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Abstract

This chapter will present information on the central auditory nervous system 
with a special focus in the auditory pathways. The intrinsic and extrinsic aspects 
of neuroplasticity will be described, and the neuroplasticity of the auditory system 
will be presented in detail. These topics are the basis of the auditory training (AT) 
program for central auditory processing disorders.
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1. Introduction

1.1 The central auditory nervous system

The central nervous system is bilaterally symmetrical, and it is composed of seven 
main regions: the spinal cord, the bulb, the bridge, the cerebellum, the midbrain, the 
diencephalon, and the cerebral hemispheres. Each of these neural regions performs 
a number of specific functions. Additionally, each function, whether it is a sensory, a 
motor, or another integrative task, is performed by more than one neural pathway [1, 2].

The linguistical cerebral functions are mainly located in the auditory cortex, 
which is divided into four anatomically distinct lobes: the frontal, the parietal, the 
occipital, and the temporal lobe. The latter is responsible for the function of hearing 
as well as for various aspects of learning, of memory, and of emotions (Figure 1).

The cerebral hemispheres are characterized by two important organizational 
features:

i. Each hemisphere is primarily related to specific sensory and motor processes 
on the opposite (contralateral) side of the body. The structure connecting 
the two hemispheres is the corpus callosum [2].

ii. Although both hemispheres appear to be similar (in humans), they are not 
structurally fully symmetrical nor they have equivalent functions.

Broca, Wernicke, and Penfield were pioneers in unraveling the functions of 
the temporal lobe. Penfield found that a stimulation of primary auditory areas 
produced gross auditory sensations, whereas stimulation in the superior temporal 
gyrus produced altered perception of auditory sounds, illusions, and hallucinations. 
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Studies on epileptic patients, whose hemispheres were separated by a section of 
the corpus callosum, have allowed us to understand numerous details related to the 
concept of hemispheric specialization [3].

An important contribution for the understanding of hemispheric function was 
achieved through the development of the Wada test [4]. The latter was developed in 
order to determine the dominant hemisphere for speech, so that inadvertent lesions 
of the speech centers, during neurosurgical procedures, could be avoided. During 
the test, the patient is instructed to count aloud, while sodium nitrite, a fast-acting 
barbiturate, is injected into the left or right carotid artery. The drug preferentially 
accesses the hemisphere on the same side as the injection, causing a brief speech 
dysfunction. If the dominant hemisphere’s speech center is affected, the patient 
usually stops counting. With this test, the relationship between hemispheric 
specialization and laterality can be assessed, especially in left-handed subjects. Data 
in the literature [4] suggest that 96% of the right-handed people have dominant 
speech centers in the left hemisphere, while 15% of left-handed people have domi-
nant speech centers in the right hemisphere. In some left-handed people, speech is 
controlled by both hemispheres. In such cases the administration of sodium nitrite 
does not suppress speech. Similar results were observed in trials involving hearing. 
When sounds were presented at the same time in both ears, it was found that in 
right-handed people the left ear performed better with nonverbal sounds.

The auditory system can be considered a high-performance signal-processing 
region, presenting a complex built-in hierarchy. Within the system each structure 
has a specific function, and progressing upwards along the pathways, these func-
tions become more specific and dependent on the functional and physiological 
integrity of the previous structures. The auditory system plays an essential role for 
the communication among the members of the same species. Additionally, humans 
use the sensory inputs of the auditory system to identify different sounds leading to 
immediate actions, such as the status of alertness caused by the perception of siren 
sounds from police cars and ambulances.

From a simplified point of view, the auditory system consists of two areas, 
namely, the auditory periphery and the central auditory system. In each there are 
several structures which are stimulated when a sound stimulus is presented. Some 
researchers [5], however, have disputed this simple division of the auditory system 
suggesting instead a three-stage depiction:

i. The periphery, which captures and converts the acoustic sound stimuli into 
electrical neural pulses.

