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Chapter

Snakebite Therapeutics Based
on Endogenous Inhibitors
from Vipers

Narumi Aoki-Shioi and Cassandra M. Modahl

Abstract

Venomous snakebite is a major human health issue in many countries and has
been categorized as a neglected tropical disease by the World Health Organization.
Venomous snakes have evolved to produce venom, which is a complex mixture of
toxic proteins and peptides, both enzymatic and nonenzymatic in nature. In this
current era of high-throughput technologies, venomics projects, which include
genome, transcriptome, and proteome analyses of various venomous species, have
been conducted to characterize divergent venom phenotypes and the evolution of
venom-related genes. Additionally, venomics can also inform about mechanisms of
toxin production, storage, and delivery. Venomics can guide antivenom and thera-
peutic strategies against envenomations and identify new toxin-derived drugs/tools.
One potentially promising drug development direction is the use of endogenous
inhibitors present in snake venom glands and serum that could be useful for snake-
bite therapeutics. These inhibitors suppress the activity of venom proteases, enzy-
matic proteins responsible for the irreversible damage from snakebite. This book
chapter will focus on insights from venomous snake adaptations, such as the evolu-
tion of venom proteases to generate diverse activities and snake natural resistance
to inhibit activity, and how this information can inform and have applications in
the treatment of venomous snakebite.

Keywords: venomous snake, snake venom metalloprotease, hemorrhagic,
nonhemorrhagic, toxin resistance, natural inhibitor, endogenous inhibitor

1. Introduction

There are over 3700 extant snake species, but only approximately 200 in
600 venomous snake species, belonging to families Viperidae, Elapidae,
Atractaspididae, and some of Colubridae, are considered medically important on
public health aspects of snakebite [https://www.who.int/snakebites/disease/en/;
http://www.reptile-database.org/, Accessed: 2019-11-22]. The World Health Orga-
nization (WHO) has recognized snakebite envenomation as a neglected tropical
disease and has characterized a subset of venomous snake species as being of higher
medical importance in the four geographical areas of the world snakebite is most
frequent. The definition of highest medical importance to human public health
(category 1) is “highly venomous snakes which are common or widespread and
cause numerous snakebites, resulting in high levels of morbidity, disability, or
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mortality” [1]. These species are predominately from Elapidae and Viperidae fami-
lies, but the majority of these species are from the family Viperidae (vipers and pit
vipers). Viperidae species consist of approximately 50-100% of listed species in
each geographical area and make up just over 60% of the entire list (Table 1).
Venom variation results in pharmacological and clinical symptomology differ-
ences across venomous snake species, primarily varying in the extent of snakebite
tissue damage and toxicity. In recent years, venom has been investigated using
comprehensive venomics approaches, combining proteomics, transcriptomics, and
genomics, in an attempt to better understand venom components responsible for
variation. Next-generation sequencing (NGS) has greatly accelerated the pace of
venomics, making high-throughput outputs possible; several venom gland
transcriptomes can be sequenced together using multiplexed barcoded libraries,
with little difference in cost, and third-generation longer read technologies, such as
Oxford Nanopore (minION), are now available to correct transcriptome assembly
errors [2]. Venom characterization that integrates both transcriptomics with prote-
omics has optimized proteomics by providing a species-specific database (venom
gland transcriptome) for toxin identification, an ideal method to better distinguish
unique toxins present in each species [3]. Current venom gland transcriptomes,
completed using NGS technologies (Illumina and Roche) and E. coli, generated
cDNA clone libraries, and assembled genomes of venomous snakes categorized as of
highest medical importance are listed in Table 2. In our investigation, completed
transcriptomes in snake species in category 1 are only about 20% despite the

