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Chapter

Ion Channels and Transporters as 
Cancer Biomarkers and Targets for 
Diagnostics with Antibodies
Jessica Iorio, Claudia Duranti and Elena Lastraioli

Abstract

Cancer is a highly heterogeneous disease in terms of both response to therapy 
and prognosis. The introduction of molecular tools and antibodies had a great 
impact on cancer management in recent years for both cancer diagnosis and 
therapy. Ion channels and transporters (ICT) are membrane proteins aberrantly 
expressed in several human cancers. ICT can now represent potential cancer 
biomarkers as well as targets for therapeutic and diagnostic purposes. In particular, 
we will discuss about the potential role of ICTs as biomarkers for solid cancers 
(evaluated either by immunohistochemistry or molecular biology techniques) and 
the potential use of antibodies for diagnosis.

Keywords: ion channels, antibodies, biomarkers, cancer, diagnosis

1. Introduction

Ion channels and transporters (ICTs) are emerging as potential cancer biomark-
ers. Indeed, ICTs are aberrantly expressed in several types of human cancers, and 
exert a relevant role in mediating interactions between tumor cells and tumor 
microenvironment. Such interactions drive different functions which in turn regu-
late neoplastic progression, such as cell proliferation and survival, cell invasiveness 
and pro-angiogenetic programs [1–3]. Moreover, due to their prevalent expression 
at the cell surface, ICTs represent good targets for antibodies, to be exploited for 
diagnostic purposes. Finally, being highly druggable molecules, ICTs may represent 
novel molecular targets for antineoplastic therapy [4, 5].

The expression and role of different ion channels in tumor cells and their different 
contribution to tumor progression has been thoroughly described elsewhere [6]. In 
this chapter, we will focus on the possibility of exploiting ICTs as cancer biomarkers, 
for diagnostic, prognostic or predictive purposes. Some examples, relative to either 
solid cancers or hematologic malignancies are provided. We will analyze the possibil-
ity of using ICT-targeting antibodies for either in vitro or in vivo cancer diagnosis.

2. Cancer diagnosis: a focus on antibody-based techniques

The technologies available to help physicians to detect and diagnose cancer 
has changed dramatically in recent years. In particular, the use of biomarkers has 
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greatly improved diagnosis through their application for either in vitro diagnosis 
(on tumor specimens or in blood samples) or in vivo molecular imaging. According 
to the National Cancer Institute (NCI) definition (NCI Dictionary of Cancer Terms, 
http://www.cancer.gov/dictionary?cdrid=46636), a biomarker may be used either 
to help diagnosis, for example, to identify early stage cancers (Diagnostic) or to 
forecast how aggressive a condition is (Prognostic), or to predict how well a patient 
will respond to a define treatment (Predictive).

For the purposes of this chapter, we will briefly summarize the main techniques, 
either in vitro or in vivo, which take advantage of the use of biomarkers to obtain 
diagnostic, prognostic and predictive data on the cancer under study. Notably, 
most, although not all, of these techniques are based on the use of antibodies, 
targeting specific cancer-related biomarkers.

2.1 In vitro cancer diagnosis

2.1.1 Immunohistochemistry (IHC)

IHC represents an indispensable diagnostic tool to assess the presence or 
absence, as well as the amount, of a specific molecular tumor marker in a tissue. 
After appropriate assessment of categorical scoring system and proper validation 
of the immunohistochemical assay, a given marker can be proposed as a potential 
diagnostic or prognostic factor. Indeed, many of the cancer biomarkers routinely 
used in cancer diagnostics are based on this technique.

2.1.2 Flow cytometry (FC)

Using a multiparametric approach, FC immunophenotyping plays an indispens-
able role in the diagnosis and subclassification of leukemias, as well as for minimal 
residual disease detection. FC, in fact, provides a rapid and detailed determination 
of antigen expression profiles; these information along with morphologic assess-
ment, allow to diagnose a particular type of leukemia and/or help in distinguishing 
from other subtypes. Also, the identification of specific antigens has prognostic and 
therapeutic relevance in acute leukemias. Moreover, FC immunophenotyping is 
useful to monitor response to therapy, recurrence and minimal residual disease.

