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Abstract

Metagenomic approaches are a growing branch of science and have many 
applications in different fields. Metagenomics seems to be the ideal culture-
independent technique for unraveling the biodiversity of soils and to study how 
this biodiversity is affected with continuously changing conditions. In addition, its 
application in clinical and diagnostic approaches was reported. The emergence of 
several next-generation sequencing (NGS) strategies enriched the metagenomics. 
The combination between NGS and metagenomic approaches helped the investiga-
tors resolve several issues regarding the microbial diversity and the functions and 
relationships among different microbial flora. A number of NGS approaches were 
developed including Roche/454 pyrosequencing, Illumina/Solexa sequencing, and 
Applied Biosystems/SOLiD sequencing. In this chapter, different NGS platforms are 
discussed in terms of principle, advantages, and limitations. In addition, third-
generation sequencing technologies are also addressed.

Keywords: high throughput, metagenomics workflow, sequencing approaches, 
metagenomic data analysis

1. Introduction

The development of next-generation sequencing (NGS) techniques provides high-
throughput sequence analysis with the ability to simultaneously and independently 
sequence billions of DNA molecules. The combination between such technologies 
and metagenomic approaches helped the investigators study the microbial diversity 
and understand the functions and relationships among different microbial flora [1]. 
The use of metagenomic NGS by microbiologists overcomes several limitations and 
secured the unbiased methods to study the microbial flora in any given environment 
[2]. Thus, the dynamic of complex communities particularly those with non-culti-
vable microorganisms can be resolved [3, 4]. In addition, metagenomic NGS found 
its way in the field of clinical and diagnostic approaches [5, 6]. In the clinical field, 
NGS was used to inform the real-time incidence and prevention response to human 
parainfluenza 3 virus infections [7] and for cerebrospinal fluid diagnostics [8].

Several NGS platforms were developed since 2006 with numerous applications 
in genetic and biological research fields. Of these platforms, the most commonly 
used include Roche/454 pyrosequencing, Illumina/Solexa sequencing, and Applied 
Biosystems/SOLiD sequencing. The principle of all these NGS depends on the 
detection of luminescent signals released by the base incorporation during the 
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sequencing process [4]. They also share the same workflow which in the order, 
DNA extraction, library construction, DNA template preparation, and automated 
sequence analysis [9]. In this chapter, different NGS platforms are discussed in 
terms of principle, advantages, and limitations. In addition, third-generation 
sequencing technologies are also addressed.

2. Workflow of metagenomics

2.1 The sampling process and library construction for metagenomic analysis

Metagenomic analysis is a sophisticated process and involves several steps. Of 
these steps, the sampling process is very crucial for the downstream applications. 
Sample collection, preparation, and storage should be handled carefully to prevent 
lysis and decomposition of the sample compositions. Multiple freezing–thawing 
cycles may cause changes in the microbial community profile under investigation 
[10]. As well, a suitable DNA extraction protocol should be adopted to cope with 
the different chemical and physical characteristics of each sample. For instance, 
soils contain many substances that are co-extracted with the genomic DNA and may 
have inhibitory effects on the downstream experiments. Examples include humic 
and fulvic acids [11]. Therefore, optimization and comparison between different 
extraction methods are usually required for each type of samples [12, 13, 14, 15].

The extracted DNA is used to construct the DNA library. This is usually achieved 
by connecting specific adaptors to one or both ends of the DNA fragments [16]. The 
reason for utilizing DNA adaptor is to deal with the pool of samples and then connect 
them to its original sample. Handling DNA at this stage should be careful to avoid 
chemical, physical, or enzymatic damage of DNA molecules [17]. The construc-
tion of a DNA library is usually achieved through two approaches. The first one is 
called meta-pair where the library is characterized by long fragment insert. The 
second approach is called paired-end libraries with short fragment insert. In both 
approaches, the DNA is fragmented into different fragment sizes that would allow for 
their cloning. The DNA fragments obtained from such processes are cloned into the 
proper cloning vector. The size of the resulting fragments determines the suitable vec-
tor for the cloning process. The small DNA fragments are usually cloned into plasmid 
vectors, whereas fragments up to 40 kbp are cloned into cosmid or fosmid vectors. 
Bacterial artificial chromosome (BAC) vectors are usually used to clone inserts with 
sizes that exceed 40 Kbp [18]. Finally, the free adaptor, dimers of the adaptor, and any 
other artifacts must be removed to avoid noisy sequencing data [17].

