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Chapter

Biotechnology and Cultural 
Heritage Conservation
Franco Palla

Abstract

The deterioration of cultural asset is induced by biological, chemical, and 
physical factors, influenced by anthropogenic activity and environmental condi-
tions. In this study, the contribution of biotechnology is emphasized to define the 
conservation strategy, for a marble Fountain (Two Dragons, XV century) located in 
Palermo city center, based on an integrated approach and eco-friendly procedures. 
Biotechnological protocols are preliminarily applied as an integrated approach, 
based on microscopy observation, in vitro culture and genomic DNA analysis to 
recognize and characterize microbial communities. Several biological systems 
have been identified: green algae (Chlorella) and cyanobacteria (Cyanobium, 
Oscillatoria); bacteria (Arthrobacter, Bacillus, Micrococcus, Paracoccus); fungi 
(Alternaria, Aspergillus, Penicillium, Phoma, Fusarium, Cladosporium). In order to 
address biological colonization, the commercial Tea Tree Oil (Melaleuca alternifolia) 
and laboratory-distilled (Calamintha nepeta and Allium sativum) EOs, have been 
assayed by in vitro Agar disc diffusion, Well-plates diffusion, and Micro-dilution 
methods; the result allows to define the most appropriate EOs concentration to use. 
In a green conservation prospective, this study highlighted that EOs can potentially 
replace the traditional biocides, but the activity must be preliminary evaluated by 
centring the choose specifically on each microbial taxon identified.

Keywords: stonework deterioration, integrated approach, biocides, essential oil, 
green conservation.

1. Introduction

The biological colonization of stone artifact is basically related to the mineral 
components and bio-receptivity of the constitutive material, the presence of par-
ticulate on the surface, the environmental condition, and the availability of nutri-
ents [1–3]. Generally, for outdoor Fountains, the biodeterioration is mainly induced 
by microalgae and cyanobacteria [4], but other biological agents such as bacteria, 
fungi, mosses, and lichens were frequently revealed [5, 6]. Moreover, the biological 
colonization is enhanced by the occurrence of water that cooperate in deterioration 
processes [7], acting mechanically and chemically, producing visible effects on 
stonework surface (cracking, detachment, crusts formation, and chromatic altera-
tions) allowing to structural damage and loss of material [8–10].

Fungi (such as Alternaria, Cladosporium, Epicoccum, Aureobasidium, Phoma) have 
a significant biodeteriorative action and may penetrate into the stone surface, caus-
ing the bio-pitting; fungi colonies can be in close association with lichens [11, 12].
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Autotrophic (photolithotrophs and chemolithotrophs) and heterotrophic bacte-
ria have also been isolated from stonework and since many of these microorganisms 
contain pigments (β-carotene, α-bacterioruberin, and derivatives) and salinixan-
thin in their cell membranes, their proliferation can produce typical rosy stains on 
the stone surface [10, 13, 14].

Furthermore, the deterioration is also the direct result of atmospheric pollution 
due to soot, grease, dust, etc., implying the deposition of suspended particles on 
the stonework surface, enhancing the SO2 deposition, a very reactive compound 
with a significant corrosive effect on marble surface [15, 16]; especially for outdoor 
monument, anthropogenic factors must be also considered [17].

To control biodeteriogen growth of powerful biocides, as well as water-repel-
lents, with a broad spectrum of action are usually utilized against green and brown 
algae, bacteria, yeasts, lichens, molds, and micro-fungi [18–21].

In the last decades, integrated approaches (based on microscopy, in vitro 
culture and molecular biology analysis) have been applied to reveal and identify 
the greater number of microorganisms involved in the deterioration processes of 
cultural assets [22–31].

In this case study, in order to define adequate conservative strategies, the identifica-
tion and evaluation of biological colonization of the Two Dragons fountain (sculptured 
by Nunzio La Mattina, XV century) were carried out, providing needful information 
to choose the appropriate biocide both for active compound and concentration.

Recently, non-toxic natural compounds (essential oils, EOs), in order to replace 
the chemical compounds, have been utilized to control artworks biological coloni-
zation and to inhibit re-colonization events [32–37].

The aim of this work has been the revealing of microbial communities on the 
stonework surface, evaluating the antimicrobial activity of traditional (Benzalkonium 
chloride) and green biocides (Melaleuca alternifolia – TTOil, Calamintha nepeta and 
Allium sativum EOs) vs the identified microbial taxa [38–41].

The results of in vitro assays and controlled step by step application on stone-
work samples, prompt us to hypothesize the EOs as valid alternative to traditional 
biocides, in respecting human health and environment, according to modern 
restoration procedures.

