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Chapter

Convection Currents in
Nanofluids under Small
Temperature Gradient
Jyoti Sharma and Urvashi Gupta

Abstract

Nanobiotechnology has huge number of applications in medical science thereby
improving health care practices. Keeping in mind the applications of nanoparticles
and the convection patterns in biological fields, behaviour of nanofluids is explored
for small temperature difference in the layer. The flow of nanofluids is usually
described by system of differential equations. A mathematical model for the system
based on conservation laws of mass, momentum and energy is formed. To get the
insight of the problem, complex equations are simplified wherever needed to get
interesting results without violating the necessary physics. The influence of physical
properties such as density and conductivity of metallic/non-metallic nanoparticles
is examined on the onset of convection currents in the fluid layer.

Keywords: nanofluids, natural convection, conservation equations,
metallic and non-metallic nanoparticles

1. Introduction

In 1959, the celebrated physicist and Nobel laureate Richard Feynman presented
an idea of nanotechnology in his talk “There is a plenty of room at the bottom-An
invitation to enter a new field of physics” by emphasizing on the fact that the laws
of physics allow us to arrange the atoms the way we want. Almost a century ago,
Maxwell [1] initiated working on this issue theoretically and unveiled that the
particles of size of micrometer and millimeter, if used in traditional fluids can
resolve the motive in a more efficient manner. Yet they had few drawbacks like
clogging, erosion in micro channel and settling down which were curbed with the
evolution of better substitute; nanosized particles (called as nanoparticles). The
suspension of nanoparticles in the regular fluids comprised the nanofluids [2].
Nanofluids have also shown many interesting properties, and the distinctive fea-
tures (refer Table 1) resulting in unprecedented potential for many applications
particularly in biological, medical and biomedical applications.

The catalytic role of nanoparticles in intensifying the thermal conductivity of
nanofluids is analyzed by many researchers: Masuda et al. [3], Eastman et al. [4],
Das et al. [5] and others. In 2006, Buongiorno [6] pioneered the formulation of
conservation equations of nanofluids by incorporating the impacts of diffusion due
to Brownian motion and thermophoresis of nanoparticles. He made an observation
that the velocity of nanoparticles can be perceived as a sum of base fluid and
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relative (slip) velocities. To prosecute his research, he considered seven slip mech-
anisms; inactivity, magnus effect, Brownian motion, diffusiophoresis,
thermophoresis, gravitational settling and fluid drainage. Throughout his investi-
gation, he agreed that from all these seven techniques, Brownian diffusion and
thermophoresis have a significant part in the absence of turbulent effects. Choi et al.
[7] found that carbon nanotubes provide highest thermal conductivity enhancement
of nanofluids. There are ample number of evaluations on thermal conductivity of
nanofluids [8–11] in which they discussed and analyzed the theoretical as well as
experimental results. Heat transfer in nanofluids because of convection has been
examined and contemplated by Das and Choi [12], Ding et al. [13] and Das et al. [14].

The ballistic character of heat transfer within nanoparticles has been studied by
Chen [15]. Abnormal increase in viscosity is generally observed in relation to the
base fluid. The presence of nanoparticles has found to enhance thermal conductiv-
ity [4, 7, 16–19]. At very low nanoparticle volume fractions (<0.1%), a heat trans-
fer enhancement up to 40% has been reported [8] and this percentage is found to
enhance with temperature [5] and concentration of nanoparticles [16]. The results
of Choi et al. [7] established the unexpected non-linear character of measured
thermal conductivity with nanotube loadings at low concentration while all theo-
retical studies concluded a linear relationship. Also, it was discovered that thermal
conductivity strongly depends on temperature [5] and particle size [20]. Pak and
Cho [21] in their study also reported the heat transfer data for turbulent flow of
nanofluids having nanoparticles as aluminum and titanium in circular tubes. They
found that Nusselt number is up to 30% more than that of base fluid. Nowadays
nanofluids are also used in drug delivery systems [22] and advanced nuclear sys-
tems [23] due to enriched thermal properties. The nanofluid technology is still in its
early stage and various researchers are using nanofluids as a tool to solve techno-
logical riddles of the modern society. Figure 1 establishes big impact of small
particles in view of the diverse applications of nanofluids in fields of industrial,
residential, biomedical and transportation.

