
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2014

Bruno Miguel

Cunha Faria

Plataforma de Gestão M2M

M2M Management Platform

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2014

Bruno Miguel

Cunha Faria

Plataforma de Gestão M2M

M2M Management Platform

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-

quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-

putadores e Telemática, realizada sob a orientação científica do Doutor João

Paulo Silva Barraca, Professor assistente convidado do Departamento de Ele-

trónica, Telecomunicações e Informática da Universidade de Aveiro, e do Dou-

tor Diogo Nuno Pereira Gomes, Professor auxiliar do Departamento de Ele-

trónica, Telecomunicações e Informática da Universidade de Aveiro.

Aos meus pais, porque sem eles nada seria possível...

o júri / the jury

presidente / president Prof. Doutora Susana Isabel Barreto de Miranda Sargento

professora associada da Universidade do Aveiro

vogais / examiners committee Mestre Ricardo Azevedo Guerra Raposo Pereira

especialista na Pt Inovação e Sistemas

Prof. Doutor Diogo Nuno Pereira Gomes

professor auxiliar da Universidade do Aveiro (Co-Orientador)

agradecimentos /

acknowledgements

Gostaria de começar por agradecer aos meus orientadores, Prof. Diogo Go-

mes e Prof. João Paulo Barraca, pelo acompanhamento prestado ao longo

deste trabalho, e por me terem dado a possibilidade de crescer a nível pro-

fissional. Agradeço também ao grupo ATNoG e a todos os seus elementos e

amigos pelo bom ambiente que proporcionaram neste ano de trabalho. Que-

ria também agradecer ao meu Pai, à minha Mãe e Irmão, pelo apoio incondi-

cional. E por fim, obrigado Helena, por todos estes anos ao meu lado e por

me ajudares a terminar esta jornada. A todos, mais uma vez, obrigado.

Palavras Chave Máquina-a-Máquina, Internet das Coisas, Plataformas intermédias de integra-

ção, Aquitectura Orientada ao Serviço.

Resumo A Internet das Coisas continua a ser uma área em grande crescimento e

de grande interesse. Estão constantemente a surgir novas soluções e in-

plementações, tanto ao nível dos serviços como ao nível das comunicações

Máquina-a-Máquina, promovendo assim o aparecimento de novos modelos

de negócio. Desta forma surgiu naturalmente a possibilidade de abstrair a

gestão de sensores da criação de serviços. Permitindo assim, uma delaga-

ção da gestão por parte de empresas detentoras de sensores, para se foca-

rem no conteúdo com a criação de serviços. Contudo esta divisão acarreta

algumas preocupações de segurança quanto ao controlo de acesso. Nesse

sentido, esta dissertação propõe uma possível solução para o mesmo, en-

globada numa plataforma orientada ao serviços interligada com uma solução

ETSI M2M. Promovendo a interoperabilidade entre sensores e permitindo as-

sim uma grande elasticidade na criação de serviços.

Keywords Machine-to-Machine, Internet of Things, Middleware integration platforms ,

Service-oriented architecture.

Abstract The Internet of Things is still a fast growing area and topic of interest. New so-

lutions and implementations keep emerging, both in service oriented solutions

or device oriented solutions with M2M communications, therefore promoting

the creation of new business models. Thus, as a natural evolution, came the

possibility to abstract sensor management from service creation. Allowing

a delegation of sensor management from the sensor providers, to focus on

content creation through services. However, this delegation brings new con-

cerns regarding access control. Consequently, this dissertation proposes a

possible solution to this problem, enclosed in a service oriented platform in-

terconnected with an ETSI M2M solution. Promoting interoperability between

sensors and allowing a great elasticity in service creation.

Contents

Contents . i

List of Figures . iii

List of Tables . v

Acronyms . vii

1 Introduction . 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Dissertation Structure . 2

2 State of the Art . 3
2.1 Machine to Machine . 3
2.2 Wireless Sensor Networks . 4
2.3 Internet of Things . 4
2.4 From M2M to IoT . 5
2.5 European Telecommunications Standard Institute 7

2.5.1 M2M Standard . 8
2.5.2 High-level Architecture . 8
2.5.3 Available implementations 10

2.6 IoT Platforms (Related Work) . 12
2.6.1 Carriots . 12
2.6.2 OpenMTC Platform . 13
2.6.3 Xively . 15

2.7 Identity and Access Management . 16
2.7.1 OpenID Connect . 16
2.7.2 SAML 2.0 . 20
2.7.3 WS-Security . 24
2.7.4 WS-Trust . 25
2.7.5 XACML . 25
2.7.6 Software . 26

i

2.8 Service-oriented Architecture . 29
2.8.1 Service Disambiguation . 30
2.8.2 Enterprise Service Bus . 31
2.8.3 Service Component Architecture 32
2.8.4 SCA Implementations . 34

3 Architecture . 39
3.1 First Layer (Entities) . 39
3.2 Second Layer (Services) . 42

3.2.1 Authentication and Authorization Services 43
3.2.2 Exposed Service and Implementation 43
3.2.3 NaNSCLService . 44
3.2.4 DataBus Service . 44
3.2.5 Overview . 45

3.3 Third Layer (Service Structure) . 46
3.3.1 Service encapsulation . 47

4 Implementing an IoT Platform 49
4.1 Defined objectives . 49

4.1.1 Overview . 49
4.2 Access Control . 51

4.2.1 The Chain of Trust (Authentication) 52
4.2.2 Authorization . 54

4.3 Service Mediation . 56
4.3.1 Message Interceptor . 56
4.3.2 Service Composite . 57

4.4 ETSI Integration . 59
4.4.1 Connections . 60

4.5 DataBus . 61
4.5.1 Overview . 61
4.5.2 Cache System . 62
4.5.3 Use Cases . 62

5 Evaluation and Results . 67
5.1 Deployment Scenario . 67
5.2 Test Case . 68
5.3 Results . 69

6 Conclusion . 73
6.1 Future Work . 73

Glossary . 75

References . 77

ii

List of Figures

2.1 Distribution of articles by major category [7] 5
2.2 Example of a vertical solution . 6
2.3 Example of an horizontal solution . 7
2.4 High level architecture for M2M [12] . 9
2.5 Cocoon OSGi environment [13] . 11
2.6 OM2M Architecture [14] . 12
2.7 Carriots Hierarchy [15] . 13
2.8 OpenMTC Platform Architecture [16] . 14
2.9 Xively Cloud ServicesT M [17] . 15
2.10 OpenID Connect Protocol Suite[20] . 17
2.11 Authorization Code Flow[21] . 18
2.12 Implicit Flow[21] . 19
2.13 Basic Security Assertion Markup Language (SAML) Concepts[22] 21
2.14 SP-Initiated SSO with Redirect and POST Bindings[22] 23
2.15 SSO Using ECP with the PAOS Binding[22] 24
2.16 XACML Data-flow diagram[30] . 26
2.17 WSO2 Identity Server 5.0.0 Architecture[31] 27
2.18 Mediating service interaction [33] . 31
2.19 Service Component Architecture (SCA) example [35] 32
2.20 SCA composite example [36] . 33
2.21 SCA component [36] . 33
2.22 SwitchYard Tooling . 35

3.1 First Layer Architecture Block Diagram 40
3.2 Diagram showing the trust connections between entities 41
3.3 Diagram the chain of trust between entities using signatures 42
3.4 Second Layer Architecture Block Diagram (Generic Services) 43
3.5 DataBus design . 45
3.6 Third Layer Architecture Block Diagram 47

4.1 Entity Block Diagram . 50
4.2 Service Template . 52
4.3 Authentication Entity Block Diagram . 52
4.4 Authentication Sequence Diagram . 53

iii

4.5 Double Signed Assertion . 54
4.6 Authorization Entity Block Diagram . 55
4.7 Authorization Sequence Diagram . 56
4.8 Message Interceptor (Message Composer) 57
4.9 Service Composite . 58
4.10 Enforcement Activity Diagram . 59
4.11 DataBus Overview . 62
4.12 Synchronous Service DataBus interaction 63
4.13 Synchronous content instances request . 64
4.14 Asynchronous updates from new content instances 65

5.1 Deployment Scenario . 68
5.2 Test Case Scenario . 69
5.3 Average request times per scenario . 71

iv

List of Tables

5.1 Machines specification . 68
5.2 Test results . 70
5.3 Performance cost per component . 70

v

Acronyms

ACL Access Control List

BPMN Business Process Model and
Notation

BPMS Business Process Management
Systems

CDI Contexts and Dependency
Injection

CoAP Constrained Application Protocol

DA Device Application

DARPA Defense Advanced Research
Projects Agency

DSCL Device Service Capability Layers

DSN Distributed Sensor Networks

EAI Enterprise Application
Integration

EIP Enterprise Integration Patterns

EIS Enterprise Information Systems

ESB Enterprise Service Bus

ETSI European Telecommunications
Standard Institute

GA Gateways Application

GSCL Gateway Service Capability
Layers

IAM Identity and Access Management

IdM Identity management

IdP Identity Provider

IoT Internet of Things

IP Internet Protocol

JAX-RS Java API for RESTful Web
Services

JCA Java EE Connector Architecture

JMS Java Message Service

JPA Java Persistence API

JSF JavaServer Faces

JSP JavaServer Pages

LDAP Lightweight Directory Access
Protocol

M2M Machine to Machine

MOM Message-Oriented Middleware

NA Network Application

NSCL Network Service Capability
Layers

OASIS Advancing open standards for the
information society

PaaS Platform as a Service

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

QoS Quality of Service

vii

RBAC Role-based Access Control

ROI Return On Investment

SAML Security Assertion Markup
Language

SCA Service Component Architecture

SCDL Service Component Definition
Language

SCL Service Capability Layers

SDO Standards Developing
Organization

SOA Service-oriented Architecture

SP Service Provider

SQL Structured Query Language

SSO Single Sign-on

STS Security Token Service

TC Technical Committees

WS-BPEL Web Services Business Process
Execution Language

WSN Wireless Sensor Network

XACML eXtensible Access Control
Markup Language

viii

chapter 1
Introduction

The evolution and growth of communications, has propelled a large number of small devices

to be increasingly more connected. Devices like smartphones, tablets, televisions and even

fridges, can now be connected to the Internet and therefore exchanging information with the

rest of the world. This evolution is reaching small scale devices like sensors and actuators,

making them connected devices, turning them into smart things.

This so called smart things or smart objects, have been helping the growth of the Internet

of Things (IoT) concept, providing a digital sense of the physical world. They can be termed

as real-world services, for their capability to provide near real-time state of the physical world.

However, despite the quantity and quality of the information produced by those "things",

without the proper context, this information has no meaning.

To tackle the problem of interconnecting (Machine to Machine (M2M) communications)

and interpret the data coming from this so called smart things, platforms that allow interop-

erability and cataloging of information started to emerge. Moreover, enabling applications

and services to use and operate over the information generated by those devices.

1.1 motivation

The ever increasing number of connected devices, brings endless new possibilities to old

problems, ranging from industry optimizations to humanitarian issues like health and quality

of life. Although, for this to happen, interpretation of this information is needed as well as

compilation of multiple information to obtain further results.

To promote even more new connected devices and to bridge the gap between raw data

and enriched data, a new concept of solution has been emerging, the IoT Platform, where

the device management is binded with an application platform, potentiating the creation and

1

deployment of enriched applications and services. Therefore, as consequence, promote fine

grained access control, in order to secure these highly scalable platforms.

1.2 objectives

The focus of this dissertation is centered in the development of a Service Platform

integrated with a M2M middleware to enable the aforementioned bridge between devices and

services. Furthermore, this dissertation also aims to provide a solution for access control as

well as service mediation and data integration.

Additionally, this document provides an objective analyses on some of the most relevant

solutions in this area.

1.3 dissertation structure

This dissertation is composed by 6 chapters, being the first chapter the already presented

introduction, the remaining chapters goes as follows:

• Chapter 2: presents a description about the state of the art, the evolution of M2M and

the current state of IoT, existing technologies in the Identity and Access Management

(IAM) area as well as the current trends Service-oriented Architecture (SOA);

• Chapter 3: provides a complete overview about the implemented architecture, de-

scribing in detail each component and how everything fits together;

• Chapter 4: gives a detailed explanation about the implementation, the technologies

used and the workflows it supports;

• Chapter 5: describes a test scenario, the stress tests performed, the results obtained

and an analyses about those same results;

• Chapter 6: supplies the final conclusions about the developed work.

2

chapter 2
State of the Art

2.1 machine to machine

M2M refers to technologies that allow communication between devices of the same type,

via wired or wireless communication networks, all without human intervention. It is not a new

concept, since it is already common to have communications between machines like routers

and servers, or telemetry systems. Although today, the concept for M2M goes a little further,

not only machines can talk with each other, they are also able to give meaning to information

they receive. This opened a new world of opportunities, in which the machines will help us

humans, to better understand the world we live in.

The evolution of the M2M term, comes as a result of the technological progress over the

last decades, including the decreasing costs of semiconductor components, the uptake of the

Internet Protocol (IP) and the dissemination of the Internet to all types of devices[1].

The decreasing costs of semiconductor components as well as the miniaturization of

electronic circuits, led to a proliferation of small scale electronic devices. Sensors and

actuators, that were before big and some how expensive, can now be tiny to the level of

milli or even nano scale[2] as well as low on cost. This enabled the deployment of thousands

of sensors and actuators in multiple scenarios, creating an opportunity to start sensing the

physical world, as never before.