Geographical regions Species Total
Atractaspidjdae | Atractaspis andersonii 1
| Dendroaspis viridis, Dendroaspis angusticeps, Dendroaspis jamesoni,
\Dendroaspis polylepis;
Elapidae I’Vaja m?ch]i:n?en, ]\:aja fmnullferc-l, Naja ashle.ia, Naj.n mjab{'m, {ann I?aje,. N-n]:a 17
aja , Naja Naja nigricollis, Naja nigricincta,
Naja nivea, Naja oxiana, Naja senegalensis
Africa and the Middle East
Bitis arietans, Bitis gabonicaa, Bitis nasicornis, Bitis rhinocerosa,
Cerastes cerastes, Cerastes gasperettii;
| Daboia mauritanicaa, Daboia palaestinaea;
. . Echis borkini, Echis carinatus, Echis coloratus, Echis jogeri,
leerldae | Echis I  Echis Il Echis isa, Echis I . Echis 20
\pyramidum;
[ Macrovipera lebetina, Montivipera xanthinal;
Pseudocerastes persicus,
| Acanthophis laevisa;
Bungarus caeruleus, Bungarus candidus, Bungarus niger, Bungarus
I Bungarus multici) Bungarus sindk Bungarus walli;
Naja atra, Naja kaouthia, Naja naja, Naja lalayensis, Naja philippi 2
Elapidae Naja samarensis, Naja siamensis, Naja sumatrana, Naja sputatrix, Naja oxiana; 25
| Notechis scutatus;
Oxyuranus scutellatus,
. . |Pseudonaja affinis, Pseudechis australisb, Pseudonaj deni, Pseud
Asia and Australasia nuchalis, Pseudonaja textilis.
Cryptelytrops albolabrisa, Cryptelytrops erythrurusa, Cryptelytrops insularisa,
Calloselasma rhodostoma;
Deinagkistrodon acutus, Daboia russeliia, Daboia si isa, Deinagkistrodon
acutu;
Viperidae Echis carinatus; 17
Gloydius blomhoffii, Gloydius brevicaudus, Gloydius halys;
Hypnale hypnale; Macrovipera lebetina,
| Protobothrops flavoviridis, Protobothrops mucrosquamatus;
Viridovipera stejnegeria,
EurOp e o Vipera ammodytes, Vipera berus, Vipera aspis,
Viperidae 3
| Agkistrodon bilineatus, Agkistrodon contortrix, Agkistrodon piscivorus,
| Agkistrodon tayloria;
Bothrops asper, Bothrops atrox, Bothrops cf. atrox (Irinidad), Bothrops
bilineatus, Bothrops alternatus, Bothrops brazili, Bothrops caribbaeus (St Lucia),
. Bothrops I I (Martinique), Bothrops diporusa, Bothrops jararaca,
the Americas Viperida Bothrops jararacussu, Bothrops leucurus, Bothrops mattogrossensisa, Bothrops 31
peridae moojeni, Bothrops pictus, Bothrops venezuelensis;
Crotalus adamanteus, Crotalus atrox, Crotalus durissus, Crotalus durissus
(Aruba), Crotalus horridus, Crotalus oreganusa, Crotalus simus, Crotalus
scutulatus, Crotalus totonacusa,, Crotalus viridis,
Lachesis muta

Table 1.
Venomous snakes of highest medical importance (category 1); the table was modified classified sub-avea in each
of four broad geographical regions in tables 3—6 of Fiftyninth report/WHO Expert Committee.
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Venom gland transcriptomes Venomous snake genomes
Species Reference Species Reference
Naja kaouthia, [75, 76] Notechis scutaius Unpublished
Dendroaspis angusticeps, — [77] Pseudonaja textilis Unpublished
Dendroaspis jamesoni, [77]
. Dendroaspis polylepis, [77]

Elapidae Dendroaspis viridis [77]
Pseudonaja nuchalis [78]
Pseudonaja textilis [78]
Agkistrodon piscivorus [2,79] Deinagkistrodon acutus [104]
leucostoma [80] Protobothrops mucrosquamatus — [105]
Bitis gabonica [81] Protobothrops flavoviridis [106]
Bothrops alternatus [82, 83] Vipera berus [107]
Bothrops asper [84, 85] Crotalus viridis [108]
Bothrops atrox [75, 84, 86-88] | Crotalus horridus [109]
Bothrops jararaca, [89]
Bothrops jararacussu [90-92]
Bothrops moojeni [90, 91, 93, 94]
Crotalus adamanteus [95, 96]

Viperidae Crotalus durissus terrificus [83,95]
Crotalus horridus 971
Crotalus oreganus helleri  [97]
Crotalus scutulatus, (82,98, 99]
Crotalus simus [100]
Echis carinatus shochureki  [100, 101]
Echis coloratus [31,102]
Echis ocellatus [100]
Echis pyramidum leakeyi [103]
Lachesis muta [82]
Protobothrops flavoviridis

Table 2.

Venom gland transcriptomes and currently completed snake genomes of species in category 1 [75-109].

advance in increasing sequencing data. Additionally, on the completed snake
genome, sequences are also less than 10% limited number.

Transcriptome and proteome analyses of Viperidae species have consistently
found that snake venom metalloproteinases (SVMPs), phospholipases A, (PLA;s),
serine proteinases, and L-amino acid oxidases are the most abundant toxins in these
venoms [4]. These toxins are all enzymatic, providing immobilization and digestive
roles in prey capture. Snakebites from these species result in local tissue damage,
hemorrhage, and impaired coagulation symptoms in humans, which can lead to
disability and mortality [5].

To date, the only effective snakebite treatment is intravenous administration of
antibodies (often called antivenom), which come from animals immunized with
toxins. However, using heterologous antibodies generated from numerous venom
components has inherent weaknesses, such as an increased likelihood of an allergic
reaction or life-threatening anaphylactic shock. Further, antivenom does not abol-
ish local tissue damage, as it is intravenous and is usually not administered quickly
enough. Thus, there is the issue of incomplete neutralization because of geographic
venom variation, and high manufacturing costs and regulations have resulted in a
struggle to properly match antivenom to venomous snakes of each locality and
maintain antivenom stock [5]. To alleviate these issues, specific toxin inhibitors are
actively being characterized and evaluated that neutralize snake venom toxicity and
would work as an alternative antivenom snakebite therapy [6-8]. The challenge still
remains to investigate the safety and efficiency of these toxin inhibitors to treat
snakebite envenoming in humans.

