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Chapter

High Hydrostatic Pressure
Treatment of Meat Products
Rosa María García-Gimeno

and Guiomar Denisse Posada Izquierdo

Abstract

High hydrostatic pressure (HHP) treatment has been described to improve
the microbiological safety and shelf life of ready-to-eat (RTE) meat products,
as a nonthermal decontamination technology in the meat industry, applied at
pre- or post-packaging. The pathogen widely studied in this product is Listeria
monocytogenes that reflects the concern of the food industry. In general, microor-
ganism’s lethality during HHP treatment depends on specific intrinsic factors of the
microorganism; those factors are related to food and technological factors of treat-
ment. In addition to processing parameters, intrinsic factors of the food matrix also
exert an effect on bacteria inactivation during pressure treatment. It is known that
low water activity (aw) protects microorganisms against the effects of pressure.
Predictive modelling is an important tool of the novel microbial food safety man-
agement strategy that provides with accurate information to demonstrate and
guarantee the safety and shelf life of the food products. The chapter describes the
effect of parameters on the efficiency of this technology on meat products over
pathogens, composition and the sensorial quality consequences. The predictive
modelling tool is introduced for the optimisation of meat treatment.

Keywords: high hydrostatic pressure, high pressure processing,
microbial inactivation, extension shelf life, predictive microbiology

1. Introduction

Today the food security situation is continually under review and questioned
as a result of several food-borne outbreaks that occurred. The company, mainly
responsible for the safety of its products, strives to achieve techniques and pro-
cedures that allow it to ensure all risks and at the same time extend commercial
shelf life and all this without altering the sensory characteristics of optimum quality.
Consumers demand insistently fresher, healthier, safer and more convenient food,
with good tasting and without preservatives.

In the case of ready-to-eat products (RTE), the need is even more pressing since
it is a product for direct human consumption without the need for cooking or other
processing effective to eliminate or reduce to an acceptable level of microorganisms.

In this sense, European legislation (Regulation EC 2073/2005, [1]) establishes
clear limits of various pathogens, such as regulating the presence of L. monocytogenes
in ready-to-eat products, Escherichia coli in fruits, vegetables and live bivalve
molluscs or Salmonella in ready-to-eat foods containing raw egg.
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The occurrence of food-borne outbreaks in Europe has a decreasing tendency.
A total of 5079 food-borne (including waterborne) outbreaks were reported by the
European Food Safety Authority (EFSA) [2]. This report describes Salmonella as
the commonest detected agent, and the highest-risk agent/food pairs the Salmonella
in eggs and meat and meat products, and the analysis of strong-evidence food-
borne outbreaks is associated with animal origin food [2]. In the case of meat
products with longer shelf life, bacteria have more time to grow if they have the
conditions (such as cooked sausages, cooked sliced ham and fermented salami) [3].

All the facts mentioned above has made companies look for alternative tech-
niques that guarantee the safety of their products, as is the case of HHP. HHP has
become a reality in the food industry and has spread worldwide [4]. This technique
achieves a microbial inactivation without using high temperatures, so they manage
to keep the sensory characteristics of the product almost intact, providing a larger
commercial shelf life [5–7]. This preservation technique consists of the application
of isostatic pressures, transmitted to foods uniformly and instantaneously by air-
driven pumps through a liquid, generally water [8].

One of the main advantages of high pressure processing (HPP) is that it reaches
acceptable microbial inactivation in meat products, but the sensorial and nutritional
characteristics remain with good quality [9, 10].

In the meat industry, the application of HPP has focused on products ready for
consumption with the additional aim of extending commercial life. For example,
several studies have described the behaviour of L. monocytogenes in ready-to-eat meat
products treated by HHP at different points of processes: prepackaging (liquid food)
[11] and post-packaging (all types of food) [5, 12–19], the latter application being the
most used [20]. In general, pathogen lethality during HHP treatment depends on
various processing parameters such as the pressure level and holding time, tempera-
ture and food matrix. The optimisation of these parameters of the treatment for the
pathogens’ inactivation has been reinforced by the use of predictive microbiology tool
that has been applied on different meat products [5, 15, 21–26].

