honegger D, Pollefeys M.
Mint: PX4: A node-based multithreaded
open source robotics framework for
deeply embedded platforms. In: 2015
IEEE International Conference on
Robotics and Automation (ICRA);
Seattle, WA, USA; 26-30 May 2015.
DOI: 10.1109/ICRA.2015.7140074

