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Chapter

A Review on the Exact
Monte Carlo Simulation
Hongsheng Dai

Abstract

Perfect Monte Carlo sampling refers to sampling random realizations exactly
from the target distributions (without any statistical error). Although many differ-
ent methods have been developed and various applications have been implemented
in the area of perfect Monte Carlo sampling, it is mostly referred by researchers to
coupling from the past (CFTP) which can correct the statistical errors for the Monte
Carlo samples generated by Markov chain Monte Carlo (MCMC) algorithms. This
paper provides a brief review on the recent developments and applications in CFTP
and other perfect Monte Carlo sampling methods.

Keywords: coupling from the past, diffusion, Monte Carlo, perfect sampling

1. Introduction

In the past 30 years, substantial progress has been made in popularizing
Bayesian methods for the statistical analysis of complex data sets. An important
driving force has been the availability of different types of Bayesian computational
methods, such as Markov chain Monte Carlo (MCMC), sequential Monte Carlo
(SMC), approximate Bayesian computation (ABC) and so on. For many practical
examples, these computational methods can provide rapid and reliable approxima-
tions to the posterior distributions for unknown parameters.

The basic idea that lies behind these methods is to obtain Monte Carlo samples
from the distribution of interest, in particular the posterior distribution. In Bayesian
analysis of complex statistical models, the calculation of posterior normalizing
constants and the evaluation of posterior estimates are typically infeasible either
analytically or by numerical quadrature. Monte Carlo simulation provides an alter-
native. One of the most popular Bayesian computational methods is MCMC, which
is based on the idea of constructing a Markov chain with the desired distribution as
its stationary distribution.

By running a Markov chain, MCMC methods generate statistically dependent
and approximate realizations from the limiting (target) distribution. A potential
weakness of these methods is that the simulated trajectory of a Markov chain will
depend on its initial state. A common practical recommendation is to ignore the
early stages, the so-called burn-in phase, before collecting realizations of the state of
the chain. How to choose the length of the burn-in phase is an active research area.
Many methods have been proposed for convergence diagnostics; [10] gave a compar-
ative review. Rigorous application of diagnostic methods requires either substantial
empirical analysis of the Markov chain or complex mathematical analysis. In
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practice, judgments about convergence are often made by visual inspection of the
realized chain or the application of simple rules of thumb.

Concerns about the quality of the sampled realizations of the simulated Markov
chains have motivated the search for Monte Carlo methods that can be guaranteed
to provide samples from the target distribution. This is usually referred to as perfect
sampling or exact sampling. In some cases, for example, the multivariate normal,
perfect samples are readily available. For more complicated distributions, perfect
sampling can be achieved, in principle, by the rejection method. This involves sam-
pling from a density that bounds a suitable multiple of the target density, followed
by acceptance or rejection of the sampled value. The difficulty here is in finding a
bounding density that is amenable to rapid sampling while at the same time pro-
viding sample values that are accepted with high probability. In general this is a
challenging task, although efficient rejection sampling methods have been devel-
oped for the special class of log-concave densities; see, for example, [20, 22].

A surprising breakthrough in the search for perfect sampling methods was made
by [37]. The method is known as coupling from the past (CFTP). This is a sophisti-
cated MCMC-based algorithm that produces realizations exactly from the target
distribution. CFTP transfers the difficulty of running the Markov chain for exten-
sive periods (to ensure convergence) to the difficulty of establishing whether a
potentially large number of coupled Markov chains have coalesced. An efficient
CFTP algorithm depends on finding an appropriate Markov chain construction that
will ensure fast coalescence. There have been a few further novel theoretical devel-
opments following the breakthrough of CFTP, including [20, 21, 38]. Since then,
perfect sampling methods have attracted great attention in various Bayesian com-
putational problems and applied probability areas.

Apart from coupling from the past, many other perfect sampling methods were
proposed for specific problems, for example, perfect sampling for random spanning
trees [2, 47] and path-space rejection sampler for diffusion processes [3–5]. Very
recently, a type of divide-and-conquer method has been developed in [15, 16].
These methods use the technique for the exact simulation of diffusions and samples
from simple sub-densities to obtain perfect samples from the target distribution.

Perfect samples are useful in Bayesian applications either as a complete replacement
for MCMC-generated values or as a source of initial values that will guarantee that a
conventionalMCMCalgorithm runs in equilibrium. Perfect samples can also be used as
a means of quality control in judging a proposedMCMC implementation when there
are questions about the speed of convergence of the MCMC algorithm or whether the
chain is capable of exploring all parts of the sample space. Of course, when perfect
samples can be obtained speedily, they will be preferred to MCMC values, since they
eliminate such doubts. In addition, sophisticated perfect samplingmethodology often
motivates efficient approximate algorithms and computational techniques. For exam-
ple, [43] uses regeneratedMarkov chains to obtain simple standard error estimates for
importance sampling underMCMC context. The condition required there will allow us
to carry out perfect sampling via multigamma coupling approach [23].