Different organisations and administrations have recognised the listericidal
effect of HHP treatments on RTE foods [27–29]. The objectives of this study are the
revision of the effect of all parameters on the efficiency of this technology on meat
products over pathogens and the sensorial quality consequences. Also, the predic-
tive modelling tool for the optimisation of the meat treatment will be introduced.

2. High hydrostatic pressure treatment of meat

HHP was very well accepted since its beginning as an alternative to thermal
inactivation treatments and as an in-package cold pasteurisation process [4]. In the
last three decades, the number of companies with HHP facilities has increased
considerably in the world, from just a few in 1990 to more than 200 units and with
an increasing capacity [30].

The inactivation of bacteria effect of high pressure was demonstrated 100 years
ago, although the industrial technology was built up at the end of the twentieth
century [20]. The system consists in exerting high and uniform pressure on the food,
for enough time to achieve the desired effect. This is called adiabatic heat and occurs
instantaneously with pressure increase and as the pressure is uniform over the prod-
uct [20]. HHP is probably the most developed nonthermal technology commercially
in the world market, mainly applied for sliced meat products, fruit jellies and jams,
fruit juices, dressings for salad, raw oysters, ham and guacamole, among others.

The packaged food is usually submerged in water inside a tank, and through this,
high pressure is caused. HHP treatment will inactivate bacteria, yeast, moulds and
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enzymes equivalent to thermal pasteurisation processed but preserving the taste,
colour and nutritious value of the product [4, 6, 23, 30, 31]. The treatment can be
prepackaging (liquid food) or post-packaging (all types of food), although the latter
is most frequently used [20]. The meat industry tries to apply the shortest HHP
treatment on production lines as they can, currently from 3 to 6 min maximum
[9, 32]; although many potential HPP applications would require long treatment
times to ensure an adequate inactivation level of pathogens and spoilage microorgan-
isms, pressure treatments alone would not be sufficient to guarantee food safety [33].

The application of HHP technology follows two basic principles: Le Chatelier
principle and isostatic rule (Pascal principle). The first principle postulates that
pressure accelerates reactions (phase change, changes in the molecular configura-
tion, chemical reactions) that involve volume reductions and vice versa and inhibits
reactions that occur with increases in volume. Since the medium used to transmit
the pressure is usually water (incompressible fluid), the isostatic rule principle is
verified in the HHP application, stating that “the increase in pressure applied to the
surface of an incompressible fluid, contained in an undeformable container, is
transmitted with the same value to each of its parts”. The applied pressure is
transmitted in an isostatic (uniform) and almost instantaneous way to all points of
the food, regardless of its composition, size and shape. This prevents deformation of
the product, despite being subjected to such high pressures, and makes it very
homogeneous and does not have over-treated areas. When food is treated in its
packaging, it must be flexible and deformable (it must tolerate volume reductions
of up to 15%). The evacuation of gases from the interior is especially necessary to
prevent their compression from reducing the pressurisation efficiency [34, 35].

The pressure range for a commercial purpose is usually from 100 to 600 Mpa
[30], but this only can approach to a pasteurisation process but not commercial
sterilisation where spores should be destroyed and more than 1000 Mpa should be
applied for the sterilisation [30]. The new commercial unit implemented has
increased in capacity and pressure, reducing the time to a few minutes, which helps
manufacturers to reduce costs. The consumer has demonstrated a high level of
acceptance of products treated with HHP because of the minimal changes in sen-
sory and safety characteristics they perceive.