These days, nanoparticles are used in almost every biomedical application.
Recent usage of nanotechnology in medicine and cancer therapy has attracted a lot
of interest in thermal properties of nanofluid such as blood with nanoparticles
suspension. Researchers have made the efforts to construct a mathematical model
that shows the physical system or phenomenon nearly exact behaviour [24, 25].
Motivated by their work, we also intended to form an analytical model for the
analysis of the convection currents in a horizontal nanofluid layer which is in
accordance with the physical laws. Consequently, the onset of convection currents
in the nanofluid layer is investigated mathematically with the help of partial differ-
ential equations. To begin with, equations are non-dimensionalized to get Rayleigh

Properties Microparticles Nanoparticles

Stability Not stable Stable

Surface/Volume ratio One One thousand times more than that of microparticles

Conductivity Less High

Clogging More Negligible

Erosion Yes No

Nanoscale phenomenon No Yes

Table 1.
Comparison of particles.
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number in the system. Then small disturbances are added to the initial flow and
new set of equations are obtained. Further PDE’s are converted into ordinary dif-
ferential equations using normal modes and expression for Rayleigh number is
obtained. It is found that density and conductivity of nanoparticles are important
parameters in deciding the stability of the system.

2. Instability of fluids under small temperature gradient: Rayleigh
Bênard convection

The convective motions occur in a fluid layer heated underside in which a
small temperature gradient is maintained across its boundaries. The maintained
temperature across the boundaries must surpass a certain value before the
instability can manifest itself. This Phenomenon was discovered by Bénard [26] in
1900. In most of his experiments, he found that if a fluid layer is heated underside,
the layer at the bottom expands due to higher temperature. This makes the fluid
density lighter at the bottom than that on the top making the system top heavy.
Here viscosity and thermal diffusivity tend to oppose the convective motions but
with the application of higher temperature gradient across the fluid layer, the
thermal convection process gets initiated showing the pattern of cellular motions
(called Bénard convection). Bénard [27] performed an experiment with metallic
plate with a thin non-volatile liquid layer of 1 mm depth maintained under
constant temperature.

Keeping the upper layer of fluid exposed to free air, he observed that the fluid
layer was decomposed into number of cells (showing cellular motion) called Bénard
cells. Thus in the standard Bénard problem, density difference due to variation in

Figure 1.
Applications of nanofluids.
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temperature across the upper and lower boundaries of the fluid becomes the main
reason for the occurrence of instability. Figure 2 shows the schematic representa-
tion of Rayleigh-Bénard convection. Rayleigh [28] was the first person who gave an
analytical treatment of the problem related to identifying the conditions responsible
for breakdown of basic state. As a subsequent work carried out by Rayleigh and
Bénard, thermal instability of fluids is known as Rayleigh Bénard convection. The
condition for convective motions (depends on temperature gradient) can be
represented in dimensionless form by the critical Rayleigh number. He figured out
the condition for the instability of free surfaces by showing that the instability
would occur on a large temperature gradient β ¼ �dT=dz in such a way that the