Venomous snakes have endogenous inhibitors circulating in their plasma that
provide resistance to their own venoms. These inhibitors can suppress the activity
of enzymatic venom components, such as SVMPs, with high specificity. SVMPs are
key venom components in viper venoms that contribute to hemorrhage and tissue
damage; therefore, targeting these enzymes would greatly reduce human morbidity
and mortality from snakebite. In this review, an overview of SVMPs is provided,
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with a focus on structure-function relationships within the various classes of
SVMPS across snake families, and is followed by insights into how snake endoge-
nous inhibitors function to abolish SVMP activity. The goal of our group is to design
peptide inhibitors that bind to hemorrhagic SVMPs with high affinity and effec-
tively neutralize these toxins. This chapter deeply understands the target SVMP
behaviors on the snakebite issue and is a summary of our current work with
historical studies in endogenous inhibitor of venomous snake.

2. Metalloproteinases

Metalloproteinases (MPs) are one of the most functionally diverse proteases in
more than 50 families characterized in the MEROP database [9]. MPs play a signif-
icant role in organism homeostasis, and are involved in, cell invasion, cell fertiliza-
tion, self-defense, and reproduction. Metalloproteinases are classified into two
subgroups known by their enzyme commission numbers (ECNs), exopeptidases
(ECN 3.4.17), and endopeptidases (ECN 3.4.24). The second group are enzymes
from the metzincin family and include serralysins, astacins, adamalysins (a
disintegrin and metalloproteinase domain; ADAMs), and matrix metalloproteinases
(MMPs). There have been many studies documenting endogenous
metalloproteinase dysregulation in cancer cells [10], especially mammalian
ADAMs. ADAM proteins and SVMPs belonged to the same M12 family [11], and
similar domain features are present for both. For SVMPs, three-dimensional struc-
tures and well-characterized effects on animal models in vivo have been published.
Thus, the functional and structural insights provided by SVMPs have been useful
for human ADAM inferences.

2.1 Structural classification of snake venom metalloproteinases (SVMPs)

All SVMP genes exhibit a conserved signal peptide region and a pro-(pre) domain.
The number of domains following these conserved N-terminal regions varies, and the
arrangements of the domains have resulted in the categorization of SVMPs into three
main classes. SVMPs of the P-III class consist of the metalloproteinase domain (MD),
disintegrin-like domain (DID), and cysteine-rich domain (CRD). P-IIs have a MD
and DID, and P-I has only a MD. Further, each class has subclasses classified for
different representation forms (P-Ia, P-Ila-e, P-IIla-d). These subclasses include
dimeric or truncate isoforms that have only been observed within the venom and are
generated mainly by post-translational modifications.

There have been many observations of gene neofunctionalization generating large
families of venom proteins with multiple functionalities, and the SVMP gene family is
an example of this. SVMPs originated from the gene duplication of an ancestral
ADAM gene. The ADAM 28 precursor gene is the closed SVMP homolog present in
nonvenomous snakes and is also present in mammalian species [12, 13]. Sequence
comparisons between the lizard (Anolis carolinensis) ADAM 28 gene and viper (Echis
ocellatus) SVMP gene suggested that SVMPs originated from a nonsense mutation
following ADAM gene duplication. This nucleotide substitution resulted in a chain-
termination codon (STOP codon) at the end of exon 12, following the CRD. The
modified gene precursor produced proteins that were devoid of the C-terminal
membrane anchor and cytoplasmic region present in ADAMs [14]. As more snake
genome sequences have become available, it has been hypothesized that the ancestral
SVMP coded for the P-III class of SVMPs. Gene duplications of P-III SVMPs resulted
in P-II and P-I SVMP genes, each generated by domain loss from splicing site muta-
tions. These last two classes, P-II and P-I, are only found in Viperidae. The reason
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why a large number of different SVMPs are expressed in viper venoms is still unclear,
even though some of these SVMPs are not primary lethal toxins.

SVMPs constitute more than 30% of the total venom proteins present in many
Viperidae species. While these proteins are less abundant in the venoms of Elapidae,
Atractaspididae, and Colubridae, they appear to be ubiquitously occurring [15, 16].
These observations suggest that P-III SVMP in Elapidae, Atractaspididae, and
Colubridae venoms may have a conserve ancestral function and serve a common
biological role in snake envenomation. Therefore, the functional roles of the diver-
sified SVMPs are important for the clinical symptomology associated with
Viperidae envenoming in humans. Domain structure, at least the topological shape,
and sequence, especially the catalytic motif on the MD, are very similar among
SVMPs, but SVMP activities vary, including their target substrates. Elucidating the
structure-function relationships within this protein superfamily has applications for
both protein evolution and snakebite treatment.