Figure 1. 
The four cerebral lobes of the auditory cortex.
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ii. The brainstem, which performs the initial processing of the information 
through modulation and interaction of the signals.

iii. The thalamocortical region, which is responsible for more advanced func-
tions and produces emotional, cognitive, and linguistic responses from the 
acoustical stimuli

The efficiency of this set of interconnected structures depends primarily on the 
auditory experience. The simplest auditory task is influenced by high-level func-
tions that include motivation, memory, and decision-making [6].

From a functional point of view, the following functions (among others) are 
assigned to CANS: the ability to detect and discriminate sound sources, the separa-
tion of acoustic stimuli from the background noise, the process of understanding 
the incoming stimuli, and the process of recognizing the stimuli as something 
familiar, though memory connections [7].

There are two pathways in the CANS: the ascending (afferent) and the descend-
ing (efferent) pathway. The afferent pathway is the path that an impulse, generated 
in the hair cells, travels along to the auditory cortex), whereas the efferent auditory 
pathway is a similar path, but in the opposite direction, conducting impulses from 
the auditory cortex to the hair cells [8].

The afferent and efferent pathways act in an integrated way. The afferent 
auditory pathway has a bilateral and predominantly contralateral auditory rep-
resentation. The propagation of auditory information occurs via the cochlear 
nuclei, superior olivary complex, lateral lemniscus, inferior colliculus, and medial 
geniculate body up to the auditory area of the temporal lobe in the cerebral cortex. 
The efferent auditory pathway is composed by the medial and lateral olivocochlear 
bundles which have anatomical and physiological differences, coordinating the 
independent function of the two ears [9]. The function of the efferent auditory 
feedback includes the electrical modulation of the outer hair cells in the cochlea, the 
reduction of the cochlear nerve action potentials, the protection against noise, the 
localization of a sound source, the improvement in the detection of sound sources 
in noisy environments, and the focusing of attention to the incoming acoustic 
stimuli, which is less effective in patients with tinnitus [9, 10] (Figure 2).

It should be emphasized that information from sound stimuli is sent to the brain 
through both ipsilateral and contralateral pathways, the result of which provides 
data on signal timing and stimulus intensity. These are passed on to associative areas 
which process the data in a differentiated way, with the left hemispheric dominance 
for the processing of language and the right hemisphere for the process of melody. 
The data on the hemispheric dominance are derived from studies in patients 
with cortical lesions revealing a loss of recognition of family songs and prosody 
in patients with right-sided injury and poor recognition of verbal language and 
symbolic noise in patients with a left lesion [11].

Rees [12] identified auditory perception deficits as one of the causes of language 
disorders and concluded that auditory abilities seem to play a major role in language 
and learning. Lubert [13] reported that a deficiency in the ability to detect acoustic 
characteristics of an auditory signal was overwhelmingly important that affected 
children never achieved good performance in language tasks.

There is a strong interest in the literature on the impact of auditory processing 
deficits on language skills and reading [14]. However, the nature of the relationship 
between auditory and speech processing continues to be debated [15]. The starting 
point for differentiating auditory processing from that of language consists of a 
knowledge of acoustic, phonemic, and linguistic characteristics in a behavioral and 
neurological way. Individuals who have primary deficits in their auditory perceptual 
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abilities therefore have similar symptoms to those who have other pathologies such 
as dyslexia and attention deficit hyperactivity disorder, and as a consequence they 
may have attention and executive deficits as well [16].

1.2 Neuroplasticity

The human brain has certain time periods—called critical periods—during 
which it is conducive to neuroplasticity. In these critical periods, capacities are 
shaped, perfected, or altered as a result of experience.

In humans, cortical neuroplasticity is most pronounced in the first years of life. 
During this developmental period, cortical neurons are extensively stimulated, 
and in this way, synapses mature and developed. In addition, various sensory and 
cognitive systems interact and adjust their functional properties based on prior 
experience and learning. Younger brains seem to be more able to change as a result 
of persisting stimuli [17]. These are usually related to changes (i) in behavior, (ii) in 
the environment, and (iii) in the neural processes.