While IHC and FC represent the standard of care in solid cancers and hematologic 
malignancies, respectively, some remarkable technological breakthroughs of the last 
10 years have greatly contributed to improve cancer diagnostics through either the 
definition of “Omics profile” or the assessment of plasma-based cancer biomarkers:

2.1.3 Omics profiles

The study of tumor genomes using high throughput profiling strategies includ-
ing (but not limited to) DNA copy number, DNA methylation, and transcriptome 
and whole-genome sequencing—technologies that may collectively be defined as 
“omics”—has led to identifying genes and pathways deregulated in cancer, hence 
revealing those that may be useful for the detection and management of disease. 
In the near future, such discoveries will lead to the discovery of novel diagnostic, 
prognostic and predictive markers that will ultimately improve patient outcomes.

2.2 In vivo cancer diagnosis: molecular imaging

Besides ex vivo procedures (either on surgical/bioptic samples or blood), cancer 
diagnosis is mainly based on imaging procedures, such as computed tomography, 
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magnetic resonance imaging and positron emission tomography. The advent of 
molecular imaging techniques has progressively allowed more accurate in vivo 
visualization of cancer, based on specific biological and pathological processes. 
Antibody-based imaging is of great utility since the combination of tumor speci-
ficity and different imaging methodologies might improve cancer diagnosis, 
monitoring and follow up [7–11]. The diagnostic imaging approaches currently 
used in cancer has been improved by the application of antibodies, thanks to the 
accuracy that allows antibodies to precisely identifying their targets. Some practical 
examples of mAbs recognizing cancer-specific biomarkers that are approved by the 
FDA and/or EMA and are currently used in the clinical setting have been described 
elsewhere [12]. Monoclonal antibodies (mAbs) have several features (big size, slow 
pharmacokinetics and blood clearance, not complete penetration and accumula-
tion in tumor tissue) that can delay the time point for imaging. A different class of 
antibodies (single chain Fragment variable, scFv) might be useful to overcome such 
limitations and due to the possibility of conjugating the recombinant proteins with 
fluorescent dyes, scFv antibodies have been proposed for use in imaging applica-
tions, especially for cancer diagnostics [8, 11, 13].

3. Ion channels and transporters with clinical relevance in solid cancer

An overview of the main ion channels and transporters expressed in different 
solid tumors is reported in Figure 1.

3.1 Potassium channels

K+ channels are the class of ion channels mostly de-regulated in cancers. Among 
them, KCa 1.1 channels (also known as BK channels, encoded by the KCNMA1 
gene) have shown a clinical relevance in breast (BC) and prostate cancer (PCa). 
In both tumor types, BK overexpression can be traced back to the amplification of 
the KCNMA1 gene located in 10q22: in BC, the amplification is restricted to inva-
sive ductal tumors, and is associated with high stage, high grade and unfavorable 
prognosis [14]. In BC, KCa 1.1 positively correlates with the expression of estrogen 