Moreover, the increasing adoption of IP as well as new transport protocols like Constrained

Application Protocol (CoAP) oriented for less capable devices, as thrived the creation of

larger sensor networks in wired and wireless environments. These networks, allow a better

understanding of the surroundings, and enables the integration of these devices with household

appliances, such as fridges and coffee machines, making them smarter and capable of making

decisions, or even notify the house owner, e.g., on lack of food supplies. Environmental, health

and industry are also great candidates for these types of networks.

In the last decades, the advances in cellular networks, created a new paradigm of always

connected devices, being these devices smartphones, tablets and smartwatches, these are the

3

so called smart devices. The evolution in M2M, are turning ever more, simple devices like

sensors and actuators into smart devices, and therefore connecting them to the Internet. As

such, by connecting these "things" to the Internet, thrives the so called IoT.

2.2 wireless sensor networks

A Wireless Sensor Network (WSN) is a network consisting of numerous sensor nodes,

scattered in an unattended environment (i.e. sensing field), capable of sensing the physical

world and communicate that data wirelessly to an infrastructured network[3]. A sensor node

can also aggregate actuators to be able to interact with the physical world.

The term WSN is not new, its origin can be traced back to the Distributed Sensor

Networks (DSN) program at the Defense Advanced Research Projects Agency (DARPA) at

around 1980. DSNs were composed by many spatially distributed nodes, being each node

a low-cost sensing node operated autonomously but in collaboration with other nodes[4].

At that time, it was a very ambitious program given the state of the art, as it was before

personal computers and workstations, the processing was done mostly on minicomputers and

the Ethernet was just becoming popular[4].

When environment variables can be monitored - temperature, humidity, pressure, etc

- a use case for WSN can be applied, such as animal tracking, forest surveillance, flood

detection and weather forecasting[5]. As an example, to better understand climatic change,

involving sea-level alteration as a consequence to global warming, researchers from University

of Southampton, have built a glacial environment monitoring system[6], using sensors within

the ice and the sub-glacial sediment, creating a WSN and avoiding the use of wires to reduce

any possible disturbance to the environment.

2.3 internet of things

The Internet of Things concept, despite not having an universal definition[7], in its core,

it represents the everyday objects with capacities to sense, process and transmit information

between other devices and through the Internet, all without human mediation. The closeness

of this definition with the one from M2M (section 2.1), depicts the why of the inner relationship

between the terms and the confusion it sometimes generates. As it is the M2M technology

that makes IoT possible, and it is the interest around the IoT that pushes the M2M evolution

and adoption even further.

Recent studies by GSMA, states that M2M accounts for one in ten mobile connections in

the US and one in 20 in Oceania and Europe [8]. Furthermore, a 2013 study from Machina

Research, estimates that the global M2M revenue in 2022 will reach USD1.2 trillion, up

4

from USD200 billion in 2013[9]. This represents a huge business opportunity and reflects the

investment and expansion in M2M, as well as the projections for its exponential growth[9]. As

an example of the increasing interest in this area, in Sweden, one in four mobile connections

are from M2M devices[10], this is a result of legislation, as it was ruled that each household

should be able to accurate monitor monthly electricity using smart meters.

As another consequence to the interest around IoT, is the extensive research thats

being done on IoT and M2M. A recent study tried to understand the trends and paths

by categorizing research topics on IoT [7]. Figure 2.1 depicts a pie chart with the referred

categorization. As stated in the pie chart, technology appears as the top researched area, and

despite being a wide topic, the focus is mainly on system architecture and interoperability.

This indicates the importance of interoperability and the work being done to tackle that

problem.

42%

25%

17%

3%

2% 11%

Technology

Applications

Challenges

Business Models

Future Directions

Overview / Survey

Figure 2.1: Distribution of articles by major category [7]

2.4 from m2m to iot

With the increasing interest around IoT and M2M, comes the necessity for greater sensor

networks, capable of providing data in a smartly manner to enable content creation and

applications development.

As a first approach and with the already existing WSN (section 2.2), was relatively

easy and direct to create a system capable of generating data (sensors) and use that data

(applications or services). Having the WSN as base, can provide network functionalities to

applications, creating an highly coupled system where applications communicate directly

with the sensors in the WSN. This system model is referred to as vertical (represented in

5

Figure 2.2), its initial simplicity lead many to its adoption. However, this model is not capable

of integrating with other solutions and it is not easily scalable, since the lack of abstraction,

the applications are binded to the sensors and network specifications.

Figure 2.2: Example of a vertical solution

As an evolution to the limited vertical solutions, a new model of solution started to arise

- the horizontal model. This solution, creates a layer of abstraction between applications

and sensor networks, therefore decoupling the applications from the network specifications

(Figure 2.3). This originates a more flexible system, capable of scaling, easing management

and improved maintainability.

The horizontal approach is a great improvement from the previous vertical solutions and

today it is the best choice for creating IoT Platforms. However, the lack of specifications or

standard, to define the platform structure and interfaces, as well as to recommend the use of

open protocols, can jeopardize interoperability between solutions, devices and applications.

The following section will present the efforts being done to standardize M2M and therefore

IoT.

6

Figure 2.3: Example of an horizontal solution

2.5 european telecommunications stan-

dard institute

ETSI is a not-for-profit organization, funded in 1998 and recognized by the European

Union as a European Standards Organization. It produces globally-applicable standards for

Information and Communications Technologies.

The organization handles standardization in different areas of expertise by creating

different Technical Committeess (TCs). Each of those committees is responsible for conducting

work in that specific area.

In 2008 after detecting the interest M2M was acquiring and it’s possible exponential

growth, the TC for M2M was created, assuming then the importance of M2M and making it

a topic of interest. ETSI was the first Standards Developing Organization (SDO) to address

M2M, and other organizations only started tackling M2M standardization in subsequent years.

The creation of standards aims to improve interoperability, but multiple standards can

have the opposite effect. To avoid this problem, a global initiative by the name of oneM2M

7

was created and signed on July 2012 by seven major SDOs (ETSI included). This initiative

has the objective to join forces in creating a single unified standard. To finalize, oneM2M

delineated an extensive list of goals and benefits from a cooperated M2M standard [11], for

brevity, the following list represents a summarized list of those topics:

• Develop and consolidate a common M2M Service Layer by creating Technical Specifi-

cations and Technical Reports.

• Collaborate with wireless and wireline SDOs and fora responsible for developing

standards for core and access networks.

• Boost economics of scale in the context of M2M.

• Simplify application development.

• Reduce market fragmentation, enhance interoperability as well as security.

2.5.1 m2m standard

The M2M Standard has the objective of creating a common ground for scalable and

interoperable M2M systems, providing a normalized high-level architecture as well as interfaces

and protocols that prove to be adequate for these types of systems. According to ETSI, the

substitution of proprietary vertical architectures by standardized horizontal architectures is

necessary to achieve interoperability. Moreover, giving M2M applications a common infras-

tructure, environments and network elements. Improving maintenance of devices connections,

M2M applications as well as scalability. In terms of security, do to its importance, an approach

from the beginning was necessary in order to prevent future incongruities of the standard,

that would culminate in incompatibilities. ETSI M2M standard defines two types of security,

one to handle Service Bootstrap and Connection procedures, while the other is responsible

to ensure authorized access to data using a permission system. Using both mechanisms,

secure communications between authenticated endpoints and authorized applications can be

attained.

2.5.2 high-level architecture

The M2M standard divides the high-level architecture in two main domains - the network

domain and the M2M devices/gateway domain. For ETSI a layer that provides M2M

functionalities is a Service Capability Layers (SCL), therefore the entity responsible for the

network domain is the Network Service Capability Layers (NSCL) and for the other domain we

have Device Service Capability Layers (DSCL) and Gateway Service Capability Layers (GSCL)

8

Figure 2.4: High level architecture for M2M [12]

accordingly. The two main domains as well as their division are stated in Figure 2.4. The

lower domain is where the real world interactions takes place (sensing and/or actuation) while

the other domain represents everything network related. For a better understanding, the next

paragraphs will give a brief description of each entity represented in the Figure 2.4.

M2M Device. There two types of devices. One that doesn’t have a local SCL, but can

communicate with one, using them as a proxy to connect with the NSCL. The other type is a

device powerful enough to have a local SCL (DSCL),therefore being able to connect directly

with the NSCL in the network domain. It does not need to be intermediated by a gateway,

plus it can intermediate the connection between the network domain and other less capable

devices that cannot connect directly. Finally, both types are capable to run DAs (Device

9

Applications), that can exploit services and provided functionalities through the interaction

with the DSCL.

Legacy Device. This is a device without a local SCL and noncomplying with the standard.

Consequently it needs a gateway or device with a SCL to intermediate its connections.

M2M Gateway. This entity acts as a gateway/proxy to connect less capable devices to

the NSCL. It has a GSCL as capability layer and can also run M2M applications (Gateways

Applications (GAs)). Comparing to M2M devices with local SCL, the only difference, is that

the gateway is suppose to be more resource capable to able to run more demanding services

and to support more connected devices.

Access and Core Network. These represent the physical networks that connect the

domains.

M2M Service Capabilities (NSCL). This entity provides an abstraction over the

Core and Access Networks, attaining a service layer between the Device and Gateway Domain

and the M2M Applications. It has the NSCL as capability layer, that acts as a platform to

connect M2M applications (Network Applications (NAs)).

M2M Applications (NA). These are the applications that connect through the NSCL

interface to interact with the lower domain.

2.5.3 available implementations

Acknowledging the advantages of the ETSI M2M standard, many companies started

developing their own compliant solutions. This section will describe some of the most relevant

solutions available.

2.5.3.1 cocoon

Cocoon it’s an open source project, ETSI M2M compliant gateway and developed by

Actility since 2011. As objective, they pretend to "turn the Internet of Things dream into

a reality"1, they want to provide means to interconnect M2M application developers and

hardware manufacturers building ETSI M2M compliant gateways, and therefore push the IoT

dissemination.

Cocoon takes advantage of the RESTful APIs of ETSI M2M to provide an abstract layer

between the applications and the underlying hardware. It also leverages the OSGi embedded

1http://cocoon.actility.com/documentation/ongv2/FAQ

10

Java environment, making application components hardware independent as well as providing

multiple services such as: data containers, data logging, subscriptions and notifications. An

overview of the implementation can be seen in Figure 2.5.

Actility as also developed and deployed other IoT related solutions, in later 2003 they

launched an app store, the ThingPark Store2 in order to facilitate the dissemination of Internet

of Things applications.

Figure 2.5: Cocoon OSGi environment [13]

2.5.3.2 om2m

OM2M it’s an open source implementation of the ETSI M2M standard initiated by the

Laboratoire d’analyse et d’architecture des systèmes3. It facilitates service deployment by

providing a development framework that provides abstraction over the underlying network.

The project also aims, to be the basis for the future implementation of the oneM2M standard.

OM2M was implemented in Java and proposes a modular architecture that runs on top

of an OSGi layer, which per se, brings a bundle of service but also makes it highly extensible

via a plugin system. The Figure 2.6 represents an overview of the project architecture.

2http://store.thingpark.com/
3https://www.laas.fr/public/fr

11

Figure 2.6: OM2M Architecture [14]

2.6 iot platforms (related work)

The evolution of M2M middleware solutions, brought the need for wider software platforms,

that could handle M2M communication as well as service/application deployment, integrating

all in the context of the IoT. Therefore, new business models started to arise, pushing

companies to create new solutions for IoT scenarios, reaching both device vendors and

application developers.

At this moment, there are dozens of IoT Plaforms, both open source and commercial.

This section will give a brief overview on some of those solutions.

2.6.1 carriots

Carriots is a commercial Platform as a Service (PaaS) App Engine aimed at Makers and

Developers of IoT and M2M products and projects.

For application development, the platform offers the Carriots App Engine. It supports

Groovy as programming language and eases application development by providing a simple

development environment and worry-free hosting. It also provides Rule Management and

SDK for controlling business logic.

12

Figure 2.7: Carriots Hierarchy [15]

As for devices, Carriots offers a device management module for: status check, configuration

change and firmware upgrades. It also provides Data Collection and Data Storage services for

data related operations.

Project Management is also possible, the project concept can cluster multiple hierarchical

components as shown in Figure 2.7, in which access management between customers and

devices can be controlled.

2.6.2 openmtc platform

Open Machine Type Communication (OpenMTC) is a cooperative development of Fraun-

hofer FOKUS and Technische Universität Berlin (TUB). It is a platform based in the latest

standards and provides a realistic cross-domain horizontal M2M platform implementation

[16].

The OpenMTC implemented an ETSI M2M compliant M2M middleware. It is compose

by two SCLs, a GSCL and a NSCL. The GSCL supports multiple M2M technologies and

communication protocols while the NSCL stands as a cloud-based M2M platform for data

aggregation and storage.

Interaction with telecommunication infrastructures is also possible by supporting IP

Multimedia Subsystem (IMS) and Evolved Packet Core (EPC). Enabling the usage of IMS

13

Figure 2.8: OpenMTC Platform Architecture [16]

for M2M applications by translating the information exchanged from sensors and devices to

Session Initiation Protocol (SIP). Thus, potentiating M2M applications to rely on the security,

reliability of existing deployments of IMS as well as Quality of Service (QoS) capabilities

brought by the EPC.

To ease and improve the development of M2M applications, the OpenMTC provides an

SDK, making available core assets and service capabilities to third party developers.

The Figure 2.8 shows an overall representation of the OpenMTC Platform architecture,

giving a better understanding on how everything fits together.

14

2.6.3 xively

Formely known as Cosm and Pachube, Xively4 is a division of LogMeIn Inc, and it is a

Platform as a Service (PaaS) for the IoT.