This paper will present a brief review for perfect Monte Carlo sampling and
explain the advantages and drawbacks of different types of methods. Section 2 will
present rejection sampling techniques, and then CFTP will be covered in Section 3.
Recent divide-and-conquer methods will be reviewed in Section 4. The paper ends
with a discussion in Section 5.

2. Rejection sampling techniques

Rejection sampling, also known as ‘acceptance-rejection sampling’, generates
realizations from a target probability density function f xð Þ by using a hat function
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Mg xð Þ, where f xð Þ≤Mg xð Þ and g xð Þ are a probability density function from which
samples can be readily simulated. The basic rejection sampling algorithm is as
follows:

Algorithm 2.1 (Basic rejection sampling)

Sample x from g xð Þ and U from Unif 0, 1½ �. 01

If U ≤
f xð Þ
Mg xð Þ,

02

accept x as a realisation of f xð Þ and stop; 03

else 04

reject the value of x and go back to step 01. 05

Many other perfect sampling methods are actually equivalent to rejection sam-
pling. For example, ratio-of-uniform (RoU) method [45] may have to be
implemented via a rejection sampling approach.

The efficiency of rejection sampling depends on the acceptance probability,
which is 1=M. To perform rejection sampling efficiently, it is very important to find
hat functions which provides higher acceptance probabilities. In other words, we
shall choose M as small as possible [39]; however for many complicated problems,
there is no easy way to find M small enough to guarantee high acceptance proba-
bility. A number of sophisticated rejection sampling methods have been
suggested for dealing with complex Bayesian posterior densities, which we
discuss below.

2.1 Log-concave densities

A function h xð Þ is called log-concave if

log h λxþ 1� λð Þyð Þ≥ λ log h xð Þ þ 1� λð Þ log h yð Þ,

for all x, y and λ∈ 0, 1½ �. For the special class of log-concave densities, Gilks and
wild [22] developed the adaptive rejection sampling (ARS) method. The method
constructs an envelope function for the logarithm of the target density, f xð Þ, by
using tangents to log f xð Þ at an increasing number, n, of points. The envelope
function un xð Þ is the piecewise linear upper hull formed from the tangents. Note
that, the envelope can be easily constructed due to the concavity of log f xð Þ. The
method also constructs a squeeze function ln xð Þ which is formed from the chords of
the tangent points. The sampling steps of the ARS algorithm are as follows.

Algorithm 2.2 (Adaptive rejection sampling).

Outputs a stream of perfect samples from f xð Þ.
Initialise un xð Þ and ln xð Þ by using tangents at several points. 01

Sample x ∗ from density ∝ exp un xð Þð Þ and U � Unif 0, 1ð Þ 02

If U ≤ exp ln x ∗ð Þ � un x ∗ð Þð Þ, Output x ∗ ; 03

else if U ≤ f x ∗ð Þ= exp un x ∗ð Þð Þ, 04

Output x ∗ ; Update un, lnð Þ to unþ1, lnþ1ð Þ using x ∗ ; 05

Goto 02 06

The ARS algorithm is adaptive and the sampling density is modified whenever
f x ∗ð Þ is evaluated. In this way, the method becomes more efficient as the sampling
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continues. Leydold [29] extends ARS to log-concave multivariate densities.
Leydold’s algorithm is based on decomposing the domain of the density into cones
and then computing tangent hyperplanes for these cones. Generic computer code
for sampling from a multivariate log-concave density is available on the author’s
website; it is only necessary to code a subroutine for the target density. Leydold’s
algorithm works well for simple low-dimensional densities. The drawback of ARS
algorithm is that it only works for log-concave densities, which is a very small class
of posteriors in practice. Also computationally it is very challenging to implement
ARS algorithm for high-dimensional densities [11].

2.2 Fill’s rejection sampling algorithm

We consider a discrete Markov chain with transition probability P x, yð Þ and
stationary distribution π xð Þ, x∈ S. Let ~P x, yð Þ ¼ π yð ÞP y, xð Þ=π xð Þ be the transition
probability for the time-reversed chain. Suppose that there is a partial ordering on

the states S, denoted by x≼ y. Let 0̂ and 1̂ be unique extremal points of the partial
ordering.

To demonstrate the algorithm given by [20], we will assume that there are

update functions ϕ and ~ϕ both mapping S� 0, 1½ � to S such that

P x, yð Þ ¼ P ϕ x,Uð Þ ¼ yð Þ, (1)

~P x, yð Þ ¼ P ~ϕ x,Uð Þ ¼ y
� �

, (2)

where U � Unif 0, 1½ � and

x≼ y ) ~ϕ x, uð Þ≼ ~ϕ y, uð Þ a:e: u∈ 0, 1½ �:

The algorithm is as follows:

Algorithm 2.3 (Fill’s algorithm)

1. Choose an integer t>0. Fix x0 ¼ 0̂ and y0 ¼ 1̂.

2. Generate xk ¼ ϕ xk�1,Ukð Þ, k ¼ 1,⋯, t, where Ukf g are i.i.d. Unif 0, 1½ �.
3. Generate ~Uk from the conditional distribution of U given ~ϕ xt�kþ1,Uð Þ ¼ xt�k, k ¼ 1,⋯, t.

