L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322445313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter

A Query Matching Approach for
Object Relational Databases Over
Semantic Cache

Hafiz Muhammad Faisal, Muhammad Ali Tarig,
Atta-ur-Rahman, Anas Alghamdi and Nawaf Alowain

Abstract

The acceptance of object relational database has grown in recent years; however,
their response time is a big concern. Especially, when large data are retrieved
frequently on such databases from diverse servers, response time becomes
alarming. Different techniques have been investigated to reduce the response time,
and cache is among such techniques. Cache has three variants, namely tuple cache,
page cache, and semantic cache. Semantic cache is more efficient compared to
others due to capability to store already processed data with its semantics.

A semantic cache stores data computed on demand rather than retrieved from the
server. Several approaches proposed on relational databases over semantic caching
but response time on relational database is unsatisfactory. Hence, we proposed
object relational databases over semantic cache. It is a novelty because semantic
cache is mature for evaluation of relational databases but not for object relational
databases. In this research, the implementation of query matching on object rela-
tional database with semantic caching along with object query is investigated to
reduce the response time. Then, a case study is conducted on an object relational
database model, and an object (relational database) query with semantic segment is
applied. Results depict significant improvement in query response time.

Keywords: semantic cache, query matching, probe query, remainder query,
object relational query

1. Introduction

Data size increased day by day, due to large data response time is going slow. In
this regard, according to [1], relational databases can be used due to their better
response time. Its idea is based on distributed database, which is helpful to reduce
the data load and make access easy. In several scenarios, it occurs that structure
must be continuously modified in multiple respects due to change in data types [2].
A relation in database is made up of several relations corresponding to relational
database schema. The objective of a relational database design is to create a set of
relation schema that allows user to store information and to retrieve information
easily [2]. Relational database is structured in table, fields, and records. Relational
database also delivers relational operator to manipulate the information kept in the

1 IntechOpen

Application of Decision Science in Business and Management

database tables [3]. Most RDBMS use SQL as database query language. The rela-
tional data base model is an extensively used data model, and a huge majority of
existing database systems are based on the relational model [2]. Dr. E.F. Codd, a
mathematician and research scientist at IBM, designed the relational model.
Although most of the current RDBMS are not aligned to the Codd’s model, yet it is
considered as RDBMS [4]. Mitigating data redundancy and enhancing data integrity
are two design principles of Codd’s model [5]. The relational model also defines
several logical operations that could be performed over the data. The relational data
model has established itself as the main data model for commercial data processing
applications [4]. Its achievement in this area has led to its applications outside data
processing in systems for computer aided design and other environments [6].
Various issues in efficiency arise in RDBMS such as lack of handling the advanced
data type, a restricted set of built-in types that use only numbers and strings. Also,
certain types of relationships between database objects are hard to represent in the
relational database model [7]. The RDBMS is pretty good in handling most infor-
mation problems. But for new type of data type’s problems, RDBMS technology
could be superior upon. So, to attain the deficiency of RDBMS, we move on to
ORDBMS [3]. To conform to the SQL standards, relational database model is
reconsidered by ORDBMS; however, the object relational data model is a new
definition altogether [7]. Object oriented languages like Java and C# can be inte-
grated to ORDBMS, pertaining to their class, method, and objects features that are
useful for the programmers for better integration. Moreover, ORDBMS schemas
have additional features compared to its earlier counterpart [8]. ORDBMS model
supports the object oriented features like abstraction, polymorphism, inheritance,
etc. [9]. Like RDBMS, ORDBMSs rely on SQL queries and declarative approach for
accessing and manipulating data rather than a procedural approach [10]. Occasion-
ally, a mismatch in the programming language structure (procedural, declarative,
or functional) and ORDBMS engine may occur at the time of database connectivity
and access, which may results in performance issues. In a architectural point of
view, ORDBMS is different than OODBMS that use a distributed approach while
the former uses a centralized approach [8]. Nevertheless, this issue can be resolved
by replicating ORDBMS over several machines. The further significant outcome of
the technology is that it makes it possible to build information systems to address
data management problems that are usually considered to be too challenging. In
terms of interoperability, ORDBMS has two benefits. First is compatibility with the
existing RDBMS components and second an object oriented access for the users and
programmers. Similarly, storage and access mechanism, query processing, and
optimization are the significant challenges in employing ORDBMS [7]. One of the
efficient ways to mature a very large database is to distribute it between various
server nodes [11]. Now ORDBMS is going to convert into the semantic caching and
query result is more efficient in the semantic cache. Semantic cache is used to
response the query in part such as Probe and Remainder [1]. Some part of query is
answered from the cache and some is from the server [4]. ORDMBS is used in this
technique in an intelligent way to answer the query result [8]. Different methodol-
ogies are easily making on semantic cache, and different definition of semantic
cache content is used. Semantic cache content is {Rs, As, Ps, Cs}. Result is accessed
according to the cache content, and a complete set of cache part is known as cache
[1]. Suppose a user gives a query SELECT student id, name FROM student WHERE
age < 28. In this query, Student ID and Name are answered from Probe part (saved
in cache) but for Name, where clause it will be accessed by the remainder part
(server result). So, it will consume more time if query is complex and more result is
accessed from server [1]. For that ORDBMS is mainly focused on sematic caching
but query optimizing technique is used, and this technique is going to be improved

