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Abstract

Maternal aging and different biological factors play an important role in the 
birth of Down syndrome baby. Hormones play a crucial role for the maintenance 
of female sex cycle and oocyte maturation. Disparity in the level of these hor-
mones during menstrual cycle has profound effect on female reproductive system. 
Hormonal imbalance also affects meiotic process and integrity of spindle structure 
and leads to nondisjunction of chromosome. Follicle-stimulating hormone (FSH), 
anti-Müllerian hormone (AMH) and luteinizing hormone (LH) play a crucial role 
in ovarian aging and nondisjunction of chromosomes. FSH stands as a hormonal 
indicator for ovarian aging, and its high level is responsible for aneuploid birth. 
Advanced chronological age of mother, ovarian aging, environmental factors and 
accelerated telomere shortening at older reproductive age are found to be risk fac-
tors for the birth of trisomy 21 Down syndrome.

Keywords: hormones, ovarian aging, nondisjunction, Down syndrome, trisomy 21, 
oocyte, telomere

1. Introduction

Down syndrome (DS), the most frequent live born aneuploidy in human, is 
predominantly caused by trisomy of chromosome 21 (Ch21), and its etiologic fac-
tors are under continuous scrutiny since its discovery by Lejeune et al. [1]. Several 
groups of workers have tried to explore the factors associated with nondisjunction 
(NDJ) of Ch21 and have identified that advanced maternal age [2, 3] and altered 
pattern of recombination are two strong correlates that affect proper segregation 
of chromosomes at oogenesis, particularly at first meiotic division (MI) [2, 4]. In 
elucidating the important causes of these sex bias risk factors, two hypotheses have 
been suggested. According to one school of thought [4], the extended phase of 
MI arrest in women that lasts for several years makes the oocyte more vulnerable 
to NDJ than spermatozoa. On the other hand, other investigators emphasized the 
meiotic drive of chromosomes and subsequent natural selection in asymmetric 
meiosis in females as the probable reasons of sex biasness of NDJ [5]. The associa-
tion of advanced maternal age with DS birth is still an enigma. Although advanced 
maternal age is not the cause of NDJ, it is an obvious risk of DS birth. The overall 
maternal risk for DS birth is suggested to be multifactorial and includes both 
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genetic and environmental factors [2, 4, 6, 7] that impart adverse effects in either 
an age-dependent manner or a stochastic age-unrelated fashion [8]. In addition 
to genetic correlates, the genotoxic effects of smoking, chewing tobacco and oral 
contraceptive pills on reproductive health and fertility have also been investigated 
[9]. All these risk factors exacerbate age-related maternal risk for the birth of DS 
babies [10–12]. Telomere length is a powerful biomarker for aging. Telomere erosion 
at advanced reproductive age might affect the chromosomal segregation during 
oogenesis, and there is a strong relation between maternal aging and telomere 
length attrition [7, 13].

1.1 Hormonal imbalance with aging

A complex orchestrated hormonal cascade plays a very crucial role for the 
maintenance of female sex cycle and oocyte maturation. The brain hypothalamus 
releases luteinizing hormone-releasing hormone (LHRH) that triggers the anterior 
pituitary gland to release follicle-stimulating hormone (FSH) and luteinizing 
hormone (LH). FSH and LH in turn stimulate ovary to produce estrogen (mainly 
estradiol) and progesterone using an complicated feedback loop. Disparities in the 
level of these hormones during menstrual cycle have a profound effect on female 
reproductive system. They are responsible for the recommencement of meiosis I 
in the oocyte [14], change in the follicular micro-environment around oocytes and 
prepare the endometrial layer of uterus for implantation of fertilized ovum [15, 16]. 
Maturity of oocyte, rate of meiosis and integrity of spindle are disturbed by imbal-
anced level of hormones and eventually lead to nondisjunction [17–19]. However, 
there are two major hormones FSH and anti-Müllerian hormone serve as powerful 
biomarkers of ovarian aging.

