
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322445348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter

A Geometrical Realisation
of Quasi-Cyclic Codes
Cristina Martinez Ramirez and Alberto Besana

Abstract

We study and enumerate cyclic codes which include generalised Reed-Solomon
codes as function field codes. This geometrical approach allows to construct longer
codes and to get more information on the parameters defining the codes. We
provide a closed formula in terms of Stirling numbers for the number of irreducible
polynomials and we relate it with other formulas existing in the literature. Further,
we study quasi-cyclic codes as orbit codes in the Grassmannian parameterizing
constant dimension codes. In addition, we review Horn’s algorithm and apply it to
construct classical codes by their defining ideals.

Keywords: cyclic code, partition, Grassmannian

1. Introduction

Function fields are used ubiquitously in algebraic coding theory for their flexi-
bility in constructions and have produced excellent linear codes. Suitable families of
function fields, for example good towers of function fields, have been used to
construct families of codes with parameters bound better than the asymptotic
bound.

Let q a power of a prime number p. It is well known, that there exists exactly one
finite field with q elements which is isomorphic to the splitting field of the polyno-
mial xq � x over the prime field p. Any other field F of characteristic p contains a

copy of p. We denote respectively by n q

� �

and n q

� �

the affine space and the
projective space over q. Let q x1, x2, … , xn½ � be the algebra of polynomials in n

variables over q.
The encoding of an information word into a k-dimensional subspace is usually

known as coding for errors and erasures in random network coding [1]. Namely, let
V be an N�dimensional vector space over q, a code for an operator channel with
ambient space V is simply a non-empty collection of subspaces of V. The collection
of subspaces is a code for error correcting errors that happen to send data through
an operator channel. The matrix coding the information is parameterised by ran-
dom variables a1, a2, … , an which constitute the letters of an alphabet. Here the
operator channel is an abstraction of the operator encountered in random linear
network coding, when neither transmitter nor receiver has knowledge of the chan-
nel transfer characteristics. The input and output alphabet for an operator channel
is the projective geometry. A good code is capable of correcting error and erasures at
the output of the operator channel. Thus in order to construct good codes one need
to choose a metric consistent with channel errors and search of a set of vectors with
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given metric properties as a correcting code. The codes considered here are codes
for channels whose errors are consistent with the weighted Hamming metric
(WHM).

Let C be a non-singular, projective, irreducible curve defined over q, as the
vanishing locus of a polynomial F∈q x0, x1, x2½ �. We define the number N qð Þ of
q�rational points on the curve to be

N qð Þ ¼ ∣ x0, x1, x2ð Þ∈2 q

� �

jF x0, x1, x2ð Þ ¼ 0
� �

∣:

It is a polynomial in q with integer coefficients, whenever q is a prime power.

The number of points C qr
� �

on C over the extensions qr of q is encoded in an

exponential generating series, called the zeta function of C:

Z C, tð Þ ¼ exp
X

∞

r¼1

#C qr
� � tr

r

 !

:

Garcia and Stichtenoth analysed the asymptotic behaviour of the number of
rational places and the genus in towers of function fields, [2]. From Garcia-
Stichtenoth’s second tower one obtains codes over any field q where q is an even
power of a prime [3].

One of the main problems in coding theory is to obtain non-trivial lower bounds

of the number N Fið Þ of rational places of towers of function fields Fi=q

� �∞

i¼1
such

that Fi ⊊ Fiþ1. Suitable families of function fields, for example good towers of
function fields, have been used to construct families of codes that beat the Gilbert-
Varshamov bound. This paper aims to explore this link for the study and construc-
tion of quasi-cyclic codes. For example good codes are obtained for curves of genus
0, they are in fact extended generalised Reed-Solomon codes.

Notation. Let q denote the Galois field of q elements and let q

� �n
denote the

vector spaces of all ordered n-tuples over q. The Hamming weight of a vector x,
denoted by wt xð Þ is then number of non-zero entries in x. A linear code C of length

n and dimension k over q is a k-dimensional subspace of q

� �n
. Such a code is

called n, k, d½ �q code if its minimum Hamming distance is d. For d a positive integer,

α ¼ α1, … , αmð Þ is a partition of d into m parts if the αi are positive and decreasing.