Two types of HHP treatment can be distinguished: the classical or also named
single-pulsed HHP or the multi-pulsed high hydrostatic pressure (mpHHP). Dif-
ference between both is the number of compressions done. In the single HPP
treatment, a compression hold for a certain time is followed by decompression to
atmospheric pressure, while in the mpHHP more than one compression is applied
with its respective decompression phase. It was reported that the mpHHP treat-
ment, with few exceptions, is more effective than the classical or single-pulsed HHP
treatment for inactivation of microorganisms in fruit juice, dairy products, liquid
whole egg, meat products and seafood [4]. The reports of applying mpHHP on meat
products describe better inactivation rates of E. coli O157:H7 and Salmonella
Enteritidis in ground beef and chicken fillets, respectively, than the classic HHP
[4, 36, 37]. Moreover, the mpHHP treatment could also be used to inactivate
enzymes in foods and to increase the shelf life of foods [4].

The high pressure applied causes a temperature increase in the treated product,
around 3°C per 100 MPa applied for water and 8–9°C for fat and oils and
intermediated values for proteins and carbohydrates have been described [30, 38].

2.1 Effect of HHP on food components

The effectiveness of HHP on meat products constituents depends on different
factors as initial microbial, pH and ionic strength [39].
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The pressure affects properties of water contained in food such as density,
viscosity, dipole moment, dielectric constant, and surface tension and thermal
properties such as freezing and melting point and consequently will exert its effect
on enzymes, chemical reactions and microorganism [40, 41]. For example, high
pressures reduce the freezing point of water to �22°C at a pressure of 207.5 MPa
because it prevents the increase in ice volume [40].

Whether the fat is affected or not by the treatment is very important because it
has a significant impact on the sensory characteristics and it will depend on the
intensity of treatment. It has been described that 450 MPa is applied during 154 s in
dry fermented sausage; the total fatty acids and the stability of the fatty ones were
not affected [42].

The denaturation that the proteins of the food undergo by the treatment of high
pressures will depend on the level of pressure exerted, the pH and the temperature.
Irreversible changes that have been described include the dissociation of oligomeric
proteins into their subunit, aggregation or gelation of protein or changes in the
conformation of the active site of enzymes. Reversible changes are observed when
the pressures are between 100 and 300 MPa [30]. Proteins and sugars have been
described as protective agents for bacteria in these treatments [5, 43–45].

2.2 Effect of HHP on the sensory quality of food

The effect of HHP on the sensory quality of food depends on the conditions,
pressures and time, but physical properties of the food play an important role in its
sensory quality. The colour of meat is critical because it is the main criterion that
consumers will evaluate before making purchases.

The significant change of the texture and visual appearance, colour in the rawmeat,
depends on the intensities of pressure, observing significant changes at HPP at
600 MPa, but not at lower as 175 MPa [46, 47]. Nevertheless, on cases of cured meat
products, changes on colour mainly depended on water content and water activity [48].

In case of salted chicken meat, it has been described that, in general, the use of
HHP treatment improved the texture of cooked meat and colour of raw meat, and it
is proposed as a processing alternative to reduce NaCl content [49]. Siddig et al.
[50] in other study concluded that the colour of chicken was slightly affected by
treatment, but pH, moisture content and the oxidation of lipids were not substan-
tially changed.

Pressure treatment of meat can promote oxidation reactions, and it is crucial to
control the balance between pro- and anti-oxidants to prevent this phenomenon
because it will affect the colour. Lipid oxidation has been extensively investigated in
meat because it can react with proteins, leading to organoleptic modifications and
the loss of nutritional value. In the case of meat, the oxidation is one of the most
important mechanisms of the degradation of meat, which can be initiated endoge-
nously via metallic ions, especially hemic iron, or via exogenous reactive oxygen
species. This process will result in changes in the organoleptic properties of the
meat, as degradations in colour, aroma and flavour. These effects will be related to
the type of meat, the treatment used and the methods used to evaluate the reactions
with the oxidation of lipids and proteins. The pressure above 400 MPa seems to be
critical for the initiation of lipid oxidation [7].

2.3 Effect of HHP on microorganisms

The effect of inactivation of HP on microorganisms in foods will depend on
specific intrinsic factors of the microorganism, those related to food and technolog-
ical factors of treatment [40, 51].
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Among the intrinsic factors of microorganisms that will affect inactivation
would be the number, species, strain and their physiological state [40, 51, 52]. Even
the size of the microorganism has been described as influential [53]. In the different
phases of physiological state, the cell and the membrane vary, and it has been
observed that in the logarithmic phase of growth, it is more sensitive to the treat-
ment of HHP and, in the stationary phases, it is more resistant [53].