Rayleigh number; RA ¼ αβgd4=κν, exceeds a certain critical value; where accelera-
tion due to gravity is represented by g, coefficient of thermal expansion by α, the
depth of the layer by d, thermal diffusivity by κ and kinematic viscosity is given
by ν. For the stabilizing viscous force, RA parameter gives the force of destabilizing
buoyancy. Chandra [29] found discrepancy between the theoretical and experi-
mental work for the convective motions in fluids when heated underside. He
explained it by conducting an experiment on the layer in air and observed that
instability of the fluid layer was dependent on its depth. A simplification in the
partial differential equations describing the flow of compressible fluid is done by
Spiegel and Veronis [30] by assuming very small depth of the layer as compared to
the height. The basic equations of a fluid layer in porous medium (when heated
underside) were formulated and derived by Joseph [31] by using Boussinesq
approximation. The problem of thermal convection of a fluid layer has been put
forward by Chandrasekhar [32] by considering the implications of various aspects
of hydrodynamics and hydromagnetics. He depicted the result that addition of
rotation and magnetic field increases the stability of the system. Kim et al. [33]
considered the same problem of thermal convection for nanofluids. They showed
that convective motion directly depends on the two physical properties (heat
capacity and density) of nanoparticles and adversely depends on the conductivity of
nanoparticles. Buongiorno [6] was the first scientist who formulated the conserva-
tion equations of nanofluids by assimilating the effects of diffusion due to Brownian
motion and thermophoresis of nanoparticles. During his analysis, he concluded that
Brownian and thermophoretic diffusion play a significant role in the absence of
turbulent effects as compared to other seven mechanisms. Hwang et al. [34] treated
this problem analytically and put forth the result of thermal instability of water
based nanofluid with alumina nanoparticles in a rectangular container which is
heated from below. They found that stability of the base fluid is enhanced by adding
alumina nanoparticles and further it is enhanced by increasing the volume fraction
of nanoparticles, the average temperature of the nanofluids and by decreasing the
size of nanoparticles. They observed the decrease in heat transfer coefficient of
nanofluids with the increase of the size of nanoparticles and decrease in the

Figure 2.
A view of Rayleigh-Bénard convection.
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temperature of nanofluids. Tzou [35, 36] investigated the onset of convective
instability of nanofluids using Buongiorno’s model analytically and established that
nanofluids exhibit much lower stability than regular fluids. The results depict the
inverse relationship of density and heat capacity of nanoparticles with their thermal
conductivity and the shape factor. The results also include that the heat transfer
coefficient of nanofluid is enhanced relative to volume fraction of nanoparticles.
Nield and Kuznetsov [37] reconsidered the instability problem for nanofluids to get
the expression for Rayleigh number and found conditions for the existence of
oscillatory convection. It was established that the buoyancy coupled with the con-
servation of nanoparticles lead to higher instability of nanofluids. Alloui et al. [38]
considered the shallow cavity to study Rayleigh Bénard instability for nanofluids.
They concluded that rate of heat transfer in nanofluids depends on the strength of
convection and volume fraction of nanoparticles while the presence of
nanoparticles increase the stability of the system. Thermal instability for a horizon-
tal nanofluid layer was considered by Yadav et al. [39]. They found an expression of
thermal Rayleigh number and observed that the temperature gradient delays the
convective motions while volumetric fraction of nanoparticles and the ratio of the
density of nanoparticles to that of base fluid have destabilizing impact on the layer.
The joint behaviour of nano-effects (Brownian motion and thermophoresis) creates
destabilizing effect and can reduce the values of critical Rayleigh number as com-
pared to that of regular fluids.

3. Conservation equations for a nanofluid layer

We start this section with the description of Boussinesq approximation which is
used to write the conservation equations of nanofluids in simplified form.

As is the case of regular fluid [32], equations of nanofluids are difficult to solve
because of their non-linear character. Therefore some mathematical approxima-
tions are to be used to simplify the basic equations without violating the physical
laws. The contribution of Boussinesq [40] in the solution of thermal instability
problems is in the form of approximations which is after his name. This approxi-
mation has been used by a many researchers for solving different problems of
fluids. Boussinesq suggested that inertial effects of density variations can be
neglected as compared to its gravitational effects as such situations exist in the
domain of meteorology and oceanography. So, density is assumed to be constant
everywhere in the equations of motion except in the term with external force.
Therefore, we change ρ0 1þ α T0 � Tð Þ½ � by ρ0 everywhere in the equations of
motion except the term representing the external body force.