2. Algebraic geometric codes

Let q be a finite field of q elements, where q is a power of a prime. We consider
as an alphabet a set P ¼ P1, … ,PNf g of N � q rational points lying on a smooth
projective curve C of genus g and degree d defined over the field q. If D is a divisor
on the curve C, L Dð Þ is the linear series attached to this divisor with coefficients in
the field.

Definition 2.1. Algebraic Geometric Codes (AGC) are constructed by evaluation of
the global sections of a line bundle or a vector bundle on the curve C over N N > gð Þ
distinct rational places P1, … ,PN . Namely, let F∣q be the function field of the curve, D

the divisor P1 þ⋯þ PN and G a divisor of F∣q of degree s≤N such that

Supp G∩ Supp D ¼ ø. Then the geometric Goppa code associated with the divisors D
and G is defined by

C D,Gð Þ ¼ x P1ð Þ, … , x Pnð Þð Þjx∈L Gð Þf g⊆qn :

2
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Recall that qn ∣q is a cyclic Galois extension and it is finitely generated by

unique element α∈qnnq. α is a primitive element and 1, α, α2, … , αn�1
� �

is a basis

of the field extension q ↪ q αð Þ, that is, qn ffi q

� �n
.

In the sequel, an n, k½ �q-code C is a k-dimensional subspace of q

� �n
:

2.1 Generalised Reed-Solomon codes as cyclic codes

Another important family of Goppa codes is obtained considering the normal
rational curve (NRC) Cn defined over q:

Cn ≔ q 1, α, … , αnð Þ : α∈q ∪ ∞f g
� �

:

Assuming that n, pð Þ ¼ 1 are coprime, the set 1, α, α2, … , αn�1
� �

forms a basis of

qn over q, where p is the characteristic of the field. Thus points in the NRC are in
correspondence with q�linear combinations of the base vectors up to collineation.
The Goppa codes of dimension n defined over Cn are constructed by evaluating non-
zero polynomials of degree less than n over a sequence α1, … , αn of n distinct
elements in q, if k≤ n, then the map

ϵ : q x½ � ! n
q, f ↦ f α1, … , αnð Þð Þ (1)

is injective, since the existence of a non-zero polynomial of degree less than k
vanishing on all αi implies n< k by the fundamental theorem of algebra (a non-zero
polynomial of degree r with coefficients in a field can have at most r roots). These
are just Reed-Solomon codes of parameters n, k, d½ � over a finite field q, with parity

check polynomial h xð Þ ¼
Qq

i¼1 x� αi
� �

, where α is a primitive root of q such that

αkþ1 ¼ αþ 1. Any codeword c0, c1, … , cn�1ð Þ can be expanded into a q-ary k vector

with respect to the basis 1, α, … , αk�1
� �

. Construction of generalised Reed-Solomon
codes over q only employ elements of q, hence their lengths are at most qþ 1. In
order to get longer codes, one can make use of elements of an extension of q, for
instance considering subfield subcodes of Reed-Solomon codes. In this way, one
gets cyclic codes. Recall that a linear cyclic code is an ideal in the ring q x½ �= xn � 1ð Þ

generated by a polynomial g xð Þ with roots in the splitting field l
q of x

n � 1, where

n∣ql � 1, ([4]). We shall identify the code with the set of its codewords. A natural
question then to ask is how many irreducible polynomials of degree at least 2 are
there over the algebraic closure of q x½ �. Next theorem expresses this number in
terms of Stirling numbers.

Theorem 2.2. Assume that q, nð Þ ¼ 1, then the number of polynomials of degree
n≥ 2ð Þ decomposable into distinct linear factors over a finite field q of arbitrary

characteristic a prime number p, is equal to
Pn

k¼1 qð Þk, where qð Þk is the falling factorial

polynomial q � q� 1ð Þ… q� kð Þ ¼
Pn

k¼0s n, kð Þqk, where s n, kð Þ is the Stirling number
of the first kind (the number of ways to partition a set of n objects into k non-empty

subsets), divided by the order of the affine transformation group of the affine line 1 ¼