Figure 1. 
Schematic representation of the main ICTs expressed in solid tumors.
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receptors [15] and their levels are higher in BC metastatizing to brain [16]. In PCa, 
the KCNMA1 gene is frequently amplified in late-stage tumors [17] and can be 
considered a potential biomarker [18]. Another Ca2+-dependent K+ channel often 
overexpressed in human cancers is KCa3.1 (encoded by the KCNN4 gene). KCa3.1 
channels are upregulated in BC, especially in high grade tumors [19], in pancreatic 
cancer (pancreatic ductal adenocarcinoma, PDAC) [20], in colorectal cancer (CRC) 
[21] as well as in small cell lung cancer (SCLC) [22]. While the clinical relevance of 
KCa3.1 was hypothesized in CRC [23], although not validated [24], KCNN4 hypo-
methylation turned out to be a negative prognostic factor in SCLC [22]. Kv channels 
are voltage-dependent K+ channels whose expression is often increased in cancer 
tissues [25]. For example, the expression of Kv 1.3 (KCNA3), markedly increased 
in PCa in samples with Gleason score of 5–6 (GS5–6), but significantly decreased in 
the GS8–9 group. This malignancy grade-dependent K+-channel expression pattern 
may provide a convenient marker to understand PCa progression level [26]. In PCa, 
Kv1.3 is mainly expressed in early stages of progression and down-regulated in 
high grade cancers [27]. Kv1.3 expression is lower in cancer compared with healthy 
pancreas. Kv1.3 downregulation could be traced back to promoter’s methylation and 
was associated with the presence of metastases [28]. K2P9.1 (KCNK9) belongs to 
the K2P family and genomic amplification of the gene was shown in a small fraction 
of BC [29]. K2P5.1 (KCNK5) is a member of the same family and it was shown to 
be induced by estrogens in ER-positive BC cells; for this reason, it might represent a 
therapeutic target for ER-positive BCs [30]. The amplification of the KCNK9 gene at 
the 8q23.4 locus justifies the over expression of K2P9.1 channels in BC. The overex-
pression of another K2p channel K2p 2.1 has been demonstrated in PCa and it was 
shown that it regulates cell proliferation [31]. The expression of inward rectifiers K+ 
channels, in particular Kir3.1 (KCNJ3) channels positively correlated with lymph 
node metastases in BC [32]. The voltage-gated K+ channels (VGKC) appear to exert 
a pleiotropic role in colorectal cancer. In primary human samples, the transcripts 
of KCNA3, KCNA5, KCNC1, KCNH1 [33–35], KCNH2 [36] and KCNK9 [37] have 
been detected. A relevant family of VGKC, whose most important members are 
Kv 10.1 and Kv 11.1 was shown to be highly represented in human cancers. Kv10.1 
(KCNH1) was expressed in esophageal squamous cell carcinoma (ESCC) compared 
with the corresponding normal tissue, it was associated with depth of invasion and 
represented an independent negative prognostic factor [38].

Kv11.1 (KCNH2) channels are expressed in gastric cancer (GC) cell lines and 
primary GCs. In GC cell lines, they regulate tumor proliferation [39]. Consistently, 
treatment with Kv11.1 blockers, like cisapride, and siRNA impairs tumor growth 
[40, 41]. It was also shown that the mean survival time was shorter in Kv11.1 posi-
tive patients thus Kv11.1 expression was proposed as an independent prognostic 
factor. We also showed that Kv11.1 regulates VEGF-A secretion, with a pathway 
similar to the one described in CRC [42]. In vivo analyses of xenografts obtained 
with GC cells demonstrated that the treatment with Bevacizumab and Kv11.1 
blockers dramatically reduces greatly tumor growth. Kv11.1 is highly expressed 
in primary CRC and is associated with invasive phenotype [36]; moreover, along 
with Glut-1 absence, it represents a negative prognostic factor in TNM I and II CRC 
[43]. Kv11.1 expression is associated with chemosensitivity for several anti-tumor 
agents (such as vincristine, paclitaxel and hydroxy-camptothecin, doxorubicin). 
Such chemosensitivity is modulated by erythromycin that is also capable which, to 
inhibit Kv11.1 current [44]. Kv11.1 also regulates lung cancer (LC) cell proliferation 
[45]. Kv11.1 is expressed in precancerous and neoplastic lesions of the esophagus 
and it is associated with malignant progression [46]. Kv11.1 channel expression 
represents a negative prognostic factor in terms of ESCC patients’ survival [47]. 



5

Ion Channels and Transporters as Cancer Biomarkers and Targets for Diagnostics with Antibodies
DOI: http://dx.doi.org/10.5772/intechopen.90401

Kv11.1 are also expressed in PDAC cell lines and primary samples and it negatively 
affects patients’ prognosis [48].