The spores are even more resistant, and heat needs to be applied at the same
time to inactivate them [34, 54]. For example, the spores of yeast and moulds had
been reported to be inactivated by pressures of 600 MPa [9] although some species
have been described as more resistant, as the ascospores of Byssochlamys nivea [40].

The factors related to food that affects the efficiency of treatment would influ-
ence variables such as pH, aw, salt concentration and the general composition of the
food [40, 51, 55].

The treatment gains effectiveness by lowering the pH of the food [52] or adding
antimicrobials [34]. In a study by Alfaia et al. [42] carried out in chorizo, it
describes a significant increase in pH by increasing the intensity of the treatment,
which was also found in other products such as raw sausage batter, fresh chicken
breast fillets and raw poultry sausages [26, 56]. At high pressure, there is increased
ionisation and redistribution of ions that can be the origin of the pH increase and
also the release of imidazolium groups by histidine [57]. Alfaia et al. [42] verified
that the HPP resulted in a significant increase (p < 0.001) of the pH of chorizo
compared to the control samples and in a significant decrease of the aw (p < 0.01).
The increase in pH was also reported on raw sausage batter, fresh chicken breast
fillets and raw poultry sausages.

It has been observed that the decrease of aw decreases the effectiveness of
lethality of bacteria [4, 19], probably related to the stabilisation of protein, espe-
cially enzymes, which suffers less pressure [58]. It has been demonstrated that
lyophilised L. monocytogenes treated with HPP was not inactivated [59]. On the other
hand, it is also described that low aw will inhibit the recovery of cells and potential
growth during storage of the product treated by HPP [15, 60], that is to say that two
antagonistic effects that could compensate each other.

Synergistic effects of HHP treatment with the addition of sodium lactate on the
inactivation of L. monocytogenes in cooked chicken have been described [11].

Also, the fat content has been described as a parameter that affects the effec-
tiveness of microorganism inactivation, having in general a protective effect of
bacteria [5, 15, 19, 25]. High fat concentration decreases the inactivation of bacteria
[15, 25], but it is also related to the pressure exerted; the higher the pressure of
650 MPa, the more is the protection [5, 18].

HPP and the addition of essential oils have similar effects on microbial struc-
tures, and thus they may act synergistically on the inactivation of microorganisms.
Therefore, the combination of HPP with EOs is a promising alternative to expand
the HPP food industry [61, 62].

The concentration of other components has been described affecting inactiva-
tion of bacteria as vitamins and amino acids [43], proteins [63], sucrose [64] and
minerals such as calcium or magnesium [65].

Not only food component can affect the efficacy of HPP but also the food
structure. Several authors have described it as an essential factor of variability on
the resistance of microorganisms by comparing inactivation on food matrix and
culture media where the food displays a protective effect against HHP [10, 66, 67].

Among the technological or process factors, the pressure exerted, the treatment
time, the depressurisation rate, the temperature and the come-up time (CUT)
required to reach the desired pressure should be mentioned [40]. If the CUT is
prolonged, it is as if a pretreatment is performed, and the temperature is
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fundamental, it seems that values of 45–50°C increase the inactivation of pathogens
and yeasts [54].

It has been described in various publications that this treatment of HHP, 20–180
Mpa, can produce populations with sublethal damage [30, 68–70]. It is very impor-
tant to take into account if the treatment carried out in food can produce this type
of population since it would produce an estimate of economic life and erroneous
security by being able to survive and revive over time even if it is in low
concentrations.

The inactivation of L. monocytogenes in different meat products has been studied
by several authors [60, 71], which reported that pressure treatments of up to
300 MPa are insufficient to inactivate it.

In fermented products such as chorizo, it has been described that the application
of HHP can contribute to lowering the altering microbiota, without adverse effects
on fermentative bacteria with a treatment of 400 MPa/154 s [42].