1n∞, that is q2 � q.
Proof. We need to count all the polynomials f n xð Þ in one variable of degree n

fixed. We assume that our polynomial f n xð Þ decomposes into linear factors, other-

wise we work over q x½ �, where q denotes the algebraic closure of the finite field q.
Since the number of ordered sequences on q symbols is q! and each root is counted
with its multiplicity, it follows that the number of monic polynomials with n� 1
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different roots is q q� 1ð Þ q� 2ð Þ… q� nþ 1ð Þ≔ q� 2ð Þn. Now we observe that
polynomials are invariant by the action of automorphisms of the affine line, so we
must divide this number by the order of this group which is q2 � q. □

Theorem 2.3. Given a set of integers 0, 1, … , n� 1f g module n, there is a set J of k

integers which is a set of roots, that is, there is a polynomial h xð Þ ¼
Q

j∈ J x� αj
� �

, where

α is a generator of pm
� �

for some prime number p and m is the least integer such that

n∣pm � 1. The ideal h xð Þ generates in pm x½ �= xn � 1ð Þ is a cyclic linear code of parameters

n, k, n� kþ 1ð Þ.
Proof. Let m be the least integer such that n divides pm � 1, then g:c:d m, pð Þ ¼ 1.

We define an equivalence relation on the set of integers 0, 1, … , n� 1f g, by
declaring two integers i and j in the range 0≤ i≤ n� 1 to be conjugate module n

if psi � j mod nð Þ. This equivalence relation partition the set into cyclotomic

cosets. The cyclotomic coset containing j, which we will denote by Ωj, can be

described explicitly as the set j, pj, … , pk�1j
� �

, where k is the least positive

integer such that pkj � j mod nð Þ and j is not necessarily the smallest integer
in such coset. Denote by In the set consisting of the smallest integers in each
cyclotomic coset, then In is a set root, that is, it is a set of k integers in
arithmetic progression modulo n whose increment is relatively prime to n.
Let d ¼ n� kþ 1, then the polynomial

Q

i∈ In
x� αi
� �

defines a cyclic code of

parameters n, k, dð Þ. □

As an application of Theorem 2.2, given an integer n, we can count the number
of cyclic codes of parameters n, k½ � for each 0≤ k≤ n and set of roots α1, … , αk in the

splitting field of xn � 1, the corresponding polynomial g xð Þ ¼
Qk

i¼1 x� αið Þ gener-
ates a linear cyclic code in the ring q x½ �= xn � 1ð Þ. Thus for each 0≤ k≤ n there are

exactly qð Þk= q2 � qð Þ cyclic codes.
In the theory of error-correcting codes to a given code C⊂n

q, one assigns

another important parameter, the minimum distance d which measures how good
the decoding is.

Definition 2.4. The distance between vectors a ¼ a1, a2, … , anð Þ and b ¼
b1, b2, … , bnð Þ in the Weighted Hamming metric (WHM) is defined by a function:

dWH a, bð Þ ¼
X

n

i¼1

wid ai, bið Þ,

where wi >0, d ai, bið Þ ¼ 1 if ai 6¼ bi and d ai, bið Þ ¼ 0 if ai ¼ bi. The weight of a
vector a in the WHM is wtWH að Þ ¼ dWH a, 0ð Þ ¼

P

i:ai 6¼0wi. The value wi and vector

w ¼ w1,w2, … ,wnð Þ are called a weight of position i and a vector of weights of
positions respectively.

Geometrically a binary vector a1, … , anð Þ of length n gives the coordinates of a
vertex of a unit cube in n dimensions.

Example 1. Consider the Goppa code defined by the rational function g xð Þ ¼ 3x2�5xþ5
x3�2x2þx

which admits as decomposition into partial fractions the expression G xð Þ≔ 5
x �

2
x�1 þ

3
x�1ð Þ2

. The presence of a double factor x� 1ð Þ2 corresponds to the existence of an

eigenspace E in the vector space n
q of multiplicity 2 and thus an α�splitting subspace

where the operator α is just the linear operator A� λI, with λ the eigenvalue associated to
E and A is the generator matrix of the code. We recall that an r�dimensional W

subspace is α�splitting if αiW ¼ W is invariant under the action of any element αi in the
Galois group of the extension q ↣q αð Þ.
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2.2 Algebraic function field codes

A much greater variety of linear codes is obtained if one uses places of arbitrary
degree rather than just places of degree 1. These codes are more naturally described
through function field codes. A general viewpoint is that function field codes are
certain finite dimensional linear subspaces of an algebraic function field over a
finite field as in Goppa’s construction.