3.2 Sodium channels

Voltage-gated sodium channels (VGSC) were among the first channels to 
be demonstrated mis-expressed in BC and PCa. In particular, the predominant 
VGSC in BC is the “neonatal” splice variant of SCN5A (nNaV1.5), whose activity 
promotes metastatization [49–51]; consistently, the nNAv1.5 was up-regulated in 
metastatic BC samples [49, 50, 52]. On the whole, VGSC and in particular nNav1.5 
could represent a good specific target for BC treatment. In CRC [53–55], the clinical 
relevance of Nav 1.5 expression was established by IHC in CRC samples with respect 
to healthy colon. VGSC regulates invasiveness and it was shown that SCNA5 gene 
modulates genes mediating, among others, cell migration and cell cycle control. 
Both nNav 1.5 and its “adult” counterpart are expressed in CRC and the local anes-
thetic Ropivacaine, blocks Nav 1.5 variants [56]. PCa show an aberrant expression 
of Nav1.7 (SCN9A), associated with a strong metastatic potential and its activity 
potentiates cell migration, crucial for the metastatic cascade [57]. Hence, Nav1.7 
could represent a useful diagnostic marker [58]. A recent paper [59] showed that 
EGFR and Nav1.7 are expressed in NSCLC cells and that EGFR-mediated upregula-
tion of SCN9A is necessary for the invasiveness of such cells. Nav1.7 has clinical 
relevance and might represent a novel target for therapy and/or a prognostic bio-
marker in NSCLC [59]. A recent multicenter study identified two single nucleotide 
polymorphisms of VGSC genes (SCN4A-rs2302237 and SCN10A-rs12632942) that 
were associated with oxaliplatin-induced peripheral neuropathy development [60].

3.3 Calcium channels

Calcium signal remodeling is one of the common features of proliferating cells, 
including cancer. Indeed many functional studies have provided different calcium 
signaling that can modulate cell proliferation and resistance to apoptosis [61–63]. 
Voltage-gated calcium channels (VGCC) that are involved in the regulation of BC 
cell proliferation. CACNA2D3 gene (encoding the α2δ3 subunit of the voltage 
gated Ca2+ channel) is frequently up-regulated in BC, but in some metastatic cases, 
its expression is reduced [64]. The mechanisms of CACNA2D3 contribution to 
the metastatic process has not being clarified yet. One possible mechanism for the 
overexpression of some calcium permeable ion channels is through the involve-
ment of hormone receptors, such as ERα. Examples are ORAI3 [65]. CACNA2D3, is 
frequently downregulated in primary BCs, as a result of methylation in CpG islands 
[64]. The influence of calcium channels in PCa has been known for over 30 years. 
Later research identified additional classes of channel proteins having an important 
regulatory role and affecting malignant transformation (reviewed in [66]). The 
expression of VGCC (mainly L-type) has been detected in the androgen-responsive 
LNCaP cells. In these cells Ca2+ currents are activated by androgens and mediate 
the androgen-induced effects [67]. Part of the Ca2+ effects depend on K+ channels 
stimulation, for example, KCa3.1 blocking inhibits the proliferation of PCa cells 
[67]. An aberrant methylation of CACNA2D1/3 gene (encoding the voltage-depen-
dent calcium channel 2 subunit) was demonstrated in GC samples. CACNA2D3 
methylation is associated with diffuse type GC and shorter survival [68]. ORAI1 
and STIM1, belonging to the store operated calcium channels (SOC) family, are 
up-regulated in BC of the basal-like molecular subtype [69]. Moreover, another 
member of the same family, STIM2, is expressed at low levels in BC. Patients with 
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high STIM1 and low STIM2 have unfavorable prognosis, suggesting that the SOC 
family has a role in aggressiveness and in the metastatic process [69]. ORAI3 has 
recently been associated with ER-positive BC [65] and could represent a novel 
target for ER-positive BCs [70].