Xively, defines itself as a "Public Cloud specifically built for the Internet of Things"[17].

It enables the deployment of devices, applications and services, as illustrated in Figure 2.9.

A list of libraries for multiple languages and platforms are provided by the Xively solution

to properly and easily deploy/connect a device to the platform, so it could send data, as well

as to benefit from in-house and user services. Once integrated, services for device management

and provisioning can be access from within the Xively platform, or through user applications

using the provided SDKs and platform APIs.

The Xively platform, also offers a high performance, flexible data service, with time-series

database to store and retrieve data, as well as a triggering system, enabling advanced actions

to execute across any connected device, application or service. This data, generated by user

devices and applications, can be used privately, as well as be shared through external services

like Twitter, Facebook or user specified services.

Figure 2.9: Xively Cloud ServicesT M [17]

4https://xively.com/

15

2.7 identity and access management

The growth of organizations and their increasing and complex systems, bring old and

new concerns regarding the management of employee identities and its access control. IAM

stands as a collection of processes and technologies to manage those digital identities and the

resource access provided through them. It can be defined in two core components - identity

management and access management [18].

The identity management refers to the management of digital identities and profiles. It

establishes unique identities and authentication credentials, enabling workflows to correctly

identify identities within a system.

The access management or entitlements management, designate the processes and tech-

nology to control access to information for a specific identity. The access rights and privileges

for an authenticated identity, are specified as a set of attributes (entitlements).

This section will explain concepts and describe important technologies existing today in

the context of Identity management (IdM).

2.7.1 openid connect

OpenID Connect5 is an identity layer built on top of the OAuth 2.0 protocol, it is an

evolution from OpenID 2.0 with a friendlier API and usable by natives and mobile applications.

It provides Single Sign-on (SSO) capabilities as well as basic profile information exchange, all

in an interoperable and REST-like manner.

It was on February 26, 2014, that OpenID Connect achieved the final specification (v1.0),

the Figure 2.10 represents an high level view of the its components. These components, are

specifications of functionalities, they explain in detail how to accomplish that functionality.

OpenID Connect offers capabilities like Dynamic Client Registration and Discovery, the latter

can dynamically discover information about OpenID Providers, therefore solving the "nascar

problem"[19].

The core component of OpenId Connect[21], specifies how authentication was built on

top of OAuth 2.0 and how to use claims to exchange end-user information. It specifies three

different authentication flows, these flows describe workflows between multiple entities, in order

to retrieve secure tokens. These tokens, can identify clients and attest them as trustworthy

to access secure end-user information. The next subsections will describe and explain each

authentication flow.

5http://openid.net/connect/

16

Figure 2.10: OpenID Connect Protocol Suite[20]

2.7.1.1 authorization code flow

This represents the complete authentication flow, using all endpoints, and therefore

allowing a more secure workflow. It presents a separation of concerns, as the user authentication

and consent is done between Authorization Server and End User, the tokens are generated

only in the Token Endpoint and the user information is managed and retrieved at the UserInfo

Endpoint. Figure 2.11 represents a diagram with this authentication flow and each step is

explained in the following enumerated list:

1. Relying Party (the Client), prepares an Authorization Request containing the desired

request parameters;

2. Relying Party sends the request to the Authorization Server;

3. The Authorization Server authenticates the End User;

4. Authorization Server obtains the End User consent;

5. Authorization redirects the End User back to the Relying Party with an Authorization

Code;

6. The Relying Party requests the Token Endpoint using the Authorization Code;

7. The Relaying Party receives the an ID Token and Access Token;

17

Figure 2.11: Authorization Code Flow[21]

8. The Relaying party validates the ID Token and requests End User information at the

UserInfo Endpoint.

18

2.7.1.2 implicit flow

The Implicit Flow doesn’t require the Token Endpoint, since all tokens are returned from

the Authorization Endpoint. This authentication flow is simpler than the Authorization Code

Flow, but can expose access information to the End User browser user agent or malicious

browser extensions. Figure 2.12 represents a diagram with this authentication flow and each

step is explained in the following enumerated list:

Figure 2.12: Implicit Flow[21]

1. Relying Party (the Client), prepares an Authorization Request containing the desired

request parameters;

2. Relying Party sends the request to the Authorization Server;

3. The Authorization Server authenticates the End User;

4. Authorization Server obtains the End User consent;

5. Authorization redirects the End User back to the Relying Party with an ID Token

and Access Token (if requested);

19

6. The Relaying party validates the ID Token and requests End User information at the

UserInfo Endpoint.

2.7.1.3 hybrid flow

OpenID Connect support a third authentication flow, the Hybrid Flow, this authentication

flow can retrieve tokens from the Authorization Endpoint and from the Token Endpoint,

i.e. it can act as a normal Authorization Code Flow or simplify by receiving the tokens

from the Authorization Endpoint like the Implicit Flow. This can be done by specifying the

response_type (OAuth 2.0 Response Type) value in the request message to the Authorization

Endpoint. No diagram is necessary to explain, since it the same flow of the Authorization

Code Flow, but with the capability of setting the request to Token Endpoint as optional.

2.7.2 saml 2.0

The Security Assertion Markup Language (SAML) is an OASIS standard [22] with a

defined XML-based framework for exchanging security information between online business

partners.

SAML V1.0 was announced in November 2002 and it took one year to receive a minor

upgrade (V1.1) in September 2003. The new version brought some new features and some

minor corrections [23] but it was in March 2005 that SAML received a major upgrade V2.0.

This version was not retro-compatible but came with multiple improvements and support to

new technologies.

There are three main components specified in SAML: assertions, protocols and bindings.

This components, when put together, can potentiate multiple use cases. The Figure 2.13

represents these components, where the Profiles are the representation of the component

combination necessary to support a defined use case. There are two other components

present in the Figure, the Metadata and Authentication Context. The first defines how to

express and share configuration information between SAML parties, while the second refers

to authentication details that some times are needed, to inform about the authentication

performed or to specify authentication requirements between Service Provider (SP)6 and

Identity Provider (IdP)7.

This section aims to give an overview to SAML 2.0, describing its main components and

giving a more detailed analysis over some key use cases.

Roles. There are three roles in SAML: the principal (typically a user), the IdP and the

SP. In a simple use case, the principal requests a service from the SP, the SP requests and

6Defined in Glossary
7Defined in Glossary

20

Figure 2.13: Basic SAML Concepts[22]

receives an identity assertion from the IdP and then make an access control decision, to allow

or not access to the principal.

Assertions. An assertion could be seen as a package of information issued by a SAML

authority. This package could have multiple statements and they are all associated with

a subject. There are three different kinds of statements: Authentication Assertion and it

represents the subject authenticated and information about that authentication; Attribute

Assertion that represents the attributes associated with the subject; Authorization Decision

Assertion which is the decision about whether or not the subject can access a desired attribute.

Protocols. SAML defines a number of generalized request/response protocols, in which

describes how assertions and other SAML elements are packaged. Thus, providing guidelines

to SAML entities for producing and consuming this elements.

There are 6 protocols defined in SAML 2.0[24]:

• Assertion Query and Request Protocol;

• Authentication Request Protocol;

• Artifact Resolution Protocol;

• Name Identifier Management Protocol;

21

• Single Logout Protocol;

• Name Identifier Mapping Protocol.

Bindings. The SAML bindings defines, how exactly, the various SAML protocol messages

can be mapped onto standard messaging formats and communication protocols.

There are 6 bindings defined in SAML 2.0[25]:

• SAML SOAP Binding;

• Reverse SOAP (PAOS) Binding;

• HTTP Redirect Binding;

• HTTP POST Binding;

• HTTP Artifact Binding;

• SAML URI Binding.

Profiles. The SAML profiles defines the combination of assertions, protocols and bindings

in order to provide greater interoperability for usage scenarios.

The list of SAML 2.0 profiles goes as follows[26]:

• SSO8 Profiles of SAML:

– Web Browser SSO Profile;

– Enhanced Client or Proxy (ECP) Profile;

– Identity Provider Discovery Profile;

– Single Logout Profile;

– Name Identifier Management Profile.

• Artifact Resolution Profile;

• Assertion Query/Request Profile;

• Name Identifier Mapping Profile;

• SAML Attribute Profiles:

– Basic Attribute Profile;

– X.500/LDAP Attribute Profile;

– UUID Attribute Profile;

– DCE PAC Attribute Profile;

– XACML Attribute Profile.

There are many profiles, as well as different types of profiles. Thus, for brevity and

regarding the context of this dissertation, only a couple of profiles will be analyzed, being

both of them SSO profiles.

8Defined in Glossary

22

Web Browser SSO Profile. This profile defines the necessary SAML messages and

bindings to support a web SSO use case. It provides a wide variety of options, as the message

flow can be IdP-initiated or SP-initiated, as well as which bindings are used to deliver the

messages between the two. Therefore, enabling many combinations between message flows

and bindings. The Figure 2.14 stands for a SP-initiated SSO using a Redirect Binding for

the SP-to-IdP <AuthRequest> message and a POST Binding for the IdP-to-SP <Response>

message (The other combinations possible will not be addressed).

Figure 2.14: SP-Initiated SSO with Redirect and POST Bindings[22]

Enhanced Client or Proxy (ECP) Profile. This profile takes into account enhanced

client devices and proxy servers. They could be clients with more capabilities than those of

a browser, thus, allowing them to have a more active participation in the IdP discovery as

well as the message flow. Another use case, is using a proxy server, providing a gateway the

less capable devices, for example a WAP gateway for a cellphone (not smartphone). The

Figure 2.15 illustrates an use case using Reverse SOAP (PAOS) as Binding, this will take

advantage of the SOAP headers and SOAP bodies to transport the messages between SP and

IdP.

23

Figure 2.15: SSO Using ECP with the PAOS Binding[22]

2.7.3 ws-security

Web Services Security (WS-Security) is an OASIS Standard Specification and was created

on April 5 2002 [27], with the purpose of enhancing the SOAP messaging to provide message

integrity and confidentiality.

This specification was designed to act as the basis for securing web services within a

wide variety of security models. Thus, to be flexible enough to support multiple security

token formats, multiple trust domains, multiple signature formats, and multiple encryption

technologies. Furthermore, WSS describes how to encode binary security tokens, specifically,

how to encode X.509 certificates and Kerberos tickets as well as how to include opaque

encrypted keys.

WSS specifies three main mechanisms: ability to send security tokens as part of the

message, message integrity, and message confidentiality. By themselves these mechanisms do

not provide a complete security solution for Web services, but instead, they can be a building

block to be used in coexistence with other Web service extensions and protocols to shelter a

wide variety of security technologies and security models.

As an example this mechanisms can be used for signing and encrypting a message or part

of a message and providing a security token or token path associated with the keys used for

signing and encryption.

24

2.7.4 ws-trust

WS-Trust is an OASIS Standard Specification created in 2007 and is currently on version

1.4 [28]. It is an extension to WS-Security that aims to provide a framework for requesting

and issuing security tokens, as well to establish, assess the presence of, and broker trust

relationships between participants in a secure message exchange.

This specification introduces some new elements and concepts, as: the concept of Security

Token Service (STS)9; message formats to request security tokens as well as the responses for

those messages; key exchange mechanisms.

2.7.5 xacml

The eXtensible Access Control Markup Language (XACML) is an OASIS standard [29],

it defines a core XML schema for representing authorization and entitlement policies. The

version 1.0 was announced in February 2003 and since then much work was done, currently

its on version 3.0 released on August 2010 and updated on January 2013.

XACML standard addresses fine grained control of authorization, it defines a police

language to describe general access control requirements. An access control decision re-

quest/responce language is also defined, this enables queries against policies to verify if

an action is allowed or not. XACML 3.0 brought delegation, in which authority can be

delegated to another entity without the need to modify the root policy and therefore support

decentralized administration of access policies.

As an example and for a better understanding, the Figure 2.16 illustrates a complete setup

for an XACML use case. There are four main components present in a complete XACML

workflow[30]:

• Policy Enforcement Point (PEP): The system entity that performs the access

control, by making decision requests and enforce authorization decisions;

• Policy Decision Point (PDP): The system entity responsible for evaluating policies

and generating authorization decisions;

• Policy Information Point (PIP): The system entity that acts as source of attributes

values;

• Policy Administration Point (PAP): The system entity responsible for creating

the policies.

The illustrated workflow, represents the necessary steps taken, to correctly assess a

request from a client. As an overall explanation, upon the client request, the PEP entity will

request the authorization system, if the client has the necessary permissions to access those

resources. Hence, the PDP and PIP entities will exchange information to identify those same

9Defined in Glossary

25

resources, once identified the PDP will process that information with the previous defined

policies written by the PAP entity. Finally, according to the decision processed, a response to

the PEP will be sent, informing if the client has enough permissions or not.

The division of the authorization system in multiple entities and its powerful policy

language and engine, makes the XACML very flexible and enabling support for a wide variety

of use cases.

Figure 2.16: XACML Data-flow diagram[30]

2.7.6 software

There are many applications that provide complete or partial IAM, some offer a complete

solution ranging from full identity management, multiple support to existing SSO implementa-

tions and fine and course grained access control, while other solutions only focus on a specific

component.

This subsection will introduce two IAM solutions.

26

2.7.6.1 wso2 identity server

WSO2 Identity Server10 provides secure identity management for enterprise web applica-

tions, as well as services and APIs, reducing identity provisioning time and guaranteeing secure

online interactions. It is an open source solution and was built on top of WSO2 Carbon11,

enabling easy customization and extension through its architecture. Figure 2.17 depicts the

WSO2 Identity Server architecture, representing its functionalities divided in components.