In the paper [5], the authors introduce another construction where places of
arbitrary degree are allowed. The method consists of choosing two divisors G1 and G2

of an algebraic curve over q with G1 ≤G2. Then L G1ð Þ is a subspace of the vector
space L G2ð Þ over q. If we choose a basis of L G2ð Þ, then the coordinate vectors of the
elements of L G1ð Þ form a linear code over q of length n ¼ dim L G2ð Þð Þ and dimen-
sion k ¼ dim L G1ð Þð Þ. These are known as function field codes and they provide a
general perspective on the construction of algebraic-geometry codes [6].

Example 2.We consider as in [7] the Suzuki curve χ defined over q by the following

equation yq � y ¼ xq0 xq � xð Þ with q ¼ 2q20 ≥ 8 and q0 ¼ 2r. This curve has exactly

q2 þ 1�rational places with a single place at infinity P∞ and it is of genus gS ¼
q0 q� 1ð Þ: We construct a code out of the divisor F ¼ mP∞ and Q where Q ¼

P1 þ … þ Pq2 is the sum of the q2�rational points and the parameter m satisfies the

bound m> 2g � 2 and g is the genus of the curve.

Observe that the geometric Goppa code C F,Qð Þ is an q-subspace of q

� �q2
and

its dimension k as an q�vector space is the dimension of the code. Geometrically,

it corresponds to a point in the Grassmannian Gq2,k q

� �

. The set of codewords

recognised by the code C F,Qð Þ admits the following description in terms of mono-
mial ideals in the variables x, y, z,w:

xaybzcwd0 ja, b, c, d0 ≥0, aqþ b qþ q0
� �

þ c qþ 2q0
� �

þ d0 qþ 2q0 þ 1
� �

≤ d
n o

,

where z ¼ x2q0þ1 and w ¼ xy2q0 � z2q0 are elements in the function field
Fχ ≔q x, yð Þ over q. Moreover, it is a generating set for the linear series L dP∞ð Þ

associated to the divisor dP∞.
Theorem 2.5. Cyclic codes are function field codes constructed over the curve Cn,m

with affine equation ym þ xn ¼ 1 defined over a finite field q of q elements, where q is a

power of a prime p and n,m are integer numbers greater or equal than 2.

Proof. Let us assume n is an integer even number, thus n ¼ 2k � s, with s an
integer odd number. We recall that a linear cyclic code is an ideal in the ring

q x½ �= xn � 1ð Þ generated by a polynomial g xð Þ with roots in the splitting field l
q of

xn � 1, where n∣ql � 1. If we consider the factorisation of the polynomial xn � 1 over

p x½ �, we get xn=2 � 1
� �

xn=2 þ 1
� �

¼ xn=4 � 1
� �

xn=4 þ 1
� �

xn=2 þ 1
� �

¼

xn=2
k
� 1

� �

xn=2
k
þ 1

� �

xn=2
k�1ð Þ

� 1
� �

xn=2
k�1ð Þ

þ 1
� �

… xn=2 þ 1
� �

. We see that the

point P0 ¼ α, 0ð Þ∈ 2
q

� �

with αn=2 ¼ p� 1 is an q2�rational place of the affine

curve ym ¼ xn=2 þ 1
� �

. The other rational places are Pk ¼ β, 0ð Þwith βn=2
k

¼ p� 1,...,

P2 ¼ β2, 0
� �

, P1 ¼ 1, 0ð Þ, P0 ¼ �1, 0ð Þ and the place P∞ ¼ 0, αð Þ at ∞. The cyclic

code is realised as the algebraic geometric code associated to the divisors D ¼
P0 þ P1 þ … þ Pk, G ¼ μP∞ and the parameter μ satisfies the bound μ> 2g � 2,
where g is the genus of the curve Cn,m. Note that m is the least integer such that

n∣pm � 1. In particular α is a generator of p

� �m
.
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If n is an integer odd number, by Theorem 2.3, we know there is a set of roots
αj
� �

j∈ J
, such that α is a generator of pm

� �

. Now we consider the points Pj ¼ αj, 0
� �

with j∈ J and the point P at P∞ ¼ 0, αð Þ ¼ ∞, and the cyclic code is realised as the
function field code associated to the divisors D ¼

P

j∈ J Pj and μP∞. □

Remark 2.6. The proof given in theorem gives a realisation of cyclic codes as AG codes
constructed over the curve with affine model ym þ xn ¼ 1. In particular when m ¼ n ¼
qþ 1, we cover the codes defined over the Hermitian curve.