The mechanism of action of HHP on microorganisms has been described by
various authors that causes damage to the cell membrane [30, 51, 72] and induces
morphological changes in the microorganism [73].

The cell membrane is damaged and therefore causes irreversible damage and cell
death. It produces crystallisation of the acyl chains of the phospholipid bilayer that
leads to bud formation, intracellular material leakage and membrane rupture [30].

Proteins at pressures greater than 100 MPa hydrophobic interactions tend to
increase in volume and will cause protein denaturation. In the case of enzymes, it
generates conformation changes and, therefore, cell damage and death [34, 74].

There is also inactivation of enzymes related to DNA replication and
transcription [34, 74].

2.4 Predictive modelling applied to meat products treated by HPP

Although the effectiveness of HHP application has been recognised by various
authors to reduce the levels of various pathogens to acceptable levels in several
foods, it is important to take into account the fact that the treatment can be
sublethal and only cause lesions in subpopulations of microbial cells. These cells can
recover from this type of lesions and grow during the period of storage of the
product or before its consumption, reaching levels above the levels allowed by
current legislation. Based on this, many authors evaluated and modelled the behav-
iour of L. monocytogenes during and after the treatment of APH in meat products,
that is, throughout their useful life [15, 25, 75–77]. These models are essential tools
for decision-making in the industry in terms of meeting microbiological criteria. In
addition to the predictive models described, there are models in the literature that
describe the probability of inactivation/recovery, or also called survival/death
(logistic) interface models, of L. monocytogenes in meat products or culture media.

Predictive models of inactivation developed in culture media, once validated in
specific food matrices such as chorizo, can be applied in the meat industry. Exam-
ples of these models would be those developed for L. monocytogenes and L. innocua
(as a surrogated for safety purpose) in meat products [5, 19, 22, 24–26].

In Table 1, several types of predictive models that consider treatment inactiva-
tion and/or growth on storage phase of meat product can be observed.

Bover-Cid et al. [22] developed and validated a polynomial model of the inacti-
vation of L. monocytogenes induced by HPP on dry-cured ham (Eq. (1)), as a func-
tion of the technological parameters: pressure intensities (347–852 MPa), pressure
holding time (2.3–15.75 min) and fluid temperature (7.6–24.4°C). Pressure and time
were the most critical factors influencing microbial inactivation, and the little effect
was observed applying pressures below 450 MPa. The increase in holding time for
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Reference Meat product Equation

Inactivation model during treatment

Bover-Cid et al. [5] Cured ham log N=N0

� �

¼ 38:653� 34:29 � aw � 0:0237 � P� 0:00349 � F2 þ 0:000334 � P � F

Growth model after treatment

Hereu et al. [14] Cooked ham log Nð Þ ¼ log 109:09

1þ 109:09
N0

�1

� �

� exp � 0:023� Tþ1:80ð Þð Þ2 � t�
6:30�23:85=T2ð Þ� ln 2ð Þ

0:023� Tþ1:80ð Þð Þ2

� �� �� �

Probability of recovery during and after treatment

Valdramidis et al. [18] Uncured meat Logit Prð Þ ¼ 62:08� 1:83 � 10�1 � Pþ 1:38 � 10�4 � P2 � 0:18 � 10�3 � P � ts � 4:25 �
10�3 � P � aW

Koseki and Yanamoto [78] Saline solution Logit Prð Þ ¼ 12:9973� 0:0775 � P� 9:1909 � log tð Þ þ 2:3331 � pHþ 1:6674 � IC

N and N0 represent the final and initial concentrations of the pathogen, respectively.
P = applied pressure; t = treatment time; ts = storage time; F = fat content; aw = water activity; T = storage temperature; IC = initial concentration of the pathogen, Pr = probability.