Anoop et al. [41] explained various experimental techniques using which
nanoparticles can be suspended in the base fluid and that suspension remain stable
for several weeks. Buongiorno [6] adopted the formalism of Bird et al. [42] and
Chandrasekhar [32] to write conservation equations for nanofluids by considering
nanoscale effects; Brownian diffusion and thermophoresis. A model for convective
transport in regular fluids was reformulated for nanofluids to accommodate these
nanoscale effects as follows.

The random motion of nanoparticles is called Brownian motion and results into
the continuous collisions with the base fluid molecules. The Brownian diffusion
coefficient due to Brownian motion is given by

DB ¼
kBT

3πμdp
, (1)
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where dp is the nanoparticle’s diameter, kB is the Boltzmann’s constant and μ is
the viscosity of the fluid. The nanoparticles mass flux due to Brownian diffusion,
jp,B is given as

jp,B ¼ �ρpDB∇ϕ, (2)

whereϕ is the nanoparticle volume fraction and ρp is the nanoparticlemass density.

Thermophoresis is the phenomenon in which particles diffuse due to tempera-
ture gradient and the effect is similar to one of well-known effects of solute; Soret
effect. The thermophoretic velocity is defined as.

VT ¼ �~β
μ

ρ

∇T

T
where ~β ¼ 0:26

k

2kþ kp
: (3)

Here, ρ is the overall density of the nanofluid, k and kp are the thermal conductivities
of the fluid and the particle material, respectively. The negative sign in thermophoretic
velocity represents movement of particles down the temperature gradient (from hot to
cold). The nanoparticle mass flux due to thermophoresis, jp,T is given as.

jp,T ¼ �ρpϕVT ¼ �ρpDT
∇T

T
with DT ¼ ~β

μ

ρ
ϕ, (4)

where DT represents the thermophoretic diffusion coefficient.
The nanoparticles mass flux due to Brownian diffusion (Eq. (1)) and

thermophoresis (Eq. (4)) are used to develop a two-component model for convec-
tive transport in nanofluids with the following assumptions:

• The nanofluid flow is incompressible.

• There are no chemical reactions in the fluid layer.

• The external forces are negligible.

• The mixture is dilute with nanoparticle volume fraction less than 1%.

• The viscous dissipation is negligible in the fluid.

• The radiative heat transfer is negligible.

• The nanoparticles and base fluid are locally in thermal equilibrium.

The seven equations based on basic conservation laws with the above mentioned
assumptions are given as follows.

• Equation of state (one).

• Equation of continuity (one).

• Equation of nanoparticles (one).

• Equations of motion (three).

• Equation of energy (one).
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3.1 Equation of state

Variables of state depend only upon the state of a system. The physical quanti-
ties: p; the pressure,T; the temperature and ρ; the density are the variables of state.
We have three thermodynamic variables and a relation between them is given as.

F p, ρ,Tð Þ ¼ 0, (5)

For substances with which we shall be principally concerned, the equation of
state can be written as

ρ ¼ ρ0 1þ α T0 � Tð Þ½ �, (6)

where T0 is the temperature at which ρ = ρ0.

3.2 Equation of continuity-conservation of mass

The equation of continuity for nanofluids is

∂ρ

∂t
þ uj

∂ρ

∂xj
¼ �ρ

∂uj
∂xj

, (7)

where uj is the jth component of nanofluid’s velocity.
For an incompressible flow (using equation of state)

∂ρ

∂t
þ uj

∂ρ

∂xj
¼ 0, (8)

so that the Eq. (7) reduces to

∂uj
∂xj

¼ 0, (9)

and in vector form continuity equation for nanofluid is expressed as

∇:v ¼ 0: (10)