Over the course of a lifetime, a lack of experience during critical developmental 
periods can hinder learning [19]. A critical period can be described by the simulta-
neous presence of these three conditions:

i. The information must be reliable and extremely precise.

ii. The neural connections need to be intact to be able to process information, 
either through inhibitory and/or excitatory connections [18].

iii. Mechanisms must be in place to sustain the plasticity process, such as 
modifications in the morphologies of axons and dendrites and modification 
to synaptic connections.

It should be emphasized that simple skills require the use of less specialized 
neural circuits, while more complex abilities depend on the use of more special-
ized ones. The simplest neural circuits need first to be activated and to be efficient, 
before new neural circuits can be made reliable [20, 21].

Figure 2. 
Schematic representation of the auditory pathways.



5

Neuroplasticity and the Auditory System
DOI: http://dx.doi.org/10.5772/intechopen.90085

Stimulation of any skill during the critical period of development is an 
extremely important factor for the success of any intervention process. However, 
it is important to note that adult brains also have a proven ability to change. 
Thus, different neuronal systems can be activated regardless of the age of the 
individual [22, 23].

Activities which depend on the integration of different neuronal systems engage 
in a multimodal cerebral activation, and thus they can enhance neuroplasticity. 
A good example of such multisensory stimulation is the process of learning to 
play music [24–26]. Paraskevopoulos et al. [25] demonstrated that musicians who 
started their training as young adults had a greater activation of the prefrontal cor-
tex than musicians with only short-term training. Data in the literature suggest that 
a wide range of beneficial effects can be manifested by elderly musical students, 
including improvements in attention, memory, motor function, executive function, 
creativity, anxiety reduction, and visual scanning [27–30].

Intrinsic and extrinsic factors can cause changes in brain cells. Data from the 
literature suggest that new neurons are present after 6–8 weeks from the time an 
adult undertakes a new skill [31, 32]. It is therefore suggested that learning and 
maintaining a new activity should be encouraged in order to activate neural circuits 
and create new synapses.

Neuroplasticity has been associated with a delayed onset of dementia. 
Broolmeyer et al. [33] state that brain plasticity should be made a priority in dealing 
with individuals who have dementia. Concomitantly, age-related cognitive decline 
can be delayed, interrupted, or even reversed by introducing tasks that involve 
multimodal neuronal stimulation.

By recognizing the importance of neuroplasticity, professionals involved in 
rehabilitation are encouraged to turn their efforts toward stimulating, motivating, 
creating, and developing new strategies for the treatment of their patients.

1.3 Neuroplasticity of the auditory system

Like other systems, the development of the central auditory nervous system 
depends on a critical period during the first years of life when responses to different 
stimuli and sound environments are gradually established. In the auditory system 
the capacity for anatomical and functional modification is called auditory neuro-
plasticity [34].

The cortical areas that encompass the auditory system develop rapidly in the 
first years of life, due to an abundance of neuronal connections [35, 36]. At approxi-
mately 4 years of age, the neurons responsible for hearing go through a process 
which is called pruning, where neurons and synapses which are not activated are 
eliminated from the system [37].

Although the plasticity due to experience is far greater in the first years of life, 
it is known that the auditory system has some malleability throughout life [37]. 
Sharma et al. [38] established that there was a difference between what is known 
as a critical period and a sensitive period. According to Sharma, the critical period 
ends suddenly, and the neural system is unable to adapt to stimuli; in contrast, the 
sensitive period is an ideal neuroplastic period during which sound can be intro-
duced into the auditory cortex and promote normal age-appropriate development.

Preterm infants who remain long periods in a neonatal intensive care unit 
(NICU) are often exposed to high ambient noise levels, generated by the hospital 
equipment. The high-frequency sounds can cause acoustic trauma and hamper 
the proper development of the central auditory nervous system [39]. According to 
Zhang et al., excessive noise at critical periods of development can lead to impaired 
cortical tonotopic maps, resulting in a reduction in neural synchrony and a 
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decreased sensitivity to particular frequencies [40]. In addition, the extra noise can 
mask speech sounds, thereby impoverishing the auditory experience. As a result, 
infants can become more sensitive to noise and focus their attention on this type of 
sound stimulus instead of ignoring it and focusing on speech [41]. Among preterm 
infants there is a high rate of impairment of hearing, language, and attention; on 
the other hand, a home environment rich in post-NICU auditory and linguistic 
stimuli favors auditory neuroplasticity, meaning that premature infants then have a 
good chance of developing normal speech, language, and learning [42].

