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Chapter

Excitons in Two-Dimensional 
Materials
Xiaoyang Zheng and Xian Zhang

Abstract

Because of the reduced dielectric screening and enhanced Coulomb interac-
tions, two-dimensional (2D) materials like phosphorene and transition metal 
dichalcogenides (TMDs) exhibit strong excitonic effects, resulting in fascinating 
many-particle phenomena covering both intralayer and interlayer excitons. Their 
intrinsic band gaps and strong excitonic emissions allow the possibility to tune 
the inherent optical, electrical, and optoelectronic properties of 2D materials via a 
variety of external stimuli, making them potential candidates for novel optoelec-
tronic applications. In this review, we summarize exciton physics and devices in 2D 
semiconductors and insulators, especially in phosphorene, TMDs, and their van 
der Waals heterostructures (vdWHs). In the first part, we discuss the remarkably 
versatile excitonic landscape, including bright and dark excitons, trions, biexcitons, 
and interlayer excitons. In the second part, we examine common control methods 
to tune excitonic effects via electrical, magnetic, optical, and mechanical means. 
In the next stage, we provide recent advances on the optoelectronic device applica-
tions, such as electroluminescent devices, photovoltaic solar cells, and photode-
tectors. We conclude with a brief discussion on their potential to exploit vdWHs 
toward unique exciton physics and devices.

Keywords: excitons, two-dimensional materials, semiconductors, heterostructures, 
optoelectronics

1. Introduction

Since the first ‘modern’ 2D material, monolayer graphene, was mechanically 
exfoliated in 2004 [1], the family of 2D materials has been extensively flourish-
ing, covering insulators, semiconductors, semimetals, metals, and superconduc-
tors (Figure 1). In addition to semimetal graphene, other actively researched 2D 
materials include wide-bandgap insulator hexagonal boron nitride (hBN) [2], 
direct bandgap semiconductor phosphorene [3], Xenes (e.g., Monolayers of silicon 
(silicene), germanium (germanene) and tin (stanene)) [4], and transition metal 
dichalcogenides (TMDs) with the chemical formula MX2 (M: transition metal; X: 
chalcogen) [5]. Compared with bulk materials, 2D materials exhibit some unparal-
lel characteristics: removal of van der Waals interactions, an increase in the ratio 
of surface area-to-volume, and confinement of electrons in a plane. The change 
in properties, caused by a reduction in the dimensionality of 2D materials, makes 
them becoming the promising candidates for next-generation electronics and 
optoelectronics [6–8].
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Whereas these materials are marvelous per se, the more astounding discovery is 
that these 2D crystals can be combined freely to create layered compounds, paving a 
way for design of new functional materials and nano-devices [9, 10]. Such designer 
materials are called van der Waals heterostructures (vdWHs) since the atomically 
thin layers are not attached through a chemical reaction but rather held together via 
a weak van der Waals interaction. By stacking together any number of atomically 
thin layers, the concept provides a huge potential to tailor the unique 2D electronic 
states with atomic scale precision, opening the door to broaden the versatility of 2D 
materials and devices. Such stacked vdWHs are quite distinctive from the tradi-
tional 3D semiconductor heterostructures, as each layer acts simultaneously as the 
bulk material and the interface, reducing the amount of charge displacement within 
each layer. These vdWHs have already gained an insight into the discovery of con-
siderably engaging physical phenomena. For instance, by combining semiconduct-
ing monolayers with graphene, one can fabricate optically active heterostructures 
used for photovoltaic and light-emitting devices [11–13].

Because of the charge confinement and reduced dielectric screening, the optical 
properties of semiconducting 2D materials are dominated by excitonic effects [14–20]. 
When a material goes from bulk to 2D, there is less material to screen the electric 
field, giving rise to an increase in Coulomb interaction and more strongly-bound 
electron–hole pairs (excitons). In addition, since the excitons are confined in a plane 
that is thinner than their Bohr radius in most 2D semiconductors, quantum confine-
ment enhances the exciton binding energy, altering the wavelength of light they absorb 
and emit. These two distinctively physical phenomena naturally make the excitons 
bound even at room temperature with a binding energy of hundreds of meV [21]. As 
a consequence, such materials’ two-dimensionality makes the excitons easily tunable, 
with a variety of external stimuli or internal stacking layers, enabling them potential 
candidates for various applications in optics and optoelectronics.

Figure 1. 
The gallery of 2D materials.
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In this chapter, we provide a topical summary towards recent frontier research 
progress related to excitons in atomically thin 2D materials and vdWHs. To begin 
with, we clarify the different types of excitons in 2D materials, including bright and 
dark excitons, trions, biexcitons, and interlayer excitons. Moreover, we analyze the 
electronic structures and excitonic effects for two typical 2D materials (i.e., TMDs 
and phosphorene), as well as the excited-state dynamics in vdWHs. Furthermore, 
we address how external stimuli, such applied electric fields, strain, magnetic 
fields, and light, modulate the excitonic behavior and emission in 2D materi-
als. Afterward, we introduce several representative optoelectronic and photonic 
applications based on excitonic effects of 2D materials. Finally, we give our personal 
insights into the challenges and outlooks in this field.

2. Exciton physics in 2D semiconductors and insulators

When the dimension of crystals converts from 3D to 2D, the electronic Coulomb 
screening is dramatically reduced out of quantum confinement. As a consequence, 
dielectric constant ϵ can fall to ϵ = 1 from ϵ ≫ 1 in conventional bulk materials [22, 23]. 
Generally, the binding energies of the strongly bound excitons can reach up to 30% 
of the quasiparticle (QP) band gap because of the tremendous decrease in dielectric 
constant, rising to the magnitude of 0.1–1 eV [21, 24]. The large binding energies, 
which lead to a strong absorption of excitons linking to light, can not only contribute to 
a substantial modification in the optical spectrum both below and above the QP band 
gap, but also ensure a long lifetime of excitons in room temperature. Since the large 
binding energies of excitons in 2D monolayer hBN was initially predicted theoretically 
in 2006 [25], the research relating to excitons of 2D materials boomed, ranging from 
monolayer 2D semiconductors and insulators to vdWHs.