3.3 Equation of nanoparticles-conservation of mass

The conservation equation for nanoparticles in absence of chemical reactions is

∂ϕ

∂t
þ v:∇ϕ ¼ �

1

ρp
∇:jp, (11)

where t is the time, ϕ is the nanoparticles volume fraction and jp is the diffusion

mass flux for nanoparticles and as external forces are negligible jp, the sum of two

diffusion terms (Brownian diffusion and thermophoresis) using Eqs. (1) and (4)
can be written as

jp ¼ jp,B þ jp,T ¼ �ρpDB∇ϕ� ρpDT
∇T

T
, (12)

Combining Eqs. (11) and (12), nanoparticles conservation equation becomes
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∂ϕ

∂t
þ v:∇ϕ ¼ ∇: DB∇ϕþDT

∇T

T

� �

: (13)

Eq. (13) reveals that the nanoparticles move consistently with fluid (second
term of left-hand side) and possess velocity relative to fluid (right-hand side) due to
Brownian diffusion and thermophoresis.

3.4 Equations of motion-conservation of momentum

The equation of motion is derived from Newton’s second law of motion which
states that

Rate of change of linear momentum ¼ Total force:

The momentum equation for nanofluid with negligible external forces is

ρ0
∂v

∂t
þ v:∇v

� �

¼ �∇pþ μ∇2vþ ρg, (14)

where ρ0 is the nanofluid density at the reference temperature T0 and the overall
density of nanofluid; written as

ρ ¼ ϕρp þ 1� ϕð Þρf ffi ϕρp þ 1� ϕð Þ ρ0 1� α T � T0ð Þð Þf g (15)

Thus Eq. (14) becomes

ρ0
∂v

∂t
þ v:∇v

� �

¼ �∇pþ μ∇2vþ ϕρp þ 1� ϕð Þ ρ0 1� α T � T0ð Þð Þf g
� �

g: (16)

Note that in the absence of nanoparticles, Eq. (16) reduces to momentum
equation for regular fluid.

3.5 Equation of energy-conservation of energy

The thermal energy equation for nanofluid with the assumptions (i)–(v) is

ρcð Þ
∂T

∂t
þ v:∇T

� �

¼ �∇:qþ hp∇:jp, (17)

where c and hp are the specific heat of fluid (at constant pressure) and the
specific enthalpy of nanoparticles, respectively and q is the energy flux, neglecting
radiative heat transfer, the sum of heat fluxes due to conduction and nanoparticle
diffusion, written as

q ¼ �k∇T þ hpjp, (18)

Substituting Eq. (18) in Eq. (17), we get

ρcð Þ
∂T

∂t
þ v:∇T

� �

¼ ∇: k∇Tð Þ � cpjp:∇T: (19)

with assumption of negligible external forces ∇hp ¼ cp∇T. Substituting Eq. (12)
in Eq. (19); gives final form of thermal energy equation as

8
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ρcð Þ
∂T

∂t
þ v:∇T

� �

¼ k∇2T þ ρcð Þp DB∇ϕ:∇T þDT
∇T:∇T

T

� �

: (20)

Note that if jp is zero, Eq.(19) and hence Eq. (20) reduces to the familiar energy

equation for regular fluid and therefore last two terms on right-hand side truly
account for contributions of nanoparticle motion relative to fluid. Eq. (20) estab-
lishes that the transport of heat in nanofluids is possible by convection (second term
on left-hand side), by conduction (first term on right-hand side), and also by virtue
of nanoparticle diffusion (second and third terms on right-hand side).

Thus, Eqs. (10), (13), (16), (20) constitute the convective transport model for
nanofluids which further can be solved for different parameters once the initial and
boundary conditions are known. It is interesting to note that all the equations are
strongly coupled meaning thereby that the one parameter depends on various other
parameters.

