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Chapter

Neuropharmacology of Secondary
Metabolites from Plants with
Anxiolytic and Antidepressant
Properties
Rosa Isela García-Ríos, Armando Mora-Pérez,

Ana Raquel Ramos-Molina and Cesar Soria-Fregozo

Abstract

Depression and anxiety currently rank as the second and fifth most common
causes worldwide of years lived with disability-a reality that has intensified the
search for new treatments. There are many studies of herbal extracts and secondary
metabolites from plants used in traditional medicine due to their antidepressant and
anxiolytic properties. Clinical and preclinical studies about some of the mechanisms
of action of metabolites like alkaloids, terpenes, flavonoids, and sterols, among
others, have documented effects similar to those produced by clinically effective
drugs. These metabolites have shown anxiolytic and antidepressant effects in
various experimental models of anxiety by interacting with γ-aminobutyric acid
subtype A receptors (GABAA-receptors) and by stimulating the serotonergic,
noradrenergic, and dopaminergic neurotransmitter systems. These pharmacological
effects can be attributed to plant metabolites that share structural similarities with
monoamines, which allow them to bind to receptors. The objective of this chapter
is to summarize the various mechanisms of action that have been identified in
secondary metabolites with anxiolytic and antidepressant properties. Terpenes,
alkaloids, flavonoids, and sterols can interact at different levels of the neurotrans-
mission systems involved in the neurobiology of anxiety and depression, suggesting
their potential for treating these mental illnesses.

Keywords: antidepressant, anxiolytic, active metabolites, plant extracts,
herbal medicines

1. Introduction

According to the Global Burden of Disease, depression and anxiety are currently
the second and fifth most common causes worldwide of years lived with disability
in both sexes in the age range of 15–49 years [1]. In 2015, 4.4% (322 million people)
of the world’s population suffered from depressive disorders, while 3.6% (264
million) were affected by anxiety [2]. In that year, the World Health Organization
(WHO) estimated that by 2020 depression would be the second leading cause of
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disability; thus, its prediction has been confirmed. Depression is characterized by
persistent sadness and a loss of interest in activities that an individual normally
enjoys, accompanied by periods of at least 2 weeks marked by the inability to
perform everyday activities [2]. Anxiety, in turn, is defined as an emotion
expressed in response to stressful, dangerous, or unfamiliar situations, or some
unidentified factor, that is, the feeling of unease, distress, or dread that one feels in
the face of a significant event. A certain level of anxiety is necessary to keep us alert
and aware, but for those who suffer from anxiety disorders, it can be totally
debilitating [3]. Current pharmacological treatments for depressive disorders are
mainly based on selective serotonin reuptake inhibitors (SSRIs), serotonin (5-HT)
and noradrenaline (NE) reuptake inhibitors (SNRIs), and monoamine oxidase
inhibitors (MAOIs), all of which act by increasing short-term levels of neurotrans-
mitters in the brain. One consequence of treatment is the desensitization of recep-
tors, for example, 5-HT1A, with a downregulation of autoreceptors, but no changes
in the postsynaptic receptors, which leads to the recovery of neuronal activity in the
long term [4]. These changes are associated with the long latency to the onset of
antidepressant effects. However, up to 70% of depressed patients have residual
symptoms [5], and few options exist for transitioning treatment-resistant sufferers
to alternative therapies that operate through distinct mechanisms [6]. It is impor-
tant to note that conventional antidepressants produce significant side effects, such
as nausea and vomiting, insomnia, agitation, fatigue, sedation, sexual dysfunction,
headaches, and weight gain, which contribute to poor patient compliance and, in
some cases, abandonment of treatment [7]. This occurs under such anxiolytic
treatments as benzodiazepine (a GABAA receptor agonist) and SSRIs [8] and is the
main cause of the increasing demand for alternative medicines, such as medicinal
plants, to alleviate the symptoms of these psychiatric disorders. However, reports of
adverse reactions to products of this kind have increased [9], leading WHO to
publish the document, “The WHO’s traditional medicine strategy: 2014-2023”,
which outlines a global approach to fomenting the appropriate integration, regula-
tion, and supervision of natural substances. This paper will be useful in countries
seeking to develop a proactive policy toward this important and expanding area of
health care and will contribute to the use of herbal medicines of proven quality,
safety, and efficacy, providing quality medical care to all people [10]. Recent
decades have witnessed efforts to gather scientific evidence that validates the effi-
cacy of plants commonly used for their antidepressant and anxiolytic properties
[11], but research has been insufficient because of the wide range of plants available
worldwide. We lack solid scientific data on the neurochemical pathways and mech-
anisms of action of medicinal plants or their active metabolites because few clinical
studies have addressed these issues. Also, reports of adverse reactions to medicinal
plants [9] may reflect the broad variety of active metabolites they contain, thus
highlighting the need for preclinical and clinical studies that evaluate the possible
biological activity of compounds isolated from plants or standardized crude
extracts, their mechanisms of action, and possible toxicity.

Fajemiroye et al. [12] proposed a hypothetical model for identifying medicinal
plant extracts and phytoconstituents with anxiolytic and/or antidepressant prop-
erties that is currently used by most researchers: (i) select medicinal plants with
anxiolytic and/or antidepressant potential based on local reports; (II) prepare standard
crude extracts; (III) perform phytochemical studies that include sequential partitioning
of crude extracts, purification and isolation of phytoconstituents, chemical elucidation
or characterization of the isolates, structural modifications or syntheses of new com-
pounds based on chemical structure of their isolates; and (IV) conduct pharmacological
analyses of the anti-anxiety and antidepressant properties of the standard crude
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extracts, fractions, isolated compounds, or derivatives using ex vivo, in vitro, and in vivo
assays (e.g., preliminary pharmacological screening, classic animal models of anxiety
like the light dark box (LDB) or elevated plus-maze (EPM) tests, etc., or the forced
swim test (FST) and tail suspension tests (TST), among others). These tools have
allowed researchers to analyze the possible metabolites responsible for the anxio-
lytic or antidepressant properties of plants used by different populations, and
identify how their mechanisms of action affect the functioning of the central
nervous system (CNS). Their studies contribute to advancing scientific under-
standing of the neurobiology of depression and anxiety, and to developing new
pharmacological treatments that may favorably impact public health.

Plants used in traditional medicine contain compounds in their secondary
metabolism [13] such as alkaloids, phenols, sterols, carbohydrates, tannins, ter-
penes, and phytoalexins, all of which have important biological activities [14]. The
most widely studied metabolites are terpenes, flavonoids, alkaloids, and sterols,
whose mechanisms of action stimulate the serotonergic, noradrenergic, dopaminer-
gic, or GABAergic neurotransmission systems, acting on receptors or the synthetic
pathways of neurotransmitters and their transporters. However, they may also stim-
ulate other neurotransmission systems. For example, terpenes can stimulate at the
same time serotonergic, dopaminergic, and noradrenergic neurotransmission systems
[12] that can produce a similar effect on mood regulation, perhaps leading to an
overstimulation that may generate undesirable collateral effects.

This chapter reviews and discusses the findings from research on several
metabolites of medicinal plants that have shown potential anxiolytic and antide-
pressant activities once screened for their biological mechanisms at various levels:
receptor, transporter, synthesis, gene, protein, or metabolic. The studies analyzed
were identified by a preliminary search in PubMed, Scopus and Ovid for articles on
(i) the dose effects and possible mechanisms of action of metabolite(s) isolated
from parts of plants with previously identified anxiolytic or antidepressant effects;
and (ii) standard chemical tests performed with specific metabolites.

2. Terpenes with antidepressant effects

Terpenes are formed by the union of isoprene units (5 C atoms). Their classifi-
cation depends on the number of units they contain: 10 C terpenes (two units) are
called monoterpenes, while 15 C terpenes (three units) are called sesquiterpenes,
and those with 20 C are diterpenes. Triterpenes have 30 C, tetraterpenes have 40 C,
and polyterpenes are those with over 8 isoprene units. Studies have evaluated the
effect of terpenes isolated from plants, including rosmanol from Rosmarinus
officinalis, ursolic acid, and oleanolic acid; carnosol from Artemisa indica; and linal-
ool and β-pinene from Litsea glaucescens. All these terpenes have proven antidepres-
sant effects. Abdelhalim et al. [15] isolated rosmanol, an ethyl acetate diterpene,
from R. officinalis. A single acute dose of 30 or 100 mg/kg i.p. of rosmanol in male
Swiss mice produced an antidepressant effect on the FST and TST. The 100-mg/kg
dose produced an effect similar to that of a 60-mg/kg dose of imipramine on the
FST. Their study also tested the acute toxicity of administering 50, 150, and
200 mg/kg, i.p., of rosmanol. Some signs of toxic effects on grooming behavior
were observed, as well as hyperactivity, sedation, respiratory arrest, convulsions,
and locomotor activity. However, no cases of lethality or variations in the amount
of food and water ingested were reported.