2.2 SVMP structure-function relationships and mechanism of action

Viperid snakebites are characterized by severe hemorrhagic, microvessel dam-
age and inflammation, both local and systemic [17]. There is strong evidence from
in vivo and in vitro studies of isolated SVMPs that these proteins are responsible for
snakebite hemorrhage. Mitigating hemorrhage is critical in snakebite treatment;
therefore studying the SVMP molecular mechanism of inducing hemorrhage is of
critical importance. Hemorrhage results from SVMP proteolysis, targeted cleavage
of extracellular matrix components, transmembrane receptors, and fibrinogen,
mostly around microvessels. Interestingly, despite sharing similar catalytic activity,
not all SVMPs induce hemorrhage in vivo. SVMP effects also include blood coagu-
lation irregularities, platelet aggregation, cell infiltration, apoptosis-induced activ-
ity, and alternations in vascular permeability, even if these SVMPs do not show
hemorrhagic activity [17]. These additional functionalities and targets likely result
from C-terminal P-III SVMP binding, not only the catalytic activity of the N-
terminally located MP domain [18]. To design inhibitors to neutralized hemorrhagic
effects of SVMPs, we must first understand SVMP targets, as well as the tissue
distribution and localization of SVMPs upon envenomation.

Both of P-IIT and P-I SVMPs have hemorrhagic activities, but P-III SVMPs tend
to show greater hemorrhagic activity than P-I SVMPs [19, 20]. It has been proposed
that the occurrence of hemorrhage results from the degradation of the vascular
basement membrane of capillaries. Immunofluorescence confocal microscopy,
immunochemical and proteomic analyses of tissue, and exudate in vivo have
revealed a distinct pattern of P-I and P-III SVMP distribution in tissue. Observations
from SVMPs labeled with Alexa Fluor 647 have found that P-III SVMP co-localized
with capillary collagen IV, especially in those of microvesicles. P-I SVMPs applied to
whole tissues appear to function primarily in the degradation of basement mem-
brane components [21]. Hemorrhagic P-I and P-III SVMPs show a preference for
type IV collagen in targeted degradation. ].M. Gutiérrez et al. provided a two-step
hypothesis for SVMP mechanism of hemorrhage [21]. First, SVMPs hydrolyze type
IV collagen and perlecan at the basement membrane components of capillaries and
surrounding endothelial cells, resulting in a weakening of the mechanical stability of
the basement membrane and microvessel wall. The second step occurs when the
biophysical hemodynamic forces operating in microcirculation induce a distention
in the wall, causing capillaries to disrupt, followed by consequent extravasation.

SVMP hemorrhage disrupts capillary networks, facilitating toxin dispersion. In
2016, reviews by Sanhajariya and colleagues investigated snake venom pharmaco-
kinetics using an ELISA time course, varying venom concentrations mixed with the
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plasma of laboratory animals (rat, rabbit, and sheep) and humans [22]. In labora-
tory animals, two phases were observed in the metabolism of snake venom by
intravenous injection of the venoms or toxins: the first phase consisting of rapid
distribution with half-lives of 5-48 min and a second a slow elimination phase with
half-lives of 0.8-28 h. Half-lives of the second phase did not show a significant
difference among the species (Bothrops alternatus, Vipera aspis, and Naja sp.)
explored under intravenous injection, but Naja sp. did show a twofold shorter phase
time than Vipera aspis 32 hours after intermuscular injection. For humans, venom
concentrations in plasma were examined from 24 pharmacokinetic studies in
humans that used similar ELISA criteria. Venom concentrations of the patients
bitten by vipers were typically higher than those of by elapids. Eventually, total 218
timed concentration data of 145 patients bitten by snakes of Viperidae and Elapid
were used for the computational analysis within a nonlinear mixed-effects model-
ing framework with NONMEM. The result provided an estimated venom elimina-
tion half-life of 9.71 £ 1.29 h. Interestingly, these data also show that there is no big
difference between Viperid and Elapid. It is very important to understand the
certain pharmacokinetic of venom for post-treatment of inhibitor to neutralize
toxicity of venoms.

3. Toxin resistance in venomous snakes

Given the toxic and proteolytic nature of venom, it is of the utmost importance
that venomous snakes are protected against the activity of their own venom. This is
an interesting area of research because venoms, especially viper venoms, have high
concentrations of proteases that must be stored in an inactive state in the venom
gland to prevent degradation of both the snake’s own tissue and other proteins
present in the venom. These proteases must then be readily activated when deliv-
ered into prey, requiring a finely tuned on/off switch. Here, we briefly summarize
how these toxins are regulated in snake venom glands, with a focus on endogenous
inhibitors, especially SVMP inhibitors, as SVMPs are one of the major venom
compounds in Viperid snake venoms.