Let us introduce non-dimensional variables to get the expression for thermal
Rayleigh number as.

x0, y0, z0ð Þ ¼
x, y, zð Þ

d
, t0 ¼

tαf

d2
, v0 ¼

v d

αf
, p0 ¼

pd2

μαf
,ϕ0 ¼

ϕ

ϕb

,T0 ¼
T � T0

T1 � T0
, (21)

where αf ¼
k

ρC :.

Using Eqs. (21), (10), (13), (16), (20) after dropping the dashes are

∇:v ¼ 0, (22)

ραf

μ

∂v

∂t
þ v:∇v

� �

¼ �∇pþ ∇
2v�

ρgd3

μαf
k̂þ RATk̂�

ρp � ρ
� �

ϕb g d
3

μαf
ϕ k̂, (23)

∂T

∂t
þ v:∇T ¼ ∇

2T þ
ρCð ÞP
ρC

ϕb

DB

αf
∇ϕ:∇T þ

DT T1 � T0ð Þ

DBT0ϕb

ρCð ÞP
ρC

ϕb

DB

αf
∇T:∇T,

(24)

∂ϕ

∂t
þ v:∇ϕ ¼

DB

αf
∇

2ϕþ
DT T1 � T0ð Þ

DBT0ϕb

DB

αf
∇

2T, (25)

where thermal Rayleigh number RA ¼
ρ g βTd

3 T1�T0ð Þ
μαf

:

4. Initial and perturbed flow

At the initial state, it is assumed that nanoparticle volume fraction is constant
and fluid layer is still while temperature and pressure vary in horizontal direction.
We get initial solution of Eqs. (22)–(25) using the fact that thermal diffusivity is
very large as compared to Brownian diffusion coefficient (refer Buongiorno [1]) as

vi ¼ 0,ϕi ¼ 1,Ti ¼ 1� z (26)

Let us add perturbations to initial solution and write

v, p,T,ϕð Þ ¼ vi þ ~v, pi þ ~p,Ti þ ~T, ϕi þ ~ϕ
� 	

: (27)
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The Eq. (27) in Eqs. (22)–(25) give

∇:~v ¼ 0, (28)

ραf

μ

∂~v

∂t
¼ �∇~pþ ∇

2
~vþ RA

~T k̂�
ρp � ρ
� �

ϕb g d3

μαf

~ϕk̂, (29)

∂ ~T

∂t
� ~u3 ¼ ∇

2 ~T �
ρCð ÞP
ρC

ϕb

DB

αf

∂~ϕ

∂z
� 2

DT T1 � T0ð Þ

DBT0ϕb

ρCð ÞP
ρC

ϕb

DB

αf

∂ ~T

∂z
, (30)

∂~ϕ

∂t
¼

DB

αf
∇

2 ~ϕþ
DT T1 � T0ð Þ

DBT0ϕb

DB

αf
∇

2 ~T: (31)

Making use of the identity curlcurl � graddiv� ∇
2 curlcurl ¼ graddiv� ∇

2 on
Eq. (29) together with Eq. (28), we get

ραf

μ

∂

∂t
∇

2
~u3

� 	

� ∇
4
~u3 ¼ RA∇

2
H
~T �

ρp � ρ
� �

ϕb g d3

μαf
∇

2
H
~ϕ, (32)

where ∇2
H ¼ ∂

2

∂x2 þ
∂
2

∂y2 :.

5. Method of normal modes

To change PDE’s to ODE’s, Eqs. (30)–(32) are solved using normal mode analysis
and perturbed variables are written as

~u3, ~T, ~ϕ
� 	

¼ W zð Þ,Τ zð Þ,Φ zð Þð Þ exp ikxxþ ikyyþ st
� 	

, (33)

Thus above mentioned equations reduce to

D2 � α2
� 	2

�
sραf
μ

D2 � α2
� 	

� �

W � RA α
2
Τþ

ρp � ρ
� �

ϕb g d3

μαf
α2Φ ¼ 0, (34)

W þ D2 � α2
� 	

� s� 2
DT T1 � T0ð Þ

DBT0ϕb

ρCð ÞP
ρC

ϕb

DB

αf
D

 !