2.1 Excitons, trions, biexcitons, and interlayer excitons

Excitons are hydrogen-like bound states of a negatively charged electron and 
a positively charged hole which are attracted to each other by the electrostatic 
Coulomb force [26]. It is an electrically neutral quasiparticle that exists mostly in 
semiconductors, as well as some insulators and liquids, derived from the photo-
excitation. Excitons are the main mechanism for light emission and recombination 
because of their large oscillator strength and enhanced light-matter interaction [27]. 
When it comes to low-dimension crystals, the types of excitons experience a boom. 
Weak dielectric screening and strong geometrical confinement mutually contribute 
to an extremely strong Coulomb interaction, bringing in engaging many-particle 
phenomena: bright and dark excitons, trions, biexcitons, and interlayer excitons.

Excitons can be bright or dark subject to the spin orientation of the individual 
carriers: the electron and the hole, as shown in Figure 2(b). If the electron and hole 
have opposite spins, the two particles can easily recombine through the emission of 
a photon. These electron–hole pairs are called bright excitons. Whereas if they have 
the same spins, the electron and hole cannot easily recombine via direct emission of 
a photon due to the lack of required spin momentum conservation. These electron–
hole pairs are called dark excitons. This darkness makes dark excitons becoming 
promising qubits because dark excitons cannot emit light and are thus unable to 
relax to a lower energy level. As a consequence, dark excitons have relatively long 
radiative lifetimes, lasting for over a microsecond, a period that is a thousand times 
longer than bright excitons and long enough to function as a qubit. By harnessing 
the recombination time to create ‘fast’ or ‘slow’ light, the highly stable, non-radiative 
nature of dark excitons paves a way for optically controlled control information 
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processing. For instance, according to inducing light emission from dark excitons 
in monolayer WSe2, it is possible to selectively control spin and valley, making dark 
excitons possible to encode and transport information on a chip [28, 29].

Because of the significant Coulomb interactions in 2D materials, exciton can 
capture an additional charge to form charged exciton known as trion, a localized 
excitation consisting of three charged quasiparticles (Figure 2(c)). Compared to 
exciton, a neutral electron–hole pair, trion can be negative or positive depend-
ing on its charged state: a negative trion (negative e–e-h) is a complex of two 
electrons and one hole and a positive trion (negative e–e-h) is a complex of two 
holes and one electron. Trion states were predicted theoretically [30] and then 
observed experimentally in various 2D materials, by means of temperature-
dependent photoluminescence (PL) [31] and nonlinear optical spectroscopy 
[32], and scanning tunneling spectroscopy [33]. Trions play a significant role in 
in manipulating electron spins and the valley degree of freedom for the reasons 
below. First, the trion binding energies are surprisingly large, reaching to about 
15–45 meV in monolayer TMDs [34–36] and 100 meV in monolayer phosphorene 
on SiO2/Si substrate [37]. In addition, trions possess an extended population 
relaxation time up to tens of picoseconds [38, 39]. Finally, trions have an impact 
on both transport and optical properties and can be easily detected and tuned 
experimentally [40]. As a consequence, the electrical manipulation and detec-
tion of trion, as well as its enhanced stability, make it promising for trion-based 
optoelectronics.

Biexcitons, also known as exciton molecules, are created from two free 
excitons. Biexciton configurations can be distinguished from unbound or 
bound biexciton cases (Figure 2(d)). The bound biexciton is considered as a 
single particle since Coulomb interaction is dominant in this complex; while the 
unbound biexciton is regarded as two-exciton isolated from each other because 

Figure 2. 
Different exciton types in atomically thin nanomaterials and related heterostructures. (a) The schematic for the 
energy level. (b) Excitons are coulomb-bound electron hole pairs (ovals in the picture): Bright excitons consist 
of electrons and holes with antiparallel spins, while dark excitons consist of electrons and holes with parallel 
spins. (c) Trions emerge when an additional electron (hole) joins the exciton. (d) Biexcitons are created from 
two free excitons with different total momenta. (e) Interlayer excitons appear when electrons and holes are 
located in different layers.
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of the predominance of the repulsive Coulomb interaction [41, 42]. Similar to 
trions stably existing in 2D materials, biexcitons can also exist in room tempera-
ture. Among 2D materials, biexcitons were firstly observed in monolayer TMDs 
[43, 44], followed by predicting their binding energies of biexcitons via compu-
tational simulation [45, 46].

In addition to above-mentioned intralayer excitons, interlayer excitons, where 
the involved electrons and holes are located in different layers, can also form 
in bilayer or few-layer 2D materials especially in vdWHs because of the strong 
Coulomb interaction (Figure 2(e)). After optically exciting a coherent intralayer 
exciton, the hole can tunnel to the other layer forming an incoherent exciton with 
the assistance of emission and absorption of phonons. Generally, these interlayer 
excitons occupy the energetically lower excitonic state than the excitons confined 
within one layer owing to an offset in the alignment of the monolayer band struc-
tures [47, 48]. Similar to excitons in one layer, interlayer excitons can also be either 
bright or dark depending on spin and momentum of the states involved [49, 50].

2.2 Excitons in atomically thin 2D materials

Among 2D semiconductors and insulators, TMDs and phosphorene have drawn 
tremendous attention owing to their intrinsic band gaps and strong excitonic 
emissions, making them potential candidates for high-performance optoelectronic 
applications in the visible to near-infrared regime [51]. The electronic and optical 
properties of 2D materials rely on their electronic band structure, which demon-
strates the movement of electrons in the material and results from the periodicity of 
its crystal structure. When the dimension of a material degrades from bulk to 2D, the 
periodicity will disappear in the direction perpendicular to the plane, changing the 
band structure dramatically. This means by changing the number of layers in the 2D 
material, one can tune the band structures (e.g., a MoS2 will become emissive when 
reducing to monolayer), as well as tailor the binding energies of excitons (e.g., a 
monolayer 2D material will absorb/emit higher energy light than a bilayer).