The next paragraphs will give an overview description on some of the principal components,

focusing on authentication and authorization.

Figure 2.17: WSO2 Identity Server 5.0.0 Architecture[31]

Authentication. WSO2 Identity Server, offers several out of the box authentication

mechanisms (Local and Federated Authenticators components), this facilitates the integration

with applications and services who wants to easily delegate their authentication to a solution

like the Identity Server. Nevertheless, it is also possible to rely on the Identity Server only as

a standard identity provider (Inbound Authentication component), and therefore, register

applications or services as service providers.

There are a handful of supported authentication mechanisms, both in Inbound Authenti-

cation and Local/Fedearated Authenticators, although, the Inbound relies only on federated

mechanisms like SAML SSO, OpenID and OpenID Connect, Passive STS (WS-Trust STS),

as well as OAuth (despite OAuth being associated with authorization). The Federated Au-

10http://wso2.com/products/identity-server/
11http://wso2.com/products/carbon/

27

thenticators also provide support for login systems from well known companies like Facebook,

Yahoo, Google and Microsoft.

Authorization. WSO2 Identity Server contains an advanced entitlement auditing and

management system. It supports claim-based access control via WS-Trust, OpenID and

OpenID Connect as well as OAuth. Support for Role-based Access Control (RBAC) and fine

grained policy-based access control via XACML is also available.

Regarding policies, the WSO2 Identity Server offers a friendly user interface for policy

creation and management, easing and accelerating the integration between applications or

services and the Identity Server for XACML access control. It also supports the registration

of multiple PIPs and multiple PDPs for policy distribution.

2.7.6.2 jboss picketlink

JBoss PicketLink stands for a "Simplified Security and Identity management for Java

Applications"12. It is an umbrella project for security and identity management, therefore,

encompasses multiple subprojects/modules to tackle different security and identity scenarios.

The following paragraphs will explain and describe the technologies supported by this solution.

Java EE Application Security. This module provides mechanisms to integrate

authentication and authorization with Java EE applications through Contexts and Dependency

Injection (CDI), JavaServer Faces (JSF) bindings and platform configurations (focused on

JBoss Enterprise Application Platform). It enables for example, multiple HTTP authentication

mechanisms, Re-Captcha and two factor authentication scenarios. Authentication using

REST endpoints is also supported using Java API for RESTful Web Services (JAX-RS)

Authentication Endpoint. Furthermore, to ease development and integration with login systems

from social networks like Facebook, Twitter and Google, it provides snippets, configurations

and CDI references for a correct authentication.

For authorization, PicketLink offers support for Access Control List (ACL), Java Persis-

tence API (JPA), Lightweight Directory Access Protocol (LDAP) and RBAC based autho-

rization scenarios, as well as the integration with frameworks like Drools13.

Identity Management. This is a fundamental module of PicketLink, being a base for

other modules to implement their extended features. It provides a rich and extensible API

for managing identities, such as users, groups and roles. This provides means to connect to

LDAP servers and enables the creation of multi-tenancy architectures.

12http://picketlink.org/
13http://www.drools.org/

28

Federation. PicketLink offers configurable services, to handle federation scenarios like

SSO and identity propagation. It provides SAML 1.1 and 2.0 support as well as OpenID

support for SSO scenarios. For identity propagation, a WS-Trust STS is provided, this enables

complex authentication scenarios between multiple entities.

Regarding authorization, and to enable fine and course grained authorization, PicketLink

provides support and services for OAuth2 and XACML(v2) workflows.

2.8 service-oriented architecture

SOA is a software design and a software architecture design pattern, it provides application

functionality as services to other applications and it is also independent from vendor or

technology.

Before SOA, in-house solutions were typically composed by multiple applications, this

tended to create code redundancy and duplication of functionalities. SOA brought architecture

design around services rather than applications, presenting services as small units of software

with a specific function that can be reused by any application, thus, reducing the previous

problems of redundancy and duplication. Furthermore, by distributing functionalities by

service, enables the creation of more complex applications through orchestration.

Despite the advantages of SOA, since its beginnings (early 2000s), it has been the subject

of much controversy, it received both praises as a modern and agile approach to software

development as well as considered a colossal waste of time and money[32]. The main causes

for this problematic, tends to the design principals and methodologies taken by the vendors

for the implementation of their solutions.

When adopting SOA, there are two possible approaches[32] , top-down and bottom-up.

The first generally starts by launching a wide SOA initiative englobing most of the organization,

often binded to a proprietary SOA stack from a big vendor. This entails high upfront costs,

ranging from licensing, the need to exchange software platforms and hardware to meet system

requirements, as well as big learning curve for in-house developers. Hence, this being the

approach with the less successful results. In the other hand, the bottom-up approach benefits

an incremental adoption instead of an extensive reengineering. A typical scenario, is to start

off with a standalone Enterprise Service Bus (ESB), acting as core component and providing a

stable base for a steady incremental adoption. This prevents vendor lock-in, since most ESBs

are built according to open standards, enabling interoperation and easing the learning curve.

That being said, the bottom-up approach represent a better Return On Investment (ROI)

and a less stressful integration.

Today, SOA is still relevant, while there were disbeliefs in its adoption, the ones that

succeed, achieved a reliable infrastructure capable of scaling in today’s demanding market.

The the bottom-up approach is already explained and proven the best option for future

adoptions.

29

This section will present two SOA technologies, the ESB and the SCA. The latter will

also have an analyses on some of the current implementations available.

2.8.1 service disambiguation

The term "service" is much used in SOA and SOA related solutions, but can be misleading

if not introduced in the proper context. The authors in [33], re-examined concepts and

terminology used when describing SOA and ESB solutions, and proposed a more refined ter-

minology to prevent misconceptions. Concerning the term "service", the following paragraphs

present three new terms to improve understanding and reduce confusion when describing SOA

solutions.

Governed Service. Refers to a business task but in a vaguely manner, i.e., describe

a service without being precise if talking about the specification or implementation. For

example, "We have a suite of governed services for administering customers’ accounts".

Service specification. It is formal set of characteristics to describe the interaction

with a service, it specifies the business task achieved, its technical requirements to a correct

interaction, as well as Quality of Service (QoS) for that interaction.

Service Realization. This refers to the physical implementation of a service specification.

The common use of the term "service" normally refers to this realization. It represents the

actual implementation of the service and how its business task is processed.

The Figure 2.18 illustrates an abstract view in a service mediation, using the new

terminology.

30

Figure 2.18: Mediating service interaction [33]

2.8.2 enterprise service bus

ESB is an architecture pattern that supplies loosely coupled connectivity between service

requesters and service providers in a service-oriented fashion. Therefore, providing a clean

separation of concerns, enabling flexibility and agility in both business processes and IT

systems.

While the term "Enterprise Service Bus" was first introduced by Roy Schulte from the

Gartner Group 2002, more than a decade after, an accepted definition for this term is yet to

be firmly established. A likely cause for this, is the lack of a global standard for the concepts

or implementations. Thus, as a consequence, there are different definition depending on the

manufacturer or source [34].

Many of the ESB solutions existing today, are based on existing architectures, ranging from

Enterprise Application Integration (EAI), Message-Oriented Middleware (MOM), Application

Servers, Business Process Management Systems (BPMS) as well as many others architectures

that, in a way or another, handle service exposure and mediation.

While there are many available ESB solutions, and each one supporting a different variety

of features, there are at least, a common base of features that all support[34] - Routing,

Protocol bridging and Message transformation. Regarding the Routing feature, an ESB must

be able to route messages to services endpoints, this routing is based on pre-defined policies,

such as message attributes or content, identity, time of day or system load balancing. It also

provides, a virtualization layer in order to enable versioning, location, binding and dynamic

service selection. The ESB is also capable to mediate between multiple protocols - SOAP and

REST for example - abstracting the service implementation from its exposure, this stands

as the Protocol bridging feature. Finally, regarding the Message transformation feature, it

provides capabilities for XML-based data processing, thus allowing validation, aggregation,

filtering and XML message content transformation. Besides the common base features, Service

hosting and Resource adapter are also frequent to find in ESB solutions.

31

2.8.3 service component architecture

SCA is a set of specifications which describe a model for building SOA-based applications

and systems. It was designed in a conjoint effort between major software vendors including

IBM and Oracle, releasing version 1.0 of the specification on March 21, 2007. It was build on

open standards to allow vendor implementation and support.

SCA abstract the middleware programming model dependencies from business logic. This

removes the inherent middleware complexity from application developers, allowing them to

focus on writing business logic. Figure 2.19 illustrates a generic high-level architecture for an

SCA application, showing a composition of two implementations.

The next subsections will describe the SCA Assembly Model, which consists of a series of

artifacts to specify and represent how an SCA application is designed and implemented.

Figure 2.19: SCA example [35]

2.8.3.1 composites

A composite is a logic construct, it can contain one or more components, these components

can run in a single process on a singe computer or be distributed across multiple processes

on multiple computers. The SCA composite defines a complete application, describing

combinations of components, how they are connected, references they use and services they

promote. This is normally described in an XML-based associated configuration file, using a

format called Service Component Definition Language (SCDL).

Figure 2.20 illustrates three components and how they are connected, all within the same

composite.

32

Figure 2.20: SCA composite example [36]

2.8.3.2 components

Components can be considered the atoms from which an SCA application is created. In

other words, the components represents instances of implementation, that when compiled,

provide the application its functionality. This functionalities can be implemented in object-

oriented and procedural languages such as Java, C++, PHP or even XML centric languages

such as BPEL and XSLT transformations [35]. There is no predefined list of supported

languages, therefore, in theory, an SCA component can be implemented using pretty much

any language or technology.

As Figure 2.21 depicts, an SCA component, it relies on a set of abstractions, including

services, references and properties, in order to integrate with the SCA composite and specify

its interactions.

Figure 2.21: SCA component [36]

33

2.8.3.3 services, references and properties

A service is the promotion of component functionality, that is, the exposed API of some

or all implemented functionalities. Likewise, a reference represents a service from another

component.

A property is a value typically defined in the SCDL configuration file, and it can be

accessed from within a component. This type of approach enables for example the use of

custom defined values per composite independently from the component implementation.

2.8.3.4 bindings

The protocol or access mechanism in which the services and references can be accessed, is

defined by the bindings. Furthermore, the services and references can have multiple bindings,

for example, a service may have a SOAP binding and a REST binding in order to enable

external access through web services of both types. This provides great flexibility by being

independent from the component implementation.

Complex applications requiring multiple composites are expected on an SCA platform,

but can introduce overhead depending on the protocol used to connect them. Therefore, to

improve performance when connecting components from different composites running inside

the same SCA runtime, an non-interoperable binding providing a highly optimized transport

and protocol was created, called the SCA binding.

2.8.4 sca implementations

Despite being a reasonably new technology, there are already multiple solutions imple-

menting it, some as adaptations to ESB platforms, as well as full flagged SCA solutions.

This section will describe some of the most relevant SCA solutions available today.

2.8.4.1 jboss switchyard

JBoss SwitchYard14 is a component-based development framework focused on building

structured, maintainable services and applications in a SOA environment. It was introduced

in 2010 as the "Next-Generation ESB" at the JBoss WORLD Summit[37].

The project was build as a framework, running over the JBoss Enterprise Application

Platform (EAP), this eases deployment and enables SwitchYard deployments to run alongside

other Web applications (non-SwitchYard Web applications). The framework works with

14http://switchyard.jboss.org/

34

Apache Camel15 providing a fast, simple and flexible integration runtime with its extensive

connectivity and transports.

To facilitate and accelerate development, SwitchYard offers the SwitchYard Tooling, it

acts as an IDE with visual feedback to help connect and configure the different elements when

building SCA applications. The tooling is compatible with JBoss Developer Studio16 and can

also be installed as an extension to Eclipse IDE17. Figure 2.22 shows an application example

in the SwitchYard Tooling.

Figure 2.22: SwitchYard Tooling

One of the advantages of the SwitchYard framework, it’s the vast number of supported

technologies it offers. The following paragraphs will give an overview of the supported

technologies per SCA element (for SwitchYard v1.118).

Components. SwitchYard supports five different technologies to implement components,

being they:

• Java Beans: Java EE class with dependency injection;

• Apache Camel: Implementation of Camel routes in Java or XML, leveraging the

core routing engine inside of Apache Camel. It supports all the Enterprise Integration

Patterns (EIP) from Apache Camel;

15Defined in Glossary
16http://www.jboss.org/products/devstudio/overview/
17https://www.eclipse.org/
18https://docs.jboss.org/author/display/SWITCHYARD11/Home

35

• BPM: Define business process with Business Process Model and Notation (BPMN);

• Rules: Implementation in business rules using Drools19;

• BPEL: Implementation of the business process in Web Services Business Process

Execution Language (WS-BPEL).

Bindings. SwitchYard offers an extensive list of supported bindings, the following list

will give a brief description of each one:

• SOAP: SOAP-based web service;

• HTTP: HTTP binding, allow for example, a service to be invoked by a browser;

• RESTEasy: REST-based web service;

• JCA: Java EE Connector Architecture (JCA) binding, it allows to send and receive

message to/from Enterprise Information Systems (EIS).