3.4 Transient receptor potential (TRP) channels

TRP channels are non-selective cation channels that can be activated by differ-
ent stimuli such as pH variations, temperature and pressure among others [71, 72]. 
Since TRP channels are involved in migration and invasiveness, they contribute 
to the metastatic process in different tumors [73]. Ca2+ influx through TRPCs also 
occurs and promotes either cell proliferation or apoptosis, depending on TRPC 
subtype. TRPC1 whose levels are high in BCs with low proliferation capacity, may 
not be the optimal target for therapies against aggressive BCs [74]. Significantly 
elevated (up to 200-fold) mRNA levels of TRPC6 were shown in BC samples 
compared with paired control samples [74, 75], but no correlations with clinico-
pathological features emerged [74]. A similar behavior characterizes TRPC1, whose 
expression levels decrease during the progression of PCa from androgen-dependent 
to androgen-independent phase [75]. TRPC6 is overexpressed in ESCC with respect 
to normal esophageal tissue at both protein and mRNA levels [76]. A recent report 
evidenced correlations of TRPC6 with T and staging and an association between 
TRPC6 mRNA and poor prognosis [77]. TRPV6 is up-regulated in PgR and 
ER-negative BCs [78]. Basal-like BCs with high TRPV6 mRNA levels are associ-
ated with poor survival [79]. In vitro data suggest that TRPV6 may be a potential 
therapeutic target [79]. TRPV6 is highly expressed in PCa and are associated with 
the Gleason score and metastatisation [80]. The expression of TRPV4 is decreased 
by progesterone [81]. TRPM7 is highly expressed in BC, and such over expression is 
associated with poor prognosis in terms of distant metastasis- and recurrence-free 
survival [82]. In accordance with these observation, TRPM7 mRNA levels are higher 
in BC metastases with respect to primary tumors. Also, TRPM7 are overexpressed in 
pancreatic ductal adenocarcinomas and are associated with lymph node metastases 
[83]. TRPM7 mRNA and protein are also overexpressed in bladder cancer with 
respect to normal tissue and are associated with poor prognosis [84]. TRPA1 is 
overexpressed also in SCLC patients compared with NSCLC and since it is associ-
ated with SCLC patients’ survival representing a potential therapeutic target [85].

3.5 Chloride channels

Anoctamin 1 (ANO1), the calcium-activated chloride channel, is highly 
expressed in BC cell lines and primary BCs [86] and the 11q13 region is frequently 
amplified in BC and it is associated with grading and unfavorable outcome [86].

ANO1 was also shown to play an important role in controlling PDAC cell pro-
liferation [87]. It has been shown that chloride channel accessory 1 and 2 genes 
(CLCA1 and CLCA2) transcripts show widespread downregulation in CRC 
patients [88]. Therefore CLCA proteins could be tumor suppressors in CRC in 
analogy with what occurs in BC. CLC1 is expressed in GC cells where it impairs cell 
proliferation and stimulates apoptosis, invasion and migration in vitro [89]. CLC1 
overexpression in primary GC correlates with clinico-pathological parameters 
(lymph node involvement, stage, lymphatic and perineural invasion) as well as 
with poor prognosis [90]. CLIC3 is not expressed in healthy pancreas while it is 
expressed in PanIN lesions [91] and in PDAC where it has a negative impact on 
patient survival.
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3.6 Ligand-gated channels

