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Abstract

Mycotoxins are chemically diverse and capable of inducing a wide diversity of 
acute and chronic symptoms, ranging from feed refusal to rapid death. Accurate 
detection and monitoring of mycotoxins is an essential component of the prevention, 
diagnosis, and remediation of mycotoxin-related issues in livestock and human food. 
Current trends in food analysis are focusing on the application of fast, simple proce-
dure needed, and low-cost biosensor technologies that can detect with high sensitivity 
and selectivity different compounds associated with food safety. This chapter dis-
cussed the recent analytical methods-based biosensor technology for quantification 
of mycotoxins in food products. Mainly focus on the biosensor technology based on 
the immobilization of antibodies onto various nanomaterials such as nanoparticles, 
graphite, carbon nanotubes, and quantum dots. The nanomaterials are able to be 
functionalized with various biomolecules such as enzymes, antibodies, nucleic acids, 
DNA/RNA aptamers, bio- or artificial receptors that make them suitable for detection 
of various substances such as food toxins, bacteria, and other compounds important 
in food analysis. All the nanomaterials provide an effective platform for achieving 
high sensitivity that is similar and, in some cases, even better than conventional 
analytical methods. We believe that future trends will be emphasized on improving 
biosensor properties toward practical application in the food industry.

Keywords: mycotoxin, biosensor, nanomaterials, analytical methods, fungi

1. Introduction

Fungi are an organism that exists either in single-celled or complex multicellular 
organisms. This number of the organism may cause diseases by producing toxic 
substances which known as mycotoxins. Mycotoxins are toxic secondary metabo-
lites of various fungi that significantly impact global food safety and security, from 
toxin exposure, economic loss of crops, or the salability of said crops. They are a 
widespread mixture of contaminants in various agricultural and food products, 
with both acute and chronic toxicological effects on human health [1]. Mycotoxin 
produced mainly by mycelial structure of filamentous fungi or specifically molds 
that may cause a harmful effect to animals as well as humans such as carcinogenic, 
nephrotoxicity, mutagenic, immunosuppressive, estrogenic neurotoxicity, repro-
ductive and developmental toxicity, hepatotoxicity and indigestion [2].
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Mycotoxins including aflatoxins (AFs), ochratoxins (OT), trichothecenes, 
zearalenone (ZEN), fumonisins (F), tremorgenic toxins, and ergot alkaloids mostly 
affect the public health and agro-economic significance. Factors affecting the mag-
nitude of toxicity to the living organism are by consuming mycotoxin-contaminated 
foods or feeds, including species, mechanisms/modes of action, metabolism, and 
defense mechanisms [3]. Most of the countries agreed to set the limits of mycotox-
ins present in food because of the effects of the mycotoxins to human health. The 
permitted level is slightly different, which depends on the type of food products. 
The minimum limits for mycotoxins in single ppb (part per billion) and even below 
(0.05 ppb for infant foods) are established in EU, with similar standards in China 
and Japan [4].

Guan et al. [5] reported about 98% of the agricultural commodities, including 
corn, compound animal feeds, silage, cornmeal, puffed corn, wheat, bran, soybean 
meal, rapeseed meal, cottonseed meal and whole cottonseed content various group 
of mycotoxins. Besides, Smith et al. [6] stated that several mycotoxins contaminate 
approximately 48% of 7049 feedstuffs. Thus, it is essential to detect mycotoxins 
in the food industry to address the mycotoxin-related health issues to humans and 
animals effectively.

Conventional techniques such as thin-layer chromatography (TLC), high-
performance liquid chromatography (HPLC) and mass spectrometry have been 
suggested by international organizations as standard approaches to study the occur-
rence of mycotoxins in food products [7]. Besides, enzyme-linked immunosorbent 
assay (ELISA) had been widely used to identify different types of mycotoxins. 
However, it has slight defects of cross-reactivity and possible false-positive or false-
negative outcomes [8]. Also, those techniques usually costly and available in a spe-
cialized research laboratory needs highly personnel trained and laborious. Recently, 
advanced methods used to detect the presence of mycotoxins in food samples, 
which show high sensitivity, low cost, simple operation, and portable on-field 
use [9]. Besides, portable and easy-to-use biosensor devices suitable for express, 
in-field detection of mycotoxins. The development of biosensors for mycotoxins 
has risen sharply in the last decade with a large number of different bio-sensing 
technologies application. Zheng et al. (2006) reported biosensor as rapid methods 
which typically cost-effective, easy to be handled as well as a portable device to be 
used in an interchanging site compared to laboratory analysis.