Table 1.
Predictive models obtained during/after the process of inactivation of L. monocytogenes by HHP on meat products.
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longer than 10 min and the temperature tested did not lead to a significant increase
in inactivation of the pathogen.

log N=N0

� �

¼� 380:3164þ 292:5942 � Plog � 56:1268 � Plog
2 þ 1:4090 � t

þ 0:0133 � t2 � 0:6423 � Plog � t
(1)

Bover-Cid et al. [5] used the response surface methodology (RSM) (Table 1) to
evaluate the effect of aw and fat content in the inactivation of L. monocytogenes by
HPP in dry-cured ham. Besides these two intrinsic factors, the pressure intensity
(347–600 MPa, during 5 min) was also considered as an independent variable for
model development. According to the best fitting polynomial equation, all the three
factors evaluated influenced on HHP inactivation, reaching inactivation levels from
0.92 to 6.82 logs.

Hereu et al. [25] obtained inactivation curves of L. monocytogenes on sliced RTE
cooked meat products, ham (Eq. (2)) and mortadella (Eq. (3)) (which differ mainly
on fat concentration), during HPP at pressures from 300 to 800 MPa. Their results
suggested that the fat content of mortadella would have a protective effect on L.
monocytogenes to pressure, in comparison with cooked ham. The log-linear with tail
primary model was adequate to describe the inactivation kinetics at different hold-
ing times, which means that a first-order kinetics was applicable to describe the
inactivation before a tailing effect appeared that suggests the presence of a more
resistant subpopulation of cells. Secondary model was also performed to establish
the relationship between the primary kinetic parameters, log Kmax and log Nres, and
pressure treatments. Combining the equations resulted from the primary and sec-
ondary modelling approaches; the inactivation of L. monocytogenes could be esti-
mated as a function of pressure and holding time

log N=N0
¼ log 10 log N0 � 108:0832�0:0121�P� �

� e� 10�2:9869þ0:0069�P�tð Þ þ 108:0832�0:0121�P
h i

� log N0ð Þ cooked hamð Þ

(2)

log N=N0
¼ log 10 log N0 � 108:6636�0:0125�P� �

� e� 10�3:6586þ0:0079�P�tð Þ þ 108:6636�0:0125�P
h i

� log N0ð Þ mortadellað Þ

(3)

Hereu et al. [14] built up another model for the estimation of growth of L.
monocytogenes in sliced cooked meat products (cooked ham and mortadella) after
pressurisation but includes other factors as two different inoculum levels (107 or
104 cfu/g), two physiological states of cells (freeze-stressed or cold-adapted) and
different storage temperatures (4, 8, and 12°C). The logistic model with delay
(primary model) was fitted to data to estimate the lag phase (λ) and the maximum
specific growth rate (μmax). Secondary modelling was performed, using the
Ratkowsky square root model (Table 1) and the relative lag time (RLT) concept.
They observed that the time to achieve a 2-log cfu/g concentration of L.
monocytogenes was similar for both physiological states. Freeze-stressed cells were
more resistant to pressures and showed more extended lag phase during storage
than the cold-adapted bacteria.

Based on logistic regression (Table 1), [18] concluded that the recovery of L.
monocytogenes in a simulated cured meat after HPP treatments is influenced by the
pressure applied, the storage time and the synergistic effect of pressure and aw. The
effect of salt reduction on the recovery of L. monocytogenes following HPP in meat
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systems was assessed. A protective effect was remarked at low aw values which led
to low inactivation levels both immediately and during storage.

Koseki and Yanamoto [78] developed a probability model (a simple linear logis-
tic regression model, R2 = 0.9213, Table 1) of recovery of L. monocytogenes on sliced
cooked ham during and after HHP treatment, with a storage of 10°C during 70 days.
Authors defined “recovery” as the detection of >102 cfu/g bacteria, and the ham
score was “1” as when there was a recovery of cells and “0” when not. The treat-
ment applied to 500 MPa for 10 min allowed the reduction of L. monocytogenes of 5
logs cfu/g, reaching below the detectable level (10 cfu/g). However, they described
a gradual increase of bacterial count during storage that at the end of the experi-
ment, reached 7–8 log cfu/g. This model does not only calculate the appropriate
process condition of HPP treatment but also provides information for the estima-
tion of risk of the recovery of L. monocytogenes during storage of the product.