All TMDs have a hexagonal structure, with each monolayer consisting of the 
metal layer sandwiched between two chalcogenide layers (X-M-X). The two most 
common crystal structures are the semiconducting 2H-phase with trigonal sym-
metry (e.g., MoS2, WS2, MoSe2, WSe2, as shown in Figure 3(a)) and the metallic 1 T 
phase (e.g., WTe2). For the semiconducting 2H-phase TMDs, they are well-known 
to possess an indirect band gap in bulk crystals; however, when mechanically 
exfoliated to a monolayer, these crystals experience a crossover from indirect to 
direct bandgap since the lack of interlayer interaction (Figure 3(b)). In addition, a 
decreasing layer numbers in TMDs attributes to larger absorption energy and strong 
photoluminescence (PL) emission in the visible spectrum, accompanying with 
enhanced excitonic effects, because of the reduced electronic Coulomb screening 
(Figure 4(a)) [53].

More importantly, TMDs are time-reversal symmetry but spatial inversion 
asymmetric. Since the strong spin–orbit coupling, the time-reversal symmetry dic-
tates the spin splitting to have opposite spins at the K and K′ valleys of the Brillouin 
zones, making the excitons in TMDs are called valley excitons, which is different 
from the transition at the Γ valley in other 2D semiconductors such as phosphorene. 
As shown in Figure 5, the spin splitting is pretty strong in the valence band, in 
which spin splitting values are calculated theoretically up to 0.15 eV in 2H-MoS2 
monolayer and 0.46 eV in 2H-WSe2 monolayer [56]. On the other hand, the broken 
inversion symmetry of TMD systems gives rise to a valley-dependent optical selec-
tion rule. This unique characteristic arouses the potential to control valley polariza-
tion and electronic valley. In this sense, a valley refers to the region in an electronic 



Advances in Condensed-Matter and Materials Physics - Rudimentary Research to Topical…

6

band structure where excitons are localized; valley polarization refers to the ratio of 
valley populations; and electronic valley refers a degree of freedom that is akin to 
charge and spin. As a consequence, optical transitions such as excitons in opposite 
valleys are able to be excited selectively using light with disparate chirality, paving 
the way to enable valleytronic devices based on photon polarizations [54, 55].

As shown in Figure 3(c), phosphorene possesses a puckered orthorhombic 
lattice structure with P atoms distributed on two parallel planes and each P atom is 
covalently bonded to three adjacent atoms, resulting in strong in-plane anisotropy. 
Unlike TMDs that exhibit an indirect-to-direct bandgap transition when scaled 
down from bilayer to monolayer, phosphorene retains a direct band gap all the time, 
as shown in Figure 3(d) [57, 58]. As the layer number decrease from 5 to 1, bandgap 
energy of phosphorene rises remarkably because of the weaker coupling of the 
conduction band and the valence band caused by reduced interactions in thinner 
layers, showing a layer-dependent direct bandgap energies (Figure 4(c)). In con-
trast to TMDs whose PL emission occurs in the visible spectrum, the light emission 

Figure 3. 
Atomic structures and electronic structures of TMDs and phosphorene: Side view (left) and top view (right) of 
the atomic structures of the monolayer semiconducting 2H-phase TMDs (a) and of the monolayer phosphorene 
(c); band structures of bulk and monolayer MoS2 (b) and phosphorene (d) [52]. Note that the bandgap shows 
a widening in phosphorene and both a widening and a crossover from indirect to direct bandgap in MoS2. 
Reproduced with permission [52]. Copyright 2019 Ossila ltd.

Figure 4. 
The effects of layer number on the PL spectra and peak energy of TMDs and phosphorene. (a, b) normalized 
PL spectra of 2H-WS2, 2H-WSe2 and phosphorene flakes consisting of 1–5 layers. Each PL spectra is normalized 
to its peak intensity and system background [37, 53]. (c) Evolution of PL peak energy with layer number of 
2H-WS2, 2H-WSe2, and phosphorene from (a, b), showing an increase in peak energy as the layer number 
reduces. (a) Reproduced with permission [53]. Copyright 2012 American Chemical Society. (b) Reproduced 
with permission [37]. Copyright 2015 Springer Nature Publishing AG.
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of phosphorene mainly covers the near-infrared spectral regime (Figure 4(a, b)). 
Moreover, its structural anisotropy also strongly affects the excitonic effects and 
in phosphorene. The results from first-principles simulations demonstrate that 
excitonic effects can only be observed when the incident light is polarized along the 
armchair direction of the crystal [59].

To have an impact on excitonic effects and relevant applications, the bind-
ing energy of these quasiparticles must be clarified. As schematically illustrated 
in Figure 2(a), the exciton binding energy is the energy difference between the 
electronic bandgap (Eg) and optical bandgap (Eopt). When higher-order excitonic 
quasiparticles form, more energy, i.e., the binding energy of trion or biexciton, is 
needed. Thus, the binding energies of exciton, trion and biexciton can be expressed 
as   E  b  E  =  E  g   −  E  E   ,   E  b  T  =  E  g   −  E  T   , and   E  b  B  =  E  g   −  E  B   , respectively, where EE, ET, and EB are 
emission energies of exciton, trion, and biexciton. For the most 2D conductors and 
insulators, a robust linear scaling law exists between the quasiparticle bandgap (Eg) 
and the exciton binding energy (  E  b  E  ), namely,   E  b  E  ≈  E  g   / 4 , regardless of their lattice 
configuration, bonding characteristic, and the topological property (Figure 6) [21]. 
It is worth emphasizing that the results from simulations and experiments cover 
almost all kinds of popular 2D monolayer semiconductors and insulators, includ-
ing topological crystalline insulator (TCI) and topological insulator (TI) [60–62], 
TMDs [21, 63–66], nitrides (MXenes) [67], phosphorene [21, 68], IV/III–V com-
pounds [21], and graphene derivatives [21]. Such an agreement between simulation 
and experiment results indicates that the linear scaling law can be used effectively 
to predict the exciton binding energy for all the 2D monolayer semiconductors and 
insulators. On the other hand, although comparatively lower than exciton binding 
energies, the binding energies of trion and biexciton in 2D materials is significantly 
larger than that in quasi-2D quantum wells (1–5 meV) [69]. For example, the 
binding energies of trion and biexciton in TMDs reach up to 45 meV and 60 meV, 
respectively [42, 44, 70].