2. Mycotoxin

Fungal toxins are secondary metabolites, which can cause some diseases in 
living things known as mycoses; meanwhile, dietary exposure to such metabolites 
produces the disease named mycotoxicoses. Mycotoxins are known as secondary 
metabolites, produced from microfungi and able to cause–effect human health as 
well as animals. Mycotoxins are commonly used as antibiotics and growth promo-
tants because of their unique characteristics in pharmacological activity. Most of 
the mycotoxin are found as natural contaminant food, mainly in vegetable and feed. 
Nut, cereals, oilseeds, dried fruits, spices, and food from animal origins for example 
milk, egg, and meat are also may contain mycotoxin either outside or inside the 
product [10, 11]. A mycotoxin is believed no function in the life of a producer cell, 
unlike primary metabolites [12]. There are few types of mycotoxin such as aflatox-
ins (AFs), zearalenone (ZEA), deoxnivalenol (DON), ochratoxin (OTA) and T-2 
toxin (trichothecene mycotoxin) which are a significant threat to the life and health 
of human and live stocks [13]. Mycotoxins are low molecular weight and thermal-
stable secondary metabolite of toxic molds that belong to genera Aspergillus, 
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Penicillium, Alternaria, and Fusarium. These toxins are present in the mycelium 
and spore of the mold. Mycotoxin may become a biological weapon in bioterrorism 
because of its acute and chronic toxicities [14].

3. Types of mycotoxin

The established mycotoxins for agriculture and public health concerns including 
aflatoxins, ochratoxins, zearalenone, T-2 and HT-2 toxin, deoxynivalenol, fumoni-
sins, citrinin, patulin, and ergot alkaloids shown in Figure 1. Aflatoxins B1 and 
M1 (AFT B1 & M1) [15] produced by Aspergillus flavus and A. parasiticus species 
grown on grains and cereals, spices, tree nuts. Aflatoxin B1(AFB1) is one of the 
most carcinogenic substances produced by fungi and results in inevitable contami-
nation of food and feed at deficient concentrations. Four main types of aflatoxin 
naturally contaminate foods which are aflatoxin B1 (AFB1), G1 (AFG1) and their 
dihydroderivatives B2 (AFB2) and G2 (AFG2). Others without additional metabo-
lites known as Aflatoxin M1 and Aflatoxin M2 [16]. AFT M1 being a 4-hydroxylated 
metabolite of AFT B1, is found in cow and sheep milk and milk products. Some 
studied had been identified there is 20 aflatoxins that belongs to a group called 
highly substituted difuranocoumarins. The International Agency for Research on 
Cancer (IARC) had been classified aflatoxin as very toxic compounds in group 1 due 
to evidence that shows the carcinogenicity in human [17].

Ochratoxin A (OTA) produced by Aspergillus ochraceus, A. carbonarius, and 
Penicillium verrucosum is one of the most abundant contaminants in grain and pork 
products, coffee, dried grapes, as well in wine and beer at humidity around 15–19% 

Figure 1. 
Primary groups of mycotoxins in various food products.
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and temperature ≥15°C [18]. OTA is carcinogenic and neurotoxic for humans, and 
immunotoxic for animals [19]. OTA can cause various forms of kidney, liver, and 
brain diseases in both humans and animals, although the trace amount of OTA 
usually is present in food [20].

Zearalenone (ZEN) produced by Fusarium or Giberella species grown on crops 
(maize, barley, oats, wheat, rice, also bread) is a potent estrogen metabolite causing 
infertility in swine and poultry [21].