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

by Query Matching part of query optimizing. For more understanding, we take the
help from the problem statement.

* Query matching technique on ORDBMS is hard to implement.
* Query retrieving is time consuming.
* Query matching approach is unsatisfied on complex data.

The objective of this research is to overcome the said issues. In this regard,
semantic cache query matching technique is proposed to extract useful contents
from the cache to improve query response time. Then, query matching is investi-
gated for object relational query on complex data by exploiting the semantic cache,
and results of object query and relational database query are compared. In this
section we take discussion for our proposed approach for query matching on object
relational database query over semantic cache. Query matching approach is satisfy-
ing the query result with the object relational semantic content. Our projected
approach being employed is on semantic cache architecture with object query and
with the below concept. Firstly, the query is accessed on the complex structure and
data set, so object relational query is used with row reference to access the query
[7]. Secondly, the relation in database is retrieved with the object query but in the
form of object [10]. The query is into the part by using query semantic content of
QS, QF, and QS and result is retrieved according to adaptive region of semantics
segments [1]. The study is mainly focused to indicate various advantages of seman-
tic caching and then the simple workloads where the indication also includes the
low overheads, decreased amount of network traffic, physical layout of database
that is insensitive, and additionally a source to minimize and answer the queries
without the participation of server [4]. In addition, handling the complexity of the
workloads and depth coding for queries is left for quick processing query at server.
By manifesting the semantic caching works on object database with usage of com-
plex workloads, we would investigate the wide variety of applications particularly
in an environment that is network constrained [12]. Semantic cache plays an
important role in fetching results. Semantic cache is divided into two main parts.
One part that is answered with the help of cache is the Probe query and the second
part that is answered from server is the Remainder query. Query when passed to on
a Query algorithm is decomposed into various parts depending upon the data
required. Before passing query to algorithm, first check whether the current data is
available in cache or not; if it is, then fetching data from the server. If some of data
are available in local cache, then decompose query in such a way that data not
available in cache should only be fetched from semantic cache [1]. To increase the
power of semantic cache, we use the object relational model that made the query on
complex structure as efficient [7]. ORDBMSs deliver the lowest access time for
development and for greatest performance combination when using objects because
they stored objects on disk and have the translucent program integration with
object programming languages [5]. Performance is boosted by storing objects
directly on disk which excludes impedance mismatch. Development period are
reduced because there is no need to program the caching for the application pro-
grams and there is only one model to develop [10].

In this approach, we mainly focus on the object relational query matching on
complex data and structures which have many tuples to increase the complexity of
query matching and they are time consuming. In this research, we proposed the
approach ORDBMSs in semantic cache that reduce the cost and use less time for
result; we easily increase the trust of database user by using his model. Data latency

Application of Decision Science in Business and Management

and workload can easily be distributed and handled. Rest of the chapter is organized
as follows: Section 2 contains review of literature and related work in the field.
Section 3 contains proposed work and results are obtained in Section 4, while
Section 5 concludes the chapter.

2. Review of literature

In this section, a comprehensive survey of cache is presented. In Sections 2.1-2.3,
the concept and work of semantic cache on query is discussed. Sections 2.4 and 2.5
are dedicated to databases, while the related work is given in Section 2.6.