The ligand-gated nicotinic acethylcholine receptors (nAChRs) are the chan-
nel type mostly studied in LC [92]. NSCLC shows altered expression of nicotinic 
subunits (mainly α1, α5 ανδ α7) compared with normal tissue. Moreover in NSCLC 
cells, nicotine has mitogenic effects of nicotine, mediated by α7-containing nAChRs 
[93]. Multiple genome-wide association studies (GWAS) have implicated the 15q25 
nAChR gene cluster CHRNA5-A3-B4 in nicotine dependence and LC [94]. The 
expression of the CHRNA5 gene which encodes the α5-nAchR was increased in LC 
tissue and that the p.Asp398Asn polymorphism in the CHRNA5 gene is associated 
with LC risk [92] and altered receptor function [95]. Additionally, the p.Asp398Asn 
polymorphism may influence α5 (CHRNA5) expression as well [92]. A α5-nAChR/
HIF-1α/VEGF axis exists in LC and is involved in nicotine-induced tumor cell 
proliferation. This fact suggests that α5-nAChR may serve as a potential anticancer 
target in nicotine-associated LC [96].

3.7 Aquaporins (AQP)

AQP1 is expressed in BC and positively correlates with grading, histology, CK14 
expression, smooth muscle actin expression, basal-like group and poor outcome, 
whereas it has significant negative correlation with ER status [97]. AQP1, AQP3 and 
AQP5 are expressed in CRC cell lines. AQP1 and AQP5 are expressed the early steps 
of CRC progression but also in liver metastases [98]. Moreover, AQP5 expression is 
associated with grading, nodal involvement and TNM stage [99]. AQP5 is expressed 
at significant levels in Lauren’s intestinal type-GC, where it shows an apical localiza-
tion [100], whereas AQP3 and AQP4 are not overexpressed in GC. Shen et al. [101] 
showed that both AQP3 and AQP5 were overexpressed in GC and were associated 
with lymph node involvement. Moreover, AQP3 expression was higher in well 
differentiated tumors. AQP3 is also over-expressed in primary CRC with respect to 
healthy tissue, and its expression is positively regulated by EGF and is associated 
with lymph node involvement, metastasis and differentiation [102]. AQP3 and 
AQP5 are expressed in ESCC, while absent in healthy esophagus [103, 104]: the 
presence of the two aquaporins is associated with clinico-pathological features and 
their co-expression represents an independent negative prognostic factor. A recent 
microarray-based study demonstrated that reduced AQP9 gene expression is related 
to absence of adjuvant chemotherapy response in CRC patients [38].

3.8 Transporters

The monocarboxylate transporter SLC16A1 (encoded by the SLC16A1 gene) is asso-
ciated to basal-like BC, high histological grade, CK5, CK14, vimentin and Ki67. AQP1 
along with SLC16A1 were shown to be associated with tumor aggressiveness of BC 
[105]. The voltage-gated proton channel Hv1 (HVCN1) overexpression in metastatic 
BC is associated with progression and unfavorable outcome [106]. The same occurs in 
CRC in which it is associated also with tumor size, lymph node involvement and stage 
[107]. In stage CRC, a low expression of SLC7A1 (cationic amino-acid transporters-1, 
encoded by SLC7A1 gene) is associated with shorter metastases-free survival [108].