Another important family of cyclic codes is obtained considering the roots of the
polynomial xn � 1 over its splitting field. These codes are of great importance in
ADN-computing and as they are linear codes, they can be described as function
fields. Let α be a primitive element of the underlying vector space over q. Since the

base field is of characteristic p, xn � 1 has n different zeroes. Let q x½ � be the

extension field containing the nth roots of unity 1, α, … , αn�1, where αn�1 þ αn�2 þ

… þ αþ 1 ¼ 0. Moreover the set 1, α, … , αn�1
� �

constitutes a basis over the prime

field p, and the field extensions pn ffi p x½ �= xn�1 þ … þ xþ 1ð Þ are isomorphic.

Example 3. The polynomial x2 þ xþ 1 over p x½ � is irreducible, thus the fields

p2 ffi p x½ �= x2 þ xþ 1ð Þ are isomorphic, and the roots w,wþ 1 correspond to one place

of degree 2 in the extension field p wð Þ.

Example 4. We define the polynomials f xð Þ ¼ xn þ a1x
n�1 þ⋯þ an, with ai ∈,

and f x, tð Þ ¼ f xð Þ � t. Then, if f is a separable polynomial, then the Galois group of
f x, tð Þ over  tð Þ is a regular extension with Galois group Sn.

Observe that  x1 … , xnð Þ is the function field of an n� 1ð Þ�dimensional projec-

tive space n�1 ð Þ over . Suppose that z1, … , zn are the roots of f in a splitting field

of f over . Each coefficient ai of xi in f is symmetric in z1, … , zn, thus by the
theorem on symmetric functions, we can write ai as a symmetric polynomial in
z1, … , zn with rational coefficients. On the other side, for a permutation σ ∈ Sn, set
Eσ ¼ x1z σ 1ð Þð Þ þ⋯þ xnz σ nð Þð Þ in  x1 … , xnð Þ and f xð Þ ¼

Q

σ x� Eσð Þ, where σ runs

through all permutations in Sn.
Theorem 2.7. (Hilbert) Let G ¼ Sn be acting on  x1, … , xnð Þ. The field E of Sn�

invariants is  t1, … , tnð Þ, where ti is the i
th symmetric polynomial in x1, … , xn and

 x1, … , xnð Þ has Galois group Sn over E. It is the splitting field of the polynomial
f xð Þ ¼ xn � t1x

n�1 þ … þ �1ð Þntn:

Let F be a finite field such that charF, nð Þ ¼ 1. A non-zero polynomial in  x, y½ �

defines a curve on the plane 
2
. The elliptic curves are curves of the form y2 ¼ f xð Þ,

where f xð Þ is a polynomial of degree 3 with coefficients in .
Proposition 2.8. Let n ¼ rs be a factorisation of an integer positive number n into

irreducible coprime factors and assume r< s, then there is a sequence of field extensions
qr ⊂qs ⊂qn .

Proof. Consider the map Tn : Fn
↦Fn

tj ¼ �1ð Þ j
σj x1, … , xnð Þ,

where σj is the jth elementary symmetric function in the variables xi. Thus

tj, j ¼ 1,⋯n
� �

, are the coefficients of the equation:

f z, t1, … , tnð Þ ¼ zn þ �1ð Þ t1z
n�1 þ⋯þ �1ð Þn tn ¼ z� x1ð Þ z� x2ð Þ⋯ z� xnð Þ:

If we apply Theorem 2.7 to the ith elementary symmetric polynomial in the

symbols α, αq, αq
2
, … , αq

n
, we get that the field of Sn invariants of the polynomial

6
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f z, t1, … , tnð Þ contains an extension qn of q. Moreover, for any divisor r of n, one
can consider the field of Sr invariants, and apply Theorem 2.7 to the symbols