2. Material and methods

2.1 Sampling

Samples were collected from different Fountain areas, affected by chromatic 
alterations, deposits, exfoliations, incrustation, or biological patinas, by sterile 
swabs moistened with NaCl-Tween solution (0.9% Sodium Chloride, 0.02% 
Tween-80, Polyoxyethylene sorbitan monooleate) or sterile scalpel Figure 1.

2.2 In vitro microbial culture

Nutritive media specific for bacteria or fungi colonies (Nutrient or Sabouraud 
agar, Difco) were inoculated by the swab collected samples, incubating at 30°C for 
18–48 hours.

2.3 Morphological analysis

Morphological profiles of algae and bryophytes were revealed by stereomicro-
scope (Wild Heerbrugg) and digital microscope (DinoLite) observations. After 
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Lugol’s iodine staining, the reproductive structures of isolated fungal colonies were 
also distinguished by Optical Microscope (Leica). Coccoid bacteria have also been 
noticed by Scanning Electronic Microscope (Leica Cambridge – Leo 400), after 
coating (Agar-Auto-Sputter – Coater B7341) by gold particles (13 nm).

2.4 Molecular biology investigation

Patina sample of approximately 200 mg, collected by sterile scalpel, undergone 
to three freezing (−80°C) and thawing (+ 55°C) cycles, in presence of 500 μl –  
1X TE Buffer (10 mM Tris-HCl pH 8.0/1 mM EDTA), to achieve the lysis of 
microbial cells; genomic DNA was extracted by QI Amp DNA stool Kit (Qiagen), 
partially modified (+ Proteinase K (5 mg/ml) and incubation at 65°C for 4 hours). 
Instead, from in vitro isolated microbial colony, the Genomic DNA Purification Kit 
(Fermentas) has been appropriate.

Genomic DNAs were utilized as template molecules in Polymerase Chain 
Reaction (PCR), in order to amplify bacterial or fungal target sequences, specifi-
cally, the Internal Transcribed Sequences (ITS) 16-23S rRNA for bacterial and ITS 
18-26S rRNA for fungal species [25, 26, 40]. Each PCR reaction solution consisted 
of: microbial Genomic DNA as template; 10 μM Primer Forward; 10 μM Primer 
Reverse; 3.0 mM dNTP mix; 1X Reaction Buffer including MgCl2; 0.5Us Taq DNA 
polymerase (Sigma).

PCR products were resolved by electrophoresis on 2.5% agarose gels (1X TAE –  
Tris-HCl/Acetate/EDTA, in 1X SYBER-safe DNA gel stain) and related aliquots 
were sequenced by Eurofins MWG-Operon sequencing service (Germany). 

Figure 1. 
Stonework altered areas, sampling performed by sterile swab o scalpel: (A) dark-rust red area;  
(B) light – green calcareous deposit; (C) dark-green area.



Heritage

4

Referring to genomic databases (EMBL-Germany, NIH-USA), the sequences were 
analyzed (percentage of similarity) by BLAST analyzer [42].

2.5 Commercial (CB) and natural (EOs) biocides

The antimicrobial activity of: (i) commercial EOs, Melaleuca alternifolia 
(Maiden and Betche) Cheel -Tea Tree Oil; (ii) laboratory distilled EOs (Calamintha 
nepeta (L.) Savi, Allium sativum L.; (iii) Benzalkonium chloride commercial biocides 
(CB), was tested by outlined in vitro assays [36–38].

The microbial taxa were Bacillus subtilis, Micrococcus luteus, Penicillium chrysoge-
num, Aspergillus spp.

2.6 Antimicrobial activity assays

Three in vitro methods, Agar disc diffusion, Well-plates diffusion, and Micro-
dilution in micro-titer plates [38, 43, 44] were performed:

• Agar disc diffusion: paper disc (4 mm in diameter) was placed onto the sur-
face of Nutrient or Sabouraud agar (90 mm Petri dish), previously wetted 
with 10 μl of CBs (25, 50%) or EOs (12.5, 25, 50, 100%) The agar surface 
has been previously seeded by microbial cells (bacterial cells = 1 × 106 CFU/
ml or fungal suspension = 1 × 104 conidia/ml) and incubated for 18–48 h at 
30 ± 1°C. Confluent microbial growth was observed and the diameter (mm) of 
growth-inhibition-halo measured (> 6 mm = sensible; < 6 mm = resistant); CB 
was Benzalkonium chloride (25, 50%). Each test was performed in triplicate.