The sodium proton exchanger 1 (NHE1, SLC9A1) interacts with EGFR and is 
involved in PDAC cell invasiveness [109]. It was shown that the Glucose Transporter 
1 (SLC2A1, GLUT1) is expressed in BE-derived tumors in the late events of tumor 
progression [110]. SLC2A1 expression described also occurs in ESCC, where it 
represents a marker of poor prognosis [111]. Moreover, SLC2A1 expression increased 
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after radiotherapy in ESCC patients [112]. The apical sodium-dependent bile acid 
transporters (SLC10A2), which mediate bile acid transport [113], are not expressed 
in the normal squamous epithelium of the esophagus [114], whereas their expression 
increases in Barrett’s Esophagus, to decline in EA [115]. Divalent metal transporter1 
(DMT1, SLC11A2) overexpression was associated with metastatization in EC 
[116]. One of the main causes of chemotherapy failure is drug efflux mediated by 
ATP-binding cassette transporters (ABC) [117]. It was recently shown that ABCG2 
together with V-ATPase are overexpressed in ESCC and are associated with grading, 
TNM stage and metastatization. ABCB1 and ABCG2 are expressed in primary GC 
and GC cell lines [118] in which their expression is associated with tumor differenti-
ation. ABCB1 expression is higher in diffuse type GC [119]. ABCG2 represents a tar-
get for a several chemotherapy drugs [120]: for example, cisplatin increases ABCG2 
mRNA in vitro and this is associated with patients’ outcome [121]. In PDAC, ABCB4, 
ABCB11, ABCC1, ABCC3, ABCC5, ABCC10 and ABCG2 are up-regulated, while 
ABCA3, ABCC6, CFTR (ABCC7) and ABCC8 are down-regulated: such deregula-
tion contributes to PDAC poor response to therapy [122]. The Solute Carrier trans-
porters (SLC) is a family of transporters frequently deregulated in PDAC. SLC7A5 
(the L-type aminoacid transporter 1) are overexpressed in PDAC and are associated 
with molecular and clinico-pathological features (such as Ki-67, p53, CD34, CD98, 
VEGF size, stage) and prognosis [122]. SLC22A3 and SLC22A18 are up-regulated 
in PDAC with respect to healthy pancreas while SLC22A1, SLC22A2, SLC22A11, 
SLC28A1, SLC28A3 and SLC29A1 are down-regulated [122]. In particular, SLC28A1 
overexpression was associated with poor overall survival whereas SLC22A3 and 
SLC29A3 overexpression was observed in patients treated with Gemcitabine with 
longer overall survival. PC patients with low expression of SMCT1 (SLC5A8) have 
poorer survival with respect to patients with high SLC5A8 levels [123]. The human 
equilibrative nucleoside transporter 1 (SLC29A1) is associated to longer time to pro-
gression and it was shown that it could predict gemcitabine effects in non-resectable 
PDAC patients, if evaluated in samples obtained by fine-needle aspiration [124]. 
Different conclusions were drawn when analyzing SLC29A1 expression in patients 
treated with chemo-radiotherapy [125]. In GC, SLC7A5 overexpression was detected 
and it was found to be associated with clinico-pathological features such as size, 
lymph node involvement, TNM stage and local invasion [126]. SLC16A1 was found 
to be expressed both in healthy stomach and GC, and it could be hypothesized a role 
in gastric physiology for this transporter [119]. In metastatic GC, SLC16A3 is down-
regulated [119] and is associated with intestinal type. 4F2hc (SLC3A2) was found to 
be over-expressed in GC cell lines and in primary GC, with no significant correlation 
with clinico-pathological features. Since the study was conducted on a small number 
of samples, it could not allow definitive conclusions [127].

4.  Ion channels and transporters with clinical relevance in hematologic 
malignancies

As reported for solid tumors, a schematic overview of ion channels and trans-
porters expressed in hematologic tumors is reported in Figure 2. Early evidence 
for the implication of K+ channels in leukemia cell proliferation was obtained in 
the myeloblastic leukemia cell line ML-1 [128]. In leukemias, it was shown that 
KCa3.1 might represent a useful target since its blockade impairs leukemic cells 
proliferation [129] while KCNN4 overexpression was detected in follicular lym-
phomas [130]. A significant Kv10.1 expression was detected in myelodysplastic 
syndromes, CML and almost half of a cohort of AML samples and blocking the 
channel results in the inhibition of both cell proliferation and migration. Smith 
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and colleagues [131] carried out an extensive study of the K+ channel transcripts in 
primary lymphocytes, leukemias (B-cell CLL) and several leukemic cell lines and 
they found only Kv11.1 was significantly up-regulated. In AML cell lines (FLG 29.1, 
HL-60 and K562), it was shown that specific block of IKv11.1 led to G1 arrest and 
impaired their migration on fibronectin-containing ECM [132]. Kv11.1 was also 
overexpressed in circulating blasts from human AML, in which the block of the 
channel significantly decreased cell growth [132]. The hsloBK splice variant of gBK 
has been detected in gliomas [133] and the herg1b alternative transcript of Kv11.1 is 
overexpressed in human leukemias and neuroblastomas [134, 135]. TWIK-related 
spinal cord K+ (TRESK) channels, members of the double-pore domain K+ chan-
nel family, are expressed in Jurkat cells [136] that also express TRPV5 and TRPV6, 
which were also detected in K562 cells. TRP channels control Ca2+ homeostasis in 
the context of malignant transformation [137] and it was shown that of TRPV5/
TRPV6-like channels’ activation mediate Ca2+ entry and the activation of Ca2+/
Calmodulin-dependent kinase II in irradiated K562 cells [138].