• JMS: Java Message Service (JMS), provides support for asynchronous communication

with messaging providers;

• File: Provides filesystem level support;

• FTP, FTPS and SFTP: Provides support for remote file systems;

• TCP and UDP: Provides support for network level integration with TCP and UDP

protocols;

• JPA: Provides support for operations regarding Java Persistence API (JPA);

• SQL: Structured Query Language (SQL) support for database operations;

• Mail: Support for consuming and sending mail messages;

• Quartz: Provides support for triggering services using cron expressions;

• Timer: Provides support for triggering services with fixed timer;

• SEDA: Provides asynchronous service binding between camel route and SwitchYard

service;

• Camel URI: Allow Camel components to be used as gateway;

• SCA Binding used to connect SwitchYard services inside the same domain.

19http://www.drools.org/

36

2.8.4.2 fabric3

Fabric3 takes “a fresh approach to service-oriented applications”20. It is a platform to

integrate loosely coupled systems and build distributed applications.

The platform is implemented in Java and can run as a standalone server, as well as to

integrate with Application Servers as Apache Tomcat21 and Oracle WebLogic22.

Fabric3 is architected as a small kernel, and therefore providing functionality through

extensions. This type of approach can reduce the platform footprint, by choosing only the

necessary extensions for the expected workflows.

As an SCA platform, Fabric3 supports multiple bindings and types of component imple-

mentations. The next paragraphs will introduce those supported technologies.

Components. Fabric3 supports three types of Java components, these components goes

as follows:

• Java: Java class with dependency injection;

• Timer: Provides timer functionalities to Java classes;

• Web: Servlet and JavaServer Pages (JSP) support.

Bindings. Fabric3 offers a number of communication mechanisms for performing remote

service invocations and messaging. The following list will give a brief description of each one:

• ZeroMQ: High performance communication between clients and services in a publish

subscribe environment;

• JMS: Use of Java Message Service (JMS) for message channels between client and

services;

• RESTFull: Rest-based web service;

• Web Services: Web Services binding based in Metro23;

• File System: File System support;

• Web 2.0: Supports exposing channels over websockets and long-polling;

• FTP: Provides support for remote file systems.

20http://www.fabric3.org/
21http://tomcat.apache.org/
22http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
23https://metro.java.net/

37

chapter 3
Architecture

The emergence of the IoT Platforms, allowed companies and users to connect their devices to

the IoT with ease and low cost. Thus promoting the creation of contents without the concern

of management and provisioning of their devices. To achieve that, there are some concerns

that need to be addressed, such as: access control, M2M interoperability, service deployment

and data analysis.

The IoT platform designed and implemented in this dissertation, was performed with

a special focus on three points: 1) delegation of access control between multiple entities; 2)

integration with ETSI standard; 3) dynamic service registration and deployment in a SOA

platform.

This chapter aims to explain how those points were addressed and give a detailed overview

of the project. The chapter is divided in three sections and each section represents a different

level of abstraction, starting in the upper layer with the different entities and finishing with

the inner structure of a service. The implementation details will be addressed in the next

chapter.

3.1 first layer (entities)

The IoT Platform consists of several entities and some more as dependencies. This section

is intended to provide a description of the entities present in a typical workflow as well to

explain problems and solutions inherent to their interaction.

The Figure 3.1 represents the entities in a typical workflow, the following paragraphs will

describe each one of those entities and their role with the IoT Platform in a service-oriented

context. The last paragraph will address the challenges of Access Control in this scenario.

39

Figure 3.1: First Layer Architecture Block Diagram

IoT Platform. It’s a complete IoT Platform, that joins device deployment and interoper-

ability with service composition and deployment. This platform is composed by two different

platforms, one to handle the devices and another to manage the services.

Service Platform. It’s the service platform, all data to and from sensors is handled

and routed here. It aggregates services in a SOA manner giving it a great extensibility and

scalability.

ETSI Platform. It’s the representation of an ETSI compliant platform.

Telco Entity. This dissertation was made in the context of an IoT Platform managed by

a Telco provider. This is an expected scenario in the future.

Sensor Provider. This is the company who delegated their devices to the platform.

App. This is all and any app that can call services in the IoT Platform.

Access Control. One of the main focus of this dissertation was access control in an

environment with multiple entities. When a user or company submits its devices to the IoT

Platform, they need to maintain control over who can access their devices. As all data to

and from devices is handled by services in a service oriented architecture, then also the access

control will be better suited in this service layer. This also enables complex scenarios when

delegation of authentication is needed. In this paragraph it will be assessed a complex use

case with access control delegation in a four entities scenario.

40

Use Case. In this use case is described how can an App, known to the Sensor Provider

but unknown to the IoT Platform access a service in the platform. The App has authorization

from the Sensor Provider to access data from their services, but how can the IoT Platform

recognize the App as a valid service consumer? In fact, the Platform not even recognize the

Sensor Provider as trusted but only the Telco Company/Entity (Figure 3.2). How to solve

this issue? The solution to this problem was solved creating a chain of trust, this can be a

chain of digital signatures (Figure 3.3). As the Sensor Provider trusts the App and is trusted

by the Telco company (made possible upon the devices delegation contract for example), and

for the IoT Platform the Telco company is trusted, so as long as the request comes signed

with a valid signature (signed by Telco) to the Platform it will be recognized as valid. Another

problem that must be addressed is Authorization. How can a permissions based access be

applied in this scenario? A company may have thousands or millions devices deployed, how

to give access to just one of those devices and not all of them? This issue will be addressed in

the next section 3.2.

Figure 3.2: Diagram showing the trust connections between entities

41

Figure 3.3: Diagram the chain of trust between entities using signatures

3.2 second layer (services)

As a service-oriented platform some workflows may require multiple services. In this

section and subsections it will be explained the most common services used and possible

extensions.

Figure 3.4 represents the services needed for a typical workflow. The next subsections

will explain the purpose of each portrayed service and give an overview explanation of the full

workflow in the last subsection.

42

Figure 3.4: Second Layer Architecture Block Diagram (Generic Services)

3.2.1 authentication and authorization services

The Authentication Service represents an implementation of an authentication mechanism

or validation process. This eases the integration with other services and enables the creation

of different authentication processes. Likewise, the Authorization Service performs the same

functions but in an authorization context.

3.2.2 exposed service and implementation

The Exposed Service will route through all security layers before calling the implementa-

tion, therefore securing the implementation with separation of concerns. Further explanations

will be addressed in section 3.3.

The Service Implementation is the actual implementation of the service, it may be

deployed locally or remotely, in case of a remote service a local service may act as proxy to

facilitate integration. When data from sensors is needed, a connection with the DataBus

(subsection 3.2.4) has to be established.

43

3.2.3 nansclservice

This service is responsible for all direct interaction with the ETSI Platform, abstracting

all the others services from the specifications of the M2M middleware. Therefore, it must

support the following operations:

• Registration with the ETSI Platform to perform as a proper NA;

• Creation of containers and sub-containers;

• Post content in the containers and sub-containers;

• Get content instances from containers and sub-containers;

• Request subscription of containers and sub-containers.

Figure 3.4 presents two connections with the NaNSCLService, they designate two different

use cases:

1. Resource subscription: this can be invoked in the initialization of a new service, thus

enabling asynchronous scenarios and improving efficiency (this is the reason for the

connection from the Exposed Service);

2. Get content instances: this represents a synchronous method to retrieve content from

sensors.

3.2.4 databus service

The DataBus, is a service to abstract all the data flow between services and the data

coming from the ETSI Platform. Therefore, whenever a service within the Service Platform

needs data from a sensor, it only needs to request it from the DataBus. Figure 3.5 illustrates

the design of the DataBus, and as stated in that design with Services A, B and C, there aren’t

any specific differences between them, whereas they consume or publish information. This

type of approach, makes a service more generic and grants greater flexibility, thus enabling

new workflows, for example:

• Improve data flow performance using caches and queuing strategies;

• Data normalization;

• Statistical data analysis;

• Integration with Big Data services;

• Publish/Subscribe scenarios.

44

The Figure 3.5 also presents a connection with the NaNSCLService, this connection is

needed to enable synchronous scenarios, like the request of information or data from a sensor

in the ETSI Platform.

Figure 3.5: DataBus design

3.2.5 overview

As described before, the Figure 3.4 presents the necessary services for a typical workflow.

While previous subsections described the importance of each component, this subsection will

explain step by step on how the workflow is performed.

The workflow can be divided in 6 different iterations, the following list will enumerate

each iteration and explain what is performed:

1. Service Bootstrap: This happens upon the initialization of Exposed Service, a

request to NaNSCLService is performed in order to subscribe resources that will later

be necessary, although not mandatory, this can promote performance and enable

asynchronous scenarios;

45

2. Authentication: An authentication process is performed to verify the clients identity,

if it’s not a valid client, an error will be thrown and the workflow will be stopped;

3. Authorization: Much like the Authentication process, in this step an analysis is

perform to identify whether or not the client has enough permissions to invoke this

service, stopping the workflow and throwing an error in case of insufficient permissions;

4. Service Realization: Now that all security mechanisms were performed and returned

a positive response, the actual service implementation can be executed;

5. DataBus: In case the service needs to interact with data from any resource (sensors

in the ETSI Platform) a request to the DataBus has to be performed;

6. Get resource contents: Finally, if gathering of new resource data is needed, a

request to NaNSCLService is performed, retrieving that information from the ETSI

Platform.

In conclusion, by dividing the business logic into several services, the extensibility is

increased, enabling the addition of security layers and enhanced functionalities through service

composition.

3.3 third layer (service structure)

In this section, will be performed a dissection on a typical service, presenting its inner

structure and connections with other services. This service, already introduced as Exposed

Service, is the service that can be reached from the outside and therefore the one responsible

for security enforcement.

Figure 3.6 illustrates the inner structure of an Exposed Service and in gray the connections

to and from this service. It introduces the External Client, which represents a client making a

request to the Exposed Service, triggering the workflow presented in subsection 3.2.5. Inside

the Service Platform, are also present four inner services (in gray), these services were already

presented in previous subsections, therefore no further analysis will be performed.

The Exposed Service can be divided in 5 different components, the workflow generated by

these components was already some how explained in section 3.2, hence, to prevent redundancy,

only the External Endpoint will be address and no further explanations will be provided. The

External Endpoint represents an endpoint visible from the outside, it’s the endpoint that an

external client can request.

46

Figure 3.6: Third Layer Architecture Block Diagram

3.3.1 service encapsulation

In the scenario illustrated in the previous section, the service encapsulation it’s of much

importance. It’s this type of design that will enable a fast service deployment, letting the

developers/companies focus on implementation and be assured that security will be handled

by the platform. Thus, also making possible a dynamic service registry, extending the platform

and reducing the maintenance costs.

Another advantage in this type of abstraction, is the security it permits. By having

a "shallow"/proxy service, enables the swap or the addition of new security layers without

touching the implementation. While in the section 3.1 only authentication and authorization

were needed, adding something like accounting could be done without much effort.

47

chapter 4
Implementing an IoT

Platform

This chapter aims to give a detailed explanation on how the implementation was done,

presenting diagrams when appropriate and explaining the decisions made to implement and

build this Service Platform for an IoT Platform solution.

4.1 defined objectives

This dissertation embraces multiple areas, ranging from federated security to service

integration and data flow control. Despite that, four main objectives could be extracted from

such a broad platform, being they:

• Analysis and possible solution for the multiple entity access control problem;

• Integration with an ETSI NSCL;

• Encapsulate service invocation (Mediation and Security enforcement);

• Routing sensor payload.

4.1.1 overview

In the previous chapter were presented various high level entities in the context of the

IoT Platform implemented in this dissertation. More specifically in section 3.1, where a

description of these entities was made and their connections explained in a simplistic manner.

49

The Figure 4.1, shows a diagram equivalent to Figure 3.1 of that same section, but exchanging

the theoretical names with the names of the software used to implement them.

Figure 4.1: Entity Block Diagram

The next paragraphs will describe and explain the software solutions stated in the diagram

and the reasons why they were chosen:

SOAP Client. This is not exactly a software platform but a roughly simple client, using

SOAP as protocol for services requests. The client is not only simple because it needs to

process multiple requests to different entities and build new messages (SOAP envelopes)

depending on the responses it receives. This process will be explained in detail in the next

sections.

WSO2 Identity Server. Although this entity is external to the IoT Platform, it could

be seen as a partner because it is a crucial piece for the proper and possible functioning of the

platform. As such, in order to design, implement and test afterwards, a solution was created

to act as this entity. Thus, this entity besides entrusting sensors/devices to the IoT Platform it

also needs to be able to authenticate its clients/partners/employees as well as to implement a

granular permissions system, capable of handling complex authorization requests (i.e. a PDP).

Hence, being a complete solution necessary to address authentication and authorization in

this type of scenario, WSO2 IS came as a winning choice because of its easy deployment and

powerful features. It was installed on a separate virtual machine to have a clear separation

with the IoT Platform.

JBoss Picketlink. This entity has the function to sign and validate signatures, as well

as to manage a user database. Although it seems an overly simplistic description of an IdP

for a Telco company, in the context of this IoT Platform, it is just what is needed and thus

abstracts from the inherent complexity of an entity of this type. As such, for test purposes,

a simple service was created using JBoss Picketlink to handle signature and validation of

50

x.509 certificates. The choice of this library, was just a practical decision, because the Service

Platform is also a JBoss product and thus maintaining the same ecosystem would accelerate

development and integration.

JBoss Switchyard. The choice of this solution turned out to be the most important

technical decision throughout the dissertation. Since, it influenced the architecture of the

whole system as well as its development. Its choice, required the consideration of several

factors, but primarily because one of the objectives of this work was to have a platform of

services in a SOA environment. By embarking on the SOA path, it falls instantly on the notion

of ESB, and by studying existing solutions in this area, the SCA solutions appear as something

new and even more steeped in the SOA essence then the ESB. As something relatively new,

the idea of implementing a SCA Platform become enticing, and therefore the JBoss Switchyard

was chosen as the platform to use. While it may not appear as stable as other solutions

(fabric3 for example), it offers a much wider range of software integration solutions, meaning

more protocol bindings and more software integration technologies, concluding in a more

flexible and extensible solution for an IoT Platform.