2.3 Excitons in vdWHs

Composed of stacks of atomically thin 2D materials, the properties of vdWHs 
are determined not only by the constituent monolayers but also by the layer interac-
tions. In particular, the excited-state dynamics is unique, such as the formation of 
interlayer excitons [47], ultrafast charge transfer between the layers [71, 72], the 
existence of long-lived spin and valley polarization in resident carriers [73, 74], and 

Figure 5. 
Lattice structure, valley polarization, and exciton-polaritons in 2D TMDs. (a) The honeycomb lattice 
structure of monolayer TMDs, with broken inversion symmetry and the high-symmetry points in the first 
Brillouin zone. (b) Electronic bands around the K and K’ points, which are spin-split by the spin–orbit 
interactions. The spin (up and down arrows) and valley (K and K’) degrees of freedom are locked together. (c) 
Exciton–polariton states in a 2D semiconductor embedded inside a photonic microcavity. (a, b) reproduced 
with permission [54]. Copyright 2016 Springer Nature Publishing AG. (c) Reproduced with permission [55]. 
Copyright 2019 John Wiley & Sons, Inc.
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moiré-trapped valley excitons in moire superlattices in vdWHs [75–78]. In terms 
of 2D vdWHs, the semiconducting vdWHs composed of stacked TMDC layers are 
the most widely studied due to their prominent exciton states and accessibility to 
the valley degree of freedom. More interestingly, the introduction of moiré super-
lattices (Figure 7(a)), a periodic pattern formed by stacking two monolayer 2D 
materials with lattice mismatch or rotational misalignment, enables to modulate the 
electronic band structure and the optical properties of vdWHs [79].

After demonstrating the appearance of interlayer excitons in PL spectra, the 
research on exciton dynamics in vdWHs flourishes. The discovery of intralayer 
excitons in 2D materials can be traced back to 2015, when long-lived interlayer 
excitons were demonstrated in monolayer MoSe2/Wse2 heterostructures, where a 
pronounced additional resonance was observed at an energy below the intralayer 
excitons [80]. Compared with the intralayer excitons in the weak excitation regime, 
the PL intensity of this low-energy peak is rather prominent, which attributes to 
the presence of interlayer excitons as their spectral position is highly occupied. 
Furthermore, measuring the binding energy of interlayer excitons directly is also 
demonstrated in WSe2/WS2 heterobilayers, where a novel 1 s–2p resonance are mea-
sured by phase-locked mid-infrared pulses [81]. For other excited-state dynamics, 
such as ultrafast kinetics, long lifetimes, and moiré excitons, some research indicate 
they have something to do with interlayer excitons [71–78].

Empirically, charge transfer between layers of vertically stacking vdWHs is 
supposed to be much slow. However, transient absorption measurements, which 
are implemented by resonantly injecting excitons using ultrafast laser pulse, show 
a sub-picosecond charge separation in vdWHs: the holes injected in MoS2 takes 
200 fs transferring to MoSe2 and even only 50 fs transferring to WS2, as shown in 
Figure 7(b) [73, 74]. It is noteworthy that this process is reversible, i.e., holes trans-
fer to MoSe2 on the same ultrafast time scale when excitons are selectively injected 
in MoS2 using excitation resonant with the higher-energy exciton feature in MoS2. 

Figure 6. 
Linear relationship between quasiparticle bandgap (Eg) and exciton binding energy (  E  b  E  ). Reproduced with 
permission [21]. Copyright 2017 American Physical Society.
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In addition, another interesting phenomenon is that when mismatching the bilayer 
vdWHs with different twist angle, the charge transfer signal keeps a constant period 
within 40 fs, while the recombination lifetime of these indirect excitons varies with 
the twist angle without any clear trend [82].

In contrast to the ultrafast charge transfer dynamics in vdWHs (<1 ps), spin 
and valley relaxation dynamics take place on considerably longer timescale [73, 
74]. For the two distinctive relaxation processes in vdWHs (i.e., the population 
decay of optically excited excitons, and the exciton spin–valley lifetime which 
determines the information storage time in the spin– valley degree of freedom), 
they both are significantly longer than the monolayer case. For instance, by 
tuning the carrier concentration, holes’ spin–valley lifetime and population 
lifetime possess a doping-dependent pattern in a WSe2/WS2 heterostructure [74]: 
in charge-neutral and electron-doped heterostructures (i.e., neutral and posi-
tive carrier concentrations), the spin–valley lifetime is closed to the population 
lifetime; nevertheless, in hole-doping heterostructures (i.e., negative carrier 

Figure 7. 
Excitonic effects in vdWHs. (a) Sketch of MoS2/MoSe2 heterobilayer (left) and its moiré superlattice (right) 
[10]. (b) Schematic of a pump-probe configuration (left), and time-resolved differential reflection of a 
MoS2/MoSe2 heterobilayer (blue) and of MoS2 monolayer (purple) (right) [71]. (c) Comparison between 
spin-valley lifetime (circles) and hole population lifetime (triangles) under different carrier concentration in 
MoS2/MoSe2 heterostructure (left), and schematic illustration of the interlayer electron–hole recombination 
process in electron-doped and hole-doped heterostructures [74]. (d) Moiré superlattice modulates the electronic 
and optical properties in WSe2/MoSe2 heterostructure: Three different local atomic alignments and their 
corresponding schematic (top), the moiré potential of the interlayer exciton transition (left lower), and spatial 
map of the optical selection rules for K-valley excitons (right lower) [76]. (a) Reproduced with permission 
[10]. Copyright 2016 American Association for the Advancement of Science. (b) Reproduced with permission 
[71]. Copyright 2014, American Chemical Society. (c) Reproduced with permission [74]. Copyright 2018 
American Association for the Advancement of Science. (d) Reproduced with permission [76]. Copyright 2019 
Springer Nature Publishing AG.
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concentration), the spin–valley lifetime becomes orders of magnitude longer 
than the population lifetime (Figure 7(c)). The remarkable dynamics of doping-
dependent lifetime attributes to the distinctive interlayer electron–hole recombi-
nation process in the heterostructure, as shown in Figure 7(c). In electron-doped 
or charge-neutral heterostructures, all holes in WSe2 are pump-generated excess 
holes; hence, when the hole population decays to zero out of interlayer elec-
tron–hole recombination, no holes can remain, let alone valley-polarized holes. 
The valley lifetime is thus limited by the lifetime of the total hole excess. On the 
contrary, in hole-doped case, the original hole density is much higher than the 
photo-generated density, give an equal probability for the recombination of excess 
electrons in WS2 with holes from both valleys of WSe2.