α, αq
2s
, … , αq

rs
, where n ¼ rs. Then we get an extension qs of qr and all its q-

subspaces are stable under Gal qs=qr
� �

. □

Example 5. Assume n ¼ qþ 1 and we study again the roots of the polynomial xq � 1
in its splitting field. Let ξ be a non-trivial n-root of unity, for any divisor r of n, one can

consider the symbols ξq
r

, … , ξq, ξ. The field of Sr invariants of the polynomial
f z, t1, … , trð Þ is the set of solutions to the equation:

xq
r

þ … þ xq þ x ¼ a in qn : (2)

In 2n , for any divisor d of n, there are exactly 2d�1 solutions to Eq. (2) if n=d is

odd and 2d solutions if n=d is even.
Instead of considering r, s divisors of n, we can consider a partition of n into two

parts. For example for an integer 0≤ k≤ n, we consider the partition k, n� kð Þ of n.
Fix two elements g1, g2 ∈GL n, qð Þ of rank k and rank n� k. These points correspond
to linear transformations Tgi

: qn ! qn , i∈ 1, 2. It is well known that the

corresponding points qk,qn ⊂qn and qn�k,qn ⊂qn in the Grassmannians Gk,n q

� �

of

k�dimensional subspaces and the Grassmannian Gn�k q

� �

of n� k dimensional

subspaces respectively are dual subspaces in the underlying vector space q

� �n
for

the Euclidean inner product. Note that the Hamming weight is preserved under
invertible linear transformation. This case is of great interest for applications in
coding theory, since the corresponding codes with generator matrices G1 and G2

respectively are dual codes. Namely, given a linear n, k½ �-code, a parity check matrix

for C is an n� kð Þ � n matrix H of rank n� k such that C ¼ x∈ q

� �n
: HcT ¼ 0

� �

.

Then the dual code C⊥ is the linear n, n� k½ � code generated by the parity check

matrix of C. There is a right action of the general linear group GL n,q

� �

on Gk,n q

� �

:

Gk,n q

� �

�GL n,q

� �

! Gk,n q

� �

(3)

U,Að Þ ! UA: (4)

One can study the orbits of Gk,n q

� �

by the action of any subgroup in the general

linear group GL n,q

� �

. For example we can study the orbit of any triangle group:
the Klein group ℤ2 � ℤ2, the dihedral group, the alternated groups A4 and A5 or the
symmetric group Sn. Take as T the standard shift operator on n

q, a linear code C is

said to be quasi-cyclic of index l or l�quasi-cyclic if and only if is invariant under Tl.
If l ¼ 1, it is just a cyclic code. The quantity m≔ n=l is called the co-index of C.
Namely, if we view a codeword c0, c1, … , cn�1ð Þ of C as a polynomial c0 þ c1xþ

… þ cn�1x
n�1 ∈q x½ �, then T c xð Þð Þ ¼ x � c xð Þ mod xn � 1ð Þ.

Example 6.We study the action of a rotation element on the Grassmannian G2,4 q

� �

of lines in a 3-dimensional projective space PG 3, qð Þ. We apply to any line g a rotation τ

of angle α ¼ 2π
n , represented by the array of vectors < 1, 0, 0ð Þ, 0, cos αð Þ, sin αð Þð Þ,

0,� cos αð Þ, sin αð Þð Þ> . It is easy to see that the orbit code by the composed action τm

with m divisor of n is a quasi-cyclic code of index m
n .

In general, we study generalised Grassmannians or more commonly known as

flag varieties. Fix a partition λ ¼ λ1, … , λrð Þ of n and let F λ ¼ F λ q

� �

be the variety
of partial flags of q�vector spaces
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0f g ¼ Er ⊂Er�1 ⊂ … ⊂E1 ⊂E0 ¼ q

� �n

such that dim Ei�1=Ei
� �

¼ λi. The group GL n,q

� �

acts on F λ in the natural way.
Fix an element X0 ∈F λ and denote by Pλ the stabilizer of X0 in G and by Uλ the

subgroup of elements g∈Pλ which induces the identity on Ei=Eiþ1 for all i ¼

0, 1, … , n� 1. Put Lλ ¼ GLλr q

� �

� … , � GLλ1 q

� �

, then we have Pλ ¼ Lλ � Uλ.
Proposition 2.9. Let us consider the factorisation of n into irreducible pairwise

coprime factors n ¼ pe11 p
e2
2 ⋯perr with e1 < e2 < … < er, and λ ¼ e1, … , erð Þ be the parti-

tion of exponents. Then there is a flag variety F λ q

� �

of partial flags of q�vector spaces:

0f g ¼ Er ⊂Er�1 ⊂⋯⊂E1 ⊂E0 ¼ q

� �n
,

such that dim Ei�1=Ei
� �

¼ ei.