Other terpenes with antidepressant properties include phenolic diterpene,
carnosol, and pentacyclic triterpenoids like betulinic, oleanolic, and ursolic acids.
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Alkaloids

Harmine Harmine i.p. 15 mg/kg/day for

7 days

i.p. 5, 10, and 15 mg/kg/

day for 7 days

Stressed rats CUMS

(60 days old)

No stressed rats

(60 days old)

• Sucrose

preference

test

• Forced

swim test

Antidepressant-like effect

in the CUMS model

Antidepressant effect with

both doses

NE

NE

[62]

Mitragynine Separated and purified

from Mitragyna speciosa

i.p 5, 10, and 30 mg/kg a

single dose

Male mice • Tail

suspension

test

• Forced

swim test

Antidepressant effect with

10 and 30 mg/kg

Modulating

neuroendocrine axis HPA

[67]

Evodiamine Evodiamine (Evodia

fructus, Evodia rutaecarpa

Benth., Rutaceae)

v.o 10–20 mg/kg for

14 days

Male Sprague–

Dawley rats (180–

220 g)

• Sucrose

preference

test

• Forced

swim test

Antidepressant-like effect

in the CUMS model

NE [69]

Protopine Protopine hydrochloride

was synthesized from

Protopine Dactylicapnos

scandens

Doses of 3.75 mg/kg,

7.5 mg/kg and 30 mg/kg

Male BALB/cj mice

(20–24 g)
• Tail

suspension

test

Antidepressant effects

with 30 mg/kg

Inhibitor of serotonin

transporter and

noradrenaline transporter

[71]

4 B
eh
a
viora

l
P
h
a
rm

a
cology

-
F
rom

B
a
sic

to
C
lin

ica
l
R
esea

rch



Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Terpenes

Rosmanol Ethyl acetate extract of

Rosmarinus officinalis

(Rosemary)

i.p. 30 and 100 mg/kg a

single dose

Male Swiss mice (20–

30 g)
• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

both doses

100 mg/kg like with

imipramine

Antidepressant effect with

both doses

NE [15]

Linalool

(�)-Linalool

Found shrub such as Litsea

glaucescens in these studies

used chemical standard

i.p. 100 mg/kg a single

dose

i.p. (10, 50, 100, and

200 mg/kg, a single dose)

Male ICR mice

(27–33 g)

Male Swiss mice

(30–40 g)

• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

100 mg/kg

Antidepressant effect with

100 and 200 mg/kg

Serotonergic mechanism

by 5-HT1A receptors

Noradrenergic mechanism

by α2-adrenoceptor

NE

[22]

[21]

(1S)-(�)-β-pinene Found shrub such as Litsea

glaucescens

i.p. 100 mg/kg a single

dose

Male ICR mice

(27–33 g)
• Forced

swim test

Antidepressant effect with

100 mg/kg

Serotonergic mechanism

by 5-HT1A receptors

Noradrenergic mechanism

by activation of the β-

adrenoceptor and regulate

noradrenergic

neurotransmission

Dopaminergic mechanisms

by activation of D1

receptors

[22]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Ursolic acid

Oleanolic acid

Carnosol

Methanol extract of

Artemisa indica in the

chloroform fraction

(Mugwort)

i.p. 10, 30, and 100 mg/kg

in a single dose for

metabolite independently

Male Swiss mice

(20–30 g)
• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

all doses of three

metabolites without effect

in locomotor activity

100 mg/kg of ursolic acid

was similar to imipramine

(60 mg/kg)

Antidepressant effect with

all doses of three

metabolites

Suggest a GABAergic

mechanisms in α1β2γ2L

GABAA receptors

[17]

Carnosol

Betulinic acid

Crude extract of stems and

leaves of Rosmarinus

officinalis and identified

and isolation of the hexane

fraction (carnosol) and of

the ethyl acetate fraction

(betulinic acid)

p.o. 0.01, 0.1, 1, and

10 mg/kg, in a single dose

p.o. 0.1, 1, and 10 mg/kg,

in a single dose

Male Swiss mice (45–

50 g, 60–70 days old)
• Tail

suspension

test

Carnosol produced an

antidepressant effect with

0.01 and 0.1 mg/kg, while

betulinic acid only with

10 mg/kg

NE [16]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Ursolic acid Crude extract of stems and

leaves of Rosmarinus

officinalis and identified in

ethyl acetate fraction

p.o. 0.1, 1, and 10 mg/kg,

in a single dose

p.o. 0.001, 0.01, 0.1, 1, and

10 mg/kg, in a single dose

Male Swiss mice (20–

30 g, 60–70 days old)
• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

10 mg/kg similar to

bupropion (10 mg/kg)

Antidepressant effect with

0.01 and 0.1 mg/kg were

similar to fluoxetine

(10 mg/kg), imipramine

(1 mg/kg), and bupropion

(10 mg/kg)

NE

Suggest a probable

dopaminergic mechanism

by D1 and D2 receptor

[18]

Ursolic acid Chemical standard 0.001 and 0.1 mg/kg Swiss mice (35–45 g,

55–60 days old)

of either sex

homogeneously

distributed

• Tail

suspension

test

Antidepressant effects

with 0.1 mg/kg alone and

in combination with

pretreatment with PCPA

100 mg/kg, i.p., 4 days

0.001 mg/kg of ursolic acid

and 5 mg/kg of fluoxetine

produced a

pharmacological synergism

Suggest mechanism

serotonergic by synthesis

of 5-HT and activation of

5-HT1A

[19]

Terpinene-4-ol

γ-terpinene

Transsabinenehydrate

α-terpinene

α-terpinolene

Cis-sabinenehydrate

β-phellandrene

ρ-cymene

trans-caryophyllene

(E)-p-menth-2-en-1-ol

bicyclogermacrene

β-myrcene

Origanum majorana

essential oil (OMEO)

The OMEO was made up

of 24 compounds

Terpinene-4-ol (32.69%)

γ-terpinene (12.88%)

Transsabinenehydrate

(8.47%)

α-terpinene (7.98%)

sabinene (6.21%)

α-terpineol (5.25%)

α-terpinolene (3.36%) Cis-

sabinenehydrate (2.92%)

β-phellandrene (2.64%)

ρ-cymene (2.32%)

trans-caryophyllene

(2.31%)

(E)-p-menth-2-en-1-ol

Male mice (20–30 g) • Forced

swim test

Antidepressant effect with

40 and 80 mg/kg of OMEO

80 mg/kg de OMEO was

more effective

Dopaminergic mechanisms

by activation of D1 and D2

receptors

Serotonergic mechanisms

by activation of 5-HT1A

and 5-HT2A receptors,

increases 5-HT synthesis

Noradrenergic mechanism

by activation of α1 and α2-

adrenoceptors

They regulate brain

monoamine

neurotransmitters

[20]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

(2.25%)

Bicyclogermacrene

(1.60%)

β-myrcene (1.49%)

These anointed for 92.37%

of the yield, while the

other detected components

represented <1.0% in each

case.

10, 20, 40, and 80 mg/kg

of OMEO in a single dose

Hesperidin Commercial flavonoid

(Sigma Chemical)

i.p 0.01, 0.1, 0.3, and 1 mg/

kg, for 21 days

Male Swiss mice • Tail

suspension

test

Antidepressant effect with

all doses evaluated

Increase in BDNF

concentrations in the

hippocampus

[42]

Quercetin Commercial flavonoid

(Sigma Chemical)

25 mg/kg, for 14 days Bulbectomized mice • Tail

suspension

test

• Forced

swim test

Antidepressant effect with

25 mg/kg

Lipid hydroperoxide

content (LOOH) levels

were reversed by

quercetin; antidepressant-

like effects seem to occur

by modulation of

glutamate and nitric oxide

[37]

Kaempferitrin Isolation of aerial parts of

Justicia spicigera

1.0, 5.0, 10, and 20 mg/kg

doses

Male Swiss Webster

mice
• Tail

suspension

test

• Forced

swim test

Antidepressant effect with

5.0, 10, and 20 mg/kg

doses

The activation of 5HT1A

receptors and the synthesis

of 5-HT are mandatory to

produce effect of

noradrenergic mechanism

by α2- adrenoceptor

agonism

[95]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Quercetin 4’-O-glucoside Bulbs of Allium cepa var p.o. 50 and 100 mg/kg

extract. Once daily for

7 days

Swiss albino mice of

either sex
• Forced

swim test

Antidepressant effect with

50 and 100 mg/kg

Effect might be attributed

to its anti-oxidant

properties, MAO-A

inhibition, and consequent

increase in brain 5-HT

levels

[36]

Genistein Commercial Genistein (Ze

Lang Biotechnology)

p.o. 5–45 mg/kg, (once per

day for 3 weeks)

Male ICR mice • Forced

swim test

• Tail

suspension

test

Antidepressant effect with

15 and 45 mg/kg

45 mg/kg is similar to

imipramine 15 mg/kg

Genistein was potentiated

by co-treatment with

8-OH-DPAT (5-HT1A

receptor agonist)

[33]

Baicalin Commercial flavonoid

(Nanjing, China)

60 mg/kg Male ICR mice • Sucrose

preference

test

Antidepressant effect Through a mechanism to

promote the differentiation

of neurons, and the

transformation into mature

neurons and their survival

via the Akt/FOXG1

pathway

[43]

Naringin Commercial Naringin

(Sigma-Aldrich)

i.p. 2.5, 5, and 10 mg/kg,

once daily for 7 days

Male Swiss mice • Forced

swim test

Antidepressant effects Maybe by increased neuro-

antioxidant and cholinergic

activities and it

significantly decreased

malondialdehyde and

nitrite concentrations,

suggesting the

involvement of oxidative/

nitrosative pathways

[44]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Fisetin Commercial Fisetin