1.2 Follicle-stimulating hormone (FSH), aging and aneuploid birth

FSH plays a crucial role in nondisjunction. It has been documented that FSH 
level rises with ovarian aging [20, 21]. Moreover, women giving birth to Down 
syndrome (DS) child are reported to have elevated FSH level [22, 23], indicating 
the effect of aging on the oocyte pool. Demonstrated that higher concentration 
of FSH evokes chromosomal aneuploidy in murine model. They showed that the 
elevated FSH hampers chromosomal alignment in prometaphase and metaphase 
stages of meiosis I and gives rise to aneuploid oocyte. Granulosa cells of maturing 
follicles exclusively possess FSH receptors that are linked directly to oocyte with 
gap junctions [24, 25]. Thus, the effect of FSH on cumulus cells directly conducted 
to oocytes via secondary messenger cAMP and downstream kinase cascade [26, 
27]. The spindle formation, its assembly and number of centromere in oocyte are 
perturbed by adverse effect of FSH both in vivo and in vitro [28]. It is also apparent 
that age-related reproductive failure is accelerated in transgenic FSH mice [29]. 
Researchers hypothesized that FSH alters the intra follicular environment that 
either facilitates the recruitment of an error-prone oocyte or affects cohesins and 
in turn reduce the pairing ability of chromosomes. Thus, chronic exposure to high 
FSH promotes rapid depletion of oocyte pool and accounts for trisomic pregnancies 
[30]. These evidences suggest that FSH stands as a hormonal indicator of ovarian 
aging, and its high level is responsible for aneuploid birth.

1.3 Anti-Müllerian hormone (AMH), ovarian reserve and aneuploid birth

Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance (MIS) is a 
homodimeric glycoprotein and belongs to transforming growth factor-β (TGF-β) 
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superfamily. Synthesis of AMH occurs in ovarian granulosa cells. Several studies 
exhibit its prime role as a useful biomarker for ovarian reserve [31–34]. Gradual 
aging affirms a decline in the level of serum AMH. This hormone is proved to be 
a superior predictor of ovarian reserve than chronological age [35, 36]. The qual-
ity of an embryo depends upon both the quantity and quality of ovarian reserve 
which diminished with age. AMH, however, is essential for the maintenance of 
both the number and functional quality of oocyte pool. Moreover, AMH is a stable 
marker and not influenced by pregnancy, oral contraceptives and antagonist of 
gonadotropin-releasing hormone [37–41]. The undetectable level of AMH after 
3–5 days of bilateral ovariectomy suggests that the origin of the circulating AMH 
is chiefly ovarian [39, 40]. AMH is an exclusive endocrine parameter to presume 
the ovarian function as it is evident from several studies that AMH level remains 
mostly unchanged throughout menstrual cycle unlike other gonadotropins and 
steroids [38, 42–44]. The association between serum AMH and fetal aneuploidy 
is a topic of debate. Seifer and Maclaughlin found lack of association of maternal 
AMH and Down syndrome conceptions [34]. This finding was again supported by 
Plante et al. who suggested that AMH decreases with age, and the dose level did 
not vary in cases of aneuploid and euploid pregnancies [45]; whereas Shim et al. 
demonstrated a significant association of circulating AMH with fetal aneuploidy in 
early pregnancies [46].

2. Alteration of sister chromatid cohesion: aging effect

A growing body of evidence suggests that aneuploid fetus formation speeds up 
as maternal age crosses 35 years. Moreover, a 10-fold increase in aneuploid concep-
tion is apparent after 38 years and involves aneuploidy of multiple chromosomes 
[47–49]. In older women, the probability of erroneous separation of sister centro-
mere increases in anaphase-II [47, 48, 50]. Extensive loss of centromeric cohesion 
and subsequent instability of spindle are reported in oocytes arrested in MII from 
aged women [51–53]. Cohesin protein between two sister chromatids depletes with 
aging and gives rise to nondisjunction error [54]. Studies reveal that in MII oocytes 
of older mice [55, 56] and women [57], sister chromatids having incompletely 
separated distantly placed centromeres face problem in biorientation and result in 
spindle instability.