2.1 Cache

It comprises of small-sized type of volatile memory like the memory of com-
puter that is useful in terms of providing high speed data while having an easy
access to the processor and storage to install programs, applications, and data that
are frequently used by the computer. It is considered to have memory that is fastest
and is placed on the motherboard directly connected to the processor or Random
Access Memory. Cache that has pronunciation as “cash” neither “catch” nor
“cashay,” saves information that is recently used for it to have accessibility later. A
PC memory with short access time utilized for capacity of every now and again or as
of late utilized directions or information called likewise reserve memory [11]. PCs
consolidate a few unique kinds of storing with a specific end goal to run more
productively, in this manner enhancing execution. There are few of the caches that
comprise of browser cache, disk cache, memory cache, and processor cache [13].

2.1.1 Browser cache

The webpage data by default are found in the browser cache. For instance, when
the webpage is being visited, the browser might cache the HTML, images, and any
CSS or JavaScript files that are being referred by the page. When the website is
accessed by different pages and of utilization similar pictures, CSS, or JavaScript,
your program will not need to redownload the records. Rather, the program can
basically stack and store them on a local hard drive from the cache [4].

2.1.2 Memory cache

During the time of a running application, there is a chance that is cache of data
in system memory or Random Access Memory. The example is if there is a video
project you are working on, the video clips and audio tracks from the hard drive
into Random Access Memory may get loaded on the video editor, since this can
reduce the delay while importing the files and editing them and RAM has easier
accessibility than hard drive [4].

2.1.3 Disk cache

The HDDs and SSDs present have a small amount of Random Access Memory
that fulfills the need of disk cache. The typical disk cache of 1 TB has 32 megabytes,
while a 2 TB hard drive may have a 64 MB cache. Therefore, the little measure of
Random Access Memory can have a major effect in the execution of drive. The
example is of when an envelope is opened with a substantial number of records, the

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

referring of documents might be naturally spared. The list of files is loaded instantly
despite taking some time to appear when the folder is opened [11].

2.1.4 Processor cache

They are smaller in size as compared to disk cache. The reason is of the processor
cache that has some tiny blocks of data that are basically instructions that are used
frequently and can be accessed by the CPU quickly. Present day processors fre-
quently contain a L1 reserve that is appropriate by the processor and a L2 store that
is marginally further away. The L1 reserve is the littlest (around 64 KB), while the
L2 store might associate with 2 MB in measure. Some top of the line processors even
incorporate a L3 store that is bigger than the cache L2. The data might get moved to
the level that is low to access it faster when the processor tries to access data from a
level that is higher in caches [4]. The caching done in background will not get
noticed. However, browser cache is the only cache that can be controlled. There is
choice to view the settings of cache and change the size of browser and even empty
it if there is a need [11].

2.2 Cache levels

Following are different cache levels and their details.

2.2.1 L1 cache

L1 (Level 1 cache) is a memory bank built into the CPU chip. Also known as the
“primary cache,” the cache that has the fastest memory is L1 in computer and is
closer to processor.

2.2.2 L2 cache

L2 (Level 2 cache) has a memory bank that is made inside the CPU with a
package present inside the component or is built on motherboard. The L2 cache
feeds the L1 cache, which feeds the processor. The L1 memory is better than L2;
basically L2 is slower than L1.

Figure 1 illustrates the working of cache on database—to access the data with
the help of cache and improve the answer time of query.

2.3 Semantic cache

This works for the caches query result. And the elements that are present in the
semantic cache are known as the regions or segments [14]. This term semantic
caching is derived from the semantics of SQL queries that work for systematically
handling the information of cache and building conclusions of the availability or
unavailability of query results in the cache [12].

User Cache Database

Figure 1.
Cache working.

Application of Decision Science in Business and Management

The performance of the client-server systems is improved by the caching at local
clients. The novel caching scheme being introduced is hence called the semantic
caching. The transformation of the semantic storing can enhance the efficacy of
XML inquiry that is prepared in the Web condition [9]. Semantic storing increases
reserved information with a semantic depiction of the information.

These semantic depictions can be utilized to enhance execution time for compa-
rable inquiries by recovering little information from reserve and issuing a leftover
portion question for the rest. Benefits of semantic reserving include low network
overhead, independence of physical format of the database, decreased system
activity, and the capacity to answer a few inquiries without reaching the server. For
workloads that are less complex, there is a need to maintain efficacy of the query
processing by cautious coding of queries that are remainder at the server. For
workloads that are very complex, using very complex workloads, there is a display
of semantic caching that works better in a variety of applications specifically in the
environments that were constrained [9].