Proof Observe that the result follows trivially for the case in which n is a prime
number e1 ¼ ⋯ ¼ er ¼ 1. If n ¼ rs factorizes into two irreducible prime factors, the

result follow as we have seen above, there is a flag 0f g ¼ Er ⊂Es ⊂E0 ¼ q

� �n
and

then by induction in r the result follows. □

Given a cyclic code over F of length n, its defining set is given by the exponents
occurring in g xð Þ, where g xð Þ is the generator polynomial of the ideal of the code in
F x½ �= xn � 1ð Þ.

Let α∈F be an nth primitive root of unity. The nth cyclotomic polynomial

Φn xð Þ ¼
Q

1< j< n, j,nð Þ¼1 x� αj
� �

∈F x½ � is the minimal polynomial of α over F. It is

monic of degree of the Euler’s totient function φ nð Þ. It has integer coefficients and it is
irreducible over . In  x½ �, we have the factorization into irreducible polynomials:

xn � 1 ¼
Y

d∣n

Φd xð Þ:

By Möebius inversion:

Φn xð Þ ¼
Y

d∣n

xd � 1
� �μ n=dð Þ

In the case of binary codes where q ¼ 2, Bezzateev and Shekhunova [8] have
obtained that the number of irreducible normalized polynomials I2m lð Þ of degree l
over 2m satisfy the following equation:

I2m lð Þ ¼
1

l

X

d=l

μ dð Þ2m
l
d: (5)

where μ dð Þ is the Möebius function:

μ dð Þ ¼

1 if d ¼ 1;

�1ð Þr if d is a product of r different prime numbers;

0 in all other cases:

8

>

<

>

:

Let g xð Þ equals the least common multiple lcm Φi xð Þ : αi ∈ S
� �

, then S is a
defining set for C. We will describe the defining set by the exponents occurring in S
with S ¼ i1, i2, … , ilf g, where i1 < … < il. A parity check matrix for the code C Sð Þ is
given by:
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M Sð Þ ¼

αi1
� �0

αi1
� �1

⋯ αi1
� �n�1

αi2
� �0

αi2
� �1

⋯ αi2
� �n�1

⋮ ⋮

αir
� �0

αir
� �1

⋯ αir
� �n�1

Þ

0

B

B

B

B

@

1

C

C

C

C

A

The code C⊂Fn is obtained as the subfield subcode of C:

C ¼ c∈Fn
: M Rð ÞcT ¼ 0

� �

:

Given a triple I, J,Kð Þ of subsets of 1, … , nf g of the same cardinality r, we
associate to them partitions λ, μ and ν as follows. Let I ¼ i1 < … < irf g⊂ 1, … , nf g,
then the corresponding partition is defined as λ ¼ ir � r, … , r1 � 1ð Þ, and respec-
tively for J,K. We call the triple I, J,Kð Þ admissible for the Horn problem, if the
corresponding triple of partitions λ, μ, γð Þ occurs as eigenvalues of a triple of
Hermitian r by r matrices, with the third one the sum of the first two.

We describe Horn’s inductive procedure to produce set of triples
I, J,Kð Þ⊂ 0, 1, … , nf g.

Un
r ¼ I, J,Kð Þj

X

i∈ I

iþ
X

j∈ J

j ¼
X

k∈K

kþ r rþ 1ð Þ=2

( )

,

Tn
r ¼ f I, J,Kð Þ∈Un

r ∣ for all p< r and all F,G,Hð Þ∈Tr
p,

X

f ∈F

if þ
X

g∈G

jg ≤
X

h∈H

kh þ p pþ 1ð Þ=2g:

Example 7. Let us consider the triple of subsets

I, J,Kð Þ ¼ 1, 3, 5f g, 1, 3, 5f g, 2, 4, 6f gð Þ

and the corresponding triple of partitions λ, μ, νð Þ ¼ 2, 1, 0ð Þ, 2, 1, 0ð Þ 3, 2, 1ð Þð Þ
arises from the triple of diagonal 3 by 3 matrices with diagonal entries
2, 1, 0ð Þ, 1, 0, 2ð Þ and 3, 1, 2ð Þ.