3. Telomere theory of ovarian aging

The telomeres are the nucleotide repeat sequence TTAGGG insulating the 
terminal ends of eukaryotic chromosomes, protecting them from getting fused 
with adjacent chromosomes [58]. In each cell division, telomere corrodes and 
restored by a unique reverse transcriptase called telomerase [59]. Gradual deple-
tion of telomere length with age marked it as an impressive biomarker of aging 
[60]. Ovarian aging confirms a positive correlation between shorter telomere 
length and decreased reproductive lifespan [61]. The role of telomere biology in 
reproduction is supported by numerous opinions. Telomere theory of reproduc-
tive senescence states that prolonged exposure to reactive oxygen species (ROS) 
hastens the erosion of telomere in older women [62]. Telomerase is imperative for 
oocyte development and parthenogenesis. Telomerase is found in early antral fol-
licle, preovulatory follicle and ovulated oocyte, but its expression diminishes at the 
time of oocyte maturation [63, 64]. After fertilization, telomerase activity ensures 
remodeling of telomere length (TL) essential for faithful embryonic development. 
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A conversed correlation exists amid the activity of telomerase and ovarian aging 
[65]. In occult ovarian insufficiency, telomerase inactivation and erosion of 
telomere are evident [66]. Researchers showed that telomere-deficient mice are 
infertile [67, 68]. Ovarian and uterine malformation and inadequacy of steroid 
hormone are apparent in mice lacking telomerase [68]. Oocytes having shorter 
telomere undergo aberrant fertilization and bizarre pattern of embryonic cleav-
age [69]. Age-related abrasion of telomere may in turn responsible for age-related 
aneuploidy. Mania et al. [70] exhibited that the aneuploid cells derived from 
disorganized cleavage-stage embryos have shorter telomeres than euploid cells 
in mother with older reproductive age or with recurrent history of miscarriage. 
Telomere shortening is also associated with aneuploidy in malignant cells [71]. 
Dorland et al. did not find any significant difference in telomere length between 
mothers of Down syndrome babies and euploid children [72]. However, Ghosh 
et al. and Bhaumik et al. demonstrated that the older mothers of Down syndrome 
child have shorter telomere than control ([7, 13]). The author suggested that there 
is a perceptive connection between the constituents of telomere maintenance 
machinery and chromosome segregation system at molecular level. Moreover, 
this speculation is supported by several studies stating that disturbed telomere 
protection is responsible for chromosomal missegregation [73, 74]. Again, in yeast 
Saccharomyces cerevisiae, the improper chromosome separation was noticed due to 
mutant telomere sequence [75]. Thus, telomere biology has a great impact on the 
reproductive success particularly in nondisjunction.

3.1 Ovarian aging: genetic background

There is an enigma about the factors influencing the age at menopause in 
women. Certain lifestyle factors like parity, use of oral contraceptive pills and 
smoking habits are reported to be pertinent with the age of natural menopause 
[76]. However, discrepancy in menopausal age cannot be fully interpreted by these 
factors [77]. Growing body of research indicate that “menopausal age” is a complex 
genetic trait regulated by genetic factors. This notion is supported by the associa-
tions between menopausal age of mother-daughter pairs and sister pairs [78–80]. 
Premature ovarian failure (POF) is considered as a study model of ovarian aging. 
Researches revealed that several genetic variations are associated with POF [81, 
82]. Variations in genes encoding sex hormones (FSH, FSHR, LH, LHR), enzymes 
(CYP17, CYP19) and those responsible for follicular recruitment (BMP15, GDF9, 
and GPR3) regulate the durability of oocyte pool and in turn adjust the span of 
reproductive life [83]. POF patients are also reported to carry mutations in genes 
(NANOS, GDF9, NOBOX, LDX8, etc.) expressed in the course of oogenesis [84]. 
Gene copy number variations (CNVs) are also linked to POF manifestation [85–88]. 
Gene involved in maturation of primary follicles, apoptosis of follicles, fetal ovarian 
development or vascularization in ovary are the suitable candidates for studying 
genetic background of POF [89–92]. Menopausal age is also associated with the 
presence of mutant allele factor V Leiden or E2 allele of apolipoprotein E [93–95]. 
Gene-driven compromised microcirculation around oocyte pool is considered as 
a prime cause of early menopause [96]. Studies pointed out that polymorphisms 
in genes playing role in steroidogenic pathways like 5-α-reductase type 2 [97] and 
CYP1B1 [98] also regulate menopausal age. However, polymorphism in folate 
pathway genes like MTHFR or MTRR is also associated with POF phenotype [99, 
100] as well as with trisomy 21 conception [101–104]. Genome-wide association 
studies identified powerful association between menopausal age and variations in 
chromosome numbers 20, 19, 5, 6 and 13 [105, 106].