Since 2019, important breakthroughs about excitons in vdWHs has been 
obtained, especially three independent research simultaneously reporting the 
observation of moiré excitons in TMDs vdWHs, which lays a firm foundation to 
the engineering artificial excitonic crystals using vdWHs for nanophotonics and 
quantum information applications [75–77]. For example, in MoSe2/WSe2 hetero-
bilayers with a small twist angle of ~1°, there are three points at which the local 
atomic registration preserves the threefold rotational symmetry Ĉ3 in the moiré 
supercell. The local energy extrema in the three high-symmetry points not only 
localizes the excitons but also provides an array of identical quantum-dot potentials 
(Figure 7(d)) [75]. The research on moiré excitons in TMDs vdWHs has been 
promoted after experimentally confirming the hybridization of excitonic bands 
that can result in a resonant enhancement of moiré superlattice effects.

3. Tuning methods of excitons

To have an impact on industrial applications especially photovoltaics, the bind-
ing energies of excitons in 2D semiconductors and insulators must be delicately 
designed and tuned. More importantly, these common control measures, from 
electrical to optical methods, function more potently in 2D materials than in 3D 
materials.

3.1 Electrical tuning

Since the electric field can hardly modulate the dielectric constant in mono-
layer 2D materials [83], early electrical tuning for excitonic behavior is mostly 
based on carrier density-dependent many-body Coulomb interactions, namely 
charged excitons or trions [84, 85]. By increasing electron doping density using 
different gate voltage (−100 to +80 V) in monolayer MoS2 field-effect transistors, 
Mak et al. firstly reported the observation of tightly bound negative trions by 
means of absorption and photoluminescence spectroscopy [84]. These nega-
tive trions hold a large trion binding energy up to ~20 meV, and can be optically 
created with valley and spin polarized holes. At the same time, Ross et al. also 
observed positive and negative trions along with neutral excitons in monolayer 
MoSe2 field-effect transistors via photoluminescence [85]. The exciton charging 
effects showed a reversible electrostatic tunability, as shown in Figure 8(a–c). 
More interestingly, the positive and negative trions exhibited a nearly identical 
binding energy (~30 meV), implying the same effective mass for electrons and 
holes. Another work demonstrated continuous tuning of the exciton binding 
energy in monolayer WS2 field-effect transistors, finding the ground and excited 
excitonic states as a function of gate voltage [87].
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The above-mentioned works are related to monolayer 2D materials, while when 
it comes to heterostructures, the electrical tuning functions more efficiently [86, 
88]. Employing a van der Waals heterostructure consisting of hBN/MoSe2/hBN 
(Figure 8(d, e)), Wang el al. obtained homogeneous 2D electron gases by control-
ling disorder in TMDs, which allows for excellent electrical control of both charge 
and excitonic degrees of freedom [86]. Measuring the optoelectronic transport 
in the gate-defined heterostructure, they demonstrated gate-defined and tunable 
confinement of charged exciton, i.e., confinement happens when local gate voltages 
ΔVg is zero or negative while being absent when ΔVg local gate voltages are positive 
(Figure 8(f )). To further demonstrate controlled localization of charged excitons, 
they excited the device with a laser source at λ = 660 nm, observing both the exciton 
and trion recombination in PL spectra (Figure 8(g)). The ratio between trion and 
exciton recombination emission declines as ΔVg becomes more negative, because 
of local depletion of trions as the device transits from the accumulation regime 
(ΔVg > 0) to confinement (ΔVg = 0) and depletion regimes (ΔVg < 0), respectively.

3.2 Magnetic tuning

TMDs have drawn more attention with respect to magnetic tuning than other 
2D materials, since they preserve time-reversal symmetry with excitons formed at 
K and K′ points at the boundary of the Brillouin zone, which restricts valley polar-
ization. However, when imposing magnetic fields, time-reversal symmetry can be 
broken, which splits the degeneracy between the nominally time-reversed pairs 

Figure 8. 
Electrical tuning of excitons. (a–c) Electrical control in monolayer 2D materials [85]: (a) MoSe2 PL is plotted 
as a function of back-gate voltage, showing a transition from positive Trion to negative Trion as gate voltage 
increases. (b) Illustration of the gate-dependent transitions and quasiparticles. (c) the relationship between 
Trion and exciton peak intensity and gate voltage at dashed arrows in (a). Solid lines are fits based on the mass 
action model. (d–g) Electrical control in vdWHs [86]: (d) optoelectronic transport device consisting of hBN/
MoSe2/hBN heterostructure. (e) SEM image of a gate-defined monolayer MoSe2 quantum dot. (f) Typically 
measured current across the device as a function of local gate voltage Vg at different silicon backgate voltage 
VBG. (g) Recombination emission signals of excitons and trions as a function of emission wavelength at 
different Vg values. (a–c) Reproduced with permission [85]. Copyright 2013 Springer Nature Publishing AG. 
(d–g) Reproduced with permission [86]. Copyright 2018 Springer Nature Publishing AG.
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of exciton optical transitions at K and K′ valley: this is the valley Zeeman effect, 
as shown in Figure 9(a, b) [89, 91–94]. Based on the Zeeman effect, magnetic 
manipulation is effectively used on valley pseudospin [91], valley splitting and 
polarization [92], and valley angular momentums [89]. For high-order excitonic 
quasiparticles, valley Zeeman effect also exhibit significant effects on trions [94] 
and biexcitons [90] under applied magnetic fields.

In addition, magnetic fields, which change the surrounding dielectric envi-
ronment, can also have an impact on the size and binding energy of excitons. By 
encapsulating the flakes with different materials on a monolayer WSe2, Stier et al. 
changed the average dielectric constant, k = (εt + εb)/2, ranging from 1.55 to 3.0 
(Figure 9(c)) [95]. The average energy of the field-split exciton transitions was 
measured in pulsed magnetic fields to 65 T, exhibiting an increasing trend with 
field which reveals the diamagnetic shift can infer both exciton binding energy 
and radius. They demonstrated increased environmental screening will enlarge 
exciton size but reduce exciton binding energy in 2D semiconductors, which shows 
a quantitatively agreement with theoretical models (Figure 9(d)).