(Sigma-Aldrich)

p.o. 5 mg/kg, with

1–2 weeks of treatment

Male adult ICR mice • Tail

suspension

test

• Forced

swim test

Antidepressant effect Maybe by activation of

TrkB signaling in the

hippocampus suggesting

pro-neurogenesis effects of

fisetin in the hippocampus

[40]

Sterols

Fucosterol Ethanol extract of

Sargassum fusiforme (algas)

i.p. 10, 20, 30, and

40 mg/kg

Male Balb/e mice

(20 � 2 g)
• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

dose 20 and 30 mg/kg like

fluoxetine

Increase in CNS 5HT, NA,

and BDNF levels

[92]

β-Sitosterol Ethanol extract of

Sargassum horneri

i.p. 10, 20, and 30 mg/kg,

for 7 days

Male Kun Ming mice

(20 � 2 g)
• Forced

swim test

• Tail

suspension

test

Antidepressant effect with

dose 20 mg/kg β-sitosterol

and 200 mg/kg sterols total

like fluoxetine

Increase in CNS 5-HT, NA

β-sitosterol increases

5-HIAA levels

[93]

α-Spinasterol Toronto Research

Chemicals Inc., Canada

i.p. 1 and 2 mg/kg Male albino Swiss

mice (23–25 g)
• Forced

swim test

Antidepressant effect with

dose 1 and 2 mg/kg

TRPV1 antagonistic effects [90]
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Metabolite Extract from plant/part

of plant (common name)

Posology (administration

way, doses, and duration

of treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

β-Amirine

α-Amirine

Hexane–ethyl acetate

extracts from Protium

heptaphyllum

p.o. 1, 2.5, and 5 mg/kg Male Swiss mice (20–

30 g)
• Forced

swim test

Antidepressant effect with

dose 2.5 and 5 mg/kg

NE [94]

NE = no explorated.

Table 1.
Secondary metabolites with antidepressant properties in preclinical study.
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Alkaloids

Gelsemine

Koumine

Gelsevirine

Isolated from Gelsemium

elegans Benth

s.c. gelsemine, koumine

and gelsevirine 0.4, 2,

and 10 mg/kg

s.c. gelsenicine 0.8, 4, or

20 μg/kg

Male mice

(24–26 g)

• Elevated

plus maze

• Light/dark

box

Anxiolytic activity with all

doses

Mechanism may be

involved in the glycine

receptor

[72]

Gelsemine Hydroalcoholic solution of

Gelsemium elegans Benth

i.p. 500 μl (10–6, 10–10,

or 10–14 M) for 7 days

Male Sprague–

Dawley rats

(250–300 g)

• Elevated

plus maze

Anxiolytic activity with

10–6 and 10–10 M

NE [73]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Koumine Separated and purified

from Gelsemium elegans

s.c. 0.167, 0.5, or 1.5 mg/

kg Only one

administration

Male Wistar

rats

(6–8 weeks

and

180–220 g)

• Vogel

conflict test

Anxiolytic effect with all

doses

NE [74]

Berberine (isoquinoline

alkaloid)

Berberine hydrochloride v.o. 100 mg/kg/day for

21 days

Male Wistar

rats

(200–250 g)

• Elevated

plus maze

Anxiety-like behaviors in

addiction

Modulation of

neuropeptide oxytocin and

its receptor

[59]

Terpenes

Rosmanol Ethyl acetate extract of

Rosmarinus officinalis

(Rosemary)

i.p. 1, 10, 30, and

100 mg/kg

Only one administration

Male Swiss

mice

(20–30 g)

• Elevated

plus maze

• Light/dark

box

Anxiolytic effect with 10,

30, and 100 mg/kg

10 and 30 mg/kg like

diazepam (1 mg/kg)

Suggest a GABAergic

mechanisms in GABAA

receptors PTZ (20 mg/kg),

but not Flumazenil

(2.5 mg/kg) blocked the

anxiolytic effect of 10 mg/

kg of rosmanol in the

elevated plus maze

[15]

Linalool oxide Frequently found

aromatic plants such as

Lavandula angustifolia

Mill., Melissa officinalis L.,

Rosmarinus officinalis L.,

and Cymbopogon citratus

DC

Inhalation of linalool

oxide emulsion 0.65%,

1.25%, 2.5%, and 5.0%

w/w.

7 min of exposure to the

inhalation chamber

Male Swiss

mice

(20–30 g)

• Elevated

plus maze

• Light/dark

box

• Rota-rod

test

Anxiolytic effect with all

doses without effect in

coordination motriz

NE [28]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Ursolic acid

Oleanolic acid

Carnosol

Methanol extract of whole

Artemisa indica in the

chloroform fraction

(Mugwort)

i.p. 1, 10, 30, and

100 mg/kg

Only one administration

Male Swiss

mice (20–

30 g)

• Elevated

plus maze

• Light/dark

box

Anxiolytic effect with 10,

30, and 100 mg/kg of the

three metabolites without

effect in locomotor activity

30 and 100 mg/kg of the

three metabolites are like

diazepam (1 mg/kg)

Flumazenil (2.5 mg/kg)

blocked the anxiolytic

effect of 10 mg/kg of the

three metabolites in

elevated plus maze test

Suggest a GABAergic

mechanisms in α1β2γ2L

GABAA receptors

[17]

Songorine The chloroform extract

obtained from the aerial

part of wolfsbane (A.

barbatum Pers.)

p.o. 2.5 and 0.25 mg/kg,

for 5 days

Male CBA/

CaLac mice

(20–22 g)

• Vogel

conflict test

Anxiolytic activity with

0.25 mg/kg produced

exceeding that of

phenazepam Without

sedative effect

NE [29]

p-Cymene + thymol Ethyl acetate extract of

Lippia graveolens leaves

i.p. 3 mg/kg Male CD-1

mice (25–30g)

• Hole-board

test

• Elevated

plus maze

Anxiolytic effect NE [24]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Flavonoids

Quercetin

Rutin

Isoquercitrin

Flowers and bracts of Tilia

americana L.

All i.p. mixes of quercetin

(20 mg/kg), isoquercitrin

(2 mg/kg), and rutin

(15.70 mg/kg)

Male CD-1

mice

• Hole-board

test

• Elevated

plus maze

Anxiolytic-like effects

producing a significant

diminution in head dips

during the hole-board test,

an increase in time spent at

the open-side arms in the

plus-maze

The involvement of

GABAergic and

serotonergic receptors.

Flumazenil and

WAY100635, inhibited the

anxiolytic-like effects of

the flavonoid mixture in

the plus-maze test, while

WAY100635 showed a

significant decrease in the

number of explorations in

the hole-board test

[46]

Formononetin Formononetin from

Trifolium pratense L.

25 mg/kg for 8

consecutive days

C57BL/6 male

mice

• Elevated

plus maze

Formononetin relieved

CFA-induced anxiety-like

behaviors in mice

A mechanism based on the

inhibition of

hyperexcitability and

inflammation in the

basolateral amygdala is

suggested through the

inhibition of NMDA

receptor and CREB-

binding protein (CBP)

[47]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Theaflavins TF40, a crude theaflavin

extract

p.o 1 or 5 mg/kg

theaflavins, once a day

for 5 days for EPM and

once a day for 6 days for

LDB

DDY male

mice

• Elevated

plus maze

• Light/dark

box

5 mg/kg theaflavins show

anxiolytic-like effects in

both models. In EPM, the

time spent in the open

arms was significantly

increased, while the time

spent and the number of

entries in the light box

increased

Theaflavin increased the

levels of 3,4-

dihydroxyphenylacetic

acid (DOPAC) and the

ratios of DOPAC/DA and

(DOPAC + homovanillic

acids)/DA indicating DA

turnover, in the frontal

cortex

[48]

Chrysin Commercial Chrysin

(Sigma-Aldrich)

(0.5, 1, 2, and 4 mg/kg) Adult female

Wistar rats in

a model of

surgical

menopause

• Light/dark

box

• Elevated

plus maze

2 and 4 mg/kg produced

anxiolytic-like effects.