2.3.1 Semantic cache scenarios

Semantic cache answers the query in different scenario’s which are described
below [15] in Figures 2-5, respectively. The scenarios are, namely

e full answer;
* partial answer; and
* 1O answer.

Example:

The semantic data are being extracted from the query while there is addition to
this semantic data that will be used for more matching and the cache [16]. This
high-power semantic fragment reserve is versatile, which means that, as and when
the client is entering the inquiry for which the appropriate response is to be discov-
ered, the applicable characteristics of the database will be populated in the store.
The part of the cache that is semantic basically the highlights and the content which
is refined just add quality in boosting the performance in a manner that is convinc-
ing and exuberant [14].

In case of the semantic cache, the semantics stored on the cache are compared
to the input user query and subject to availability of data, the decision is taken. It
is carried out by two processes known as splitting that involves division of query
based on its clauses and rejecting if a certain clause is missing, e.g., WHERE

Semantic Cache

Figure 2.
Semantic cache full answer.

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

Semantic
Cache

Figure 3.
Semantic cache partial answer.

Semantic

Cache

Figure 4.
Semantic cache no answer.

Query

Probe Query Remainder Query ©

A

Cache Remainder Answer Server
Probe Answer Remainder Answer
Result

Figure 5.

Semantic cache working.

and so on [1]. The queries that are matched (overlapped) either fully or partially are
answered locally by the semantic cache. Query processing and cache management
are the main critical aspects of semantic cache, yet it performs way better than
simple data (page, tuple) cache. Semantic caching provides the significance work-
load reduction in distributed systems, especially in mobile computing as well as
improves the performance. However, the performance is purely based on the
efficiency of its subprocesses like query trimming, indexing, etc. [1].

2.4 Relational database

A relational database is a category of database. It uses an arrangement that lets us
to recognize and access data in relation to additional part of data in the database.
Often, data in a relational database are organized into tables [5]. A relational

Application of Decision Science in Business and Management

database management system (RDBMYS) is a program that allows you to create,
update, and administer a relational database [17]. Most relational database manage-
ment systems use the SQL language to access the database. In RDBMS, the data
are stored in the form of relations (tables) in a row-column architecture. It is
comprised of records (rows) that are uniquely identified by a key attribute. There
are several ways to access the stored data without manipulating the database
relations as such [5].

Example:

In this example, a case study is used to understand the relational database and
query is conducted on data model to understand working (Tables 1 and 2).

A query is conducted “Query: - Select Account=6 From Main account, Employee
table” and for answer of query, every record is checked which is time consuming.

2.5 Object relational database

Object relational query processing is needed to speed up queries over object
relational databases. We are here to define a couple of features mentioned in to
characterize an ORDBMS. These structures are desired to model real-world prob-
lems in a method that is instinctive and easy for the developer and proposals noble
performance for the application (Figure 6).

In this example, the query is answered directly by object which saves the time,
and query efficiency is increased.

2.6 Related work

In [9], authors proposed an XML-based system “XPERANTO” for data
representation and the access is duly retrieved from a native database for

Account no First name Last name Amount
1 John Doe 277%
2 Clay Russell 5864
3 Albert Luke 321$
4 Christina Jorge 4483
5 Tim Joe 520¢
6 Dany Clark 459¢
Table 1.

Main account.

Account no Emp-ID Title Branch

1 BW-123 Flipper California

2 CA-448 Cashier L.A.

3 DG-456 Manager Washington

4 FA-114 Washer London

5 DC-587 Doctor Canada

6 HG-89%4 Plumber England
Table 2.

Employee account.

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

Account (6!
Dany Clark,

Account (6,1
HG894,
plumber, ENG

Figure 6.
ORDBMS working.

better accessibility. The system works as a middleware between XML and
native database.

In [18], authors proposed a digital library and archiving system for educational
institutes. The system takes advantage of ORDMS concept and builds a top layer
XML object. These objects are kept in a library that can be accessed by client side
QueryX engine duly executed by IBM domino server.

In [19], authors proposed a query optimization technique for RDF data stored in
triplet format. The main idea was optimization of the SPARQL query based on the
storage type, that is, adjacency list or matrix. It was concluded that the performance
depends on the nature of data whether it is dense or sparse.

In [20], authors investigated the TYPE constraint for sake of query optimization
in the context of frequent pattern mining. The idea behind this research was the
data type that plays an important role in semantic association that increases the
likelihood of its access.