3.1 Mechanisms of toxin resistance

Three toxin resistance mechanisms have been proposed for venomous snakes:
(1) target receptor mutations, (2) venom gland physiological conditions, and (3)
inhibitors present in the venom gland or blood circulation. For the first mechanism,
limited mutations on target receptors in snakes prevent the binding of their own
toxins [23-25]. An example of this has been described by Takacs et al., where
resistance against conspecific a-neurotoxins, major lethal components of Elapidae
venoms, has been shown to be mediated by a unique N-glycosylation of the nico-
tinic acetylcholine receptor ligand binding domain of Elapidae snakes [23]. This
observation has only been made for a few Elapidae species, but there is currently a
limited amount of research in this area. The second mechanism involves the phys-
iological conditions within the venom gland and those required for enzymatic
toxins to be active. A high concentration of citrate is present in venom, and this
results in a low pH environment. It is estimated that 25% of dried crude venom (30—
150 mM) from Crotalus sp., Agkistrodon sp., Bothrops sp. Dendroaspis sp., Sistrurus
miliarius barbouri, Bitis gabonica gabonica, Vipera russellii russellii, and Lachesis muta
is citrate. Citrate concentrations of 18 or 27 mM exogenously added to whole venom
have been shown to inhibit protease activity in vitro [26]. Secreted whole venom of
Crotalus sp. has been observed to be acidic (pH 5.25-5.75), suggestive of an acidic
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storage condition for venom enzymes, which then when delivered into prey or
human tissue at a pH of 7.2-7.4, these enzymes become activated [27]. In addition
to the acidic storage conditions of the venom gland, four tripeptide inhibitors of
venom metalloproteinases, pEKW, pENW, pEQW, and pERW, have been
documented in the venoms of Protobothrops mucrosquamatus [28, 29], Bothrops asper
[30], Echis ocellatus, Cerastes cerastes cevastes [31], and some rattlesnakes [32] and are
likely present in the venom gland lumen. These inhibitors have been found in
relatively large amounts (approximate concentrations in P. mucrosquamatus venom
were reported greater than 5.0 mM), but their inhibitory activity is not strong, with
IC5g values between 0.15 and 0.95 mM for different SVMPs in vitro [28, 32]. The
X-ray crystal structure of a SVMP complexed with a pExW inhibitor revealed the
indole ring of Trp in the pExW inhibitor stacked against the imidazole in the first
histidine residue of the SVMP Zn** binding site [29]. In 2007, Philippe and col-
leagues discovered the 2-3 kDa polyHis-polyGly peptides in venom of Atheris
squamigera by mass spectrometry-based strategies, and it was identified as a new
class of peptides with clusters of histidine and glycine residues [33]. Similar
peptides were found coded in C-type natriuretic peptide (CNP) and bradykinin-
potentiating peptide (BPP)-CNP transcript precursors and were isolated from

E. ocellatus and Atheris sp. venoms. Interestingly, these pHpGs have shown stronger
inhibitory effect against SVMP in vivo than tripeptides [31].

In addition to inhibitors present in the venom and venom gland, serum proteins
in some venomous snakes have also been found to bind toxins with high affinity and
neutralize toxin pathophysiological effects [34]. These serum proteins and those
found in the venom/venom gland are referred to as “endogenous inhibitors,” but
kinds of their inhibitor are different. Serum inhibitors circulate in the blood to
effectively bind and neutralize host toxins, but they are different than immune
antibodies. The roles of these endogenous inhibitors and their classifications will be
discussed in the next sections.

3.2 Endogenous inhibitor protein families

There are three main endogenous inhibitor classes; these are phospholipase A2
inhibitors (PLI) [35, 36], anti-hemorrhagic factors [37], and small serum proteins
[38-41], which have predominately been found in the blood of vipers. All endoge-
nous inhibitors are stable at high temperatures and in acidic conditions and
have been purified by reverse-phase high-performance liquid chromatography
(RP-HPLC).

3.2.1 Phospholipase A, inhibitors (PLIs)

Snake venom PLA;s are ubiquitous to Viperidae and Elapidae venoms and one
of the primary components in viper venoms. These toxins are versatile and can
induced a variety of effects, including neurotoxicity, myotoxicity, cardiotoxicity,
hemolysis, and anticoagulation [42]. Inhibitors of PLA;s, PLIs, have been identified
and characterized from the blood sera of both venomous and nonvenomous snakes.
PLI genes have been found uniquely expressed in snake liver tissues [43]. This
suggests that the secretion of PLIs into blood circulation could be to provide pro-
tection against accidental self-envenomation in venomous snakes.