Increased the total time

spent in the light

compartment in rats with

the long-term absence of

ovarian hormones. With

respect to the elevated plus

maze, chrysin (2 mg/kg)

increased the time spent

on the open arms

GABAA receptor activation

partial, pretreatment with

picrotoxin (1 mg/kg), did

not block the anxiolytic-

like effects of chrysin

[49]

Puerarin Commercial Puerarin

(Sigma-Aldrich)

p.o. 30, 60, and 120 mg/

kg

Male Sprague–

Dawley rats

• Elevated

plus maze

• Vogel

conflict test

Anxiolytic-like effects

were produced by

puerarin (60 and 120 mg/

kg, i.g)

It’s suggested that puerarin

(60 and 120 mg/kg, i.g.)

produced an increase of

allopregnanolone and

serotonin (5-HT) in the

prefrontal cortex

[50]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Genistein Commercial Genistein

(Sigma-Aldrich)

i.p. 2–8 mg/kg, for 7 days Sprague–

Dawley male

rats

• Elevated

plus maze

Anxiolytic-like effects

were produced by

genistein (2–8 mg/kg)

Significantly increased

total time spent in open

arms in a dose-dependent

manner

[53]

6-Methoxyflavanone Commercial 6-

methoxyflavanone

(Sigma-Aldrich)

i.p. 10, 30, 50, and

100 mg/kg

BALB/c mice

of both sex

• Elevated

plus maze

• Staircase

test

6-methoxyflavanone (10,

30, and 50 mg/kg) spent

appreciably longer in the

open and arms and on the

central platform like

diazepam. In staircase test,

both diazepam and

flavonoid 6-MeOF (10 and

30 mg/kg) reduced the

incidence of rearing

without decreasing the

number of steps ascended

α1-subunit containing

GABAA receptor mediated

sedative action of the 6-

methoxyflavanone

[56]

Rutin Commercial Rutin

(Sigma-Aldrich)

(i.p.) 30, 100, 300, 562,

and 1000 mg/kg

microinjected into the

basolateral amygdala

(16 nmol/4 μl,

intracerebral)

Male Wistar

rats

• Elevated

plus maze

Anxiolytic-like effects in

rutin (300–1000 mg/kg)

significantly and dose

manner dependently

increased (3–6-fold) the

number of entries to the

open arms and the time

spent in this significantly

increased in a dose-

dependent manner

Anxiolytic-like effects are

partly modulated by

GABAA receptors in the

basolateral amygdala.

Flumazenil partly

antagonized the effects of

systemic rutin

[57]
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Metabolite Extract from plant/part

of plant (common name)

Posology

(administration way,

doses and duration of

treatment)

Experimental

subject

Experimental

model

Identified effect Mechanisms of action References

Viscosine Dodonaea viscosa (Linn) i.p. 10, 30, and

100 mg/kg

Male Swiss

mice

• Elevated

plus maze

• Light/dark

box

Viscosin increased the %

entries and % time spent in

the open arms

Anxiolytic effect of

viscosine are likely

mediated via its positive

allosteric modulatory

action of GABA at

different GABAA receptor

subtypes

[58]

Sterols

α-Spinasterol Toronto Research

Chemicals Inc., Canada

i.p. 1 and 2 mg/kg Male albino

Swiss mice

(23–25 g)

• Elevated

plus maze

• Light/dark

box

No effects were found

(0.5, 1, and 2 mg/kg)

NE [90]

β-Amirine

α-Amirine

Hexane–ethyl acetate

from Protium

heptaphyllum

p.o. 10, 25, and 50 mg/kg Male Swiss

mice

(20–30 g)

• Elevated

plus maze

Anxiolytic effect with dose

10–25 mg/kg like

diazepam

Mechanisms GABAérgic

by GABAA receptors in the

subunit α1

[94]

NE = no explorated.

Table 2.
Secondary metabolites with anxiolytic properties in preclinical study.
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Carnosol generated an antidepressant-like effect at doses of 0.01 and 0.1 mg/kg [16]
on TST, and 10, 30, and 100 mg/kg, i.p., on TST and FST, as did the oleanolic and
ursolic acids. Meanwhile, 100 mg/kg of ursolic acid showed an effect similar to that
of imipramine at 60 mg/kg [17]. Betulinic acid at 10 mg/kg was evaluated in male
mice on TST [16]. None of those metabolites had effects on locomotor activity.
Ursolic acid at doses of 0.01 and 0.1 mg/kg produced an effect similar to that of
fluoxetine (10 mg/kg), imipramine (1 mg/kg), and bupropion (10 mg/kg) on TST
[18]. Only the 10-mg/kg dose had an antidepressant effect on FST, which was
similar to that of bupropion at 10 mg/kg. Studies exploring the mechanism of action
of ursolic acid found the involvement of D1 and D2 receptors and a pharmacological
synergism with bupropion at 1 mg/kg, p.o. (dual dopamine/noradrenaline reuptake
inhibitor, DDNRI) [18], 5 mg/kg of fluoxetine, or 2 mg/kg of reboxetine (SRNI)
[19]. They also observed a related increase in noradrenaline and dopamine synthesis
on TST [19]. These findings are noteworthy because they suggest the possibility that
various mechanisms of action may be stimulated by the same metabolite.

A study of the essential oil of Origanum majorana (OMEO) identified 14 compo-
nent terpenes that represented 92.32% of yield. The five components that were more
abundant in OMEO were terpinene-4-ol (32.69%), γ-terpinene (12.88%), trans-
sabinene hydrate (8.47%), α-terpinene (7.98%), and sabinene (6.211%). Adminis-
tered in a single acute dose of 40 or 80 mg/kg, OMEO increased swimming and
climbing times in male mice on FST. These findings were interpreted as showing an
antidepressant-like effect. In that study [20], pretreatment with antagonist drugs
demonstrated that the terpenes act through several mechanisms: first, by activating
the dopaminergic receptors D1 and D2, the noradrenergic α1- and α2-adrenoceptor,
and the 5-HT1A and 5-HT2A receptors, and, second, by activating or increasing 5-HT
synthesis and monoamine vesicular storage involved in reducing the immobility
time produced by 80 mg/kg of OMEO [20]. A pharmacological synergism at the
combined subthreshold OMEO doses of 10 mg/kg plus fluoxetine or imipramine
(5 mg/kg, i.p.) was also seen. It reduced immobility time but increased swimming
and climbing times, similar effects to those produced by OMEO at 80 mg/kg [20]. (A
more detail view about the OMEO components can be reviewed at Tables 1 and 2 as
summary). (R)-(�)-linalool produced antidepressant effects in male mice on TST at
a single dose of 100 or 200 mg/kg, i.p., and on FST when administered 3 times at
100 mg/kg, i.p. [21]. That effect was produced by activation of the 5-HT1A receptor
and α2-adrenoceptors [22], while (1S)-(�)-β-pinene produced an antidepressant
effect after three applications at a dose of 100 mg/kg, i.p., by activating β-
adrenoceptors, 5-HT1A and D1-receptors, and noradrenergic neurotransmission in
the cerebral cortex [22].

However, due to the terpene’s capacity to stimulate several neurotransmission
systems—especially high doses of monoterpenes—possible collateral or undesirable
effects as serotonergic syndrome need to be explored. The monoterpenic oxide, 1,4-
cineole, for example, produced a prodespair effect at doses of 200 mg/kg, i.p., on
FST and 400 mg/kg, i.p., and FST and TST, but did not induce any significant
deficit in motor coordination on the rota-rod test (RRT). It did, however, have an
anxiolytic effect at a dose of 400 mg/kg in male mice evaluated in EPM that was not
associated with any sedative effect [23]. These findings require additional study in
light of potential depressor effects on the CNS, and to elucidate the mechanisms of
action involved.

3. Terpenes with anxiolytic effects: preclinical research

Anxiolytic properties have also been attributed to terpenes. A combination of
two monoterpenoids, p-cymene + thymol, both at doses of 3mg/kg i.p., produced
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anxiolytic effects on the hole-board test (HBT) and EPM [24]. Studies have also
demonstrated that (�)-myrtenol, a monoterpenoid alcohol, produced an anxiolytic
effect on EPM at doses of 25, 50, and 75 mg/kg, i.p., though only the 25- and
50-mg/kg doses did so on LDB. On both tests, the anxiolytic effect of 25 mg/kg of
(�)-myrtenol was mediated by GABAA receptors [25]. In another study, rosmanol
produced an anxiolytic effect at doses of 10, 30, and 100 mg/kg in EPM and LDB,
and the 10- and 30-mg/kg doses showed an effect similar to those of diazepam at
1 mg/kg [15]. This mechanism of action acts on GABAA receptors at a distinct site
from the high-affinity benzodiazepine-binding region [15]. Triterpenes as ursolic
acid, oleanolic acid, and carnosol produced anxiolytic effects at doses of 10, 30, and
100 mg/kg in EPM and LDB. The effect of the 30- and 100-mg/kg doses of these
three metabolites was similar to that of diazepam at 1 mg/kg. No significant effect
was seen on locomotor activity. We know that this effect was produced through
GABAA receptors of the α1β2γ2L conformation because 2.5 mg/kg of flumazenil
blocked the anxiolytic effects of 10 mg/kg of all three in EPM [17].

Although most terpenes have a GABAergic mechanism, their action may also
occur through the serotonergic system, as evidenced in the study by Costa et al.
[26]. In an experiment with male rats, those authors identified that acute adminis-
tration of 5 mg/kg, p.o., or 14-day repeat doses (1 mg/kg/day), of the essential oil of
ripe fruits of C. aurantium (Rutaceae) (whose chemical composition includes
98.66% limonene, 0.53% β-myrcene, 0.41% β-pinene, and 0.41% unidentified
compounds) produced an anxiolytic-like effect in LDB that was mediated by the
serotonergic system through 5-HT1A receptors (WAY 100635 0.5 mg/kg, i.p.), not
the GABAergic system (flumazenil 2 mg/kg, i.p.). That study also analyzed the
antidepressant effect on FST after oral and inhaled treatment, but found that it did
not modify immobility. Their results suggest that distinct mechanisms of action
exist for the anxiolytic and antidepressant effects [26]. In this regard, some of the
terpenes in certain essential oils produce anxiolytic effects and are often used in
aromatherapy to reduce anxiety in animals and humans [27]. Inhaling emulsions of
linalool oxide (a monocyclic alcohol) at 0.65, 1.25, 2.5, and 5.0% w/w during 7 min
of exposure in the inhalation chamber, for example, produced anxiolytic-like effects
in EPM and LDB, but no significant motor deficit on RRT [28].