Brown [10] presented the ORDBMS technique and investigated its properties
related to flexible data access, functional improvement, enhanced efficiency, and
organizational integration.

Author in [5] presents the object relational mapping (ORM) approach. The ORM
refers to better data and transaction handling on a database using an object oriented
approach. The investigation was conducted on a Java-based open source system
“Hibernate,” which is currently added to Microsoft model for .Net Systems.

In September 2007 [21], the Object Database Technology Working Group of the
Object Management Group (OMG) issued a white paper that introduced the con-
cept of an “object calculus” for ODBMSs that is analogous to “relational calculus” in
RDBMSs.

In [22], the authors proposed the research of cache moves around in the scal-
ability of new data-intensive environments and applications, and the trade-offs that
are highly determined by the characteristics of these applications. Early work on
information storing, for instance, concentrated on protest situated database frame-
works supporting applications, for example, CAD/CAM; these frameworks had the
coupling between the customers and server which took into consideration sharing
of individual tuples or entire plate pages. The procedures utilized in examinations
have been named physical reserving strategies.

In [23], the authors present the query-based services that do not entirely give
out the physical layout of database; furthermore, customers have no power over the
internals or interfaces; even application servers have just the data in the inquiries.
Regarding the reserving models, the administrations should consequently be dealt
with as self-sufficient inheritance frameworks even though they may dwell in best
in class business database frameworks. In this condition, physical reserving

Application of Decision Science in Business and Management

strategies are basically no longer pertinent as there is assumption coupling between
client and server.

In [24], authors present the Object Relational Query Processing approach for
optimizing the queries over ORDBMS. The approach was originally inspired by the
object oriented paradigm.

In [25], authors present the idea of a three-level caching for efficient query
processing in large Web search engines where a huge number of interactive data
queries are posed in small fraction of time. Due to the volume of data access,
semantic caching was a plus in efficiently handling data for sake of improving
response time and reducing Web traffic. To keep up with this immense workload,
large search engines employ clusters of hundreds or thousands of machines, and
several techniques such as caching, index compression, and index and query prun-
ing are used to improve scalability. Each level equips the higher level for better
accessibility and locality [26].

3. Research methodology

In this section, the proposed model of the work is explained in Section 3.1. Then
notation table that is used to understand the model in Section 3.2 and algorithm on
query matching in Section 3.3 are discussed, and then a case study is conducted in
Section 3.4.

3.1 Proposed model

Figure 7 is used to describe the proposed model, that is, the object relational
query as example. Suppose we have a query Select Selection department, Section
Marks, Grade From Enrollment Where Student S.Name="‘Clay’ And Section
Department=‘CSCI’.

Object Relational
Database

[

Uo SaFaQw, | pivider |SarFa+Qy — Sa+Fa+Qu Query

Matcher
|
Sa+Fa+Qw
T Object Semantic
Server |, Ma | Query |PaMa
Builder [|* —» Cache Content

Rebuild /
Rs\‘ ebuilder -

\ Last Result
Lr

Ur

Figure 7.
Proposed model.

10

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

Notation Details
SC Cache segment
uQ User query
sQ Select part of query
FQ From part of query
wQ Where part of query
MQ Modify query
RQ Remainder query
PQ Probe query
PA Predicate attribute
AS Attribute of segment
PS Predicate of segment
RS Relation of segment
CS Content of segment
AK Key attribute of segment
SA Same attributes
RS Result from server
DA Difference attribute
LR Last result
CR Server result
QR Query result

Table 3.

Notation table.

All the notations used are enlisted in Table 3.

3.2 Proposed algorithms

Algorithm 1:- The pseudo code of proposed algorithm to match the query

Purpose:- To enhance the query matching approach on the ORDBMS over semantic cache
Input:- User query, Semantic cache

Output:- Result of User Query (Probe Query and Remainder Query)

PROCESSING:- Get the query from user and go to query splitter

STEP 1:- DIVIDE _QUERY (UQ)

STEP 2:- Rejecter: - CHECK _REJECTIONS(SQ+ FQ+ PA)

STEP 3:- IF (Reject= False)