4. Generate yk ¼ ~ϕ yk�1,
~Uk

� �

, k ¼ 1,⋯, t.

5. If yt ¼ x0 then accept xt; else double t and repeat from step 2.

In Algorithm 2.3 (step 2) z≔ xt is sampled from Pt 0̂, �
� �

. If we find an upper

bound M for π zð Þ=Pt 0̂, z
� �

, then we can use rejection sampling. Fill [20] finds a

bounding constant given by M ¼ π 0̂
� �

=~P
t
1̂, 0̂
� �

and proves that steps from 3 to 5 of

Algorithm 2.3 are to accept z with probability π zð Þ
MPt 0̂, zð Þ. The output of this algorithm

is indeed a perfect sample from π.
From Algorithm 2.3, we can see that rejection sampling can still be possible, even

if we do not have a closed form of the hat function. The first limitation of Algorithm
2.3 is that it works only if the time-reversed chain is monotone, but [21] has
extended the algorithm theoretically for general chains. The second limitation is
that step 3 of Algorithm 2.3 is difficult to perform [20]. For these reasons, Fill’s
algorithm is not practical for realistic problems.
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3. Coupling from the past

Coupling from thepastwas introduced in the landmark paper of [37]which showed
how to provide perfect samples from the limiting distribution of aMarkov chain.

3.1 Basic CFTP algorithms

Let Xtf g be an ergodic Markov chain with state space X ¼ 1,⋯, nf g, where the
probability of going from i to j is pij and the stationary distribution is π. Suppose we

design an updating function ϕ �,Uð Þ, which satisfies P ϕ i,Uð Þ ¼ j½ � ¼ pij, where ϕ is a

deterministic function and U is a random variable. To simulate the next state Y of the
Markov chain, currently in state i, we draw a random variable U and let Y ¼ ϕ i,Uð Þ.

Let f t ið Þ ¼ ϕ i,Utð Þ, and define the composition

Ft2
t1
¼ f t2�1∘f t2�2∘⋯∘f t1þ1∘f t1 , (3)

for t1 < t2.
Proposition 3.1 [37] Suppose there exists a time t ¼ �T, the backward coupling

time, such that chains starting from any state in X ¼ 1,⋯, nf g, at time t ¼ �T, and
with the same sequence Ut, t ¼ �T,⋯,�1f g, arrive at the same state X ∗

0 . Then it
must follow that X ∗

0 comes from π.
This proposition is easy to prove. If we run an ergodic Markov chain from time

t ¼ �∞ and with the sequence Ut, t ¼ �T,⋯,�1f g after �T, the Markov chain will
arrive at X ∗

0 . Then X ∗
0 comes exactly from π since it is collected at time 0 and the

Markov chain started from �∞. The algorithm is as follows:

Algorithm 3.1 (Basic CFTP)

t ¼ 0 01

repeat 02

t ¼ t � 1 03

generate Ut 04

F0
t ¼ F0

tþ1∘ϕ �,Utð Þ 05

until F0
t �ð Þ is a constant 06

return F0
t �ð Þ 07

Propp andWilson [37] also proved that this algorithm is certain to terminate. The

idea of simulating from the past is important. Note that if we collect FT
0 �ð Þ as the result,

where T is the smallest value that makes FT
0 �ð Þ a constant, we will get a biased sample.

This is because T is a stopping time, which is not independent of the Markov chain.

3.2 Read-once CFTP

The basic CFTP algorithm needs to restart the Markov chains at some points in
the past if they have not coalesced by time 0. We must use the same random

sequence Utf g�1
�∞ when we restart the Markov chains. In Monte Carlo simulations,

we usually use pseudorandom number generators, which are deterministic algo-
rithms. So if we give the same random seed, we will get the same random sequence.
This means that the same sequence Utf g can be regenerated in each coupling
procedure.
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If we can run the Markov chain forward starting at 0 and collect a perfect sample
in the future, we will not have to regenerate Utf g. Wilson [48] developed a read-
once CFTP method to implement the forward coupling idea. A simple example is
provided by [6]. In fact, the multigamma coupler in [23] can be implemented via
the more efficient read-once CFTP algorithm.

3.3 Improvement of CFTP algorithms

Propp and Wilson [37] showed that the computational cost of the algorithm can
be reduced if there is a partial order for the state space X that is preserved by the
update function ϕ, i.e. if x≤ y then ϕ x,Uð Þ≤ϕ y,Uð Þ. Their procedure is outlined in

Algorithm 3.2, whereas before 0̂ and 1̂ are the unique extremals. Note that their
algorithm needs a monotone update function ϕ for the Markov chain, while Algo-

rithm 2.3 requires a monotone update function ~ϕ for the time-reversed chain.