5

Impact of Biological Factors Related to Maternal Aging: Risk of Childbirth with Down Syndrome
DOI: http://dx.doi.org/10.5772/intechopen.90262

4. Molecular factors associated with maternal age

Advanced chronological age of mother is probably the oldest known factor 
associated with Down syndrome birth. Risk of having a trisomy 21 baby significantly 
increases as mother ages. This advanced chronological aging was first postulated in 
the year of 1933 [107]. Advanced maternal age-specific Down syndrome birth has 
been studied in almost all the population. One interesting point that came up from 
these studies is that maternal age varies with the type of nondisjunction. Ages of MII 
error mother are on the right side to that of MI mothers. Therefore, chronological 
aging has a direct impact on not only the origin of the disease as well as disease sub-
groups. Some studies proposed halting of meiosis during oogenesis exert a negative 
impact on the oocytes. Female oocytes unlike male sperm undergo several check-
points halting during maturation as meiosis I occur only during puberty and meiosis 
II after fertilization. This prolonged inertness of oocyte might make it vulnerable to 
aging-related deterioration. Accumulation of stress factors over time may disrupt 
the proper chromosomal segregation machinery inducing nondisjunction. Cohesion 
proteins were expressed during intrauterine condition and must remain active till 
the completion of meiosis. During this period (~50 years), any disruption in cohesin 
machinery will result in nondisjunction [108]. Separase cleaves cohesin to release the 
bound chromatids. Shugoshin-mediated cohesin protection therefore plays a major 
role in premature separation of sister chromatids (PSSC) [109, 110]. In mice model, 
age-specific loosening of SMC1beta is observed resulting in abnormal chromosomal 
segregation [111]. Percentage of premature sister chromatid separation increases 
in a six-month SMC1b−/− old mother compared to a 1-month-old mother. Age-
specific cohesion loosening is also present in Drosophila [112]. However, whether 
age-dependent deterioration or replacement of cohesin is affected by progressive 
maternal age is still up for debate [113]. Not only cohesin proteins, mitotic proteins 
associated with spindle assembly are also affected by aging process. Oocytes from 
older mice have significantly lower expression of MCAK mRNA with altered AURKB 
[114]. MAD, BUB and TTK are also proposed to decline with progressive aging 
[115–119]. However, there are alternate studies where it has been proposed that SAC 
components have similar effect on both old and young oocytes [120]. Therefore, 
initial cohesion loosening may not recruit MCAK to centromere, properly disrupting 
normal microtubule depolymerization process [121].

Putting aside chronological aging effect on meiotic machinery, separate model 
proposes genetic aging as the origin of aneuploidy. Using telomere length as marker, 
older Down syndrome bearing mother showed rapid telomere attrition than their 
younger counterpart. Therefore, only older mother experiences this genetic aging. 
However, we need to keep in mind that peripheral telomere length might not be an 
actual interpreter of oocytes telomere length. This hypothesis proposes a separate the-
ory about the origin of aneuploidy which was proposed in the year of 1989. Ovarian 
follicles are formed during intrauterine period in female fetuses. Once puberty is 
reached, usually one follicle becomes antral follicle and after maturation, ovulates. 
Total number of follicles and selectable follicles go down as females’ age. There may 
be couple of thousands of follicles present at the age around 40, only two to three 
selectable follicles present in both the ovaries [122, 123]. Therefore, as women age, the 
chance of suboptimal follicle ovulation increases [19, 124].