I. SA,DA:= MATCH _ SELECT_CLAUSE (SQ)
a. IF (DA != Empty)
b. RQ1 = r DAGPQ (QR)
II. Else
rql= Null

11

Application of Decision Science in Business and Management

III. IF (SA != Empty)

a. IF (! (QPA C SP))
MQ - GEN_AMEND_QUERY ()
b. ELSE
MQ: Null
IV. IF (QP ==>SP)
a. PQ:=nSAGPS (CS)
b. RQ2: Null
V. ELSE (QP ~ SP) is Satisfiable
PQ : iSAGPS (CS)
VI. ELSE IF (QP ~ SP) is Unsatisfiable

Pq: Null
Rq2 = nCA oSP (QR)
a. ELSE
b. PQ:= Null
c. RQ2:= Null
d. LR: = PQ + RQ + RQ2
STEP 4: ELSE

Query Is Incorrect

Algorithm 2 DIVIDE _UQ()

Input UQ (Query from user)
Output SQ, WQ, FA
Procedure SQ: - SELECT CLAUSE

WQ:- WHERE CLAUSE
FA:- FROM CLAUSE
Return:- SQ, WQ, FA

Algorithm 3 CHECK _REJECTIONS(SQ, FQ, PA)

Input UQ (User Query)

Output SQ, FQ, PA

Procedure I. If all attributes of SQ present in schema

II. If relation of FQ present in schema
II. 5
IV. If PA is present in schema
Return false
Else return true
V. Else return true
VI. Else return true

3.3 Case study

Following schema is taken as a case study to demonstrate the proposed
approach. In this regard, following object relational database query is posed. UQ2:
“Select (selection) Section, Department, Marks, Grade From Enrollment Where
Student S.Name=‘Clay’ And Section Department=‘CSCI’”.

12

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

UNIVERSITY
STUDENT ENROLLMENT
S.Name S.ID Age Gender Section Department Marks Grade
Enrollment Student
S. no Cache segment S. no Cache segment
C1 S.ID C14 Section
Cc2 S.name C15 Department
C3 Gender C16 Marks
C4 Age C17 Grade
C5 S.ID, S.name C18 Section, department
C6 S.ID, gender C19 Section, marks
Cc7 S.ID, age C20 Section, grade
C8 S.ID, S.name, gender C21 Section, department, marks
C9 S.ID, S.name, age C22 Section, department, grade
C10 S.ID, gender, age C23 Department, marks
C11 S.name, gender C24 Department, grade
C12 S.name, age C25 Marks, grade
C13 Gender, age C26 Grade, marks
Table 4.

Cache segments on relation.

For the above given case study of university, there are 26 possible cache seg-
ments of the enrollment and student relation. In other words, we can say that 13 are
made against the enrollment relation and 13 for the student as in given Table 4
according to given formula 2" — 1 [1].

4, Results and discussion

The discussion on the case study in Section 4.1 and the comparison on the case
study in Section 4.2 are conducted.

4.1 Discussion

In the example, there are 30 possible enquiries that make separate segments. But
in ORDBMS, the reference is used toward accessing the query result and the refer-
ence is added on the row [7]. The given two object oriented user query on possible
segments are as follows:

UQ1:- Select Section department, Section Grade, From Student Where Student S. Name="Bursch’ And
Student Age="21".

UQ2:- Select Selection department, Section Marks, Grade From Enrollment Where Student S.
Name="Clay’ And Section Department="CSCI’

13

Application of Decision Science in Business and Management

As from above Object queries, UQ1 is rejected as initial state from query rejecter
SQ is not coordinated with attributes of Student relation. Now let us assume from
UQ2 over projected architecture as with respect to cache segment of Object rela-
tional query from Table 4. Query split function splits the query into segment with
reference as below:

SQ: -{Selection department, Section Marks, Grade}
WQ: -{Enrollment, Student}
FA :-{Student S. Name="Clay’ and Section Department="CSCI’}

Rejecter receives these three {SQ, WQ, FQ} and passes it to decider after
checking the validity. Then, the decider checks the availability of required attri-
butes by applying the proposed approach.

Here, for simplification, we assume that there exist two segments S12 and S16,
for enrollment and student. So, the SA and DA will be composed as follows:

SA = {Department,Marks}

DA = {Grade}

After combining difference and common attribute, query will generate and send
the following remainder query to the server.

RQ-= Select Grade From Enrollment Where Section Department="CSCI

Common attributes with WQ and FQ will be sent to LQG, whereas probe and
remainder queries will be produced by LQG based on similarity with segment on
cache [14]. Note that here SQ will be equal to SA. So, probe and remainder queries
are given below:

PQ= Select Selection department, Section Marks, From (CS)

RQ-= Select Grade from Enrollment Where Section Department="CSCI.