Algorithm 3.2 (Monotone CFTP)

T ¼ 1 01

Repeat 02

upper ¼ 1̂ 03

lower ¼ 0̂ 04

for t ¼ �T to t ¼ �1 05

upper ¼ ϕt upper,Utð Þ 06

lower ¼ ϕt lower,Utð Þ 07

T ¼ 2T 08

until upper ¼ lower 09

return upper 10

Algorithm 3.2 is much simpler than Algorithm 3.1, since only two chains have to
be run at the same time, but the requirement of monotonicity is very restrictive.
Markov chains with transitions given by independent Metropolis-Hastings and
perfect slice sampling have been shown to have this property, by [9, 32], respec-
tively. However [32, 34] have also noticed that such independent M-H CFTP is
equivalent to simple rejection sampler.

In general it is hard to code perfect slice samplers correctly. For example,
Hörmann and Leydold [26] have pointed out that the perfect slice samplers in
[7, 36] are incorrect. The challenge of monotone CFTP is usually to construct the
detailed updating function with a guarantee of preserving the partial order.

Finding a partial order preserved by the Markov chains is a non-trivial task in
many cases. An alternative improvement is to use CFTP with bounding chains, such
as that in [27, 33]. If the bounding chains, which bound all the Markov chains,
coalesce, then all Markov chains coalesce. Thus if only a few bounding chains are
required, the efficiency of the CFTP algorithm can be improved significantly.
Sometimes, it may be impossible to define an explicit bounding chain (the maxi-
mum of the state space may be infinity, and the upper bound chain cannot start
from infinity), but it is possible to use a dominated process to bound all Markov
chains [28].

3.4 Applications and challenges

Although CFTP is extremely challenging to be implemented for many practical
problems, it did find a few applications in certain discrete state space problems, for
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example, the Ising model [37]. Also [18] applied CFTP to ancestral selection graph
to simulate samples from population genetic models. Refs. [12, 14] applied CFTP to
a class of fork-join type queuing system problems. Connor and Kendal [8] applied
CFTP for the perfect simulation of M/G/c queues. CFTP also finds its application in
signal processing [17].

CFTP for continuous state space Markov chains is very challenging, since a
random map from an interval to a finite number of points is required. In recent
years, many methods have been developed for unbounded continuous state space
Markov chains, such as perfect slice sampler in [32], multigamma coupler and the
bounded M-H coupler in [23, 34]. Wilson [49] developed a layered multi-shift
coupling, which shifts states in an interval to a finite number of points. However,
none of these methods can solve any practical problems.

4. Recent advances in perfect sampling

Recently, a new type of perfect Monte Carlo sampling method based on the
decomposition of the target density f , as f �ð Þ ¼ g1 �ð Þg2 �ð Þ, was proposed in [15],
where g1 and g2 are also (proportional to) proper density functions. Note that here
g1 and g2 are continuous density functions which are easy to simulate from. Suppose
that q-dimensional vector values x1 and x2 are independently drawn from g1 and g2,
respectively. If the two independent samples are equal, i.e. x1 ¼ x2 ¼ y then we
have y must be from f �ð Þ∝ g1 �ð Þg2 �ð Þ. Note that such a naive approach may be
practical for discrete random variables with low-dimensional state space, but for
continuous random variables, it is impossible since P x1 ¼ x2ð Þ ¼ 0. Dai [15]
proposed a novel approach to deal with this, which is explained in the following
subsection.

4.1 Perfect distributed Monte Carlo without using hat functions

First we introduce the following notations related to the logarithm of the
sub-densities:

α xð Þ ¼ α 1ð Þ,⋯, α qð Þ
� �tr

xð Þ ¼ ∇ log g1 xð Þ (4)

where ∇ is the partial derivative operator for each component of x. Then we

consider a q-dimensional diffusion process Xt ω
!
� �

, t∈ 0,T½ � (T <∞), defined on the

q-dimensional continuous function space Ω, given by:

dXt ¼ α Xtð Þdtþ dBt, (5)

where Bt ω
!
� �

¼ ωt is a Brownian motion and ω
! ¼ ωt, t∈ 0,T½ �f g is a typical

element of Ω. Let  be the probability measure for a Brownian motion with the
initial probability distribution B0 ¼ w0 � f 1 �ð Þ ¼ g21 �ð Þ.

Clearly Xt has the invariant distribution f 1 xð Þ (using the Langevin diffusion
results [24]). Let  be the probability law induced by Xt, t∈ 0,T½ �, with X0 ¼
ω0 � f 1 �ð Þ, i.e. under  we have Xt � f 1 xð Þ for any t∈ 0,T½ �.

The idea in [15] is to use a biased diffusion process X ¼ Xt; 0≤ t≤T
� �

to

simulate from the target function f . It is defined as follows.
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Definition 4.1 (Biased Langevin diffusions) The joint density for the pair X0,XT

� �

(the starting and ending points of the biased diffusion process), evaluated at point

x, y
� �

, is f 1 xð Þt ∗ yjx
� �

f 2 y
� �

, where t ∗ yjx
� �

is the transition density for the diffusion

process X defined in Eq. (6) fromX0 ¼ x toXT ¼ y and f 2 y
� �

¼ g2 y
� �

=g1 y
� �

.