Finally, songorine, a C20 diterpenoid alkaloid, produced an anxiolytic-like effect
at 0.25 mg/kg v.o. for 5 days with greater efficacy than phenazepam on Vogel’s
conflict test (VCT) [29]. For the terpenes described so far, we know that both the
serotonergic and GABAergic systems are involved in their mechanisms of action,
and these are the same systems that are activated by other groups of metabolites,
such as flavonoids and sterols (see Tables 1 and 2 for summaries).

4. Flavonoids with antidepressant effects: preclinical research

Flavonoids are the most widely studied active metabolites (for a broad review of
research, see German-Ponciano et al. [30]). Genistein is an isoflavone that can cross
the blood-brain barrier in mice [31] and rats [32]. Acute oral administration of 5, 15,
and 45 mg/kg genistein in male mice did not reduce immobility time on FST or TST,
but chronic, dose-dependent administration for 21 days produced antidepressant-
like effects on both tests, without affecting locomotor activity [33]. This effect was
associated with increased NA and 5-HT concentrations in the hippocampus and
frontal cortex, and of 5-HT in the hypothalamus, though it decreased the 5-HTIAA/
5-HT ratio in the hippocampus and frontal cortex. These results suggest an inhibi-
tion effect of genistein on MAO-A in the hippocampus, frontal cortex, and hypo-
thalamus and on MAO-B in the hippocampus, three brain structures involved in the
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neurobiology of depression and anxiety. Their results [33] also demonstrate that
central depletion of 5-HT reversed the antidepressant effect of genistein, suggesting
a critical role of the serotonergic system, specifically through 5-HT1A receptors. It is
important to note that these results on the serotonergic metabolic ratio (5-HIAA/5-
HT) may be dependent on gonadal hormones. Ovariectomized rats (OVX, surgical
removal of both ovaries) showed reduced immobility times on FST after adminis-
tration of genistein (10 mg/kg, p.o. [34], or by i.m.) [35] for 14 days, but the
downward tendency of the serotonergic metabolic ratio caused by FST was only
evident in the hippocampus [34]. Sapronov and Kasakova [35] found
antidepressant-like effects on FST at the same dose of genistein (10 mg/kg) but in
non-ovariectomized rats. That effect was more marked in the metestrus and dies-
trus phases of the estral cycle, which are characterized by low plasmatic concentra-
tions of ovarian hormones, than during the proestrus and estrus stages with their
characteristically high hormone concentrations. This suggests that these hormones
play a significant role in the antidepressant effect of genistein.

A similar effect on the serotonergic system and MAO-A activity was found with
quercetin 4’-O-glucoside or quercetin administered at doses of 10 and 20 mg/kg, p.
o., for 7 days in Swiss albino mice of both sexes. These substances produced
antidepressant-like effects in mice on FST as well as those subjected to
unpredictable, chronic mild stress (CUMS, a mouse model designed to induce
depression) and subsequently evaluated on FST. In that study, a 20-mg/kg dose of
quercetin 4’-O-glucoside showed a similar effect to that of fluoxetine at 20 mg/kg,
p.o., on FST, with or without prior exposure to CUMS [36]. A consequence of
CUMS on the sucrose preference test (SPT, a test used to study anhedonia rodents,
the main symptom of depression in humans) is a decrease in the consumption of a
sweetened solution. In these sense, both doses of quercetin 4’-O-glucoside reverted
this effect, and interpreted as being antidepressant. Other consequences of CUMS
are metabolic, for example, excessive production of reactive oxygen species that
was evidenced by higher brain thiobarbituric acid reactive species (TBARS).
Compromising endogenous anti-oxidants, like reduced glutathione (GSH),
enhances MAO-A activity in the brain and, consequently, depletes monoamine
levels there, especially serotonin 5-HT. The effects observed in that study were
blocked by 21 days of treatment with 10 and 20 mg/kg of quercetin 4’-O-glucoside
[36], suggesting a possible mechanism of action with an antioxidant effect that
impedes ROS production. Another study [37] found that 10 mg/kg of quercetin
administered for 14 days reduced immobility time on TST, but not FST, while doses
of 25 and 50 mg/kg produced this effect in female mice on both tests. The mecha-
nisms of action were explored on TST, where i.c.v. administration of N-methyl-D-
aspartate (NMDA at 0.1 pmol/site) and L-arginine (at 750 mg/kg, i.p., a nitric oxide
inhibitor) blocked the antidepressant effect of quercetin. Hence, the
antidepressant-like effect of quercetin may involve inhibiting NMDA receptors to
decrease intracellular calcium that, in turn, inhibits the protein calmodulin, which
then inhibits neuronal nitric oxide synthase to decrease nitric oxide levels (NO).
This hypothesis is supported by the finding that administering methylene blue
(a NO synthase inhibitor) at 20 mg/kg, i.p., and soluble guanylate cyclase or
7-nitroindazole (another NO synthase inhibitor) at 50 mg/kg, i.p., improved
quercetin’s antidepressant-like effect on TST. This indicates that the antidepressant
effect may be dependent on limiting NO synthesis, either by inhibiting the
enzyme or by reducing NO production, perhaps via decreased cyclic guanosine
monophosphate (cGMP), since sildenafil (a phosphodiesterase 5 selective inhibitor
that increases cGMP levels) also canceled this effect [37].

A model of depression induced by olfactory bulbectomy (OB, surgical removal
of the olfactory bulbs) reduced the latency to immobility and increased immobility
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time on FST and TST. This was accompanied by an increase in the levels of the
markers of oxidative stress, for example, 116% in the case of lipid hydroperoxide
content (LOOH) in the hippocampus. This effect was reverted by 52.25% by
administering 25 mg/kg of genistein in the content of LOOH, as observed on the
immobility on FST and TST. In sham rats only (i.e., animals subjected to the same
surgical procedure but without resection of the olfactory bulbs), genistein reduced
glutathione (GSH) levels, in that study by 65.94%. The authors [37] explained that
“the reduction of GSH levels caused by OB and, surprisingly, quercetin, can be
explained by the fact that glutathione peroxidase, in addition to reducing H2O2,
decreases lipid and nonlipid hydroperoxides at the expense of GSH, causing it to
become oxidized and giving rise to glutathione disulfide. Therefore, it is suggested
that LOOH activated glutathione peroxidase which, in turn, oxidized GSH to nor-
malize LOOH levels”. In this area, increased levels of the markers of oxidative stress
in major depression have been associated with poor response to antidepressant
treatment [38]. Therefore, a therapy that reduces the levels of markers of oxidative
stress and produces antidepressant effects could be a promising form of treatment.

Additional mechanisms of the antidepressant action of flavonoids have been
explored. Administering chrysin for 14 days at a dose of 20 mg/kg, for example,
increased grooming time in male OB C57B/6J mice evaluated on the splash test
(ST), where 200 ml of a 10% sucrose solution is squirted on the mouse’s snout to
initiate grooming behavior. Here, greater grooming time is considered an antide-
pressant effect. Doses of 5 and 20 mg/kg impeded an increase in immobility time by
these OB mice on FST, but increased 5-HT and brain-derived neurotrophic factor
concentrations in the hippocampus [39]. In another study, fisetin administered at
5 mg/kg v.o. increased activation of the tropomyosin kinase B receptor (TrkB) by
signaling and increasing its phosphorylation in the hippocampus. This suggests that
fisetin produced pro-neurogenesis [40] related to its antidepressant effect on FST
and TST after 1 or 2 weeks of treatment with a relatively short therapeutic latency
compared to clinically-effective antidepressants. Fisetin also reversed depression-
like behaviors induced by spatial restraint stress in mice evaluated on FST and TST
[40]. Other studies have found that the chemical standard dihydromyricetin acti-
vated the ERK1/2-CREB pathway and increased glycogen synthase kinase-3 beta
(GSK-3β) phosphorylation at ser-9 with upregulation of BDNF expression in the
hippocampus, while inhibiting neuroinflammation. These findings may be related
to the antidepressant effect seen on TST and FST after once-daily administration of
10 and 20 mg/kg, v.o. for 3 days, but not after a single acute dose [41]. Interestingly,
dihydromyricetin reverted the depressogenic effect caused by CUMS in mice
subjected to SPT and FST, or TST, only after administration of once daily for 7 days,
but not 3 days [41]. Another flavonoid analyzed is hesperidin, which increased
BDNF levels in the hippocampus after administration of once daily for 21 days (0.3
and 1 mg/kg, i.p.). These doses produced an antidepressant effect on TST similar to
fluoxetine (32 mg/kg i.p.) and imipramine (15 mg/kg, i.p.). Another research has
also verified that when applied acutely (1 mg/kg after 30 min) or chronically (0.1,
0.3, and 1 mg/kg for 21 days) hesperidin significantly decreased nitrate/nitrite
(NOX) levels in the hippocampus of mice, suggesting a possible inhibition of the
L-arginine-NO-cGMP pathway [42].