Here, modify query (MQ) is null because PS C SQ. This process of takeout
probe and remainder query will be continued with entirely of segments that are
visited or remainder queries become null. Query generator sends all the probe
queries to the cache content and final remainder query to the server to retrieve data.

As a final point, rebuilder obtains CR from cache and RS joined to build LR and
the semantics in the cache will be updated accordingly.

Complexity Comparison Of Simple And Object Query
1200
1000 P
@ 800
£
[
& 600
§- =@==Relational Query
& 400 —e—Object Query
200
0 p——t
1 2 3 4 5 6 7 8 9 10
No .Of Attributes
Figure 8.

Complexity comparison.

14

A Query Matching Approach for Object Relational Databases Over Semantic Cache
DOI: http://dx.doi.org/10.5772/intechopen.90004

4.2 Complexity comparison

This section provides comparison between previous work on RDBMS with
semantic cache and proposed query matching scheme on ORDBMS with semantic
cache [7]. We have used workload parameter, such as response time, no of attribute
more detail is given with the help of Figure 8 present the response time through
number of attributes. Comeback time is purely calculated on the bases of complex-
ity expression use as previous (n vs. 2"-1).

In Figure 8, the comparison result is displayed, which is used to show difference
between relational query on relational data model with semantic cache and object
relational database query with sematic cache, and response time is getting better on
object relational query and object relational database can have ability to answer the
complex data type. The retrieve time of query on ORDBMS is better and efficient;
the query matching approach has improved the working procedure of the object
relational query.

5. Conclusion

In this proposal, we talked about the significance of ORDBMS query for associ-
ations and organizations. We featured our approaches for outlining model and
approach algorithm. Additionally, we talked about contextual analyses of executing
RDBMS in online store situations and their methodologies of the implementation.

This exploration, in current stage, centers on outlining and available information
which will help for the most part in basic leadership process that is identified with
the advertising. We found that the greater part of works in this field have been
given diverse ways to deal with the choice of perspectives to appear considering
query upkeep cost and time consuming.

The investigations demonstrate that the proposed model can be incorporated
with the existing models since it limits the arrangement of perspectives before
appearance process.

In this research, we proposed an efficient scheme to reduce the query execution
cost by making the query matching process swift. Moreover, in this era, every
organization required the records in short time in the presence of big data, data
lake, Teradata, etc. On the other hand, the organizations do not want to change
their current systems due to the reasons like data losses, delays, and other
cost-related issues. To avoid these issues, proposed advanced level query matcher
can be a good alternate.

To fix this issue, we present a technique for Query Matcher and semantic cache
process over object relational database. We use object query on relational database.

Now we provide solution for decision-makers or user of traditional database that
can enhance speed and cost and optimize query matching. We can manage large
queries on data set with matching approach and save these results dynamically in
semantic cache which updated on run time. Rather accessing the whole large data
set from object relational database we pull data from Semantic cache where similar
queries answer before that reduce time and system delay. This will increase the
confidence of database users.

15

Application of Decision Science in Business and Management

Author details

Hafiz Muhammad Faisal’, Muhammad Ali Tariql, Atta-ur-Rahman?*,
Anas Alghamdi2 and Nawaf Alowain?

1 Barani Institute of Information Technology, PMAS Arid Agriculture University,
Rawalpindi, Pakistan

2 Department of Computer Science, CCSIT, Imam Abdulrahman bin Faisal
University, Dammam, Saudi Arabia

*Address all correspondence to: aaurrahman@iau.edu.sa

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

16

A Query Matching Approach for Object Relational Databases Over Semantic Cache

DOI: http://dx.doi.org/10.5772/intechopen.90004

References

[1] Ahmad M, Qadir MA, Sanaullah M,
Bashir MF. An efficient query matching
algorithm for relational data semantic
cache. In: 2009 2nd International
Conference on Computer, Control and
Communication; Karachi. 2009. pp. 1-6

[2] Ahmad M, Qadir MA, Sanaullah M.
Query processing over relational
databases with semantic cache: A
survey. In: 2008 IEEE International
Multitopic Conference, Karachi. 2008.
pp- 558-564

[3] Fagin R. Multivalued dependencies
and a new normal form for relational
databases. ACM Transactions on
Database Systems. 1977;2(3):262-278