Τ�
ρCð ÞP
ρC

ϕb

DB

αf
DΦ ¼ 0,

(35)

DB

αf
D2 � α2
� 	

� s

 !

Φþ
DT T1 � T0ð Þ

DBT0ϕb

DB

αf
D2 � α2
� 	

Τ ¼ 0, (36)

where D � d
dz, α ¼ kx

2 þ ky
2� 	1⁄ 2

: Using one term Galerkin weighted residual

method and free-free boundaries conditions

W ¼ D2W ¼ Τ ¼ 0 at z ¼ 0 and z ¼ 1: (37)

We write

W ¼ A sin πz, and T ¼ B sin πz, (38)
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using of the orthogonality to the functions; gives eigenvalue equation as

J þ sð Þ
JDB

αf
þ s

 !

J2 þ
ραf Js

μ

� �

� α2
JDT ρp � ρ

� �

T1 � T0ð Þg d3

DBμα
2
fT0

þ RA
JDB

αf
þ s

 !

0

@

1

A

0

@

1

A

�α2J
J DT ρp � ρ

� �

T1 � T0ð Þg d3

DBμα
2
f T0

þ RA

JDT ρp � ρ
� �

T1 � T0ð Þg d3

DBμα
2
fT0

þ s

0

@

1

A

0

@

1

A ¼ 0

(39)

where J ¼ π2 þ α2:

6. Results and discussion

6.1 Stationary convection

For non-oscillatory motions s ¼ 0, this gives the expression for RA from Eq. (39) as

RA ¼
J3

α2
�
DT ρp � ρ
� �

T1 � T0ð Þg d3

DBμαfT0
: (40)

where DB ¼ kBT
3πμdp

and DT ¼ ~β μ

ρ
ϕ with ~β ¼ 0:26 k

2kþkp
as given by Nield and

Kuznetsov [35].
Also

RA ¼
J3

α2
�

ρp � ρ
� �

2kþ kp
A; (41)

where A depends on the base fluid properties.

7. Discussions on analytical results using various metallic/non-metallic
nanoparticles

Table 2 shows the ratios of density to conductivity of various metallic/non-
metallic nanoparticles and density 997.1 and conductivity 0.613 of water is used.

It is observed that ratio of density to conductivity is accountable for hastening
the onset of convection in the system. The ratio is more for non-metals than metals
establishes the lesser stability of non-metallic nanoparticles than metals. Alumina is

Physical properties Al Cu Ag Fe Al2O3 SiO2 CuO TiO2

ρ Kg=m3ð Þ 2700 9000 10,500 7900 3970 2600 6510 4250

k W=mKð Þ 237 401 429 80 40 10.4 18 8.9

ρp=kp 11.3 22.4 24.47 98.7 99.25 250 361.6 477.5

Table 2.
Ratios of density to conductivity of metallic and non-metallic nanoparticles.
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most stable and titanium oxide is least stable among the nanoparticles under con-
sideration. Density is found to be more influential than conductivity towards
deciding the onset of convection in the layer.

8. Conclusions

Tremendous applications of nanofluids in pharmaceutical industry with respect
to drug invention and cancer imaging motivated the scientists to study convection
currents in fluid layer mathematically as well as experimentally. In the present
work, the onset of instability in layer is studied under small temperature difference
with the help of equations based on conservation laws. The expression of non-
dimensional number Rayleigh number is found analytically which decides the
instability of the system. Approximations are made whenever needed without vio-
lating the necessary physics to get the useful results. Analysis reveals that lesser the
ratio of density to conductivity, higher is the stability of the layer. It is found that
convection currents majorly depends on density and conductivity and precisely
concluding density is more pronounced property than conductivity of
nanoparticles. Metallic oxides make the system more stable than metallic
nanoparticles in the fluid.
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