One way to observe plasticity in the auditory system is by monitoring patients 
undergoing cochlear implantation. Even after a period of auditory deprivation 
due to hearing loss, it is possible for the brain’s auditory system to reorganize and 
develop better hearing abilities. Research on children implanted at the age of 3, 5, 
and 7 years has demonstrated that cortical auditory development can be mixed, 
with some children presenting cortical auditory evoked potential responses 
(notably P1) within normal limits, while others do not seem to achieve normal 
central auditory maturity. These findings are consistent with positron emission 
tomography (PET) imaging tests performed before and after cochlear implantation. 
It appears that 3.5 years of age is the end of the sensitive period for cochlear implan-
tation in children with congenital deafness; this age is approximately when the 
observed exponential increase in synaptic density ends and begins to decrease [35]. 
Beyond 7 years of age, neuroplasticity in the central auditory system is significantly 
reduced; if new sounds are introduced after this time, the auditory cortex is unable 
to process auditory information normally [38, 43]. Research on the development of 
speech and language skills in children has indicated significantly better outcomes in 
those who received cochlear implants at younger ages [44, 45].

Neuroplasticity can be observed in individuals with central auditory processing 
disorder (CAPD) who have undergone auditory training. Training is a therapeutic 
procedure involving auditory stimulation that leads to reorganization (remapping) 
of the cortex and brainstem, improving synaptic efficiency and increasing neural 
density. These neurophysiological changes, reflected on behavioral changes, have 
encouraged the use of this rehabilitation strategy [46–48].

1.4 Auditory training in central auditory processing disorder

It is well established that listeners with CAPD exhibit diverse behaviors such as 
poor listening skills, difficulty learning through the auditory modality, difficulty 
following auditory instructions, difficulty in understanding when there is back-
ground noise, requesting information to be repeated, poor auditory attention, easily 
distracted, deficits with phonological awareness and phonic skills, weak auditory 
memory, delayed response to verbal stimuli, and difficulty with spelling, reading, 
and learning [49].

A diagnosis of impaired central auditory processing is done by applying a bat-
tery of behavioral and electrophysiological procedures. The results provide infor-
mation about the physiological mechanisms in the auditory system and a profile 
of abilities that are altered and those that are preserved. Based on this diagnostic 
information, rehabilitation should start as soon as possible in order to minimize 
the effects of CAPD on language development. One strategy is the use of auditory 
training (AT), defined as the set of (acoustic) conditions and/or tasks designed to 
activate auditory and related systems such that neural connections and the associ-
ated auditory behavior is improved [50].

The general aim of AT when applied to individuals with CAPD is to improve 
auditory skills such as sound localization and lateralization, auditory discrimina-
tion, auditory pattern recognition, temporal aspects of audition, and auditory 
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discrimination against competing acoustic signals [51]. Formal and informal AT 
procedures are conducted by audiologists in the clinical environment. The differ-
ence between them is that formal training needs to be acoustically controlled, with 
a strict control over the stimulus generation and presentation. The combination 
of formal and informal AT procedures offers a flexible approach which presents 
positively effective outcomes [50].

The management of CAPD requires a multidisciplinary team, since the pathol-
ogy commonly appears with other disorders (attention deficit/hyperactivity dis-
order), learning and language disabilities, or dyslexia. The multidisciplinary team 
members are often speech-language pathologists, psychologists, neuropsycholo-
gists, neuropediatric specialists, teachers and parents, or other specialists involved 
in the child’s overall care [52] (Figure 3).

The therapy to enhance auditory skills should be evidence-based, individual-
ized, and segmented into bottom-up and top-down treatments. A bottom-up 
approach is based on the premise that difficulties in central auditory processing 
(CAP) lead to impaired auditory perception, language, reading, and communica-
tion. The objective of the bottom-up therapy is to improve speech perception. The 
top-down approach includes auditory cohesion, auditory attention, and metacogni-
tive and metalinguistic activities [52, 53].