Another flavonoid that has shown effects on the CNS is baicalin, which may
promote neuronal differentiation through neuronal maduration and ensure their
survival via the associated Akt/FOXG1 pathway, which stimulates dendrite elonga-
tion. This is related to findings that indicated that, after 6 weeks of treatment, a
60-mg/kg dose of baicalin had an effect similar to that of fluoxetine (15 mg/kg,
v.o.), because it reverted the decrease of sucrose intake on SPT and the increase in
immobility on TST produced by CUMS [43]. Another flavonoid that associates
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antidepressant and antioxidant effects is naringin, which reduced immobility on
FST at doses of 2.5, 5, and 10 mg/kg given for 7 days. The antidepressant effect of
these doses correlated with enhanced cholinergic transmission due to a decrease in
the activity of the enzyme acetylcholinesterase and of the antioxidant defense
systems caused by higher GSH levels, as well as an increase in the activity of
superoxide dismutase (SOD) and catalase (CAT) in mice brains.

Studies have demonstrated that naringin inhibits lipid peroxidation and
nitrosative processes by reducing levels of ROS and nitrogen species [44]. Finally,
the extract of Cirsium japonicum at doses of 200 and 400 mg/kg has shown the
ability to reduce immobility time on FST in a similar manner to that of 5 mg/kg of
the antidepressant imipramine. A major component of this plant is the flavonoid
luteolin, which at doses of 5 and 10 mg/kg produced a similar effect to that of the
complete extract, likely through a positive modulating effect on the GABAA recep-
tor complex. This was proven in an in vitro study where extracts of both Cirsium
japonicum and luteolin increased Cl� influx in an effect impeded by pretreatment
with bicuculline, a competitive GABAA receptor antagonist [45].

The varied mechanisms seen in flavonoids make them an important object of
study, especially in the search for side effect-free treatments that can compromise
their effectiveness or produce toxicity by interacting with other medications or
food. This is another area of research that remains to be explored.

5. Flavonoids with anxiolytic effects

A particularly important fact concerning the potency of the biological activity of
plants is that it depends on several factors, for instance, the part of the plant used,
the region where it is gathered, the season, and harvesting time, among others [46].
For example, inmale mice evaluated by HBT and EPM, a single dose of 100mg/kg i.p.
of the methanolic extract of inflorescences of Tilia americana var. mexicana collected
in Morelia, Mexico, produced a more effective anxiolytic effect than those gathered
in Honey, Puebla, though the leaves collected in Honey were more effective than
those fromMorelia or Santa María Ahuacatitlan, Mexico. These three Mexican states
are located at different elevations with distinct humidity and soil types. That study
quantified quercetin, rutin, and isoquercitrin in the inflorescences and leaves,
determining that the concentrations of these substances differed with the part of the
plant used and the collection area [46]. It also tested several standard commercial
flavonoids: kaempferol (10 mg/kg), quercetin (20 mg/kg), astragalin (10 mg/kg),
isoquercitrin (2 mg/kg), quercetin (10 mg/kg), and rutin (15.7 mg/kg), and a mix-
ture of flavonoids (MIX) composed of quercetin 20 mg/kg, rutin 15.7 mg/kg, and
isoquercitrin 2 mg/kg and quercetin (20 mg/kg). Results showed that a mixture of
quercitin (20 mg/kg), rutin (15.70 mg/kg), and isoquercitrin (2 mg/kg) produced an
anxiolytic effect in male mice tested in HBT and EPM [46] by reducing the number
of head-dippings but increasing the time spent in the open arms, respectively.
Finally, upon testing the anxiolytic effect of the methanolic extract of Tilia ameri-
cana var. mexicana, those authors found that this produced an effect in EPM
through the participation of GABA/BDZ (flumazenil 5 mg/kg) and 5HT1A seroto-
nergic receptors (WAY 100635 0.5 mg/kg), though they were not involved in the
anxiolytic effect on HBT [46].

Another flavonoid known to have anxiolytic effects is formononetin, an active
metabolite of traditional Chinese medicine red clover (Trifolium pratense L.). Wang
et al. [47] observed that administering 25 mg/kg of this metabolite to male mice
once daily for 8 days blocked the anxiogenic effect on the open field test (OFT)
produced by administering Freund’s complete adjuvant (CFA), reduced the time
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spent and distance traveled in the central area, and decreased the time spent in the
open arms of EPM [47]. Formononetin did not modify behavior compared to the
control group on either test, indicating that it demonstrated an anxiolytic effect.
However, it seems that these results should be understood as a neuroprotective
effect more than an anxiolytic one, at least under those study conditions. The notion
of a neuroprotector effect is supported by the fact that the study found that
formononetin attenuated inflammation and neuronal hyperexcitability by
inhibiting NMDA receptors and the CREB signaling pathway in the basolateral
amygdala (BLA) [47].

Other anxiolytic mechanisms of action seen in flavonoids are dopaminergic in
nature. Theaflavins, for example, increased dopamine (DA) turnover to induce
activation of the dopaminergic system in the frontal cortex in male mice in EPM
and LDB [48], while chrysin at 2 and 4 mg/kg produced an anxiolytic effect in rats
at 12 weeks postovariectomy on LDB by increasing the time spent in the light
compartment. Those findings resembled the effect of diazepam. At doses of 1, 2,
and 4 mg/kg, this flavonoid increased the frequency of entries into, and the time
spent in, the open arms of EPM partially through action on GABAA receptors (pre-
treatment with 1 mg/kg picrotoxin) [49]. On the other hand, neurosteroids and the
serotonergic system have also been implicated in the anxiolytic effect of flavonoids,
as in the case of puerarin, which increased 5-HT and allopregnanolone levels in the
prefrontal cortex and hippocampus in male rats. These results have been associated
with the finding that puerarin increased the time spent in the open arms and the
percentage of entries into the open arms of EPM, whereas on the VCT test, it
produced an increase in the number of shocks received. In both cases, the effect was
similar to that of sertraline, which was used as a positive control drug to generate an
anxiolytic effect on both tests [50].

In an animal model of surgically-induced menopause, genistein at 0.09 and
0.12 mg/kg, s.c., for seven consecutive days, or the same treatment regimen but
with 17β-estradiol, increased the time spent in, and the percentage and frequency of
entries into, the open arms of EPM. These effects were caused by activation of the
β-estrogenic receptor (ERβ) since pretreatment with tamoxifen (5 mg/kg, an ERβ
antagonist) blocked the anxiolytic effect. Also, genistein and 17β-estradiol increased
the frequency of rearing and grooming behaviors on the locomotor activity test
(LAT), associated with an anxiety-reducing effect manifested in EPM [51]. Genis-
tein tested at doses of 0.25, 0.5, and 1 mg/kg increased the time spent in, and the
frequency of exploration of, the light compartment of LDB, while doses of 0.5 and
1 mg/kg increased rearing frequency, and 1 mg/kg increased grooming time. Those
studies used rats at 12 weeks postovariectomy [52]. The authors suggest that
“genistein is considered a phytoestrogen that acts in a dose-dependent manner with
a broader margin of safety at anxiolytic doses. However, more studies are required
to take advantage of its potential therapeutic anxiolytic effects” [51].

In a distinct approach, a post-traumatic stress disorder (PTSD) model used a
chamber with a grid floor connected to a system that delivered foot shocks, expos-
ing rats to 5 shocks per day. There, an increase in the contextual freezing time on
days 7, 14, and 21 indicated the induction of anxiety-like behaviors. The time spent
in freezing behavior was calculated with the shock-administering system turned off.
In that study, genistein at 4 and 8 mg/kg i.p. administered to male rats from day 7
reduced freezing time at 7, 14, and 21 days. Interestingly, only the 8-mg/kg dose
returned freezing times to control levels on day 21 [53]. The stressed rats were also
tested in EPM, where they spent less time in the open arms, indicating an anxiety-
like effect that was reverted by administering 4 and 8 mg/kg of genistein. This
reduced anxiety-like behavior in the stressed rats occurred in association with
enhanced tryptophan hydroxylase (TPH) and 5-HT levels, but also promoted the
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5-HT receptor-related CaMKII/CREB signaling pathway in the amygdala [53], likely
reflecting the fact that the amygdala receives serotonergic projections from the
raphe, two brain structures to which emotional valence and 5-HT synthesis,
respectively, are attributed [54].

A study evaluated the pharmacokinetic profile of 6-methoxyflavanone and cal-
culated the KP value (i.e., the tissue-to-serum partition coefficient). Molecules with
KP values >0.30 are thought to be readily distributed in the brain [55]. That study
determined that 30 min postadministration of a 30-mg/kg i.p. dose, the 6-
methoxyflavanone had crossed the blood-brain barrier (BBB) to reach the amygdala
with Kp = 0.47, and the cerebral cortex with Kp = 0.437. These two cerebral struc-
tures are known to be involved in the neurobiology of anxiety [56], so these prop-
erties were associated with the anxiolytic effect of 6-methoxyflavanone in male and
female mice in EPM at doses of 10, 30, and 50 mg/kg, and on the staircase test
(ScT). In this model, the lower frequency of rearings, but no reduction in the steps
climbed in a 3-min period, was interpreted as indications of an anxiolytic effect
[45]. Those authors verified that 6-methoxyflavanone produced its effect by acti-
vating GABAA receptors with the α2-subunit, perhaps in the amygdala and brain
cortex, since pretreatment with PTZ blocked this anxiolytic effect in EPM and on
ScT [56].