Given X0,XT

� �

the process Xt, 0< t<T
� �

is given by the diffusion bridge

driven by Eq. (6).

The marginal distribution for XT is f y
� �

. Therefore, to draw a sample from the

target distribution f xð Þ, we need to simulate a process Xt, t∈ 0,T½ � from  (the law

induced by X) and then XT � f xð Þ.
Simulation from  can be done via rejection sampling. We can use a biased

Brownian motion Bt; 0≤ t≤T
� �

as the proposal diffusion:
Definition 4.2 (Biased Brownian motion) The starting and ending points

B0,BT

� �

follow a distribution with a density h x, y
� �

, and Bt; 0< t<T
� �

is a

Brownian bridge given B0,BT

� �

.
Under certain mild conditions, Dai [15] proved the following lemma.

Lemma 4.1 Let  be the probability law induced by Bt; 0≤ t≤T
� �

. By letting

h ω0,ωTð Þ ¼ g2 ωTð Þg1 ω0ð Þ 1
ffiffiffiffiffiffiffiffiffi

2πT
p e�

∥ωT�ω0∥
2

2T (6)

we have

d

d
ω
!
� �

∝ exp � 1

2

ðT

0
αk k2 þ divα

� �

ωtð Þdt
	 


(7)

where div is the divergence operator.
Condition 4.1 There exists l> �∞ such that

1

2
αk k2 þ divα

� �

xð Þ � l≥0: (8)

Under Condition 4.1 the ratio (8) can be rewritten as

d

d
ω
!
� �

∝ exp �
ðT

0

1

2
αk k2 þ divα

� �

ωtð Þ � l

� �

dt

	 


, (9)

which has a value no more than 1.

Therefore we can use rejection sampling to simulate from , with proposal
measure . This acceptance probability (10) can be dealt with using similar methods
as that in [3, 5]. The algorithm is presented below; see [13, 15] for more details.

Algorithm 4.1 (Simple distributed sampler)

Simulate ω0,ωTð Þ from density h 01

Simulate the biased Brownian bridge Bt, t∈ 0,Tð Þ
� �

02

Accept ωT as a sample from f , with probability (6); If rejected, go back to step 01. 03

Such a method is a rejection sampling algorithm, but it does not require finding a
hat function to bound the target density, which is usually the main challenge of the

8

Bayesian Inference



traditional rejection sampling for complicated target densities. The above algorithm
uses g2 as the proposal density function, which does not have to bound the target f .
However, it requires a bound for the derivatives of the logarithm of the sub-
densities (see Condition 4.1). This is usually easier to get in practice, since the
logarithm of the posterior is usually easy to deal with. Also [15] noted that we
should choose sub-densities g1 and g2 as similar as possible, in order to achieve high
acceptance probability.

Dai [15] focused on the simple decomposition of f ¼ g1g2, although it mentioned
that for more general decomposition of f ¼ g1g2⋯gC, a recursive method can be
used. Unfortunately, a naive recursive method is very inefficient. A more sophisti-
cated method is introduced in the following section.

4.2 Monte Carlo fusion for distributed analysis

A more efficient and sophisticated methods were proposed recently in [16],
named as Monte Carlo fusion. Suppose that we consider

f xð Þ∝ g1 xð Þ⋯gC xð Þ, (10)

where each gc xð Þ (c∈ 1, … ,Cf g) is a density (up to a multiplicative constant).
Here C denotes the number of parallel computing cores available in big data
problems, and each gc xð Þ means the sub-posterior density based on a subset of the
big data. In group decision problems, C means the number of different decisions
which should be combined and gc xð Þ stands for the decision from each group
member.

Dai et al. [16] considered simulating from the following density on extended
space,

g x 1ð Þ, … ,x Cð Þ, y
� �

¼
Y

C

c¼1

g2c x cð Þ
� �

� pc y jx cð Þ
� �

� 1

gc y
� �

" #

, (11)

which admits the marginal density f for y. Here pc y jx cð Þ� �

is the transition

density from x cð Þ to y for the Langevin diffusion defined in Eq. (6) associated with
each sub-density gc.

Dai et al. [16] considered a rejection sampling approach with proposal density
proportional to the function

h x 1ð Þ, … , x Cð Þ, y
� �

¼
Y

C

c¼1

gc x cð Þ
� �h i

� exp �C � ∥y� x∥2

2T

� �

, (12)

where x ¼ C�1PC
c¼1x

cð Þ and T is an arbitrary positive constant.
Simulation from the proposal h can be achieved directly. In particular,

x 1ð Þ, …x Cð Þ are first drawn independently from g1, … , gC, respectively, and then y is
simply a Gaussian random variable centred on x. This is a distributed analysis or
divide-and-conquer approach. Detailed acceptance probabilities and rejection
sampling algorithms can be found in [16].