Mussa et al. [79] obtained kinetic data on L. monocytogenes inactivation by HPP
on pork chop samples. The variables studied were pressure intensities (200–
400 MPa) and duration of pressure treatments (0–90 min). Interestingly, this is one
of the few studies in which the pressure inactivation kinetics was analysed assuming
a first-order kinetic process (Eq. (4)):

log N=N0

� �

¼ �kt (4)

where N refers to the number of viable cells in samples after pressure treat-
ments; N0 is the number of viable cells just before pressures achieved the intensities
set in the experimental design; t is the time in minutes; and k is the reaction rate
constant (min�1).

The D value, which is the treatment time at any given pressure required to
produce one decimal reduction, was calculated as the inverse of the slope (Eq. (5)):

D ¼ � 1=slope

� �

(5)

Two secondary models were assessed to describe the pressure dependence as a
function of kinetic parameters (k and decimal reduction time D): Arrhenius-type
and the pressure death time (PDT) models. Both models described well the kinetic
parameters (R > 0.96). Higher lethal effects were observed when higher pressures
were applied, with an increase in K values and a decrease in D values as pressure
levels increased. The holding time also had a significant effect on inactivation.

The pressure ZHP (the pressure range between which the decimal reduction
time changes by a factor of 10) was calculated as the negative of the inverse of the
slope of the curve of log D values versus pressure as follows (Eq. (6)):

ZHP ¼ � 1=slope

� �

(6)

Results indicated that to achieve a 5 log cfu/g reduction of L. monocytogenes
levels, approximately 7.5 min of pressure holding time, when pressure is set to be
400 MPa (D value = 1.49 min), would be necessary. At the same conditions of this
study, Mussa et al. [79] obtained a D value = 3.52 min on pork, which makes clear
that, besides the technological parameters, the type and composition of food influ-
ence on the destruction kinetics of L. monocytogenes by HPP.

Oliveira et al. [80] evaluated the effect of HPP (600 MPa/180 s at 25°C) in
combination with the application of natural phenolic bioactive carvacrol (at
200 ppm) to reduce Listeria innocua levels in a low-sodium sliced vacuum-packed
turkey breast ham during 60 days of storage at 4°C. The initial contamination of
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slices with L. innocua was �106 cfu/g of slice. The primary model of Baranyi and
Roberts, fitted to data obtained during the storage period, showed a significant
extension of shelf life of low-sodium vacuum-packed turkey breast ham, with the
reduction of maximum population density and the increase in lag phase duration.
L. innocua has been used as a surrogate of L. monocytogenes for processing plant
safety purposes, as it has similar physiological and metabolic characteristics to those
of pathogenic species [81].

The effect of HPP treatments and potassium lactate on inactivation of L.
monocytogenes was evaluated by Lerasle [26] considering the variables pressure
intensities (200–500), holding time (2–14 min) and potassium lactate concentra-
tions of 0 or 1.8% w/w. The Weibull model was fitted to the inactivation data
(log N versus time) obtained at the different pressure holding times evaluated. The
secondary model was a linear regression that defines log b as a function of the
pressure intensity and explanatory factors (Eq. (7)). Considering that the lactate
concentration effect was not significant (ANOVA, p > 0.05), the secondary
model was:

log b ¼ log b ∗�
P

Zp
þ ε; (7)

where Zp might be interpreted as the pressure required to reduce b by 10-fold
and logb* is the y-intercept and ε the model error. The estimated values for the
parameters are represented below (Eq. (8)):

log b ¼ 143�
P

3:1
þ ε (8)

Combining primary and secondary models makes it possible to recalculate the
log reduction obtained at various times and pressures intensities.

These models developed by Lerasle et al. [26] were subsequently applied in a
multi-criteria framework combining safety, hygiene and sensorial quality to inves-
tigate the possibility of extending the shelf life of a ready-to-cook poultry product,
using the HPP technology [82]. Models developed for Salmonella and E. coli were
also considered in the framework in which the maximum allowed contamination
level of L. monocytogenes was set to be 100 cfu/g (according to the microbiological
criteria of the foodstuffs defined by the Commission Regulation (EC) No 2073/
2005) [1]. The approach is a decision support tool for shelf life determination.