NSCL. This entity represents an ETSI compliant NSCL implementation, it will act as a

middleware platform, acting as bridge between the Service Platform and the sensors/devices.

It is a key component in the IoT Platform and it was developed in the context of another

dissertation. Furthermore, the implementation of both platforms was done with a great level

of communication between the peers, aiming a problem free integration.

4.2 access control

Access Control was one of the main objectives of this dissertation, as such, one of the

most time consuming. This section, will give a detailed explanation of the implementation

decisions and describe how everything fits together.

There are two main components in this access control: authentication and authorization.

Each service with access from outside of the platform, has to ensure this two mechanisms.

Therefore, and as explained in the previous chapter, a service template was designed to

abstract the access control from the service implementation (Figure 4.2). Thus putting the

enforcement of authentication and authorization at service level and not at platform level.

Hence bringing a greater flexibility, allowing to add, change or remove security layers per

service.

51

Figure 4.2: Service Template

4.2.1 the chain of trust (authentication)

The authentication problem was already addressed in section 3.1 of the previous chapter

and it is a well defined workflow between multiple entities. The objective of this subsection is

to give a detailed explanation on how the entities interact as well as the processes triggered by

that interaction. Figure 4.3 represents all the necessary entities for a correct authentication

process. Comparing with Figure 3.1 from section 3.1, the new Figure presents the STS of

the WSO2 IS. This STS will be responsible to authenticate the SOAP Client with the Sensor

Provider as well as to generate a signed assertion, this will be later used by the SOAP Client

to report to Telco Company.

Figure 4.3: Authentication Entity Block Diagram

Figure 4.4 shows a sequence diagram in order to better understand how the message

exchange is done and processed between the various entities until they reach the chain of

trust needed to invoke the service.

The workflow starts when the SOAP Client authenticates itself with the Sensor Provider.

This happens, because there is already a relationship between them and it is the sole re-

sponsibility of the two entities. Despite this process being external to the platform, for

testing purposes, it was necessary to create this workflow to demonstrate the full process

of authentication. In this particular case, it is used an STS to authenticate the client and

52

Figure 4.4: Authentication Sequence Diagram

generate a signed assertion, this assertion represents the client authentication as well as some

data of this operation. Once generated and signed, it will be returned to the SOAP Client, and

here ends the necessary interaction with the Sensor Provider in this authentication workflow.

Since it already has the signed assertion, the SOAP Client needs to insert it into a new

SOAP envelope. The assertion (token and signature) is enclosed in the WS-Security (2.7.3)

Header. Once assembled the envelope, the request for signature in the IdP Telco Company

53

can be performed.

At Telco Company, upon receiving the sign (signature) request, a verification is performed

to assure the existence of an assertion in the security header of the SOAP envelope. If true,

it will scan all the signatures one by one (in case of multiple signatures, although in this

workflow there is only one signature at the time) in order to find the signature of whoever

issued the assertion. Upon finding the signature, if it was issued and signed by a trusted

party, then the request is considered valid. Concluding the validation phase, the assertion will

be signed in parallel with the other signature and returned back to SOAP Client. Here ends

the role of Telco Company in this authentication workflow.

At this point the SOAP Client has the assertion with the two signatures (one from Sensor

Provider and the other from Telco Company), an example of a double signed assertion can be

seen in Figure 4.5. To invoke the Service, only the Telco Company signature is needed, but

sending the double signed assertion will work as well, since it iterates through the signatures

until a valid one is found. The invocation of the service represents the last interaction between

entities in this workflow. That being said, once the signature is validated the Service is

executed. Future requests to the Service may be made directly without having to perform

the authentication workflow, provided that the signature and assertion are still valid. This

facilitates and reduces significantly the request overhead.

Figure 4.5: Double Signed Assertion

4.2.2 authorization

An IoT Platform can deal with millions of connected devices, and each device can have

different authorization policies. Thus, the platform must provide a fine grained authorization

system to prevent unauthorized access to devices in both simple and complex scenarios. As

explained in section 3.1, the devices managed by the platform are not owned by the platform,

they are property of the Sensor Providers. Therefore, the point of decision for the authorization

policies of each device must be handled with the Sensor Providers. When the subject who

tries to access the devices is external to the platform (SOAP Client), the platform needs be

able to translate that access request to a common language with the Sensor Provider for a

correct evaluation. This type of scenarios could become very complex when the same service

tries to access multiple devices with different policies. To meet these challenges, the XACML

54

language appeared as the best choice, because it’s extensible enough to achieve any type of

authorization scenario (section 2.7.5).

This subsection will describe the authorization system implemented as well as to explain

all the interactions between the different entities. Figure 4.6 represents the entities present in

an authorization process. This diagram introduces two new actors:

Figure 4.6: Authorization Entity Block Diagram

EntitlementService. The Entitlement Service is the XACML PDP functionality within

the WSO2 IS. It is a full featured PDP, empowered by the WSO2 IS user interface to compile

and edit XACML policies. Thus, as a solution used only for test purposes, all the "out of the

box" functionalities eases the integration and test use cases.

XACML Helper. This is an inner service in the Service Platform. Hence, without any

external endpoint, making it accessible only within the platform. Its only function, is to have

a secure connection with the Sensor Provider PDP, therefore becoming the proxy between

services and PDP.

Figure 4.7 represents the authorization sequence diagram. In that regard, a small

description of each message transactions will be performed for a better understanding of the

process.

Once the chain of trust is established, the SOAP Client is authenticated with the platform,

although, further validation needs to be performed. Therefore, when a request to an exposed

service is done, is assembled a complete report with all the necessary resources for the correct

service realization. Hence, a policy query needs to be performed with the Sensor Provider

PDP (EntitlementService), the XACML Helper will act as PEP and mediate the decision

request with the PDP. Once a response is returned by the PDP, it will be handled back to

Service. To finalize, if the response is "Permit" the service will proceed to the actual service

implementation, else an error message will be return instead.

55

Figure 4.7: Authorization Sequence Diagram

4.3 service mediation

One of the objectives of this dissertation, was to ease service deployment by removing the

security concerns from the developers, so they could focus only on implementation. Therefore,

a separation of concerns between access control and service implementation was needed.

This section will explain how the separation of concerns was achieved by applying

mediation mechanisms.

4.3.1 message interceptor

As explained in section 4.2, a requester, to be able to call a service in the platform, need

to provide a valid assertion embedded in a WS-Security Header within a SOAP envelope. One

way to prevent a malformed request, from reaching the service implementation, is to use a

Message Interceptor. To accomplish that, the Message Composer from SwitchYard framework,

was used. Therefore, upon arrival of a new request, the message is intercepted and checked

to verify the existence of an assertion and if it is according to specifications. If it is not, a

SOAP Fault is returned and the message doesn’t reach the SCA Component with the service

implementation.

Although this interception validate the existence or not of the assertion, it does not

56

verifies its signatures. The reason behind it, is to separate the security specification from

the authentication process, meaning, as it was previously specified, the request needs to

be performed using SOAP with a WS-Trust valid assertion but the way it will be used for

authentication may change or vary depending on the case. Hence, increasing flexibility and

possible support for different authentication processes.

Figure 4.8: Message Interceptor (Message Composer)

4.3.2 service composite

Service Composite is the component representation of a service in SCA (section 2.8.3),

where protocols are binded and services and references are promoted. The Figure 4.9 illustrates

a representation of this type for the Service Template introduced in section 3.3. The next

paragraphs will give brief description on each component.

Service exposed and Service References. As a typical SCA service, it can promote

an interface to a service endpoint, i.e. expose an endpoint internal or external in which the

service responds when requested. The service endpoint represented in this diagram has as

binding the SOAP protocol (it was explained in section 4.2 the reason why SOAP was chosen

as protocol). This endpoint is the green component in the Figure.

Concerning the Service References in the Figure (represented by the purple components),

they are inner connection to other services within the Service Platform (Switchyard). The

references use as binding the SCA protocol which facilitate inter-application communication

within a SwitchYard runtime (section 2.8.3). This service was already introduced in previous

section, thus for simple reminder, a small list follows as:

• SigningService: service to validate signatures;

• XACMLHelper: service to perform XACML request to a PDP and therefore act as

PEP;

57

Figure 4.9: Service Composite

• ServiceImplementation: actual implementation of the service;

• NaNSCLService: service responsible for every interaction with the NSCL.

Bootstrap. This is not a mandatory component, but it serves as a requisite disclaimer. In

other words, it maintains a list with all the necessary resources (sensors/devices) for a correct

service realization. Thus, to enhance performance or to support asynchronous data flow,

resource subscriptions can be performed to the NSCL having NaNSCLService as intermediary.

Use cases of asynchronous data flow between the Service and ETSI Platforms is addressed in

section 4.5.3.

Service. This is the component where the business logic of the Service Template is specified.

It is where the security layers will perform their duty, and the routing between references is

coordinated. This component is a Java Bean, and therefore, implemented in Java. While

a business process language (BPMN or BPEL) could be used, as it is supported by the

SwitchYard framework, the programmatic approach turned out to be more flexible and easy

for implementation and debug.

The Figure 4.10 illustrates the business logic of the Service Template. The first validation

comes with the signature verification, the assertion is extracted from the SOAP Envelope

(which is delivered by the Camel context from the request) and forward to the referenced

service for signature validation. Upon success, a second validation will be performed, this

time concerning permissions (authorization). Therefore, the assigned service for authorization

will be invoked, in order to verify if the user(requester) as enough permissions to read or

write on all the resources needed for a complete service realization. If both security layers

(authentication and authorization) return "true", then the real service implementation that is

58

assigned as reference, can be invoked. Although, if any of the verifications return "false", an

exception will be returned to the requester.

Figure 4.10: Enforcement Activity Diagram

4.4 etsi integration

In order to create an IoT Platform, the Service Platform is not enough, it is also necessary

a middleware platform to handle all M2M communications as well as the access to that

information. Hence, as already explained, an integration with an ETSI compliant NSCL was

performed.

59

This section aims to describe the interactions with the NSCL and how they were accom-

plished.

4.4.1 connections

ETSI specifies a wide number of restful APIs for the communication with the SCLs.

Therefore, all synchronous communication between both platforms (services and NSCL) are

processed over those restful APIs.

To handle this interactions, a service by the name of NaNSCLService was created. This

service is responsible for all communications with the NSCL, and serves as proxy for other

services who require communication with that platform. The supported procedures goes as

follows:

• NA registration: This will register an entity and return an id. Now the registered

entity can perform other requests and is identified within the ETSI platform, which in

turn will allow the permissions system in the ETSI to control the access of that entity,

to the resource containers.

• createContainer: Request for the NSCL to create a container.

• createSubContainer: Request for the NSCL to create a sub-container.

• getContainerInstances: Retrieve the contents from a container or sub-container.

• postContainerInstances: Post contents to a container or sub-container.

• getLatestContainerInstances: Retrieve the latest contents from a container or

sub-container.

• postSubscribeContentInstances: Subscribe to a container or sub-container, when-

ever a new content is available, it will be pushed to a message queue.

Every request and response to and from the NSCL, must be encompassed with XML-based

message within the body of the request/response. For different methods, different messages

are needed, and to ease the interpretation as well as the assembly of those messages, a SDK

was provided by the developer of the NSCL implementation.

Note: as specified in the ETSI standard, in case of problem with the request or in its

process, the response must contain an HTTP Status Code of error as well as an XML message

in the body referencing the problem. In SwitchYard 1.1, the library responsible to process

the REST requests and responses is the RESTEasy JAX-RS(version 2.3.6.Final-redhat-1),

however this library when receiving a REST response with an HTTP Error Code, throws an

inner exception and discards the response. This prevents error handling at service level (in

60

this case it would be the NaNSCLService). As a workaround, a small change was performed

on that library, to not discard those types of messages, making error handling possible at

service level.

4.5 databus

In order to mediate, facilitate and improve the access of sensor data to services in the

platform, a service by the name of DataBus was created (it was first introduced in section

3.2.4).

This section will explain the possible use cases as well as some of the particularities and

features from the DataBus implementation.

4.5.1 overview

The DataBus offers two types of methods: Get methods and Post methods. As seen

in Figure 4.11, the Get methods will return sensor data while the Post methods will push

data to the Service. By pushing data, it allows to cache that same data as well as to enable

publish and subscribe scenarios. It also provides, the ability to connect other synchronous

and asynchronous data sources, as the insertion of data in the DataBus is not binded to

any specific service. An example, could be an helper service connected to a different M2M

middleware, pushing new data to the DataBus.

Concerning security, the DataBus service only have SCA bindings in its interfaces, this

prevents direct access from the outside as the SCA binding only accepts connections from

within the same SwitchYard domain.

61

Figure 4.11: DataBus Overview

4.5.2 cache system

The DataBus service, being the only source of data within the Service Platform, can

have an overwhelming number of requests. That being said, there is good chance, that more

than one service wants the same data from the same resource. Therefore, in order to improve

performance and avoid duplicate requests to the NSCL (through the NaNSCLService), a cache

system was implemented.

The cache system implemented, uses a Redis1 database. The reasons to choose Redis as

database, derives from its easy store and read methods, its fast performance and the simplicity

it brings to the implementation. Moreover, the cache system wasn’t one of the objectives, it

was simply a nice to have feature, therefore a simple implementation would suffice.