4. Isolation of a mycotoxin from real samples

4.1 Solid-phase extraction (SPE)

A variation of chromatographic techniques based on small disposable car-
tridges packed with silica gel or bonded phase, which in the stationary phase is 
the basic principle of solid-phase extraction. The sample loaded in one solvent 
under low pressure and rinsed to remove the most of contaminant are moved 
and eluted in another solvent. These cartridges have a high capacity for small 
binding molecules. Different bonding phase such as silica gel, aminopropyl, 
florisil, phenyl, ion exchange materials, anionic and cationic to affinity materi-
als including immunoadsorbents and molecular imprinted polymers (MIPs) are 
available in SPE cartridges [22]. OTA formation occurs in some Spanish sweet, 
which going drying process. C-18 column had been shown successful recovery 
above 90% of OTA, which enables to be isolated from the matrix [23]. Silica gel 
frequently used in SPE because the surface of silica particles is heterogeneous 
with a variety of silanol group which can bind target compound through mul-
tiple electrostatic interactions. Generally, silica gel was used directly or after 
modification, and it is a hydrophobic phase which used in environmental and 
food analysis of toxin, which performed both polar and non-polar solvents. 
Previous research conducted by Leitner et al. [24] showed that the use of C-18 
reverse-phase in the extraction of OTA from wine and offer good result with 
combination with mass spectroscopy.

4.2 Liquid: liquid extraction (LLE)

Liquid–liquid extraction (LLE) or also known as solvent extraction agitating 
different solubility of toxin in the aqueous phase and an immiscible organic phase 
to extract the compound into one solvent and leaving the rest of matrix in others 
phase. A solvent such as hexane and cyclohexane are used to remove non-polar 
contaminant or molecule, for example, lipids, and cholesterol [25]. The common 
goal of LLE is sample clean-up and analyte component pre-concentration. Sample 
clean-up requires high selectivity of partitioning analyte component over potential 
interferents while analyte component pre-concentration require high distribution 
ratio to analyte can be extracted from a large volume of sample too small volume 
of extractant. Two bulk-liquid phases at least which are an aqueous phase that 
contains dissolved sample an organic extractant phase. The variety of condition 
will decide either the agitated mixture become the dispersed phase and another 
continuous phase. The thermodynamic driving force is resulting from the move-
ment of chemical species from one bulk phase to another in two ways either by the 
difference in chemical potential for neutral species or electrochemical for ionic 
species [26]. Lately, Ezekiel et al. [27] used acetonitrile/water/acetic acid 79:20:1, 
(v/v/v) in a 50 mL polypropylene for the metabolites extraction and determination 
of apparent recoveries.
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4.3 Supercritical fluid extraction (SFE)

Supercritical fluid extraction (SFE) had been used for years for industrial-scale 
separation and isolation of variety compound. SFE also has been utilizing in the 
field of food science to isolate not only natural food component but also unnatural 
compound like organic contaminants. SFE was developing and used as an alterna-
tive to extraction using liquid solvents. SFE considered an up-and-coming tech-
nique for the future because supercritical fluids have useful physical properties such 
as high viscosity and high diffusion constant for sample extraction which result 
in faster mass transport than regular and shorter the time for extraction. Using 
compressible gas like carbon dioxide (CO2), the solvation power can be changed by 
altering the density or decrease the pressure to atmospheric pressure [28].

Most common supercritical fluid (SF) used is SC-CO2, which is a suitable sub-
stituent for halogenated solvents. This is because the carbon dioxide is non-toxic, 
non-flammable, not significantly contribute to global warming and might be the 
cheapest solvent except for water. The usage of SFE to extract mycotoxin are very 
limited until recently because of the relative polar nature of mycotoxin and relative 
non-polar nature of food commodities such as nut and nut product. Taylor et al. 
[29] investigated the use of analytical SFE to remove aflatoxin Bi from field inocu-
lated corn samples. Modification using a combination of various pressures “(2000-
15,000 psi), temperatures (40–80°C), the quantity of SC-CO2 (50–500 ml), and 
organic modifiers were used to optimize the extraction method. Optimal conditions 
were 5000 psi at 80°C with 15% modifier (acetonitrile/methanol 2:1) and a liquid 
carbon dioxide volume of 100 ml. The result gained from the extraction was 94.6% 
(RSD 6.2%, n = 5) of aflatoxin Bi could be recovered from ground corn contami-
nated at a level of approximately 500 μg/kg when using these settings.

5. Advanced techniques for detection of mycotoxin based biosensor

The integration of bioreceptors, nanomaterials, and different read-out tech-
niques is capable of accomplishing the rapid, sensitive, and multiplexed detection 
of mycotoxins. In this section, the advanced applications of different read-out 
biosensors, including optical, EC, mass-sensitivity, and surface-enhanced Raman 
spectroscopy biosensors, integrated with the bio-receptors above and nanomateri-
als, are discussed (Figure 2).