Another flavonoid with anxiolytic effects is rutin at doses of 300 and 562 mg/kg,
i.p., or 16 nmol/site, in the basolateral amygdala of male rats tested in EPM. This
involves partial GABAergic neurotransmission that was not associated with BDZ
binding in the GABAA receptors [57]. Finally, viscosine administered to male mice
assessed in EPM and LDB was seen to exert its action through the α1β2γ2L and
α2β2γ2L modulates of the GABAA receptors at a site distinct from the one classically
associated with benzodiazepine [58].

6. Alkaloids with antidepressant activity

Alkaloids purified from crude acid-base extracts have diverse chemical struc-
tures. They may contain one or more nitrogen atom(s) (in the heterocyclic ring) in
the form of salt [59]. Pseudoalkaloids that possess nitrogen exist. They are not
synthesized from amino acids, but by nitrogen transfer in the form of ammonia
to a compound of terpenic origin, steroids, polyketides, monosaccharides, or fatty
acids [59].

The alkaloid berberine (50 mg/kg, i.p.) decreased immobility but increased
climbing behavior on FST; results are considered to reflect an antidepressant-like
effect in rats after abstinence from repeated morphine administration [59]. Chronic
treatment with the extract of Annona cherimola produced antidepressant-like
effects in tests of mice on FST. A. cherimola contains mainly the alkaloids 1,2-
dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzoquinoline-3,8,9,10-tetraol, anonaine,
liriodenine, and Nornuciferine, which are likely responsible for the increase in 5-HT
and DA [60].

In another work, the alkaloid derivatives of the β-carbolines (harmane 5, 10, and
15 mg/kg, norharmane 2.5, 10, and 15 mg/kg, and harmine 5, 10, and 15 mg/kg, all
i.p.) showed antidepressant effects in mice that were dose-dependent, suggesting
that the effect occurs through an inverse agonist mechanism of the benzodiazepine
receptors due to flumazenil antagonism (5 mg/kg, i.p.) [61]. In addition, anhedonia
was reversed in rats subjected to the CUMS model after harmine treatment at
15 mg/kg/day for 7 days. They showed increased adrenal gland weight, ACTH
levels, and BNDF protein levels produced by the CUMS [62]. Treatment for 14 days
with harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rats
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subjected to FST produced antidepressant-like effects, while harmine (10 and
15 mg/kg), but not imipramine, increased BDNF protein levels in the hippocampus
of rats [62]. These results indicate that the main mechanism involved in harmine’s
antidepressant effect is an increase in hippocampal BDNF, though this may be
dependent on treatment time and the precise region of the hippocampus.

An infusion of harman (1-methyl-beta-carboline) into the hippocampus of rats,
or through systemic administration, increased the concentration of 5-HT [63]. In
addition, metabolite levels of 5-HT degradation decreased dose-dependently, prob-
ably due to inhibition of MAO-A [63]. Another study showed that harman bonds to
type 5-HT2A serotonergic receptors but shows no affinity to dopaminergic or BZ
receptors [64]. Injections of 2.5 and 10 mg/kg of harmane in rats under fear condi-
tioning have been shown to increase plasma ACTH, corticosterone, 5-HT, and NA
levels in limbic system structures. These results suggest that harman can modulate
behavioral alterations, brain neurochemistry, and neuroendocrine functions
through a mechanism that inhibits MAO-A [65].

Subchronic, oral administration for 21 days of the lyophilized extract of Rhazya
stricta and alkaloid fractions (akuammidine, rhaziminine, and tetrahydrosecamine)
to male rats inhibited the activity of the MAO-B enzyme, a mechanism through
which the antidepressant-like effect may occur [66]. Another alkaloid in the
Mitragyna speciosa plant has shown antidepressant effects. Administered to mice at
doses of 10 and 30 mg/kg, i.p., mitragynine decreased immobility time on then
TST and FST [67] and the release of corticosterone. Mitragynine’s effect appears to
be mediated through the neuroendocrine HPA (hypothalamus-adrenal-pituitary)
axis [67].

Punarnavine administered at doses of 20 and 40 mg/kg, v.o., for 14 days
decreased immobility on FST, MAO-A activity, and corticosterone levels in both
stressed and unstressed mice [68], while treatment with evodiamine at 10 and
20 mg/kg in rats exposed to CUMS reversed the decrease in their preference for
sugared water and immobility time on FST, but increased 5-HT and NA levels and
the protein expression of BNDF in the hippocampus. However, it reduced cortico-
sterone levels, suggesting that it likely modulates monoamines and BDNF-TrkB
signaling in the hippocampus [69]. Chronic administration of piperine in rats at 5,
10, and 20 mg/kg has shown antidepressant-like effects on FST, probably due to a
serotonergic mechanism [70]. At a dose of 30 mg/kg, protopine produced an anti-
depressant effect on TST in mice, perhaps by inhibiting the 5-HT and NA trans-
porters, since in vitro studies have reported that it produces an inhibitory effect on
these elements [71].

Because alkaloids have powerful antidepressant effects, many are used in clinical
practice with effective therapeutic results. Preclinical studies have clearly demon-
strated the antidepressant effects of alkaloids, but evidence of their mechanisms of
action is still deficient or unclear. Alkaloids isolated from plants are an option for
treating depression, but more studies are needed at the preclinical level to evaluate
their potency, efficacy, and safety before they can be incorporated into clinical
practice.

7. Alkaloids with anxiolytic effect

The alkaloids gelsemine, koumine, and gelsevirine exerted anxiolytic effects in
single doses of 2 and 10 mg/kg in mice in EPM and LDB [72]. Gelsemine in low
doses (10�6 M and 10�14 M) administered to male rats for 7 days also showed
anxiolytic effects in EPM [73]. Koumine has shown this effect on VCT in mice at
doses of 0.167, 0.5, or 1.5 mg/kg [74]. Other reports indicate that the decoction of

26

Behavioral Pharmacology - From Basic to Clinical Research



the African peach root (Nauclea latifolia) injected intraperitoneally in mice pro-
duces dose-dependent anxiolytic-like effects (16, 40, 80, and 160 mg/kg) in EPM.
Its effect has been attributed to isoquinoline-type alkaloids [75], but no reports have
yet substantiated this claim. One study reported that the isoquinoline alkaloid
berberine hydrochloride has both antipsychotic and anxiolytic properties. In this
regard, studies have shown that a dose of 100 mg/kg/day produces anxiolytic
effects and can modulate the gratifying effects induced by methamphetamine in
rats [76].

The aqueous extract of Eschscholzia californica Cham (200 mg/kg, p.o.) has shown
anxiolytic-like effects on the LDB test in mice that have been attributed to action on
GABAA receptors [77]. Administration of the aqueous extract of the stem of Uncaria
rhynchophylla (200 mg/kg), which contains the alkaloid rhynchophylline, in a single
dose, or for 7 days, produced an anxiolytic effect in EPM by acting on the 5-HT1A

receptor [78]. Another example has been implicated to alkaloids with anxiolytic
effects were the hydroethanolic extract of Davilla rugosa produced anxiolytic-like
effects in EPM when administered to rats at 15 mg/kg [79]. Two other plants that
contain alkaloids with anxiolytic effects (erythravine and 11a-hydroxy-eritravine) are
Erythrina velutina and Erythrina mulungu. A study in mice showed that chronic
administration (23–26 days) of the hydroalcoholic extract of the stem of E. velutina at
100 mg/kg produced an anxiolytic effect in EPM [80], while acute treatment with
200mg/kg of E. mulungu showed an anxiolytic response in LDB comparable to that of
diazepam [81]. Nevertheless, in this study did not identify the content or type of
alkaloids in these extracts.

Turning to the species Magnolia (Magnolia spp.), we find that at least four
anxiolytic components have been identified: honokiol, 4-O-methylhonokiol,
magnolol, and obovatol. Administering honokiol (1 mg/kg) for 7 days had an
anxiolytic-like effect on mice tested in EPMwith results similar to those of diazepam
[82]. That treatment increased the activity of the enzyme glutamic acid decarboxyl-
ase (GAD-subtype 65) in the hippocampus, but not the cortex of the mice brains.
This, in turn, increased the release of GABA and reduced anxiety behavior. GAD65
is located on the terminal nerve and regulates the release of GABA to the synaptic
cleft [83]. On this topic, there are reports that GAD65-deficient mice show higher
anxiety levels [83]. Administering 4-O-methylhonokiol (0.1, 0.2, and 0.5 mg/kg) to
mice in a single dose or during 7 days produced anxiolytic effects in EPM through
the benzodiazepine site by binding to the GABAA receptor [84]. This is similar to
observations of obovatol at doses of 0.2, 0.5, and 1 mg/kg [85]. In addition, an
increase in the expression of the GABAA receptor α1 subunit [84] and of the α1
subunit in the amygdala and Cl (�) currents was observed [85]. The diterpene
alkaloid songorine has shown anxiolytic effects when male mice were tested on VCT
at a dose of 0.25 mg/kg [29], revealing an effect similar to that of phenazepam.