PLIs are divided into three groups (PLIa, PLIB, and PLIy) based on structural
characteristics. PLIas are glycoproteins with molecular masses ranging from 75 to
120 kDa and more than three non-covalently associated subunits. Their structural
features demonstrate sequence homology to the carbohydrate-recognition domain
of Ca2+-dependent lectins (C-type lectin-like domain), but they lack the
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carbohydrate-binding ability. A highly conserved region (residues 49-143) shares
80-90% sequence identity between PLIas and appears to be responsible for PLA,
binding [44]. PLIps are 150-160 kDa glycoproteins composed of three non-
covalently bonded subunits and have nine tandem leucine-rich repeats. A homology
analysis by BLAST shows similarity to human leucine-rich o,-glycoproteins, which
structurally forms horseshoe-shaped molecules, as observed in Toll-like receptors
[45]. PLIPs have been purified and characterized from only one venomous snake,
Gloydius brevicaudus [46], whereas there are a couple examples of these proteins
that have been found in nonvenomous colubrids (Elaphe quadrivirgata and Elaphe
climacophora) [47, 48]. The presence of a PLIf gene in Lachesis muta was discovered
by Lima et al., but the exact function of this inhibitor has not been identified [49].
PLIPs from G. brevicaudus specifically inhibited only group-II basic PLA;s, forming
stable toxin-inhibitor complexes at a 1:1 molar ratio [45]. PLIys are acidic glycopro-
teins consisting of oligomers with 20-30 kDa subunits, the primary structure of
which consists of conserved patterns of cysteine residues to form two units of
repeats known as three-finger motifs. Structurally related proteins belong to the
urokinase activating plasminogen receptor (u-PAR)/ly-6 superfamily [50]. This
gamma class inhibitor comprises the greatest number of endogenous PLIs and has
been isolated from the sera of many snake species, including those from Elapidae,
Viperidae, Hydrophidae, Boidae, and Colubridae families [35].

Numerous studies have described highly effective inhibition of PLA, toxicity
in vitro and in vivo by PLIs purified as a highly soluble protein from snake serum.
However, binding sites, as well as inhibitory mechanism, have not been fully eluci-
dated for these proteins because each PLIs’ group targets different PLA,s. Cur-
rently, there are two review articles that have attempted to determine the PLA,
targets of PLI classes based on structural predictions [35, 36]. In 2015, Zhen and
colleagues successfully established recombinant expression of PLIy in Escherichia
coli. After expression optimization, the amount of recombinant PLIy achieved was
23 mg/1 of culture, and the recombinant PLly demonstrated inhibitory activity
against Deinagkistrodon acutus venom purified PLA;s, and D. acutus, Naja atra, and
Aghkistrodon halys crude venoms in vitro and in vivo. This type of experimental work
will make it possible in the future to determine the inhibitory mechanism by
inhibitor mutant analysis and/or obtaining the three-dimensional structure of the
inhibitor and PLA; complexes.

3.2.2 Anti-hemorrhagic factors

As previously detailed, hemorrhage, one of the main symptoms of viper enven-
omation, is induced by snake venom metalloproteinases (SVMPs). The first anti-
hemorrhagic factor, habu serum factor (HSF), was identified from the serum of
Protobothrops flavoviridis by Omori-Satoh et al. in 1972 [51]; in 1992, the complete
amino acid sequence was determined for this protein [52]. To date, anti-
hemorrhagic factors habu serum factor (HSF), BJ46a [53], and mamushi serum
factor (MSF) [54] have been purified and characterized from the venomous snakes
P. flavoviridis (habu), Bothrops jararaca, and Gloydius blomhoffii, respectively
(Table 3). These anti-hemorrhagic factors belong to the fetuin family, part of the
cystatin superfamily, consisting of two cystatin-like domains and a His-rich
domain. These anti-hemorrhagic factors show high sequence identity and are all
single-chain, acidic glycoproteins. They also all demonstrate strong anti-
hemorrhagic activity in vivo against the crude venom of the snake species they are
isolated from. HSF and MSF showed relatively broad range inhibitory activity
against both nonhemorrhagic and hemorrhagic SVMPs, as well as both P-I and P-III
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Inbibitor name ot Molecular Weight
nnnnnnnnnnnn e 1 Species
(neutralized own toxin)
Fabu serum factor: HSF | Profabathrops flavaviridis 55 (Crade venom)
Protobotlxops favoviridis
|(SVMPs from Protobotlops flavoviridis)

[Database accession

Target MP Family [Fefereace | mbers of sequence

[calculated* [observed [by SDS-PAGE** (kDa)

[52,74]  |ABOSSG3S

Bi6a [Bothrops Jararaca 554
57 52 (53] |AF294836.1
Cystatin super family
Fetuin family)
Manmishi serum factor. | Gladius blomhaffii biomhofii 48
liMSF
(apancse MSF) 56 IND [54) |AB200169
|(P-II1 SVMP from Protobathrops flavoviridis )
|HR2a (wealk)
CMSF Gloxdius blomhelJt brevicaudus 18 (Crud
(Chainese MSF)
56 N.D (54) QsKQst.1
|(P-111 SVMP fros
[HRIA, HRIB
BaSAH \Bothraps asper 66 (Crude venom)
. o |Bothrops asper (10 microgram) D 621 D
rogram)
k=3 [Agkistrodon contortrix mokasen 61-68
ND 4.6 N.D (64] ND
XX Crotalus atrox 6580
ND N.D N.D [65) ND
toxirre (fiom Croiales airox)
I=3 Vipera palaesiinae 50
IND a7 ND [66] ND
™I [Proraborlirops mucrasquamants 47
ND IND (o refnegert ND 67) ND
((SVMP from P. mucrosquamatus )
[TM-1, M-, TM:3
venomous snake 2 (neutralized foxin from ofher species)
BalMPI [Bothraps alternats 60.5 [SVMP)
ND 527 and [Batroxase (P- MP from B. arrox) N.D (s8] D
424 [BjussuMP-1 (P-I MP from Bjararacussu )
|Non venomous
NHAT (serum) [Warie tessellata 880, 70, 100, 150 (Crude venom)
IND N.D (Bothrops asper N.D [69) ND