5.1 Electrochemical biosensors

A biosensor is an analytical device that incorporating a bio-component or 
bio-receptor such as isolated enzymes, whole cell, tissues, aptamers with a suitable 
transducing system to detect chemical compound [30]. Measurement of the signal 
is generally electrochemical for biological, and this bio-electrochemical serves as 
transduction component in electrochemical biosensors. The biological reaction 
generates change in signal for conductance or impedance, measurable current or 
change accumulation, which can be measured by conductometric, potentiometric, 
or amperometric techniques [31]. The interaction between the target molecule and 
the electrical signal of bio-component produced can be measured.

Electrochemistry has been widely used in various fields, due to their high selec-
tivity and sensitivity, high signal-to-noise ratio, simplicity, miniaturization, low 
cost, robust to liquid samples and more feasible for on-site application [20]. The 
electrochemical technique requires a reference, auxiliary, and a working electrode. 
Two exciting compounds are analyzed using compound biosensors that have interest 



Mycotoxins and Food Safety

6

for nutritional food quality and contaminant such as toxin or pathogen that sup-
posed not to be found in food products [30]. Selection of suitable working electrode 
is a crucial part of successful electrochemical measurement either by modification in 
working electrode materials or traditional metals such as mercury or gold [32].

Due to the widely occurring co-contamination of mycotoxins in raw food 
materials, Lu and Gunasekaran [33] designed and fabricated of an electrochemical 
immunosensor for simultaneous detection of two mycotoxins, fumonisin B1 (FB1) 
and deoxynivalenol (DON), in a single test. A dual-channel three-electrode electro-
chemical sensor pattern was etched on a transparent indium tin oxide (ITO)-coated 
glass via photolithography and was integrated with capillary-driven polydimeth-
ylsiloxane (PDMS) microfluidic channel. The achieved detection limits found 97 
and 35 pg./mL, respectively. Besides, Nieto et al. [34] A third-generation enzymatic 
biosensor were developed to quantify sterigmatocystin (STEH). It was based on 
a glassy carbon electrode modified with a composite of the soybean peroxidase 
enzyme (SPE) and chemically reduced graphene oxide. A third-generation enzy-
matic biosensor to quantify STEH in corn samples spiked with the mycotoxin. The 
biosensor was based on glassy carbon (GC) electrode modified with a composite 
of SPE and chemically reduced graphene oxide (CRGO). The biosensor was also 
used to determine STEH in corn samples inoculated with Aspergillus flavus, which 
is an aflatoxins fungus producer. The biosensor showed a linear response in the 
concentration range from 6.9 × 10−9 to 5.0 × 10−7 mol L−1. The limit of detection was 
2.3 × 10−9 mol L−1 for a signal: noise ratio of 3:1.

5.2 Aptasensor

The aptamer is referred to the Latin word, aptus means “to fit,” which relationship 
between aptamers and their target look like “lock-and-key” theory [35]. Aptamers 
usually single-stranded RNA or DNA, which consist of 2–60 nucleotides, which 
specifically bind to the target, including organic molecules and cells. Aptasensors 
referred to biosensors using aptamers as biorecognition element and aptasensor were 
described in 1996 [36] which had been used in multiple sensing applications.

Figure 2. 
The applications of different read-out biosensors integrated with bioreceptors and nanomaterials.
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Advantages using aptamers are aptamers can provide high stability and affin-
ity. Aptamers also provide simplicity, low cost, and excellent batch-to-batch 
reproducibility. Aptasensor can attract massive attention because of excellent 
binding constant toward most mycotoxins. The critical step in the design of biosen-
sors is immobilization of aptamers because this factor can affect the affinity of 
the aptamer for target and long-term stability for real sample. There are several 
immobilization strategies affect the used for aptasensor development. Firstly, the 
adsorption or π-π interaction between DNA bases aptamer and graphene oxide 
(GO)-modified interfaces [37]. The covalent linkage of the aptamer to the carbox-
ylic acid group that presents on surface or nanomaterial [38] and thiolated binding 
aptamers to CdTe quantum dots (QDs) or Au-based materials [39]. Besides, affinity 
binding based on biotin-streptavidin or other affinity interaction [40, 41] and 
hybridization of partially complementary single-stranded DNA which immobilized 
on surface or nanoparticle [42]. Duan et al. [43] developed multicolor quantum 
dot nanobeads for simultaneous qualitative immunochromatographic detection of 
mycotoxins (ZEN, OTA, and FB1) in corn samples with detection limits reached up 
to 5, 20, and 10 ng/mL within 10 min, respectively.