The above fusion approach arises in modern statistical methodologies for ‘big
data’. A full dataset will be artificially split into a large number of smaller data sets,
and inference is then conducted on each smaller data set and combined (see, for
instance, [1, 30, 31, 35, 40–42, 46]). The advantage for such an approach is that
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inference on each small data set can be conducted in parallel. Then the heavy
computational cost of algorithms such as MCMC will not be a concern. Traditional
methods suffer from the weakness that the fusion of the separately conducted
inferences is inexact. However, the Monte Carlo fusion in [16] is an exact simula-
tion algorithm and does not have any approximation weakness.

The above fusion approach also arises in a number of other settings, where
distributed analysis came naturally. For example, in signal processing, distributed
multi-sensor may be used for network fusion systems. Fusion approach arises
naturally to combine results from different sensors [44].

5. Conclusion

Although perfect simulation usually refers to correcting the statistical errors for
the samples drawn via MCMC, it actually covers a much wider area beyond CFTP.
In fact for certain applications, it is often possible to construct other types of perfect
sampling methods which are much more efficient than CFTP. For example, for the
exact simulation of the posterior of simple mixture models, the geometric-
arithmetic mean (GAM) method in [11] is much more efficient than CFTP in [25].
Details of GAM method is provided in Appendix. Also the random walk construc-
tion for exact simulation for random spanning trees [2] is much more efficient than
the CFTP version.

Bayesian computational algorithms keep evolving, in particular under the cur-
rent big data era. Although almost all newly developed algorithms are approximate
simulation algorithms, perfect sampling is still one of the key wheel-driven forces
for new Bayesian computational algorithms, and they usually can quickly motivate
new class of ‘mainstream’ algorithms. More focus should be given to methods
beyond CFTP, for example, the fusion type of algorithms.

The Monte Carlo fusion method has the potential to be used in many Bayesian big
data applications. For example, for large car accident data, the response variable is
usually a categorical variable representing the seriousness of the accident, and gener-
alized linear regression model is often used. Under a Bayesian framework, we may
estimate the posterior distribution for the regression parameters via such a fusion
approach. Then the posterior mean, the posterior median, or other characteristics of
the posterior distribution can be estimated using the Monte Carlo samples. Also such
an algorithm is perfect sampling algorithm, and no convergence justification is
needed, since it always provided realizations exactly from the target distribution.

Appendix

A. Geometric-arithmetic mean method for simple mixture model

Observations from a simple mixture model are assumed to be either discrete or
continuous. The density function of an individual observation y has the form

f y;pð Þ ¼
X

K

k¼1

pkf k yð Þ, where
X

K

k¼1

pk ¼ 1, and pk >0, k ¼ 1, … ,K: (13)

We assume that the component weights p ¼ p1, … , pK
� �

are unknown parame-

ters and the number of components, K, and the component densities, f k, are all
known. We focus on the perfect sampling from the posterior distribution of p.
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Suppose that we have N observations, y1, … , yN. Let Lnk ¼ f k yn
� �

and assume

that the prior distribution of p is Dirichlet:

π0 pð Þ∝
Y

K

k¼1

pαk�1
k , αk >0, k ¼ 1, … ,K: (14)

Then the posterior distribution is given by

f pjyð Þ∝ π0 pð Þ
Y

N

n¼1

X

K

k¼1

pkLnk

 !

IX pð Þ, (15)

where X ¼ pj
PK

k¼1pk ¼ 1, pk >0, k ¼ 1, … ,K
n o

.

There are several ways to carry out perfect sampling from Eq. (16). The first
method is based on CFTP [25]. An alternative perfect sampling method for simple
mixture models is introduced by [19]. The third approach is to use adaptive rejec-
tion sampling [22, 29], since the posterior is log-concave. We may also use the ratio-
of-uniform method. However, none of these methods are more efficient than the
geometric–arithmetic mean method in [11].

A.1 Geometric-arithmetic mean method

Suppose that p ∗ , the MLE of p is unique and for simplicity, assume the prior π0 pð Þ
is uniform. Define ank ¼ Lnk=

P

p ∗
k Lnk. The posterior density of p is then given by

f pjyð Þ∝ h pjyð Þ ¼
Y

N

n¼1

X

K

k¼1

pkank

 !

IX pð Þ, (16)

where X is defined in (16).
Let In be a random element of arg max kLnk. Define Aj ¼ n : In ¼ jf g and let

n ¼ n1, … , nkð Þ where nj is the number of elements in Aj.

Define M ¼ mjk

� �

with mjk ¼
P

n∈Aj
ank

� �

=nj. If nj ¼ 0, then set mjj ¼ 1 and

mjk ¼ 0 for j 6¼ k. We now make two assumptions, which we will return to later on:

A: M is invertible.

B: The elements of v ¼ MT
� ��1

1 are all positive.
Under these assumptions, we will show that the following rejection sampler

generates simulated values from the posterior distribution of p. First we define V to

be the diagonal matrix with diagonal elements vT ¼ v1 … , vKð Þ.

Algorithm 6.1 (GAM sampler)

Sample q from the Dirichlet distribution with parameter nþ 1. 01

Sample U from Unif 0, 1½ �. 02

Calculate p with p ¼ M�1V�1q. 03

If U ≤ h pjyð Þ=QK
j¼1 qj=vj
� �nj

, 04

Accept p and stop; 05

else 06

reject p and go to 01. 07
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Proposition 6.1 Under assumptions A and B, Algorithm 6.1 samples p with
probability density (17).