• Well plate diffusion: the microbial inoculum was uniformly spread on Nutrient 
or Sabouraud agar surface, then holes of 4 mm in diameter were punched asep-
tically [38] and 10 μl aliquots (12.5, 25, 50, 100%) of each essential oil solutions 
loaded. After 18/48 h of incubation at 30 ± 1°C, the diameter (mm) of growth 
inhibition halos were measured. Each test was performed in triplicate.

• Micro-dilution: was performed in 96-wells micro-titer, in order to define 
the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal 
Concentration (MBC), distinguishing between biocide or biostatic action 
[39]. In each well, 30 μl of plant extracts (6.25, 12.5, 25, 50, 100%)/ liquid 
nutritive medium and an equal volume of microbial suspension were added; 
to facilitate the dispersion of the oil in the medium solution, 1% of Tween 80 
(not toxic for microbial cells) was added. Benzalkonium chloride (0.2%, vol/
vol) was utilized as CB. Microbial growth, after 18 h of incubation at 30°C was 
evaluated by estimating the optical density at 500–600 nm. The MIC value was 
measured as the lowest concentration corresponding to any visible microbial 
growth, after incubation at 30°C. The MBC and MFC were determined as 
the lowest concentration of antimicrobial agent able to kill the 99.5% of the 
original inoculum, evaluating on antimicrobial-free sub-culture [45].

3. Results

Green algae as Chlorella (Figure 2) and cyanobacteria as Cyanobium and 
Oscillatoria genera were revealed in fountain samples, classified as biodeteriogen 
and also as first pioneering of stone substrates colonization. Particularly, algae can 
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induce carbonate precipitation on stone substrates and their metabolic processes 
also generate organic acids (aspartic, citric, glutamic, glycolic, oxalic, and uric) 
promoting the dissolution of same minerals [3, 46, 47]. Cyanobacteria, algae, and 
lichens contribute to the weathering of stone in humid as well as in semiarid and 
arid environments [48–50]. Furthermore, cell compounds such as chlorophyll, 
carotenoid, and melanin may generate chromatic alteration from yellow, orange, 
and red to brown [10, 13, 51].

Bacterial and fungal diversity was also distinguished, bacteria or fungi genera 
mainly belonging to Arthrobacter, Bacillus, Micrococcus or Alternaria, Fusarium, 
Cladosporium, Penicillium, and Aspergillus, respectively (Figures 3–5). Moreover, 
bacteria of the Bacillus genus are able to produce crystalline aggregates and pre-
cipitates (carbonate and phosphate), which can form insoluble complexes with 
pigments, producing different spots on stonework surface [52, 53]. Fungi, in 
relationship to their metabolic activities, are able to produce efflorescence and 
patina, breaking and cracking processes, contributing to chemical-physical altera-
tion of the constitutive materials [54, 55]. Fungi also represents an important group 
of deteriogen systems for stonework exposed to the environment, due to the release 
of acids compounds during hyphae development or in the apical growth zones, able 
to penetrate inside the stone surface [56, 57].

Finally, biological systems referable to Mosses [58] were revealed in a green 
patina, Figure 1C, with a detrimental action related to the keeping of moisture, the 
production of carbonic acid and, after their death, the indirect damages by enrich-
ing and increasing the humus content of stone surfaces, supporting the consequent 
growth of plant species [59].

In order to inhibit biological colonization, traditional (benzalkonium chloride) 
or green (Melaleuca alternifolia, Calamintha nepeta, and Allium sativum EOs) 
biocides have been tested.

In Figure 6, the inhibition activity of Melaleuca alternifolia (TTOil) vs. 
Bacillus subtilis (A) or Micrococcus luteus (B) has been evaluated by the Well 
plate diffusion method; the size of inhibition halos is related to the essential oil 
concentration.

Figure 2. 
Chlorella green algae, optical microscope images; bar = 10 micromillimeters.
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Figure 4. 
SEM micrograph of Coccoid bacterial cell; bar = 1 micromillimeter.

Figure 3. 
Morphological profile of pigmented bacterial cells isolated from the sampled areas on nutrient agar: (A) 
Microcossus sp. colonies; (B) different bacterial colonies; Bacillus sp. colonies agar; plates incubated at 30°C 
for 18 h.
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The antimicrobial activity has been also performed using the three EOs or CB 
at different concentration (12.5, 25.0, and 50.0%) vs microbial taxa identified 
in the stonework colonized areas; the results have been summarized in Table 1. 
Particularly, a relevant inhibition on bacterial growth was performed by M. alter-
nifolia and A. sativum EOs against B. subtilis and M. roseus, so strong that the halo 
inhibition was equal to the petri dish diameter.