5.3 Immunosensor

Immunosensors are devices based on the detection of analyte-antibody 
interaction. Three main groups have been developing, which are luminescent or 
colorimetric sensors, surface plasmon resonance, and electrochemical sensors. 
The sensor usually combined with simple methanol–water for the extraction of a 
mycotoxin from food samples. Colorimetric and luminescent are based on the vis-
ible or UV light transformation into an analytical signal [44]. A colorimetric sensor 
developed for AFB1 detection using direct competitive ELISA principle. The color 
was detected and measured with spectrometer by reading absorbance at 620 nm. 
According to Garden and Strachen [45], this method could detect AFB1 as low as 
0.2 ng/mL in artificially contaminated food material as compared to the sensitivity 
of a microtitre plate ELISA.

Surface plasmon resonance (SPR) is an optical phenomenon which used for 
measure changes on the surface of thin metal films (Au or Ag) under condition total 
internal reflection [46]. The sensitivity of SPR sensors and microtiter plate ELISAs 
were compared for detection of AFB1 using same immunoreagents, which are a 
polyclonal antibody and AFB1-BSA conjugate. As a result, the SPR sensor (3.0–
49 ng/mL) is a more sensitive but narrow and linear range of detection compared 
to ELISA (12–25,000 ng/mL) [47]. Electrochemical immunosensor for mycotoxin 
are based on competitive ELISA principle, which electrochemical transducer allows 
detection redox directly [44]. Pemberton et al. [48] in their study, a calibration plot 
AFB1 obtained over the concentration range from 0.15 to 2.5 ng/mL, which give 
detection limit around 0.15 ng/mL in buffer solution.

OTA is small molecules that possess one epitope and no more than one antibody 
can bind due to their small molecular size. This molecule was detected using a com-
petitive assay rather than a sandwich assay format. The competitive assay is based 
on the competition of immobilized antigen and a free antigen for the antibody in 
solution. One of the critical parameters to determine the sensitivity and limit of 
detection (LOD) is antibody concentration. The excessive antibody in solution may 
cause more antigen needed to create a measurable difference in signal. Therefore, 
to increase the binding capacity, protein conjugate such as SPR sensor development 
was used which the OTA either directly conjugated to BSA or PEG. The sensitivity 
increased with decreasing antibody concentration because the PEG-linked surface 
needs less initial antibody concentration for efficient analysis. Pirincci et al. [49] 
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described that the OTA-sensitive QCM sensor was developed by direct immobiliza-
tion of OTA to the sensor surface.

5.4 Molecularly imprinted polymer (MIP)

Molecular imprinted polymer (MIP) is a method which is described as a method 
that highly efficient in producing functional material that able to mimic natural rec-
ognition entities, such as antibodies and biological receptors [50] which equipped 
with particular identification characteristics. In 2009, an electrochemical sensor 
was built by Pardieu et al. [51] for the method of detection. Thus, this method is 
used to recognize a specific element for template molecule detection.

MIP is used in various field of application to recognize biological and chemical 
molecules including amino acids and proteins [52], nucleotide derivatives, pol-
lutants, drugs and foods [53]. Molecularly imprinted polymer method had been 
applied in chromatography for HPLC and GC, Solid phase extraction, Chemical 
sensor systems, catalysis, drug delivery, antibodies, and receptors system [54]. 
The formation of a complex between an analyte and the functional monomer 
determines the Molecularly imprinted polymer. A three-dimensional polymer 
network is formed due to the presence of a significant excess of a cross-linking 
agent [55]. A specific recognition site is formed which complementary in shape, 
size, and chemical functionality to the template molecule as the template being 
removed from the polymer after the polymerization process occurs as shown in the 
figure. The recognition phenomena occur when the intermolecular interactions 
such as hydrogen bonds, dipole–dipole, and ionic interactions between the template 
molecule and the functional groups present in the polymer matrix. This method is 
used due to their high selectivity and affinity for the target molecules. Therefore, 
the recognized polymer will bind to the template molecule only selectively.