3.3 Optical tuning

To control excitonic effects by breaking time-reversal symmetry in TMDs, impos-
ing an intense circularly polarized light can also achieve the aim based on optical Stark 
effect, a phenomenon that photon-dressed states (Floquet states) can hybridize with 
the equilibrium states resulting in energy repulsion between the two states [96, 97], 

Figure 9. 
Magnetic tuning of excitons. (a, b) valley Zeeman effect [89]. (a)valley Zeeman effect in a finite out-of-plane 
B, the degeneracy between the ±K valleys is attributed to three factors: The spin-Zeeman effect (ΔEs), the 
intercellular orbital magnetic moment (ΔEinter), and the intracellular contribution from the d ± id orbitals 
of the valence band (ΔEintra). The signs of these contributions are opposite in the two valleys. (b) Normalized 
polarization-resolved PL spectra of the neutral exciton peak as a function of the out-of-plane magnetic 
field (B), indicating a B-dependent splitting phenomenon via valley Zeeman effect. (c, d) electrical control 
by surrounding dielectric environment [90]: (c) the surrounding dielectric environments are changing by 
encapsulating hBN, polymer, or nothing on WSe2 monolayer on silica substrate, where the average dielectric 
constant is defined as k = (εt + εb)/2 (εt and εb are the relative dielectric constants of the bottom substrate 
and the top encapsulation overlayer, respectively). (d) Exciton root-mean-square (rms) radius rX and exciton 
binding energy as a function of k (points and lines are the results from experiments and screened Keldysh 
model, respectively), where me, mr, and r0 are the exciton mass, the reduced mass of the exciton, and the 
characteristic screening length, respectively. (a, b) reproduced with permission [89]. Copyright 2013 Springer 
Nature Publishing AG. (c, d) reproduced with permission [90]. Copyright 2016 American Physical Society.
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as shown in Figure 10(a, b). The interaction between Floquet and equilibrium states 
can not only bring in a wider energy level separation, but also enhance the magnitude 
of the energy repulsion if they are energetically close. Based on the optical Stark effect 
triggered off by circularly polarized light, two independent works demonstrated that 
the exciton level in K and K′ valleys can be selectively tuned by as much as 18 meV in 
WS2 monolayer and 10 meV in WSe2 monolayer, respectively.

Besides, optical control and manipulation have been shown effective towards 
valley polaritons, a half-light half-matter quasiparticles arising from hybridiza-
tion of an exciton mode and a cavity mode. Owing to the large exciton binding 
energy and oscillator strength in TMDs, spin–valley coupling can persist at room 
temperature when excitons are coherently coupled to cavity photons, leading to 
a stable exciton-polariton formation [98–101]. Exciton polaritons are interacting 
bosons with very light mass, and can be independently combined in the intracav-
ity and extracavity field. A schematic of the valley-polariton phenomena is shown 
in Figure 10(c), where the microcavity structure consists of silver mirrors with a 
silicon dioxide cavity layer embedded with the WS2 monolayer. The valley-polarized 
exciton–polaritons are optical pumped using two pumps to excite the exciton reser-
voir and the lower polariton branch, showing an angle-dependent helicity because 
of the excitonic component of the polariton states [98]. In addition, another work 
based on similar method demonstrates that exciton-polaritons possess a temper-
ature-dependent emission polarization, exhibiting stronger valley polarization at 
room temperature compared with bare excitons [99], as shown in Figure 10(d).

Figure 10. 
Optical tuning of excitons. (a, b) optical stark effect [96]. (a) Illustration of optical stark effect for two-level 
system. Ground state |a〉 and excited state |b〉 can hybridize with Floquet states |a + ћω〉 and |b + ћω〉, bringing 
in shifted energy levels. (b) the valley selectivity of the optical stark effect, showing an effect only at K valley by 
σ − polarization pump pulses. (c–e) valley polaritons via optical pumping [98, 99]. (c) Schematic of the valley 
polariton phenomena. The lower polariton branch (LBP) and the upper polariton branch (UPB) are the solid 
curves. The valley-polarization phenomena, caused by the broken inversion symmetry, is inserted in the top. 
(d) Polariton emission with angle-dependent helicity. Angle-resolved helicity was measured for three detuned 
cavities Δ at the σ+ excitation, where only the positive detuned cavities shows increasing helicity as a function 
of angle. (e) Exciton-polaritons with a temperature-dependent emission polarization. Emission polarization 
for bare exciton, and upper polariton (UP) and lower polariton (LP) branches change with temperature. 
(a, b) reproduced with permission [96]. Copyright 2014 Springer Nature Publishing AG. (c, d) reproduced 
with permission [98]. Copyright 2017 Springer Nature Publishing AG. (e) Reproduced with permission [99]. 
Copyright 2017 Springer Nature Publishing AG.
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3.4 Mechanical tuning

2D materials possess excellent mechanical flexibility, making them stable under 
high compressive, tensile, and bending strain [102]. Applying mechanical strain 
on 2D materials, their band gaps will reduce, increase, or transit from direct to 
indirect, thus resulting in a strain-dependent exciton binding energy [103–108]. 
Based on density functional theory, Su et al. investigated the natural physical 
properties of TMD monolayers and hBN- TMD heterostructures, finding that they 
have distinctive bandgap and exciton binding energy under compressive strain 
(Figure 11(a)) [103]. MS2 monolayers exhibit direct-to-indirect transition, while 
hBN-TMD heterostructures keep direct band-gap characters because of the strong 
charge transfer between hBN and TMD monolayers. With increasing compressive 
strain, the exciton binding energies of TMD monolayers gradually reduce, but the 
binding energies of hBN- TMD heterostructures experience a dramatically growth 
before decreasing (Figure 11(b)).