Minimum Inhibitory Concentration (MIC) vs bacterial colonies has been 
evaluated by the Microdilution method. Particularly, biocidal activity vs M. luteus 
and B. subtilis has been showed by M. alternifolia and C. nepeta EOs; while A. 
sativum EO showed both biocidal and biostatic activity vs M. luteus and biocidal 
activity against B. subtilis (Table 2); the MIC related to benzalkonium chloride 
was also performed.

Figure 5. 
Morphological profile of Aspergillus sp. colony isolated on Sabouraud agar (A), related fungal spore and 
reproductive structure stained by Lugol’s iodine reactive (B–C); optical microscopy (40× magnification).

Figure 6. 
Well plate diffusion method. Antimicrobial activity of Melaleuca alternifolia (TTOil) vs. Bacillus subtilis 
(A) or Micrococcus luteus (B). The inhibition halos show a different antimicrobial activity related to the EO 
concentration.
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4. Conclusions

The results showed that the fountains are differently colonized by several 
biological systems (Table 3).

Particularly for the dark-greenish area, Mosses [58] were also revealed, enhanc-
ing the bio-detrimental action due to the keeping of moisture, the production of 
carbonic acid and, after their death, enriching and increasing the humus content 
helping a following growth of plants on the stonework surface.

The identified colonizers were utilized to test the antimicrobial activity of three 
EOs Melaleuca alternifolia, Calamintha nepeta, and Allium sativum, in order to test 
natural product as alternative biocide. In Figure 7, the growth inhibition activity, 
measured by both Agar disc and Well plate diffusion methods of the three EOs was 
performed in parallel to a commercial biocide benzalkonium chloride.

The results of this study confirm the need of a fuller identification of microbial 
colonizers in order to perform an adequate biocidal treatment, focalizing the atten-
tion on green alternatives.

The innocuousness of essential oils in respecting of human health and envi-
ronment protection, prompt us to hypothesize the use of these plant products as 

EOs or CB Micrococcus luteus (%) Bacillus subtilis (%)

Tea tree oil 0.6 0.6

Calamintha nepeta 1.56 1.56

Allium sativum 100 100

Benzalkonium chloride 0.0031 0.0031

Table 2. 
Minimum inhibitory concentration (MIC) %, of EOs and CB vs. bacterial taxa.

Microbial taxa Essential oils (EOs) Classical biocide (CB)

(%) Melaleuca 

alternifolia

Calamintha 

nepeta

Allium 

sativum

Benzalkonium chloride

Bacillus

subtilis

50.0 * 7.0 * 9.2

25.0 8.4 6.5 9.2 7.0

12.5 5.0 3 5.5 4.0

Micrococcus roseus 50.00 * 8 * 9.0

25.0 8.0 6 9.0 7.0

12.5 2 2 4 4.0

Penicillium chrysogenum 50.0 8.2 5.0 10 4.0

25.0 6.5 3.8 7.0 3.0

12.5 5.0 2.5 4.2 ≥1

Aspergillus spp. 50.0 6.8 5.0 10 3.0

25.0 6.0 3.0 6.9 2.0

12.5 3.8 2.5 4.0 ≥1

*Total inhibition of microbial growth.

Table 1. 
Well plates diffusion method: Measurement of microbial growth inhibition as halo diameter (mm): 
Diameter ≥ 9 mm. (sensible strain); 6–9 mm. (relative sensible strain); ≤ 6 mm (resistant strain).
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natural biocides, although more studies on permanence and durability on artifacts 
surfaces are needed.

The antimicrobial efficiency of these and other vegetal biocompatible extracts is 
on-going in our laboratory in order to set up green strategies to control the biodete-
riogen growth and colonization on cultural assets.
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Area Algae Bacteria Fungi Mosses

A. Dark-rust red Chlorella sp.

Cyanobium sp.

Micrococcus sp. Aspergillus sp.

Cladosporium sp.

Fusarium sp.

–

B. Light-green 

calcareous deposit

Chlorella sp. Bacillus sp. 

Arthrobacter sp.

– –

C. Dark-greenish Chlorella sp.

Oscillatoria sp.

Cyanobium sp.

Bacillus sp. 

Micrococcus sp.

Alternaria sp.

Aspergillus sp.

Penicillium sp

Bryophyta

class 

Bryopsida

Table 3. 
Microbial taxa colonizing stonework areas showed in Figure 1.

Figure 7. 
Evaluation of the growth inhibition activity of the three EOs and the CB, against two identified bacterial 
and fungal taxa. Histograms represent the medium value obtained performing both Agar disc and Well plate 
diffusion methods for each sample, in triplicate.
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