During the oxidative burst following activation of K562 cells non-selective 
cation channel TRPM2 are activated, thus activating SK4 KCa channels. In paral-
lel, the voltage-gated Cl-channel ClC-3 is also activated. The overall effect is cell 
shrinkage because of the osmotic water loss determined KCl outflow [139, 140]. A 
similar volume-dependent regulation of leukemia cell apoptosis can be operated by 
volume-regulated chloride currents (VRCC). The volume-dependent regulatory 
mechanisms are accompanied by control of water levels suggesting it could rep-
resent an additional modulatory mechanism in the apoptotic cascade [141]. AQPs 
control osmotic fluxes in a variety of physiological conditions. For instance, AQP5 is 
overexpressed in CML cells, where it promotes cell proliferation and inhibits apop-
tosis, perhaps through an effect on cell volume control [142]. Expression of AQP5 
increases in parallel with the development of resistance to imatinib mesylate [142].

5.  Targeting ion channels and transporters for cancer diagnosis with 
antibodies

Recently, an antibody directed to a cancer-related ion channel (the purinergic 
receptor P2X7) was introduced into the clinical settings: it is a polyclonal antibody 
targeting a conformational epitope of the non-functional channel and it is likely 

Figure 2. 
Cartoon showing the main ICTs expressed in leukemias and lymphomas.
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to be approved as a first-generation therapy. Antibodies targeting ORAI1 were 
obtained using U2OS cells overexpressing human ORAI1 as immunogens. One of 
such antibodies impaired cell proliferation of T lymphocytes in peripheral blood 
[143, 144]. In 2014, a method for the isolation of functional antibodies against 
Nav1.7 was published [145].

6. Future perspectives

In a recent paper [146], an ICT molecular profile was defined for BC thus 
opening interesting perspectives in this field. In particular, the expression of 30 
ion channel genes was shown to be associated with tumor grade. The authors were 
able of identifying a “IC30 gene signature” composed of 30 ion channel genes and 
demonstrated that IC30 might represent a prognostic biomarker predicting clinical 
outcome in BC, independently from clinical and pathological prognostic factors. 
The same approach was applied to LC and 37 ion channels genes were identified as 
differentially expressed in LC in comparison to healthy lung [147]. Moreover, 31 ion 
channel genes were identified as differentially expressed between lung adenocarci-
noma and squamous-cell carcinoma samples, therefore the expression of such genes 
could be used for NSCLC molecular classification [147]. In NSCLC, it was shown 
that VDAC1 is an independent prognostic factor and it is associated with shorter 
overall survival [147]. VDAC1 was also found to be up-regulated in different types 
of carcinomas [148]. More recently, a paper describing gene expression profile in 
lymphomas demonstrated that KCNN4 and SLC2A1 genes are overexpressed in 
follicular lymphomas (FL) [130]. In particular, SLC2A1 was proposed to be the hub 
of a functional network, connecting channels and transporters in FL. Moreover, 
relapsed FL had 38 differentially expressed ICT genes, among which ATP9A, 
SLC2A1 and KCNN4 were under-expressed. In the same paper, it was shown that 
diffuse large B Cell lymphoma (DLBCL) have a completely different pattern of K+ 
channel encoding genes expression along with the overexpression of the fatty acid 
transporter-encoding gene SLC27A1.
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