[4] Trappey AJC, Lee C, Chen W,
Trappey CV. A framework of customer
complaint handling system. In: 2010 7th
International Conference on Service

Systems and Service Management;
Tokyo. 2010. pp. 1-6

[5] O'Neil E]. Object/relational mapping
2008: Hibernate and the entity data
model (edm). In: Proceedings of the
2008 ACM SIGMOD International
Conference on Management of Data
(SIGMOD '08). New York, NY, USA:
ACM. pp. 1351-1356

[6] Jeudy B, Rioult F. Database
transposition for constrained (closed)
pattern mining. In: Goethals B, Siebes A,
editors. Knowledge Discovery in
Inductive Databases. KDID 2004.
Lecture Notes in Computer Science. Vol.
3377. Berlin, Heidelberg: Springer; 2005

[7] Risch T. Introduction to object-
oriented and object-relational database
systems. In: Uppsala Data Base the
Laboratory. 2016

[8] Subramanian M, Krishnamurthy V.
Performance challenges in object-
relational DBMSs. In: Oracle Corporation
Redwood Shores CA 94065. 1999

17

[9] Carey M, Kiernan J,
Shanmugasundaram J, Shekita E,
Subramanian S. A Middleware for
Publishing Object-Relational Data as
XML Documents. 2003

[10] Brown PG. Object-Relational
Database Development: A Plumber's
Guide with Cd rom. Upper Saddle

River NJ, USA: Prentice Hall PTR; 2000.
ISBN 0130194603

[11] Coronel C, Morris S.

Database Systems: Design,
Implementation & Management. San
Francisco, CA: Cengage Learning; 2016

[12] Ahmad M, Qadir MA, Ali T,
Abbas MA, Afzal MT. Semantic cache
system. In: Semantics in Action-

Applications and Scenarios. Rijeka:
IntechOpen; 2012

[13] Thakur D. What is cache memory |
types of cache memory. In: Computer
Notes Blog

[14] Chidlovskii B, Roncancio C,
Schneider ML. Semantic cache
mechanism for heterogeneous web
querying. Computer Networks. 1999;31
(11-16):1347-1360

[15] Ahmad M, Qadir MA, Ali T.
Indexing for semantic cache to reduce
query matching complexity. Journal of
the National Science Foundation of Sri
Lanka. 2017;45:13. DOI: 10.4038/jnsfsr.
v45i1.8033

[16] Godfrey P, Graz J. Answering
queries by semantic caches. In:
International Conference on Database
and Expert Systems Applications.
Berlin, Heidelberg: Springer; 1999.
pp. 485-498

[17] Luo et al. The Query-Based Services
Give Out the Physical Layout of
Database. 2002

Application of Decision Science in Business and Management

[18] Atta-ur-Rahman, Alhaidari FA. The
digital library and the archiving system
for educational institutes. Pakistan

Journal of Information Management and
Libraries (PJIM&L). 2019;20(1):94-117

[19] Atta-ur-Rahman FAA. Querying
RDF Data. Journal of Theoretical and
Applied Information Technology. 2018;
26(22):7599-7614

[20] Ahmad M, Farooq U, Atta-ur-
Rahman AA, Dash S, Luhach AK.
Investigating TYPE constraint for
frequent pattern mining. Journal of

Discrete Mathematical Sciences and
Cryptography. 2019;22(4):605-626

[21] Object Management Group (OMG).
The Object Database Technology
Working Group Present, “Object
Calculus” for ODBMSs. 2007

[22] Dewitt et al. (1990), Carey et al.
(1991) and Franklin et al. (1996)
proposed the research of cache moves
around in the scalability new data-
intensive environments

[23] Jaluta I, Bazina N. Cache
consistency in adaptive page-server
database systems. 2014. pp. 1-5. DOI:
10.1109/GSCIT.2014.6970098

[24] Liu B, Lee WC, Lee DL. Distributed
caching of multi-dimensional data in
mobile environments. In: Proceedings of
the 6th International Conference on
Mobile Data Management. ACM; 2005,
May. pp. 229-233

[25] Long X, Suel T. Three-level caching
for efficient query processing in large
web search engines. In: CIS Department
Polytechnic University Brooklyn, NY
11201

[26] Leung CKS, Brajczuk DA. Efficient
algorithms for mining constrained
frequent patterns from uncertain data.
In: Proceedings of the 1st ACM. 2009

18