4.5.3 use cases

The DataBus service, supports multiple use cases due to its flexible design. This section

will present the use cases implemented in this dissertation.

1Defined in Glossary

62

4.5.3.1 synchronous service databus interaction

The Synchronous Service DataBus interaction is the simplest use case described in this

section. It takes place when a service requests data from a specific resource to the DataBus.

If the data from the requested resource is available at the cache system, it will be returned

right away to the requesting service. If not, the use case in subsection 4.5.3.2 takes action,

and once finished, the result is returned. This use case is illustrated in the Figure 4.12.

Figure 4.12: Synchronous Service DataBus interaction

4.5.3.2 synchronous content instances request

When in need for new resource content. A request to the NaNSCLService has to be

performed, as it will act as "proxy" between the DataBus and the NSCL. This request will

ask for content instances of a specified resource. Finally, if the request with the NSCL returns

valid content, it will be relayed back to the DataBus. This use case is illustrated in the

Figure 4.13.

63

Figure 4.13: Synchronous content instances request

4.5.3.3 asynchronous updates from new content

instances

This use case is the most complex case described in this section. It represents the process

of notification when new data is made available by a resource. The Figure 4.14 represents this

use case and introduces a new service, the ActiveMQ Helper. This new service will handle all

the publish subscribe pattern, and by doing so, abstracts this process completely from the

DataBus. As the name implies, this helper service is connected with an ActiveMQ queue, and

the reason for choosing the ActiveMQ as message broker is external to this dissertation, since

it was responsibility from the NSCL developer.

For an improved understanding of the diagram illustrated in the Figure 4.14, a numbered

list representing each interaction will be presented below:

1. Subscribe Resource: It’s the process of subscribing a specific container, this con-

tainer represents the data produced by a resource. This process could be initiated

by the initialization of a Service Template, which inform the NaNSCLService of the

resources it requires.

2. Update container: It represents the creation of new data by the resource.

3. Publish: The updated container generates a publish process, which will send the new

data to a previous defined message queue.

4. Consumer notify: Whenever the ActiveMQ receives new content, it will notify all

consumers and deliver to them the new content.

64

5. Push data: Upon notification, it routes the received data to the DataBus Service.

6. Store data: For caching purposes, the new data will be stored in a Redis database.

Figure 4.14: Asynchronous updates from new content instances

65

chapter 5
Evaluation and Results

As a Service Platform for a IoT Platform, performance is of much importance, since it may

handle a huge number of devices and service requests. This dissertation had a great focus on

security, more precisely, access control and it is undoubtedly that security measures always

have impact on performance.

This chapter will test the implemented platform in terms of performance, with special

focus on the impact that security creates.

5.1 deployment scenario

The Figure 5.1 illustrates the test case scenario assembled to analyze and study the

platform in terms of performance. It is composed by two types of components: Machines and

SOAP Clients.

The Machines are the representation of the physical and virtual computers, used to deploy

and support the multiple solutions needed for a complete use case. The Table 5.1 presents

the specifications of this computers. Concerning the virtual machines, they were running over

VirtualBox 4.3.14.

There are two different Clients: one in Java and the other using SoapUI. The Java Client

is used to initiate the Authentication process in order to retrieve the double signed assertion

(as explained in section 4.2.1). The second Client uses the Test Suites features from SoapUI,

which enables load tests for simulating multiple clients requesting at the same time.

67

Figure 5.1: Deployment Scenario

Machine Operating System CPU RAM

Physical Machine Arch Linux on Linux
kernel 3.17.1 (64-bit)

Intel(R) Core(TM)
i7-2630QM @ 2.0-2.9

GHz

8 GB @ 1333 MHz

SwitchYard Ubuntu Desktop 12.04
(32-bit)

1 Core CPU (with
accelerated

virtualization)

2 GB

WSO2 Identity Server Ubuntu Server 12.04
(32-bit)

1 Core CPU (with
accelerated

virtualization)

2 GB

Table 5.1: Machines specification

5.2 test case

Figure 5.2 represents the test case scenario. The workflow objective, is to request the

system to retrieve one value from the DataBus that is stored Redis Database and return it to

the original requester (SOAP Client).

This test case aims to determine the performance costs created by the security stack. It

will measure time and throughput of multiple requests happening at the same time, in a 60

seconds period.

The tests were performed with 5 threads, requesting the same service, consecutively,

during 60 seconds. There were 5 different scenarios:

1. Request to Mediator, this represents the typical workflow, in which full mediation

is performed - authentication, authorization, implementation;

2. Request to Mediator without authentication, in this case, signature validation

is not performed;

3. Request to Mediator without authorization, in this case, authorization is not

performed, therefore, no connection to WSO2 Identity Server Machine is necessary;

68

4. Request to Mediator without security, in this case, it is verified the existence of

an assertion, but no further validation is performed;

5. Request directly to Service Implementation, without performing any kind of

mediation or security validation.

Figure 5.2: Test Case Scenario

5.3 results

The values obtained for the scenarios enumerated in the previous section, are discriminated

in Table 5.2. For a better understanding, the following list explains the meaning of each

column:

• min, the shortest time of a request (in milliseconds);

• max, the longest time of a request (in milliseconds);

69

• avg, the average time of the requests (in milliseconds);

• last, the last time of a request (in milliseconds);

• cnt, the total number of requests;

• tps, the number of transactions per second;

• bytes, the number of bytes processed by the requests;

• bps, the number of bytes per second;

• err, the number of errors;

• rat, failed requests ration.

Test Case min max avg last cnt tps bytes bps err rat

Mediation 38 236 55.83 85 371 6.15 115752 1921 0 0
Mediation no Authentication 22 163 30.71 30 380 6.32 118560 1972 0 0
Mediation no Authorization 28 111 42.08 64 384 6.35 119808 1982 0 0

Mediation no Security 12 151 16.98 12 390 6.49 121680 2025 0 0
No Mediation 9 42 11.9 10 389 6.46 135761 2257 0 0

Table 5.2: Test results

Analyzing the results in terms of average request time, a notable difference between

scenarios can be observed (Figure 5.3 helps to visualize those discrepancies). In that regard,

the Table 5.3 was created, were it states clearly the cost of each component, and by summing

the average differences, comes a value very close to the one obtained in the first scenario

(55.83 ≈ 55.81).

It is clear, that the most costly component, is the authentication. Comparing with

authorization, the latter is much less heavy on performance, despite the necessary request to

an outside Virtual Machine (WSO2 Identity Server). The possible reasons for that, could be

that the authentication process handles XML elements (which can be costly to performance)

as well as the validation of an X.509 certificate signature.

Test Case average

No Mediation 11.9
Mediation no Security +5.08

Authorization +13.73
Authentication +25.1

Total 55.81

Table 5.3: Performance cost per component

Regarding throughput, it is clear in the results (Table 5.2) that the number of bytes

processed and per second decreases with the addition of security, but by comparing the values,

70

0

20

40

60

80

100

120

0 4 8 11 15 19 22 26 30 33 37 41 44 48 52 55 59

A
V

E
R

A
G

E
 T

IM
E

 (
M

IL
IS

E
C

O
N

D
S

)

TIME (SECONDS)

Mediation Mediation no Authorization

Mediation no Authentication Mediation no Security

No Mediation

Figure 5.3: Average request times per scenario

of the worst (115752 bytes) and the best (135761 bytes) values in bytes processed, they only

have a difference of 1.173 % (135761/115752). Besides, the total number of requests as well

as transactions per second, also don’t have big impact in the various test cases.

To conclude, the most heavily impacted metrics between the different cases, are the

request times. Therefore, in order to improve performance, optimizations could be done in

the security mechanisms. The flexible design of the platform, also makes it possible to add

different security mechanisms, for example, enable simplified security for uses case where

security is not a priority.

71

chapter 6
Conclusion

The recent demand for IoT solutions and the exponential growth of M2M connections has led

to the creation of many IoT Platforms, these solutions focus on content, as they provide easy

integration of devices and application deployment, and consequently bringing the world closer

to a global IoT scenario. This document provides an overview on some of the most important

projects existing today as well as different approaches used to assemble an IoT Platform.

However, the main goal of this dissertation was to create a Service Platform integrated

with an M2M middleware in order to achieve a complete IoT Platform. In that regard,

interaction with a working ETSI M2M middleware through an NA was accomplished, creating

a complete set of workflows to handle and interpret sensor data.

The platform was designed and implemented with separation of concerns in mind, clearly

separating access control from service implementation and abstracting data access from the

middleware specification. Therefore, enforcing authentication and authorization on indepen-

dent service implementations through mediation. The platform was tested to demonstrate

functionality as well as performance and performance costs for the multi layer access control

and mediation.

Finally, the architecture design, allow great extensibility by abstracting the data flow

from the service, creating a content focused development where security and data access is

automatically binded to the implementation effortlessly.

6.1 future work

Although the provided implementation is working and fulfilled all the proposed objectives,

there is still room for improvement and nice to have features, that would elevate the platform

to a more complete and competitive IoT Platform for todays market. The following list

describes some of those possible improvements:

73

• Optimize Signing service: The tests presented in chapter 5, reveal that the signature

validation is the most expensive component in the security stack, therefore optimization

is necessary;

• New workflows for DataBus: A publish subscribe workflow between DataBus

and platform services would improve greatly asynchronous scenarios, allowing service

realization upon the arrival of new sensors data;

• Service deployment system: The separation of concerns between service imple-

mentation and access control, enables developers to focus on content creation (service

creation), and a framework, platform or user interface to enable developers to deploy

their own implementations as well as define service dependencies and security systems

in an easy to do configuration, would allow rapid growth to the platform.

74

Glossary

Apache Camel Apache Camel1 is open source integration framework

based on Enterprise Integration Patterns, it provides medi-

ation and routing rules through configuration in a variety

of domain-specific languages.

Identity Provider IdP is an entity responsible for issuing identification in-

formation.

Redis Often referred to as data structure server, Redis2 is an

open source, networked, key-value cache and store.

Security Token Service STS is a service component, normally a software based

IdP, that issues security tokens, as part of a claims-based

identity system.

Service Provider SP is an entity that provides a service.

Single sign-on SSO is an authentication process to allow users to authen-

ticate once, and therefore be logged into multiple systems

without further manual intervention.

1http://camel.apache.org/
2http://redis.io/

75

References

[1] J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand, S. Karnouskos, and D. Boyle, From
Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intel-
ligence. Elsevier Science, 2014, pp. 9–39, isbn: 9780080994017. [Online]. Available:
http://www.google.pt/books?id=wtfEAgAAQBAJ.

[2] A. Qureshi, W. P. Kang, J. L. Davidson, and Y. Gurbuz, “Review on carbon-derived,
solid-state, micro and nano sensors for electrochemical sensing applications”, Diamond
and Related Materials, vol. 18, no. 12, pp. 1401–1420, Dec. 2009, issn: 09259635. doi:
10.1016/j.diamond.2009.09.008. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0925963509002520.

[3] Q. Wang and I. Balasingham, “Wireless Sensor Networks - An Introduction”, in
Wireless Sensor Networks: Application - Centric Design, 2010, pp. 1–13, isbn: 978-953-
307-321-7. doi: 10.5772/13225. [Online]. Available: http://cdn.intechweb.org/

pdfs/12464.pdf.

[4] C.-Y. Chong and S. P. Kumar, Sensor networks: evolution, opportunities, and chal-
lenges, 2003. doi: 10.1109/JPROC.2003.814918.

[5] D. C. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole, “Research Challenges
in Environmental Observation and Forecasting Systems”, in Proceedings of the 6th
Annual International Conference on Mobile Computing and Networking, ser. MobiCom
’00, New York, NY, USA: ACM, 2000, pp. 292–299, isbn: 1-58113-197-6. doi: 10.1145/

345910.345961. [Online]. Available: http://doi.acm.org/10.1145/345910.345961.

[6] P. Padhy, K. Martinez, A. Riddoch, H. L. R. Ong, and J. K. Hart, “Glacial Environment
Monitoring using Sensor Networks”, RealWSN, pp. 10–14, 2005. [Online]. Available:
http://eprints.soton.ac.uk/260845/.

[7] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of
topics and trends”, Information Systems Frontiers, Mar. 2014, issn: 1387-3326. doi:
10.1007/s10796-014-9489-2. [Online]. Available: http://link.springer.com/10.

1007/s10796-014-9489-2.

[8] G. Trickey, “GSMA: Driving Innovation in Connected Living”, GSMA, Tech. Rep., 2014.
[Online]. Available: http://www.gsma.com/newsroom/wp-content/uploads/us-

m2m-2014.pdf.

77

http://www.google.pt/books?id=wtfEAgAAQBAJ
http://dx.doi.org/10.1016/j.diamond.2009.09.008
http://www.sciencedirect.com/science/article/pii/S0925963509002520
http://www.sciencedirect.com/science/article/pii/S0925963509002520
http://dx.doi.org/10.5772/13225
http://cdn.intechweb.org/pdfs/12464.pdf
http://cdn.intechweb.org/pdfs/12464.pdf
http://dx.doi.org/10.1109/JPROC.2003.814918
http://dx.doi.org/10.1145/345910.345961
http://dx.doi.org/10.1145/345910.345961
http://doi.acm.org/10.1145/345910.345961
http://eprints.soton.ac.uk/260845/
http://dx.doi.org/10.1007/s10796-014-9489-2
http://link.springer.com/10.1007/s10796-014-9489-2
http://link.springer.com/10.1007/s10796-014-9489-2
http://www.gsma.com/newsroom/wp-content/uploads/us-m2m-2014.pdf
http://www.gsma.com/newsroom/wp-content/uploads/us-m2m-2014.pdf

[9] Machina Research, “The Global M2M Market in 2013 WhitePaper”, no. January, 2013.
[Online]. Available: http://www.telecomengine.com/sites/default/files/temp/

CEBIT%5C_M2M%5C_WhitePaper%5C_2012%5C_01%5C_11.pdf.