Proof: Since the geometric average is no larger than the arithmetic average, for
p∈X , we have

h pjyð Þ ¼
Y

N

n¼1

X

K

k¼1

pkank

 !

¼
Y

K

j¼1

Y

n∈Aj

X

K

k¼1

pkank

 !

(17)

≤
Y

K

j¼1

P

n∈Aj

PK
k¼1pkank

� �

nj

0

@

1

A

nj

, (18)

where in the case nj ¼ 0, the product term is taken as 1. So that, for p∈X , with
mjk as previously defined, we have

h pjyð Þ≤
Y

K

j¼1

X

K

k¼1

pkmjk

 !nj

(19)

¼
Y

K

j¼1

v
�nj
j

" #

Y

K

j¼1

vj
X

K

k¼1

pkmjk

 !nj

(20)

¼
Y

K

j¼1

qj=vj
� �nj

, (21)

where qj ¼ vj
PK

k¼1pkmjk, j ¼ 1, … ,K or equivalently q ¼ VMp.

Since vj >0 and
PK

k¼1pkmjk >0, it follows that qj >0 for j ¼ 1, … ,K. Furthermore

X

K

j¼1

qj ¼
X

K

j¼1

vj
X

K

k¼1

pkmjk ¼ pTMTv ¼ pT1 ¼ 1,

since MTv ¼ 1, from the definition of v. It follows that p∈X implies q∈X , so
that

h pjyð ÞIX pð Þ≤
Y

K

j¼1

qj=vj
� �nj

IX qð Þ: (22)

Note that the right-hand side of Eq. (22) is proportional to a Dirichlet distribu-
tion with parameters n1 þ 1, … , nK þ 1ð Þ.

Rejection sampling then proceeds as usual:

• A sample q is drawn from Dirichlet nþ 1ð Þ.

• The value p ¼ M�1V�1q is calculated.

• It is accepted with probability h pj yð ÞIX pð Þ=
QK

j¼1 qj=vj
� �nj

.

We now return to assumptions A and B. Suppose that M is invertible but the

elements of v ¼ MT
� ��1

1 are not all positive. In this case, let

αk ¼ 1
N

PN
n¼1ank, α ¼ max

k
αkf g, v ¼ αNð Þ�1n and ~M ¼ αMΔ,
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where Δ is a diagonal matrix with diagonal elements 1=α1, … , 1=αKð Þ. Note that

v ¼ ~M
T

� ��1
1>0. Algorithm 6.1 and its proof can then be modified by replacing M

by ~M.
Suppose now that assumption A does not hold, i.e. M is not invertible. This can

be remedied by adding positive quantities to the diagonal elements of M. This also
provides an alternative way of ensuring that the elements of v are positive.

A.2 Dirichlet priors and pseudo data

Suppose that the prior π0 pð Þ is Dirichlet α1 þ 1, … , αK þ 1ð Þ, where αi : i ¼
1, … ,K are positive, integers and let A ¼

PK
j¼1αj. The prior can be synthesized by

introducing pseudo data, ~amk,m ¼ 1, … ,A; k ¼ 1, … ,K, defined as follows:

~amk ¼
1 if

Pk�1
j¼1 αj þ 1≤m≤

Pk
j¼1αj

0 otherwise,

(

(23)

since

π0 pð Þ∝
Y

K

k¼1

pαkk ¼
Y

A

m¼1

X

K

k¼1

~amkpk

 !

: (24)

With the Dirichlet prior, the posterior distribution given by Eq. (16) can be
written as

f pjyð Þ∝
Y

NþA

l¼1

X

K

k¼1

pkalk

 !

IX pð Þ, (25)

where alk, l ¼ 1, … ,N þ Af g contains the real data ank, n ¼ 1, … ,Nf g and the
pseudo data ~amk,m ¼ 1, … ,Af g.

The posterior distribution (26) has the same form as Eq. (17). Therefore GAM
can be used to sample realizations from the posterior distribution (26).

A.3 Simulation results and discussion

We compare the running time of mixture models with sample sizes (N) and
different number of components (K) in Table 1. The components have specified
normal distributions with means μ ¼ μ1, … , μKð Þ and variances σ2 ¼ σ21, … , σ2K

� �

.

The prior on p is uniform. We sample 10,000 realizations from the posterior of the
models.

When K ¼ 3, 4, we simulate N observations from a three-component normal
mixture with μ ¼ 0, 0, 2ð Þ, σ2 ¼ 1, 4, 1ð Þ and mixture weight p0 ¼ 1=2, 1=3, 1=6ð Þ.
We then either sample from the posterior distribution of p using the same distribu-
tional components in the case K ¼ 3 or sample from the posterior distribution of p
with an additional component having mean μ4 ¼ 4 and variance σ24 ¼ 4, in the case
K ¼ 4.