Numerous reports attribute anxiolytic activity to a broad range of plants. How-
ever, isolating and identifying the alkaloids responsible for this activity have not
advanced substantially. Preclinical reports point to a common mechanism of action
that modulates the GABAergic and serotonergic systems. The data described here
justifies the need to conduct preclinical and clinical studies using alkaloids as
alternative treatments for some anxiety disorders.

8. Sterols with anxiolytic and antidepressant effects

Plants synthesize a class of sterols called phytosterols, whose chemical structure
is similar to that of cholesterol. Phytosterols are found in nuts, vegetable oils,
cereals, fruits, vegetables, and various plants [86]. Some 40 different types have
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been identified, including β-sitosterol, campesterol, fucosterol, and stigmasterol.
Due to their lipidic nature and glycosylated forms, they are able to cross the blood-
brain barrier and impact the CNS [87]. Trevisan et al. [88] suggest that α-spinasterol
has the ability to cross the blood-brain barrier and exert an antagonistic effect on
the transient potential receptor V1 (TRPV1). When these receptors are expressed in
various areas of the brain—prefrontal cortex, amygdala, hypothalamus, and hippo-
campus—their activation augments the release of glutamate and, consequently, that
of GABA, DA, or other catecholamines [89]. This fact involved TRPV1 receptors in
the mechanism underlying the etiology of depression and anxiety. This was corrob-
orated by Socała and Wlaź [90] by administering (1 and 2 mg/kg, i.p.) α-spinasterol
to male mice and testing them on FST. Their results suggest an antidepressant
effect. Also, intracerebroventricular (i.c.v.) coadministration of 50 μg of the TRPV1
receptor antagonist capsazepine/mouse with an ineffective dose of 0.5 mg/kg, i.p.,
of α-spinasterol, also reduced immobility time on FST, indicating the involvement
of TRPV1 in the neurobiology of depression. However, α-spinasterol itself (0.5, 1,
and 2 mg/kg) was unable to produce anxiolytic-like effects in EPM or LDB. In this
sense, TRPV1-knockout mice manifested less anxiety behavior on the same tests
[91]. Socała and Wlaź [90] proposed that α-spinasterol may be able to activate CB1
receptors with greater affinity because those neurons coexpress these receptors in
various brain structures whose activation could activate TRPV1 receptors simulta-
neously to block their possible anxiolytic effects. In another work, administering
fucosterol (10, 20, 30, or 40 mg/kg, v.o.) to male mice produced antidepressant
effects on FST and TST, with the 20 and 30 mg/kg doses achieving an effect of
comparable efficacy to 20 mg/kg of fluoxetine, a standard dose in humans [92].
Those doses also exerted an acute effect that increased BDNF levels in the hippo-
campus, a limbic structure involved in mood regulation. Fucosterol also blocked the
decrease in 5-HT, 5-HTIIA, and NA levels in mice brains generated by the stress of
FST. The effect of fucosterol on that test was similar to that of the positive control
drug, but it was unable to prevent the reduction of DA, another factor caused by
FST. These findings suggest that the antidepressant mechanism is mediated by
increasing monoamines and reducing the rate of 5-HT metabolism. Fucosterol did
not modify either motor or exploratory activity and showed no neurotoxic effects
[92]. Similar results were found when administering β-sitosterol at 10, 20, and
30 mg/kg for 7 days. In that case, 30 mg/kg exerted effects similar to those of
20 mg/kg of fluoxetine on FST and TST. Finally, the effects on monoamine levels in
mice brains confirm that sterols modify the serotonergic and noradrenergic systems
but do not impact the dopaminergic system [93].

Another case involved α- and β-amyrin (αβAMY) isolated from the resin of the
stem of Protium heptaphyllum plants obtained and identified from hexane-ethyl
acetate fractions analyzed by TLC. That process produced 450 mg of αβAMY made
up of 67% α- and 33% β-amyrin, which were further purified and tested on FST.
Administering 2.5 and 5 mg/kg of αβAMY via i.p. or p.o. decreased immobility time,
but the most effective treatment was the 2.5-mg/kg dose via the p.o. route. How-
ever, the effects produced by this route were similar to those of imipramine at 30
and 10 mg/kg. Imipramine is a tricyclic antidepressant (TCA) that blocks reuptake
of both serotonin and norepinephrine. In addition, a pharmacological synergism
between 1 or 2.5 mg/kg of αβAMY and 10 mg/kg of imipramine was observed, but
not between 2.5 mg/kg of αβAMY and 4 mg/kg of paroxetine (SSRIs). These effects
were blocked by pretreatment with 2 mg/kg of reserpine, an inhibitor of the vesic-
ular catecholamine transporter that facilitates vesicular storage. This result suggests
a possible mechanism of action through activation of the noradrenergic system
[94]. The base structure that cholesterol and sterols share allows the latter to exert
actions at the level of the CNS, as in the case of cholesterol. Cholesterol is a vital
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substance for neurons because it is required for vesicle transport and neurotrans-
mitter release and as a precursor to neurosteroids. It is also implicated in synaptic
plasticity in relation to the formation of new synapses. For these reasons, studying
sterols and their mechanisms of action on the CNS is extremely important because
of the anxiolytic and/or antidepressant effects they exert.

9. Final comments and conclusion

This broad review constitutes a significant contribution to our understanding of
the mechanisms of action that allow plants to produce antidepressant and anxiolytic
effects (see Figure 1 for a summary). However, most of the studies reviewed were
conducted with mice, due to the low yields achieved when isolating the metabolites
of plant extracts [95], which limit the amount of testing that can be done. Another

Figure 1.
Principal mechanisms of action of flavonoids, terpenes, sterols, and alkaloids with antidepressant and
anxiolytic properties. DAG: diacylglycerol; IP3: inositol triphosphate; AMPC: adenosine monophosphate 3;
PKA: protein kinase A; PLC: phospholipase C; AC: adenylyl cyclase; ATP: adenosine triphosphate; GDP:
guanosin trifosfato; VDC: canal dependiente de voltaje; BNDF: factor neurotrófico derivado del cerebro; TrkB:
tropomyosin receptor kinase B; Ca2+: calcium ion; Cl�: chloride ion; R-5HT1A: 5HT1A receptor; α2AR: alpha 2-
adrenergic receptor; D1-R: dopamine receptor D1; D2-R: dopamine receptor D2; DAT: dopamine transporter;
NAT: noradrenaline transporter; SERT: serotonin transporter; MAO-A: monoamine oxidase A; MAO-B:
monoamine oxidase B; AD: antidepressant; AX: anxiolytic.
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concern is that some infusions or extracts used as household remedies lose their
antidepressant or anxiolytic effects when fractioned [96]. These findings indicate
that in some cases it may be necessary to keep the metabolites together at the
concentrations present in the original infusion or extract that has a proven thera-
peutic effect. As explained herein, some metabolites share pharmacological targets,
which explains why they lose their effect when separated and emphasizes the
importance of using standardized extracts with demonstrated therapeutic effects in
animal and human studies [97, 98]. Unfortunately, very few clinical studies have
evaluated the potential antidepressant or anxiolytic effects of isolated metabolites,
so a great deal of work remains to be done.

Several observations suggest that active metabolites share the mechanism of
action of antidepressant and anxiolytic drugs like SSRIs, SNRIs, MAOIs, DDNRI,
and BZDs, but we should emphasize that some metabolites—at least in preclinical
studies—produced better effects than conventional drugs, even at lower doses,
while others presented a pharmacological synergism between both types at
suboptimal doses that improved the effects exerted separately at higher doses. A
second shared characteristic is that they contain active stereoisomers and probably,
some metabolites, once metabolized, could become more active. This encourages us
to consider a significant number of substances with anxiolytic and/or antidepres-
sant pharmacological profiles and invites us to take on the challenge of evaluating
their pharmacokinetics, pharmacodynamics, and safety.

In conclusion, terpenes, flavonoids, alkaloids, and sterols share mechanisms of
action that include activation of the critical enzyme for catecholamine synthesis
(e.g., tyrosine hydroxylase) or the inhibition of their limiting enzymes, MAO-A and
MAO-B, and transporters, thus stimulating the vesicular storage monoamine and
the release of neurotransmitters toward the synaptic cleft. Finally, they can prevent
the production of ROS and inhibit NO synthesis and, further downstream, interact
with the 5-HT1A, 5-HT2A, D1, D2, GABAA receptors, and α1, α2, β-adrenoceptors
that contribute to stimulating PKA. One consequence is that CREB increases BDNF
levels, which foster the appearance of dendritic contacts that improve cerebral
neurotransmission and modulate the emotions.

10. Perspective

This chapter discusses the efficacy of some plant metabolites in treating anxiety
and depression disorders, as demonstrated in preclinical studies. In the future, this
option for treating such disorders will allow us to reduce treatment costs and
moderate the side effects produced by drugs currently in use. However, our review
also points out that few clinical studies have focused on the pharmacokinetic and
pharmacodynamic processes involving metabolites that would permit the safe use
of these extracts. Despite this, research has shown that traditional medicine, espe-
cially forms that use medicinal plants that have been passed down through several
generations, constitutes an important alternative for health care.
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