The molecularly imprinted materials have excellent physical and chemical 
characteristics. The materials can resist high physical and chemical reaction against 
external degrading factor. Thus, the molecularly imprinted polymer is stable against 
mechanical stress, high temperature, and pressure, resistant against treatment with 
acid, base, or metal ions, and also stable in a wide range of solvents [56]. Sellergren 
firstly reported the application of MIP in solid phase extraction in 1994. Generally, 
the MIP as a sorbent was recognized as an accurate, selective, and sensitive pre-treat-
ment method in detecting trace amounts of chemicals in the matrix. The application 
of MIP in solid phase extraction is used for veterinary residues, pesticides residue, 
illegal drugs, mycotoxins, and persistent organic pollutants had been published.

5.5 Optical biosensors

Biosensors can be divided into different groups, which are electrochemical, optical, 
thermometric, piezoelectric, or magnetic [57]. Somehow, the optical biosensor is the 
most preferred among the other methods. This is because it has powerful analytical 
techniques which have a high specification, sensitivity, small size, and cost-effective-
ness [58, 59]. An optical biosensor is a device which is selective and sensitive that can 
detect deficient levels of chemicals and biological substances and for the measurement 
of molecular interactions in situ and in real time [60].

Optical methods, such as colorimetric, fluorescent, chemiluminescent, and 
surface plasmon resonant strategies, are proper techniques for mycotoxins detec-
tion due to their simplicity, rapidity, reliability, and high sensitivity. An optical 
biosensor is a system which combined various entities in a single system such as 
sampling, a biosensor, a system for replenishing information, and a data analysis 
system which to implement a biological model that provides information for human 
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or machine [57]. The biosensor systems are developed by crucial attributes, which 
are the integration of fluidics, electronics, separation technology, and biological 
sub-systems. An optical biosensor is a compact analytical device, having a biological 
sensing element, integrated or connected to an optical transducer system. In this 
method, the analyte of interest that binds to the complementary optical bio-recog-
nition element is recognized as immobilized on a suitable optical substrate [61]. An 
electronic signal is produced which the magnitude of the frequency is proportional 
that correspond to the concentration of an analyte or a group of analytes, to which 
the element will bind is the objective of optical biosensors [62]. Meanwhile, enzyme, 
substrate, antibody, and nucleic acids are used as the primary biological materials in 
optical biosensor technology [57]. The detection usually relies on an enzyme system 
which converts the analytes to products catalytically and can be oxidized or reduced 
at a working electrode.

Optical biosensing has two general modes, which are label-free and label-
based. For label-free mode, the interaction of the analyzed material with the 
transducer will generate a detectable signal. On the contrary, the use of the label 
and the optical signal then generated by a colorimetric, fluorescent, or lumines-
cent method are involved in label-based sensing [63]. The usage of optical biosen-
sor depends on the different fields of use. This is because it has own requirements 
in term of measuring analysis, required precision of output, the sample concentra-
tion required, the time taken to complete the probe, the time necessary to prepare 
and reuse the biosensor, and the cleaning requirements of the system [57].

In the food industry, this method is used for the direct detection of bacteria in 
products. Optical biosensor used to detect the changes of refractive indices as the 
cell bind to the receptor, which is immobilized on the transducer [49]. The advan-
tages of using optical biosensors are their speed, immunity of signal to electrical or 
magnetic interference. Besides, it is highly sensitive, reproducible, and simple-to-
operate analytical tools. Somehow, some instrumentation involved in this method 
high in cost. Nabok et al. [4] reviewed the recent progress in the development of 
novel optical biosensing technologies for the detection of mycotoxins indirect assay 
with either specific antibodies or aptamers.