When K ¼ 5, observations are simulated from the normal mixture distribution
with components having means μ ¼ �2, 0, 4, 2, 3ð Þ, variances σ2 ¼ 1, 1, 4, 1, 4ð Þ
and p0 ¼ 0:35, 0:3, 0:1, 0:2, 0:05ð Þ. Samples from the posterior distribution of p
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are drawn assuming the same components. Similar calculations are carried out
for K ¼ 6, where μ ¼ 0, 3, 2,�2,�4, 5ð Þ, variances σ2 ¼ 1, 1, 1, 1, 1, 4ð Þ and p0 ¼
0:05, 0:3, 0:3, 0:1, 0:08, 0:17ð Þ, again assuming that the component distributions are
known.

From Table 1, we can see that the GAM algorithm, while using very little
memory, is highly efficient in running time. The last row of the table is the esti-
mated acceptance probability of the GAM algorithm. The algorithm is very efficient
when the component densities are known. We can see this not only by simulation
but also from theoretical considerations, as follows.

A.3.1 Explanation of efficiency

When v ¼ MT
� ��1

1>0, we are able to use M directly without modification to
construct the hat function, thereby speeding up the calculations. In the simulations
of the previous section, this was always found to be the case. Now we explain why
this should be so.

If the maximum likelihood estimator of p is consistent, then when N ! ∞,

1

nj

X

n∈Aj

Lnk
PK

k¼1p
∗
k Lnk

� Lnk
PK

k¼1pkLnk





















!p 0: (26)

Assuming sufficient regularity, we also have

mjk ¼
P

n∈Aj
ank

nj
(27)

¼ 1

nj

X

n∈Aj

Lnk
PK

k¼1p
∗
k Lnk

(28)

!p E
f k Yð Þ
f Yð Þ jLj

� �

(29)

¼
Ð

Lj
f k yð Þdy
γj

, as N ! ∞, (30)

where Y has density f yð Þ ¼
PK

k¼1 pk f k yð Þ, Lj ¼ yj f j yð Þ≥ f k yð Þ, k ¼ 1, … ,K
n o

and γj ¼
Ð

Lj
f yð Þdy.

K 3 3 4 4 6 6

N 400 1000 400 1000 400 1000

Fearnhead’s 242 s 3610 s * * * *

Leydold’s ≤ 1 s 3.6 s * * * *

RoU 16:11 s 28:16 s 31:18 s 68:33 s 88:60 s 152:76 s

GAM 4 s 9 s 11 s 16 s 6 s 11 s

GAM AP 0.7472 0.7509 0.2433 0.3088 0.5325 0.5505

Fearnhead’s algorithm, Leydold’s algorithm and ratio-of-uniform. GAM method. GAM acceptance probability. The
* indicates that Fearnhead’s method, and Leydold’s method will not run on a standard desktop when K ¼ 4 and K ¼ 5.

Table 1.

Running times (in s).
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Therefore

MT !p WT, (31)

where

W ¼ wjk

� �

,wjk ¼
Ð

Lj
f k yð Þdy
γj

: (32)

Let v ¼ γ1, … , γKð Þ, then

WTv ¼

PK
j¼1

Ð

Lj
f 1 yð Þdy
⋮

PK
j¼1

Ð

Lj
fK yð Þdy

2

6

6

4

3

7

7

5

¼

Ð

f 1 yð Þdy
⋮

Ð

fK yð Þdy

2

6

4

3

7

5
¼ 1, (33)

where the second equal sign is because ∪K
j¼1Lj ¼ �∞,∞ð Þ. So, there exists v>0,

satisfying WTv ¼ 1. Using Eq. (32), we can conclude that when N is large enough,

there also exists v≈v>0, satisfying MTv ¼ 1.

Since γj ¼
Ð

Lj
f yð Þdy and nj ¼ # Aj

� �

, we have nj=N !p γj: When each nj, j ¼
1, … ,K is large, if a random sample q is drawn from a Dirichlet distribution with
parameter nþ 1, then each qj is approximately equal to nj=N ≈ γj. Furthermore,

vj ≈ γj, so q satisfies

V�1q≈ 1, (34)

and then,

p ¼ M�1V�1q≈M�11 ¼ p ∗ : (35)

If p is approximately equal to the mode p ∗ , the two sides of the inequality,

h pj yð Þ ¼
Y

N

n¼1

X

K

k¼1

pkank

 !

≤
Y

K

j¼1

v
�nj
j

" #

Y

K

j¼1

q
nj
j , (36)

are approximately equal as well. Thus, the closer the sampled realization p is to
p ∗ , the larger the acceptance probability is. So the algorithm runs very rapidly,
since the sampled values of p are always around the mode p ∗ .

This algorithm requires calculating theMLE, which can be performed very quickly
since the likelihood function is log-concave. In fact an approximate guess for p ∗ will
suffice. The more accurate the guess is, the more efficient the algorithm will be.

The method performs well when the component densities are correctly speci-
fied, as explained in the previous section. For these same reasons, we would expect
the algorithm to perform poorly under misspecification. Details of robustness to
misspecification can be found in [11].
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