[10] Gsma Intelligence, “From concept to delivery: the M2M market today”, no. Febru-
ary, pp. 1–21, 2014. [Online]. Available: https://gsmaintelligence.com/files/

analysis/?file=140217-m2m.pdf.

[11] OneM2M, oneM2M Why Join?, 2014. [Online]. Available: http://www.onem2m.org/

whyjoin.cfm (visited on 10/20/2014).

[12] ETSI M2M TC, “Machine-to-Machine communications (M2M); Functional architec-
ture”, Tech. Rep., 2013, pp. 1–280.

[13] Cocoon, Cocoon Overview. [Online]. Available: http: / /cocoon .actility.com/

documentation/ongv2/overview (visited on 10/18/2014).

[14] OM2M, OM2M Architecture. [Online]. Available: http://projects.eclipse.org/

projects/technology.om2m (visited on 10/21/2014).

[15] Carriots, Carriots Ecosystem. [Online]. Available: https://www.carriots.com/

documentation/carriots%5C_ecosystem.

[16] OpenMTC, “OpenMTC White Paper - M2M Solutions for Smart Cities and the
Internet of Things”, 2013. [Online]. Available: http://www.open-mtc.org/%5C_

files/2013%5C_03%5C_OpenMTC%5C_Whitepaper.pdf.

[17] Xively, What is Xively - Xively. [Online]. Available: https://xively.com/whats%5C_

xively/ (visited on 10/24/2014).

[18] E. Osmanoglu, Identity and Access Management: Business Performance Through
Connected Intelligence. Elsevier Science, 2013, pp. 47–54, isbn: 9780124104334. [Online].
Available: http://books.google.pt/books?id=nW-tAAAAQBAJ.

[19] C. Messina, Does OpenID need to be hard? [Online]. Available: http://factoryjoe.

com/blog/2009/04/06/does-openid-need-to-be-hard/ (visited on 10/26/2014).

[20] OpenID Connect, OpenID Connect | OpenID. [Online]. Available: http://openid.

net/connect/ (visited on 10/26/2014).

[21] N. Sakimura, NRI, J. Bradley, P. Identity, M. Jones, Microsoft, B. de Medeiros, Google,
C. Mortimore, and Salesforce, OpenID Connect Core 1.0 (incorporating errata set
1), 2014. [Online]. Available: http://openid.net/specs/openid-connect-core-

1%5C_0.html.

[22] H. Lockhart, B. Campbell, P. Identity, N. Ragouzis, J. Hughes, R. Philpott, E. Maler,
S. Microsystems, P. Madsen, and T. Scavo, “Security Assertion Markup Language
(SAML) V2.0 Technical Overview”, 2008. [Online]. Available: https://www.oasis-

open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-

02.pdf.

[23] P. Mishra, D. Chopra, J. Moreh, and R. Philpott, “Differences between OASIS Security
Assertion Markup Language (SAML) V1.1 and V1.0 21”, no. May, pp. 1–6, 2003.
[Online]. Available: https://www.oasis-open.org/committees/download.php/

3412/sstc-saml-diff-1.1-draft-01.pdf.

78

http://www.telecomengine.com/sites/default/files/temp/CEBIT%5C_M2M%5C_WhitePaper%5C_2012%5C_01%5C_11.pdf
http://www.telecomengine.com/sites/default/files/temp/CEBIT%5C_M2M%5C_WhitePaper%5C_2012%5C_01%5C_11.pdf
https://gsmaintelligence.com/files/analysis/?file=140217-m2m.pdf
https://gsmaintelligence.com/files/analysis/?file=140217-m2m.pdf
http://www.onem2m.org/whyjoin.cfm
http://www.onem2m.org/whyjoin.cfm
http://cocoon.actility.com/documentation/ongv2/overview
http://cocoon.actility.com/documentation/ongv2/overview
http://projects.eclipse.org/projects/technology.om2m
http://projects.eclipse.org/projects/technology.om2m
https://www.carriots.com/documentation/carriots%5C_ecosystem
https://www.carriots.com/documentation/carriots%5C_ecosystem
http://www.open-mtc.org/%5C_files/2013%5C_03%5C_OpenMTC%5C_Whitepaper.pdf
http://www.open-mtc.org/%5C_files/2013%5C_03%5C_OpenMTC%5C_Whitepaper.pdf
https://xively.com/whats%5C_xively/
https://xively.com/whats%5C_xively/
http://books.google.pt/books?id=nW-tAAAAQBAJ
http://factoryjoe.com/blog/2009/04/06/does-openid-need-to-be-hard/
http://factoryjoe.com/blog/2009/04/06/does-openid-need-to-be-hard/
http://openid.net/connect/
http://openid.net/connect/
http://openid.net/specs/openid-connect-core-1%5C_0.html
http://openid.net/specs/openid-connect-core-1%5C_0.html
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf
https://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf

[24] S. Cantor, J. Kemp, R. Philpott, E. Maler, S. Microsystems, C. P. Cahill, J. Hughes, A.
Origin, H. Lockhart, M. Beach, R. Metz, B. A. Hamilton, R. Randall, T. Wisniewski,
I. Reid, P. Austel, M. Hondo, M. Mcintosh, T. Nadalin, N. Ragouzis, P. C. Davis,
J. Hodges, F. Hirsch, P. Madsen, S. Anderson, P. Mishra, P. Identity, J. Linn, J.
Moreh, and A. Anderson, “Assertions and Protocols for the OASIS Security Assertion
Markup Language (SAML) V2.0”, OASIS standard, no. March, pp. 1–86, 2005. [Online].
Available: http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-

os.pdf.

[25] S. Cantor, F. Hirsch, J. Kemp, R. Philpott, E. Maler, S. Microsystems, C. P. Cahill,
J. Hughes, A. Origin, H. Lockhart, M. Beach, R. Metz, B. A. Hamilton, R. Randall, T.
Wisniewski, I. Reid, P. Austel, M. Hondo, M. Mcintosh, T. Nadalin, N. Ragouzis, P. C.
Davis, J. Hodges, P. Madsen, S. Anderson, P. Mishra, P. Identity, J. Linn, J. Moreh,
A. Anderson, and R. Monzillo, “Bindings for the OASIS Security Assertion Markup
Language (SAML) V2.0”, OASIS standard, pp. 1–46, 2005. [Online]. Available: http:

//docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf.

[26] J. Hughes, S. Cantor, and J. Hodges, “Profiles for the OASIS Security Assertion
Markup Language (SAML) V2. 0”, OASIS standard, 2005. [Online]. Available: http:

//docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.

[27] K. Lawrence, C. Kaler, A. Nadalin, R. Monzillo, and P. Hallam-baker, “Web Ser-
vices Security: SOAP Message Security 1.1 (WS-Security 2004)”, Security, vol. 2003,
p. 76, 2006, issn: 09685227. doi: 10 . 1016 / S1361 - 3723(03) 03011 - 2. [Online].
Available: http : / / docs . oasis - open . org / wss / v1 . 1 / wss - v1 . 1 - spec - os -

SOAPMessageSecurity.pdf.

[28] K. Lawrence, C. Kaler, A. Nadalin, M. Goodner, and M. Gudgin, WS-Trust 1.4,
2009. doi: http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.154.4519%5C&rep=rep1%5C&type=pdf.

[29] S. Godik, T. Moses, A. Anderson, S. Microsystems, B. Parducci, C. Adams, D. Flinn, G.
Brose, H. Lockhart, K. Beznosov, M. Kudo, P. Humenn, S. Andersen, S. Crocker, and
P. S. Systems, “eXtensible Access Control Markup Language (XACML)”, 2003. [Online].
Available: https://www.oasis-open.org/committees/download.php/2406/oasis-

xacml-1.0.pdf.

[30] S. Track and W. Product, “eXtensible Access Control Markup Language (XACML)
Version 3.0”, no. January, pp. 1–154, 2013. [Online]. Available: http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf.

[31] WSO2, WSO2 Identity Server Architecture. [Online]. Available: https://docs.wso2.

com/display/IS500/Architecture (visited on 10/28/2014).

[32] MuleSoft, “Evolution of SOA WhitePaper”, [Online]. Available: http://docs.media.

bitpipe.com/io%5C_10x/io%5C_107089/item%5C_597001/Evolution%20of%

20SOA%20Whitepaper.pdf.

[33] G. Flurry and K. J. Clark, “The Enterprise Service Bus, re-examined”, pp. 1–22,
2011. [Online]. Available: http : / / www . ibm . com / developerworks / websphere /

techjournal/1105%5C_flurry/1105%5C_flurry-pdf.pdf.

79

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://dx.doi.org/10.1016/S1361-3723(03)03011-2
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://dx.doi.org/http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4519%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.4519%5C&rep=rep1%5C&type=pdf
https://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
https://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://docs.wso2.com/display/IS500/Architecture
https://docs.wso2.com/display/IS500/Architecture
http://docs.media.bitpipe.com/io%5C_10x/io%5C_107089/item%5C_597001/Evolution%20of%20SOA%20Whitepaper.pdf
http://docs.media.bitpipe.com/io%5C_10x/io%5C_107089/item%5C_597001/Evolution%20of%20SOA%20Whitepaper.pdf
http://docs.media.bitpipe.com/io%5C_10x/io%5C_107089/item%5C_597001/Evolution%20of%20SOA%20Whitepaper.pdf
http://www.ibm.com/developerworks/websphere/techjournal/1105%5C_flurry/1105%5C_flurry-pdf.pdf
http://www.ibm.com/developerworks/websphere/techjournal/1105%5C_flurry/1105%5C_flurry-pdf.pdf

[34] Burton Group and A. T. Manes, “Enterprise Service Bus: A Definition (White Paper)”,
pp. 1–35, 2007. [Online]. Available: http://i.i.cbsi.com/cnwk.1d/html/itp/

burton%5C_ESB.pdf.

[35] BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, and Sybase, “Service Compo-
nent Architecture - Building Systems using a Service Oriented Architecture (Joint
Whitepaper)”, no. November, 2005. [Online]. Available: http://www.sybase.com/sb%

5C_content/1038547/SCA%5C_White%5C_Paper1%5C_09.pdf.

[36] D. Chappell, “Introducing sca”, no. July, 2007. [Online]. Available: http://192.41.

170.42/~mdailey/class/sw-arch/Chappell-IntroducingSCA.pdf.

[37] K. Conner and K. Babo, Next-Generation ESB, 2010. [Online]. Available: http :

//www.redhat.com/promo/summit/2010/presentations/jbossworld/developer-

insights-ii/wed/kconner-1130-next-generation/summit-jbw-nextgen-es-

Final.pdf.

80

http://i.i.cbsi.com/cnwk.1d/html/itp/burton%5C_ESB.pdf
http://i.i.cbsi.com/cnwk.1d/html/itp/burton%5C_ESB.pdf
http://www.sybase.com/sb%5C_content/1038547/SCA%5C_White%5C_Paper1%5C_09.pdf
http://www.sybase.com/sb%5C_content/1038547/SCA%5C_White%5C_Paper1%5C_09.pdf
http://192.41.170.42/~mdailey/class/sw-arch/Chappell-IntroducingSCA.pdf
http://192.41.170.42/~mdailey/class/sw-arch/Chappell-IntroducingSCA.pdf
http://www.redhat.com/promo/summit/2010/presentations/jbossworld/developer-insights-ii/wed/kconner-1130-next-generation/summit-jbw-nextgen-es-Final.pdf
http://www.redhat.com/promo/summit/2010/presentations/jbossworld/developer-insights-ii/wed/kconner-1130-next-generation/summit-jbw-nextgen-es-Final.pdf
http://www.redhat.com/promo/summit/2010/presentations/jbossworld/developer-insights-ii/wed/kconner-1130-next-generation/summit-jbw-nextgen-es-Final.pdf
http://www.redhat.com/promo/summit/2010/presentations/jbossworld/developer-insights-ii/wed/kconner-1130-next-generation/summit-jbw-nextgen-es-Final.pdf

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Dissertation Structure

	State of the Art
	Machine to Machine
	Wireless Sensor Networks
	Internet of Things
	From M2M to IoT
	European Telecommunications Standard Institute
	M2M Standard
	High-level Architecture
	Available implementations

	IoT Platforms (Related Work)
	Carriots
	OpenMTC Platform
	Xively

	Identity and Access Management
	OpenID Connect
	SAML 2.0
	WS-Security
	WS-Trust
	XACML
	Software

	Service-oriented Architecture
	Service Disambiguation
	Enterprise Service Bus
	Service Component Architecture
	SCA Implementations

	Architecture
	First Layer (Entities)
	Second Layer (Services)
	Authentication and Authorization Services
	Exposed Service and Implementation
	NaNSCLService
	DataBus Service
	Overview

	Third Layer (Service Structure)
	Service encapsulation

	Implementing an IoT Platform
	Defined objectives
	Overview

	Access Control
	The Chain of Trust (Authentication)
	Authorization

	Service Mediation
	Message Interceptor
	Service Composite

	ETSI Integration
	Connections

	DataBus
	Overview
	Cache System
	Use Cases

	Evaluation and Results
	Deployment Scenario
	Test Case
	Results

	Conclusion
	Future Work

	Glossary
	References