5.6 Enzymatic inhibition

There are a variety of enzymes such as cholinesterase, urease, glucose oxidase 
and more that have been applied in an enzymatic inhibition analysis and this 
method is pretty standard [64]. According to Puiu et al. [65], Acetylcholinesterase 
(AChE) is the most commonly used enzyme, and the reason is it is susceptible 
toward mycotoxin which is becoming the preferred method for mycotoxin detec-
tion. This statement is also supported by [66], which stated that biosensors for 
Aflatoxin B1 (a type of mycotoxin) or AFB1, in short, is developed by using AChE 
due to the inhibitory effect of AFB1 to AChE enzymatic activity. Also, the inhibitory 
effect of mycotoxin is a reversible process due to the non-covalently binding nature 
to the enzyme [67]. Soldatkin et al. [68] stated that aflatoxin showed the highest 
sensitivity toward enzymatic inhibition method among the other groups of toxins. 
A past study conducted by Egbunike and Ikegwuonu [69] also suggests that usage 
of cholinesterase in biosensor method as the biological component is usable as AFB1 
detector as aflatoxicosis has been reported to be correlated with a significant reduc-
tion of acetylcholine turnover in rat brain.

Based on the previous research, it is proven that AChE is inhibited by the AFB1 
from binding at the external site, which is located at the active site gorge entrance 
located at the tryptophan residue. The inhibitory effect of the AFB1 can be seen by 
its action where the toxin blocks the entrance to the active site so that the substrate 
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cannot enter to participate to the catalytic site result in the choline unable to exit as 
proposed by the steric blockade model [70]. Based on the observation in the study 
conducted by Hansmann et al. [71], their results lead them to two findings. The first 
observation is the addition of AFB1 in the binding site of the active site did not fulfill 
the description for inhibitory activity, and this suggests that the AFB1 does not slide 
to the catalytic site. As for the second observation, mutation of Trp321 to alanine in 
Dm-AChE put a stop on the inhibitory activity at 10 μM concentration, and AFB1 at 
a concentration of 100 μM does not inhibit Hu-BuChE enzymatic activity. Also, the 
researchers assumed that AFB1 could not enter into the active site due to its relatively 
big size, especially when considering the hydrophilic shell might be further increased 
in size. Due to this condition, aflatoxin is grouped as a ligand which binds on the 
external site of the cholinesterase [72].

5.7 Mimotope

Mimotope or also known as peptide-displaying phage or synthetic peptides [73] 
is now one of the most reliable methods that are used to identify epitopes which 
are detected by monoclonal antibodies which are antibodies that made by the same 
immune cell is given that they are clones of one single parent cell. Next, the usage 
of mimotope in mycotoxin detection involves the usage of peptides which are 
identified to be structurally not identical to the original epitope of mycotoxin but 
at least have the properties to mimic the epitope by binding to the antibodies [74]. 
Generally, this method shared instead of the same concept with enzymatic inhibi-
tion, which in this case, the mimotope will be the one that elicits antibody. Also, 
this method is beneficial when the original epitopes (example from a mycotoxin) 
are hard to be isolated and at the same time only available in minimal amount [75]. 
The first assay that using mimotope for detection is being done by Yuan et al. [76], 
where a mimotope is used to identify the mycotoxin deoxynivalenol.

A study has been conducted by Sellrie et al. [74] which aims to describe a 
competitive immunoassay for identification of hapten fluorescein by utilizing a 
monoclonal anti-fluorescein antibody B13-DE1 and a mimotope peptide which 
act by binding to the antibody. Based on their findings, the peptide mimotope was 
conjugated to horseradish peroxidase (HRP) which is then competing for binding 
to monoclonial antibody B13-DE1 with fluorescein. Based on the result, they have 
proven that mimotopes can be used to utilization in simple yet sensitive immune 
assays in order to quantitatively identify and determine substance with low molecu-
lar weights. As for the reliability and reproducibility, the assay was proved by 
validation data and found to be in the range which is described in the literature for 
conventional competitive immunoassays by Wild [77].

6. Advanced techniques for detection of mycotoxin based biosensor

During the last few decades, consumers have become more aware of health 
and food quality, consequently, research on food safety augmented. The variety of 
contaminants in many food products requires the development of high-throughput, 
real-time, and portable detection methods. The evaluation of the different myco-
toxins residues in foodstuffs became an essential factor in guaranteeing the prod-
ucts’ quality. Hence, it is essential to improve the analytical standards to detect and 
quantify the presence of a mycotoxin. The operation procedure should be simplified 
continuously for the convenience of users. The biosensor based nanotechnology 
can be extensively used in food contaminants monitoring and eventually become 
effectively routine analysis tools that could meet numerous challenges.
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