4.1 Recombination pattern and frequency of association with maternal age

Maternal nondisjunction is a multifactorial phenomenon. One major factor 
that contributes to NDJ is altered recombination pattern during meiosis [125]. 
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Chiasmata is the physical connection where two non-sister chromatids exchange 
genetic materials in first meiotic division. They stabilize sister chromatids, ensure 
proper chromosomal spindle attachments and segregation [126]. However, absence 
of chiasma leads to a situation where chromosomes freely move around, increas-
ing the possibility of aneuploidy. Not only is the absence of chiasma, placement of 
chiasma is equally important. Achismate condition gives rise to MI meiotic errors. 
Single telomeric chiasma is an important risk factor for MI type meiotic error as 
well. Pericentromeric chiasma formation, on the other hand, increases MII meiotic 
error risk. A broad array of studies conducted with several model organisms such 
as Drosophila [127–129], yeast [130, 131] and Caenorhabditis elegans [132] support 
this fact. In the light of chromosome 21 specific nondisjunction, absence of chi-
asma formation is a major cause of recombination frequency reduction [133]. Low 
percentage of detectable crossovers in Ch21 NDJ has been observed across different 
population [4, 134]. About 57% reductions in linkage map length were reported in 
Indian population [30.8 cM compared to 72.1 cM CEPH] [6]. Association between 
advanced chronological age and recombination frequency reduction is well known 
[135]. 21q-specific recombination analysis showed lower percentage of recombi-
nation in older mothers (aged 35 or higher) compared to younger mother [135]. 
Therefore, absence of recombination could be an age-dependent factor. Studies 
conducted on Indian population revealed 80% of younger mothers are achismate 
and had MI NDJ [134]. STR analysis of trisomy 21 families showed high number of 
single telomeric exchanges in MI NDJ mothers and higher number of single centro-
meric exchange in MII NDJ mothers. A hypothesis proposed by Ghosh et al. stated 
that telomeric chiasma as maternal age-independent risk, whereas pericentromeric 
chiasma is age dependent. How pericentromeric chiasma is affected by maternal 
age is debatable. Two possible models have been proposed. In the first model, 
pericentromeric chromosomal exchange may trigger different configurations which 
increase susceptibility to age-related risk. In the second model, pericentromeric 
exchange may allow proper segregation in MI but not in MII [8]. As previously 
mentioned, age-related degradation of cohesion machinery may be a reason 
behind abnormal chiasma formation. Unlike pericentromeric exchanges, telomeric 
exchanges give rise to MI type NDJ. The proper reason behind it is not clear. One 
reason might be the lower amount of cohesion complex in distal region. In Indian 
cohort, the single chiasma formation was scored at near telomeric 5.1 Mb region 
[134]. Therefore, single telomeric chiasma can up the risk of NDJ of Ch21 irrespec-
tive of maternal age. Lack of biorientation of homologs due to low cohesion protein 
can give rise to single telomeric chiasma error [127]. Number of studies conducted 
on different chromosomes showed linear relationship between maternal age and 
chiasma frequency [136–138]. Multiple chiasmas may increase bivalent stability 
during MI; therefore, NDJ might not occur.

5. Conclusion

Down syndrome birth is attributable to multiple maternal risk factors that 
include both genetic and environmental challenges, but there is limited understand-
ing of the complicated interactions among these factors. Along with aging-induced 
hormonal imbalance, environmental factors such as cigarette smoking, oral con-
traceptive pills, consumption of alcohol, and use of smokeless chewing tobacco 
interact with molecular components of the oocyte which ultimately increase the 
risk of chromosome 21 nondisjunction and subsequently of giving birth to a child 
with Down syndrome. Age-related abrasion of telomere may in turn be responsible 
for age-related meiotic abnormalities, subsequent aneuploidy and birth of DS 
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babies in genetically older mother. This “genetic aging” is probably the background 
cause of all age-related degenerative changes and malfunctions in the ovary.
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