Also the significant inactivation effect (P < 0.001) of HHP (540 MPa/270 s) on
Enterobacteriaceae, E. coli and Pseudomonas, coagulase-negative Staphylococcus
(CNS) and LAB of natural casings and condiments used in the processing of cured
meat sausage using response surface methodology was described by Fraqueza et al.
[83]. Treated casings turned slightly whiter, but their resistance (FT) to breakage
(i.e. casings structural integrity) was not affected.

Recently, Guillou and Membré [52] have carried out a hierarchical model based
on a study of metadata of the determining factors in inactivation by the treatment
of high pressures in different microorganisms and substrates, concluding that those
more relevant factors studied were the species, the strain and the pH and that the
most resistant species was Staphylococcus and the most sensitive Salmonella.

Novel approaches have been described as the potential use of Listex™ P100 in
sausage “Alheira” combined with high hydrostatic pressure, applying Weibull
model [84] and concluding that at mild HHP treatment, phage P100 remained
active and seemed to present potential to be added in nonthermal inactivation of L.
monocytogenes.
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High pressure processing and biopreservation can contribute to food safety by
inactivation of bacterial contaminants. However, these treatments are inefficient
against bacterial endospores such as Bacillus and Clostridium species. Moreover,
HPP can induce spore germination [85]. In [85], it is reported that Lactococcus
lactis strain CH-CH15 was able to regrow after HPP treatments, thus an excellent
option to be preservative against Bacillus and Clostridium strains during chilled
storage. The inactivation model used was fitted by using a reparametrized
Weibull model, whereas growth curves of lactic acid bacteria were modelled with
a logistic model.

Predictive microbiology modelling easy-to-use software has been developed to
allow users involved in food safety management to use a tool to asses them and help
them for decision-making. Several applications have been developed, but just a few
had incorporated the prediction of HHP treatment. One of it is the “HP3”, available
online (www.hp3.cat) elaborated by the Institute of Agrifood Research and Tech-
nology (Spain), and another is microHibro (www.microhibro.com), built up by the
University of Córdoba (Spain) (Figure 1).

For further information, there are several reviews as [4, 10, 23, 30, 31, 78].

2.5 Other applications of HPP on meat products

Although the main application of HHP is enzymatic and microbial inactivation
to extend commercial life and inactivate pathogens, other possible applications such
as obtaining different types of fish, meat, egg and milk gels have been described.
Likewise, this technology accelerates the diffusion of solutes in various foods, the
solubilisation of gases and the extraction processes. The possibility of using high
pressures to keep food at temperatures below 0°C in a liquid state (at 207.5 MPa, the
water remains liquid at temperatures of �22°C) or to induce freezing
(supercooling) and ultra-fast defrosting constitutes a promising new field of study
and application in the food industry [34, 40]. Also applying low pressures, 100–
150 MPa have been employed to tenderised pre-rigour meat of rabbit, chicken, pork
and beef. Higher pressures, 250 MPa, has been applied, for example, before
smoking to treat roast beef and bacon, to inactivate microflora of minced meat or to
treat foie gras to extend shelf life [40, 41].

Figure 1.
Screenshot of the microHibro web application of a predictive model of HHP treatment of chorizo.
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3. Conclusion

High hydrostatic pressure treatment has been described to improve the micro-
biological safety and shelf life of ready-to-eat meat products, as a nonthermal
decontamination technology in the meat industry, applied at pre- or post-
packaging. There are a variety of factors that influence the treatment effect that
should be taken into account when applied to food. The pathogen widely studied in
this product is L. monocytogenes that reflects the concern of the food industry. The
predictive modelling is an important tool of the novel microbial food safety man-
agement strategy that provides with accurate information to demonstrate and
guarantee the safety and shelf life of the food products and also helps to the
optimisation of the meat treatment.
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