Another mechanical tuning method is by implying heterogeneous strain on 2D 
materials, which would result in a spatially varying bandgap with tunable exciton 
binding energy distribution, namely funnel effect [110–112]. In a TMDs monolayer, 
excitons will move towards high tensile strain region, resulting in a funnel-like band 
energy profile. In contrast, excitons in phosphorene are pushed away from high 
tensile strain region, exhibits inverse funnel effect of excitons, which is more-
over highly anisotropic with more excitons flowing along the armchair direction 
(Figure 11(c)) [109]. Funnel effect is a rare method for control exciton movement, 
paving a way for creating a continuously varying bandgap profile in an initially 
homogeneous, atomically thin 2D materials.

4. Optoelectronic devices

2D materials possess strong light-matter coupling and direct band gaps 
from visible to infrared spectral regimes with strong excitonic resonances and 
large optical oscillation strength. Recent observation of valley polarization, 

Figure 11. 
Mechanical tuning of excitons. (a, b) Exciton binding energies under compressive and tensile strain [103]. 
(a) Schematics of hBN-TMDs heterostructures nanodevices with tensile and compressive strain. (b) Exciton 
binding energies of TMD monolayer and hBN-TMD heterostructures as functions of strain. (c) Funnel effect 
of Excitons under indentation. When an indenter creates an inhomogeneous strain profile that modulates the 
gap, excitons (in green) in MoS2 concentrate on isotropically the center, while excitons in phosphorene disperse, 
especially along the armchair direction [109]. (a, b) reproduced with permission [103]. Copyright 2019 Springer 
Nature Publishing AG. (c) Reproduced with permission [109]. Copyright 2016 American Physical Society.
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exciton–polaritons, optically pumped lasing, exciton–polaritons, and single-
photon emission highlights the potential for 2D materials for applications in 
novel optoelectronic devices. Combined with external stimuli, like electrical and 
magnetic fields, optical pumps, and strain, exciton effects in 2D materials show a 
highly tunability and flexibility in electroluminescent devices, photovoltaic solar 
cells, and photodetectors.

4.1 Electroluminescent devices

Excitonic electroluminescence (EL) emission in 2D materials is key to fully 
exploiting the EL devices [54, 113]. Based on different carrier injection and 
transport mechanisms, light-emitting devices have distinctive structures, 
depending on their mechanism of exciton generation: bipolar carrier injection 
in p-n heterojunction [114, 115], quantum well heterostructures [116], unipolar 
injection [117], impact excitation [118], thermal excitation [119], and interlayer 
excitons [48] (Figure 12).

As exciton emission induced by bipolar carrier injection, p-n heterojunction 
is the simplest device to achieving EL. Depending on the contacting way the two 
monolayers connect, it can be vertical or lateral. Typical p-n junction is MS2/MSe2 
heterostructure, since their counterparts lack the caliber to function effectively 
[120, 121]. For instance, MoS2 and WS2, in which sulfur vacancies act as electron 
donors, are often naturally n-type; while WSe2 and MoSe2 are typically ambipolar 
but often unconsciously p-doped by adsorbed moisture [122, 123].

Quantum well (QW) heterostructures consist of semiconductor layer sand-
wiched between insulator layers and metal electrodes. EL in QW heterostructures 
can be observed by bipolar recombination of injected electrons and holes in the 
semiconductor layer when applied a bias in the metal electrodes. Since the long 
lifetime of carriers and enhanced exciton formation in the semiconductor layer 
(typical one is TMDs), the emission efficiency of multiple QW devices is much 
higher than that of single QW devices, and can be improved by preparing alternat-
ing layers of TMDs [116, 124].

Unipolar injection happens in a metal–insulator–semiconductor (MIS) or a 
semiconductor–insulator–semiconductor (SIS) heterostructures when a positive 
bias applied to the metal and semiconductor layers. The common insulator layer is 
hBN since its ability to transport holes but block electrons. If the bias is increased 

Figure 12. 
EL device structures and emission mechanisms [54]. (a) Vertical and lateral p-n junctions. (b) Quantum 
well heterojunction structure. (c) Metal–insulator–semiconductor (MIS) and semiconductor–insulator–
semiconductor (SIS) structure. (d) Lateral unipolar device where emission is induced by impact excitation.  
(e) Locally suspended thermal emission device. (f) Hetero-bilayer device exhibiting interlayer exciton 
emission. Reproduced with permission [54]. Copyright 2016 Springer Nature Publishing AG.
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above a threshold, EL will be observed at extremely low current densities below 
1 nA μm−2, attributed to the unipolar tunneling across the hBN layer, which 
transfers holes from one metal/semiconductor layer (e.g., graphene and TMDs) to 
another electron-rich semiconductor layer (e.g., TMDs) [125].

The remaining three emission mechanism is relatively simple. For impact 
excitation devices, excitons are generated by impact excitation of excitons in the 
high field regime rather than bipolar recombination. For thermal emission devices, 
a semiconductor monolayer or few layers are partly suspended on a substrate, and 
thermal excitation and emission are evoked by locally heating the high current 
density regime. For bilayer emission devices, emission occurs due to the recombina-
tion of electrons and holes residing in the adjacent layers.

4.2 Photovoltaic solar cells

2D materials possess large exciton binding energy with the bandgap ranging 
from visible to near-infrared part of the spectrum, making them attractive as candi-
dates for photovoltaic solar cells [126, 127]. Light absorption in the active layers 
of a photovoltaic cell significantly determines device efficiency. To improve light 
absorption of 2D semiconductor photovoltaics in the ultrathin limit, light trapping 
designs are need, such as use of plasmonic metal particles, shells, or resonators to 
amplify photocurrent and photoluminescence. For large area photovoltaic applica-
tions, a common strategy is thin film interference, in which a highly reflective metal 
(e.g., Au or Ag) is used as a part of an “open cavity” to enhance absorption due to 
multipass light interactions within the semiconductor (Figure 13(a)) [128]. If the 
semiconductor layer is a monolayer absorber, an atomically thin absorber with 
λ/4 in thickness can be sandwiched between conductor layer and reflector layer, 
enabling destructive interference at the interface and thus resulting in significant 
absorption enhancement (Figure 13(b)) [129]. Another strategy to enhance light 
trapping is by the use of nanostructured resonators, which are coupled to or etched 
in thin film absorbers (Figure 13(c, d)) [130, 131].