The AT program should follow some important principles:

• It should be frequent, challenging, and motivating, using age and language 
appropriate for the patient.

• It should include diverse tasks to maintain motivation.

• It should be gradual in difficulty over time.

• It should employ a follow-up on acquired responses (achieving response rates 
>70% is an indication that the task needs to be more demanding).

• It should use monitoring and feedback based on psychophysical, electrophysi-
ological, and questionnaire-based information [50, 52].

The results obtained in the diagnostic battery will guide the therapeutic 
planning, which should include tasks aimed at discriminating sound intensity, 
frequency, and duration; phoneme discrimination; time perception discrimina-
tion; temporal ordering and sequencing; pattern recognition, location, and later-
alization; and recognition of auditory information in the presence of competitive 
signals. Other aspects may include study of interhemispheric information transfer 
and binaural listening [51, 54].

In addition, modifications are important depending on the environment. To 
improve access to auditory information outside the therapy room, teachers and 
parents also need to help with CAPD treatment strategies. Simple changes may 
bring many benefits to learning. Options may include:

i. Preferential seating

ii. Addition of visual cues

iii. Clear language

iv. Making frequent checks for understanding
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v. Repetition or rephrasing

vi. Multimodality cues and hands-on demonstrations

vii. Pre-teaching of new information and new vocabulary

viii. Provision of a notetaker

ix. Gaining attention prior to speaking

x. Positive reinforcement

xi. Reduce background noise

xii. FM systems

Monitoring progress of the patient is important since it allows the therapist 
to measure the appropriateness of the AT program and provides a basis for feed-
back to the patient and parents [50]. Ideally, three types of monitoring should 
be employed to measure auditory changes: psychophysical, electrophysiological, 
and questionnaires. These measures should be obtained before and after hearing 
training. Several questionnaires are available and can be answered by the patient 
and/or individuals interacting with him or her, such as parents, teachers, and other 
professionals.

Several questionnaires are described in the literature, such as the Children’s 
Auditory Performance Scale (CHAPS) [55, 56], Screening Instrument for Targeting 
Educational Risk (SIFTER) [56, 57], Children’s Home Inventory of Listening 
Difficulties (CHILD) [58], and the Scale of Auditory Behaviors (SAB) [58].

A large number of studies provide definitive evidence for the plasticity of the 
auditory system evidenced by behavioral changes in both animals [59–61] and in 
humans [62–68]. A recent study by Donadon et al. [69], whose objective was to 
investigate auditory training in children and adolescents suffering from otitis media 

Figure 3. 
CAPD and associated pathologies.
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with a documented history of bilateral ventilation tube insertion, highlighted some 
aspects of auditory neuroplasticity. According to the data from the study, the partic-
ipants were randomly divided into two groups: (i) auditory training and (ii) visual 
training. In the behavioral tests during the pre-intervention evaluation, no statisti-
cal differences were detected. However, after the auditory training program, there 
was an improvement in the subjects’ performance for auditory abilities. In addition, 
comparing the two types of intervention (visual vs. auditory), the behavioral tests 
revealed better responses to the post-intervention auditory training. The results, 
assessed through behavioral tests on subjects with a history of bilateral otitis media, 
suggest that auditory training provided beneficial gains for all auditory abilities.

2. Conclusion

The central auditory nervous system is responsible for the processing of audi-
tory information. It is highly complex and plastic, being able to reorganize itself 
in response to auditory stimulation. Auditory training promotes behavioral and 
electrophysiological changes due to the neurophysiology of the brain’s plasticity. 
The latter enables the positive performance of the auditory training, which is an 
important rehabilitation strategy for individuals with central auditory processing 
disorders.

Abbreviations

AD/HD  attention deficit/hyperactivity disorder
AT  auditory training
CANS  central auditory nervous system
CAP  central auditory processing
CAPD  central auditory processing disorder
CNS  central nervous system
critical period  the time during which the neural system is unable to adapt
sensitive period  the ideal period for neuroplasticity to occur
Wada test  a test for determining the dominant hemisphere for speech
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