Lemma 2.10. For any triple I, J,Kð Þ admissible for the Horn problem, the poly-

nomials defined by f xð Þ ¼
Q

i∈ I x� αi
� �

, g xð Þ ¼
Q

j∈ J x� αj
� �

, and h xð Þ ¼
Q

k∈K x� αk
� �

generate a cyclic code of length n ¼ ir þ jr þ krmodp and k ¼ r, where

r ¼ ∣I∣þ ∣ J∣þ ∣K∣ and p is the characteristic of the field F.
Proof. The cyclic code generated by f xð Þ coincides with the cyclic code generated

by lcm mi xð Þ : αi, i∈ I
� �

and respectively for g xð Þ and h xð Þ the polynomials

lcm mj xð Þ : αj, j∈ J
� �

and lcm mk xð Þ : αk, k∈K
� �

: It is the cyclic code generated by

the minimal polynomial of αirþjrþkr . □

Remark 2.11. We see that Horn’s algorithm is relevant since some classical code
constructions can be seen as ideals in a finite dimensional commutative semi simple algebra
over a finite field q with q ¼ pr elements and p a prime number as in example (3).

Lemma 2.12. The family of cyclic codes obtained by considering the roots of the
polynomial xn � 1 over its splitting fields are indeed AG codes arising from genus 0
curves, and by Riemann-Roch theorem, their parameters satisfy the bound d≥ nþ 1� k,
where d is the minimum distance.

Proof Let q x½ � be the extension field containing the nth roots of unity

1, α, … , αn�1, where αn�1 þ αn�2 þ … þ αþ 1 ¼ 0. Moreover the set 1, α, … , αn�1
� �
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constitutes a basis over the prime field p, and the field extensions pn ffi

p x½ �= xn�1 þ … þ xþ 1ð Þ are isomorphic. □

2.3 Generating functions of conjugacy classes in a group

The automorphism group of the projective line  q

� �

is the projective linear

group PGL 2, qð Þ. Any finite subgroup A⊂PGL 2, qð Þ defines a k�uniform Cayley

(sum) hypergraph Γ
k Að Þ whose vertices are the generating k�tuples of A and the

edges are k�element sets x1, … , xkf g∈
G

k

� 	

represented by random variables

x1, … , xk. In particular, if f zð Þ is the ordinary generating function that enumerates A,

that is, number of conjugacy classes in A, then 1
1�f zð Þ is the ordinary generating

function enumerating sequences of k elements in A. If G is an abelian group, then
x1 þ⋯þ xk ∈A. In general, we will consider k-arcs in Γ Að Þ which represent casual
connections between the variables. Applications are known in statistics, for example
the multinomial experiment consists of n identical independent trials, and there are k
possible outcomes (classes, categories or cells) to each trial and the cell counts
n1, n2, … , nk are the random variables, the number of observations that fall into each
of the k�categories.

Definition 2.13. In PG n� 1, qð Þ a k; rð Þ�arc is a set of k points any r of which form
a basis for n

q, or in other words, r� 1 of them but not r are collinear.

Consider the normal rational curve over q:

Vn
1 ≔ q 1, x, x2, … , xn

� �

j x∈q ∪ ∞f g
� �

is a (q + 1)-arc in the n-dimensional projective space PG n, qð Þ.
We see that if q≤ n, the NRC is a basis of a q-dimensional projective subspace,

that is, a PGq n, qð Þ. So we can enumerate how many NRC’s are there in a PG n, qð Þ.
The answer is ϕ q; n, qð Þ, the number of ways of choosing such a set of points in a
particular q-space. If q≥ nþ 2, the NRC is an example of a (q + 1)-arc. It contains
q + 1 points, and every set of nþ 1 points are linearly independent.

2.4 Conclusion

The problem of considering finite subgroups and conjugacy classes in PGL 2, qð Þ
the automorphism group of the projective line can be generalised to that of finite
subgroups in PGL n, qð Þ, the collineation group of the normal rational curve.
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