Compared with free-standing monolayer with merely 10% absorption [132], 
the above-mentioned strategy exhibits outstanding strength for TMDC devices. 
For example, TMD-reflector coupled photovoltaics can have high broadband 
absorption of 90% and quantum efficiency of 70% [133, 134]. Accompanied 
with reflector, resonator, or antennas, 2D semiconductor photovoltaics trapping 
nearly 100% of the incident light may be achieved for nanoscale thick active 
layers. However, improving light absorption in sub-nanoscale thick monolay-
ers faces more challenging, because not only the low absorption of monolayer 
(~10%) but also the limited technique to fabricate nanoscopic resonators or 
antennas [135].

Figure 13. 
Possible light trapping configurations for enhancing sunlight absorption for Photovoltaics [126]. (a) Salisbury 
screen-like configuration where a spacer with ∼λ/4 thickness sandwichs between a low loss metal reflector and 
a monolayer absorber. (b) Multilayer vdWH absorber directly placed on a smooth reflective metal reflector. (c) 
TMD monolayer coupled with resonators/antennas. (d) Multilayer vdWH absorber etched by nanometer scale 
antennas/resonators. Reproduced with permission [126]. Copyright 2017 American Chemical Society.
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4.3 Photodetectors

Photodetection is a process converting light signals to electric signals, consist-
ing of three physical mechanisms: light harvesting, exciton separation, and charge 
carrier transport to respective electrodes. According to the operation modes, 
photodetectors can be divided into two categories: photoconduction (i.e., photo-
conductor) and photocurrent (i.e., photodiode) [136, 137]. The former one refers 
to the overall conductivity change out of photoexcited carriers, and the latter one 
involves a junction which converts photoexcited carriers into current. Generally, 
photoconduction-based devices possess higher quantum efficiency than photo-
current-based devices, since transporting carriers can circulate many times before 
recombination in photoconductors. However, the response in photocurrent-based 
devices is faster than that in photoconduction-based devices, because of the short 
carrier lifetime that transporting carriers (electrons and holes) are both involved 
in the photocurrent generation and recombine with their counterpart after reach-
ing to their own electrodes.

Two common 2D materials used for photodetectors are graphene [138–140] and 
TMDs (Figure 14) [55, 143, 144]. Based on photothermal with weak photovoltaic 
effect, graphene photodetectors usually show higher dark currents and smaller 
responsivity, but much wider operational bandwidths. In contrast, TMDs photode-
tectors operating on photovoltaic effect, exhibiting lower dark currents and higher 
responsivity.

For graphene-based photoconductors, typical devices are hybrid, adding a light 
absorption material, such as quantum dots [145], perovskites [146], silicon [147], 
carbon nanotubes [148], and TMDs [141], as active layer to improve the responsiv-
ity. For graphene-based photodiodes, this earliest reported one is metal–graphene–
metal photodiodes, in which photocurrent was generated by local illumination of 
the metal/graphene interfaces of a back-gated graphene field-effect transistor. The 

Figure 14. 
Typical 2D photodetectors. (a) Schematic of a hybrid graphene photoconductor [141]. (b) Schematic 
of a single-bilayer graphene interface junction, in which photocurrent generation is dominant by 
photothermoelectric effect [142]. (c) Schematic of monolayer MoS2 lateral photoconductor [143]. (d) 
Schematic of vertical p–n photodiode formed by monolayer MoS2 and WSe2, in which a photocurrent hot 
spot is produced at the heterojunction [120]. (a) Reproduced with permission [141]. Copyright 2017 Springer 
Nature Publishing AG. (b) Reproduced with permission [142]. Copyright 2009 American Chemical Society. 
(c) Reproduced with permission [143]. Copyright 2013 Springer Nature Publishing AG. (d) Reproduced with 
permission [120]. Copyright 2014 Springer Nature Publishing AG.
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resulting current can be attributed to either photovoltaic effect [149] or photo-ther-
moelectric effect [142]. To additionally improve the performance, common struc-
tures are graphene–semiconductor heterojunction photodiodes, in which planar 
junctions of graphene and group-IV elements or other compound semiconductors 
act as Schottky diodes [150, 151].

For TMD photodetectors, devices can have in-plane or out-of-plane structures, 
based on the semiconductor layers stacking laterally or vertically. In-plane devices 
take advantage of better control of the material’s properties via electrostatic gating 
[143]. But out-of-plane devices can bear a much higher bias field (up to ~1 V nm−1), 
enabling a reduced excitonic binding energy in multilayer structures for more 
efficient exciton dissociations [152]. TMDs-based photoconductors are usually 
enhanced by illuminating the semiconductor–metal contacts [40] and in short-
channel devices [153], and their conductance can be changed by doping and trap-
ping of photogenerated carriers by impurity states [154, 155]. On the other hand, 
TMDs-based photodiodes exhibit higher tunability based on the photocurrent 
mode, consisting of an in-plane or out-of-plane junction where a built-in electric 
field is created [120, 156, 157]. In this situation, electrostatic gates can further tune 
the device doping levels, owing to the very small interlayer separation (<1 nm) 
which produces extremely high built-in electric fields (~1 V nm−1).

5. Summary and perspective

In summary, 2D materials exhibit excitonic effects due to spatial confinement 
and reduced screening at the 2D limit, resulting in fascinating many-particle 
phenomena, such as excitons, trions, biexcitons, and interlayer excitons. Enhanced 
binding energies owing to the strong Coulomb interaction make these quasipar-
ticles easy to characterize and control. In addition, the sensitivity of these quasi-
particles to a variety of external stimuli allows the possibility of modulating the 
inherent optical, electrical, and optoelectronic properties of 2D materials, making 
them potential candidates for novel optoelectronic applications.

In addition to well-studied 2D materials, such as graphene, phosphorene, and 
TMDs, the family of 2D crystals is continuously growing, making excitonic effects 
versatile in different 2D systems. In particular, assembling vdWHs, which now can 
be mechanically assembled or grown by ample methods, can open up a new route 
for exploring unique exciton physics and applications. For example, an in-plane 
moiré superlattice, formed by vertically stacking two monolayer semiconductors 
mismatching or rotationally misaligning, can modulate the electronic band struc-
ture and thus lead to electronic phenomena, such as fractal quantum Hall effect, 
unconventional superconductivity, and tunable Mott insulators.
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