((SVMP from Bothrops asper)

[Bail

(59 and 52 (Crude venom)

flavoviridis

(Whole serum (Crude venom)
Aghis conioririx

IND N.D N.D (70) N.D

ND IND ND 171 ND

N.D; not determined, XX; not named or not determined,
*Theoretical Isoclectric point (pI) were calculated on the ProtParam of ExPASy server (https://web.expasy.org/protparam/),
**godium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condition

Table 3.

Antihemorrhagic proteins from snake sera (or plasma).

SVMP classes, but preferentially inhibited P-III SVMPs. These observations were
also exhibited in the differences in the degree and specificity of inhibition against
individual SVMP [54, 55]. HSF strongly inhibited the proteolytic and hemorrhagic
activities in vivo and in vitro of HR1 and HR2 (P-III SVMPs), the main toxins in
P. flavoviridis venom. Similarly, BJ46a is a potent inhibitor of atrolysin C (P-I
SVMP) and jararhagin (P-III SVMP) proteolytic activities and the overall hemor-
rhagic activity of B. jararaca venom [53]. HSF and MSF did appear to be specific to
SVMPs and were found to not inhibit cysteine proteases, such as papain and
cathepsin B, serine proteases trypsin and chymotrypsin, or thermolysin, a bacterial
MP. Binding studies of these factors suggest that they are forming noncovalent
complexes with the MD of SVMPs; this has been hypothesized because they
interacted with P-I SVMPs, but did not bind to the C-terminal region of SVMP
jararhagin-C. Interestingly, the molar ratios for complex formation vary between
inhibitors; for HSF and brevilysin H6 (P-III SVMP), a 1:1 ratio is required, but
complex formation between BJ46a and jararhagin (or atrolysin C) was found in a
1:2 ratio. The N-terminal region of HSF (residues 5-89) has been found to be
responsible for anti-hemorrhagic activity [56], and sequence comparisons between
HSF and a HSF-like protein (HLP), which does not show SVMP inhibition, identi-
fied a substitution difference in the first cystatin-like domain [57]. These results
suggested that N-terminal region of HSF is potentially responsible for SVMP
binding.

Recently, BaltMPI [58] was found as a hemorrhagic inhibitor in Bothrops
alternatus serum. BaltMPI should also be of the fetuin family as the N-terminal
region consists of 60 amino acid residues (determined by Edman degradation) that
showed high homology (97%) with BJ46a. BaltMPI has potent anti-hemorrhagic
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activity and inhibited the proteolytic activity of Batroxase and BjussuMP-I but has
yet to be investigated against the crude venom Bothrops alternatus, the snake species
it originates from.

3.2.3 Small serum proteins (SSPs)

Since 2007, a new class of endogenous inhibitors, named small serum proteins
(SSP-1 to SSP-5), has been characterized from Japanese vipers, P. flavoviridis
(habu) and G. b. blomhoffii, that have been found to effectively neutralize various
snake toxins [38, 40]. SSP-1, SSP-2, and SSP-5 consist of two domains of approxi-
mately 90 amino acid residues, while SSP-3 and SSP-4 have only a 60 residue
N-terminal domain. All serum proteins have conserved cysteine residues and
belong to the prostatic secretory protein of 94 amino acid (PSP94) family, despite
only limited sequence identity to any mammalian PSP94 [59]. These inhibitors
target different toxins; SSP-2 and SSP-5 have high affinity for CRISP family toxins
[38, 60], while SSP-1, SSP-4, and SSP-3 inhibit distinct SVMPs. These results
suggested SSP-1 to SSP-5 contributes to a snake’s natural resistance against toxins.
SSP-1 and SSP-4 complex with HSF, inhibiting apoptosis induced by HV1, a P-III
SVMP from P. flavoviridis venom [39]. Each SSP alone could bind to target SVMPs,
but SSP-1 and SSP-4 inhibit HV1 through a ternary complex involving HSF, SSPs,
and HV1 (SSP-4, data has not published). In contrast, SSP-3 alone inhibits
flavorase, a P-III SVMP from P. flavoviridis [41], and is not dependent on other
proteins. These results suggested that the inhibition mechanisms of the SSP group
are different, but they are noncompetitive. Recently, the crystal structure of com-
plex SSP-2 and triflin, an ion channel-blocking CRISP toxin, was determined [61].
The interface between these two proteins consists of the two short §-strands of
SSP-2 binding to the concave region centrally located in the N-terminal domain of
triflin. Interestingly, the key p-strand on the N-terminal of SSPs is a hypervariable
region, which might correspond to the ability to bind and target different venom
toxins. This is in agreement with the molecular evolution of SSP genes, where the
number of non-synonymous nucleotide substitutions is significantly greater than
those of synonymous substitutions in N-terminal regions. Additionally, these
mutational hotspots are found on the molecular surface, specifically located on
the toxin interaction interface, while the protein scaffold structure is highly
conserved [62].

4. Undetermined proteinous inhibitors

Isolated proteins from the serum of Bothrops asper [63], Agkistrodon contortrix
[64], Crotalus atrox [65], and Vipera palaestinae [66] have shown effective neutral-
ization of hemorrhagic activity in vivo from crude venom corresponding to each
species or species-specific toxins (Table 3). The SVMP inhibitor isolated from
Protobothrops mucrosquamatus serum, named TMI, demonstrated a 1000-fold
stronger in vitro inhibitory activity than endogenous tripeptides (ICso = 0.2-1.0
pM) and additionally inhibited venom proteolytic activity from other species [67].
Despite in vivo and in vitro experimental evidence, the sequence of these inhibitors
has not yet been determined. A novel group of endogenous inhibitors may be
responsible for this activity, as the molecule sizes of these proteins are different
than what has been previously reported for other characterized inhibitors.

Venom resistant has been discovered in some species in mammals, birds, and
reptiles, which are either predators or prey of venomous snakes. Natural inhibitors
isolated from resistant animals are detailed in reviews by Domont et al. [34, 68] and
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Bastos et al. [37], which summarized toxin resistance corresponding to several
snake species from the plasma, serum, and muscle of mammals. There are a few
reports of natural inhibitors isolated from nonvenomous snakes, such as NtAH from
Natrix tessellate [69] and a 59 kDa protein from Dinodon semicarinatus [70].
Recently, the whole serum of Drymarchon couperi [71] has also shown anti-
hemorrhagic activity to venom, but the protein responsible for this activity has yet
to be determined. These natural inhibitors in nonvenomous snakes are potentially
protective for a diet that consists of venomous snakes, while resistance to SVMPs
may be relatively widespread among snake species.

Endogenous inhibitor genes are expressed in the liver of venomous snakes, and
these genes appear to be evolving by gene duplication and rapid diversification.
This facilitates the neutralization of various toxins within venoms, which also are
evolving under similar mechanism [62, 72]. Thus, a detailed characterization of
inhibitors against species-specific toxins may help to decipher the evolution of
endogenous natural resistance in venomous snakes. Unfortunately, the structural
features that govern the inhibitor interaction are still unknown. Recently, there are
reports that making a computational analysis predicted three-dimensional struc-
ture available [46], and one paper demonstrated that recombinantly expressed
BJ46 was able to produce using the expression system of the methylotrophic yeast
Pichia pastoris [73]. The ability to recombinantly produce these inhibitors will
provide material for future work deciphering complex formations between inhib-
itors and toxins from mutation and structural analyses, providing insight into the
molecular mechanisms behind toxin activity inhibition. With current technolo-
gies, it is not difficult to comprehensively evaluate venomous snake sera compo-
nents or the sera from resistant animals. However, we have to be informed from
structure-function studies to correlate amino acid sequence to the physiological
activity of an inhibitor. It is possible that different inhibitors are operating under
different mechanisms, even if they show high similarity, as has been the case
for various venomous snake toxins. Thus, understanding in depth how toxin
inhibitors function may aid in identifying novel inhibitors and new strategies for
snakebite treatment.

5. Conclusions and remaining challenges

There are still many current challenges in the field of toxin inhibitors. Systemic
effects of envenomation in humans by snakebite are often mitigated by antivenom
therapy, the medically accepted treatment to date. Inhibitors have yet to gain
acceptance in clinical use. However, local tissue damage is not neutralized by
antivenom and results in permanent morbidity and disability in patients [74]. Local
tissue damage is incurred by enzymatic toxins and thus is one of the reasons that
Viperidae species occupy just over 60% of venomous snakes listed as Category 1 of
highest importance to human health (Tables 1 and 2). Endogenous inhibitors iso-
lated from almost all Viperidae show potent inhibition against their own venom and
have also demonstrated to be selective toward highly lethal enzymes within these
venoms. The serum inhibitor genes of venomous snakes might have evolved by
gene duplication and rapid diversification to facilitate the neutralization of various
venom toxins. These serum inhibitors are very stable (resistant to acidic, alkaline,
and high temperature environments), selective in inhibitory activity against snake
toxins, and are nontoxic, given they exist in blood serum and consist of amino acids
(Table 3). However, the molecule mechanism of toxin neutralization involving
endogenous inhibitors remains unclear due to a lack of three-dimensional structures
detailing toxin and inhibitor complexes. By exploring molecular mechanisms
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responsible for natural toxin resistance in snakes, we may begin to understand the
specificity and selectivity of endogenous inhibitors and use these insights in the
design of better therapeutic agents for the treatment of snakebite victims.
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