2.2 Sequencing approaches

During the 1970s, the first-generation sequencing techniques, chain termination 
[19], and chemical sequencing approaches [20] were developed. In contrast to the 
chemical sequencing approach, the Sanger sequencing method ultimately prevailed 
and found immense applications due to its simplicity and is more amenable to being 
scaled up [21]. Simply, the basis of Sanger sequencing depends on the incubation of 
a specific primer and the template DNA in the presence of DNA polymerase. The 
reaction is accomplished by the addition of a mixture of deoxyribonucleotide tri-
phosphates and dNTPs’ dideoxyribonucleotide triphosphates for chain termination, 
one of which was labeled with phosphorus-32. The resulting pool of DNA amplicons 
will be with the same 5′ residue and different dNTP residues at the 3′ end (Figure 1). 
This pool of DNA fragments is then fractionated by denaturing polyacrylamide gel 
electrophoresis giving a band pattern. In this way, DNA decoding can be achieved 
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by the use of nucleotide analogs and other nucleotides in separate incubations and 
concomitant electrophoretic analysis [22]. Currently, the use of fluorescent dNTPs 
associated with the capillary electrophoresis provides full automation of the Sanger 
approach. This modification allows retrieving up to 96 sequences per run with an 
average 800–1000 bp size of DNA fragments [21, 23, 24]. Although the Sanger 
sequencing was the mainstay of the original human genome project, this approach 
still has some limitations. These limitations include high cost and low throughput, and 
it is inadequate for studying unculturable organisms in complex environments [25].

2.2.1 Next-generation sequencing (NGS)

Due to the limitations of Sanger sequencing technique, next-generation sequenc-
ing emerged in 2005 [26]. Indeed, next-generation sequencing has made it possible to 
study and identify organisms directly from their habitats without prior preparations 
[27]. Compared to the first-generation sequencing, NGS can generate several hun-
dred thousand to millions of sequencing reads in parallel. As well, sequencing can be 
generated without some conventional steps such as vector-based cloning procedure 
and hence reduces the chance of DNA contamination from other organisms [28]. 
Therefore, several next-generation sequencing platforms have been introduced includ-
ing Roche 454, Illumina®, Applied Biosystems SOLiD sequencer, and Ion Torrent. All 
next-generation sequencing or real-time sequencing (Roche 454, Illumina®, and AB 
SOLiD) utilized optical sensors that detect luminescent signal, which are produced 
during incorporation of bases in the sequence. The principles and characteristics of 
NSG, SGS, and TGS are summarized in Table 1 [21]. In the subsequent sections, the 
features and limitations of each of the NGS techniques are discussed.

2.2.1.1 Roche 454 genome sequence

Roche/454 pyrosequencing is the first NGS technology that launched and 
became commercially available in 2005. It uses real-time sequencing-by-synthesis 

Figure 1. 
Sanger DNA sequencing. (1) The gene to be decoded is amplified by PCR. (2) The sequencing process is 
performed by the addition of modified 2′,3′-dideoxynucleotide (ddNTPs) to the nascent chain. The modified 
nucleotides act by terminating the chain extension, and the resulting DNA fragments of different sizes are 
eluted by capillary gel electrophoresis. (3) Chromatograms are then analyzed to obtain the DNA sequences.
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(SBS) pyrosequencing technology, and it depends on the detection of pyrophos-
phate (PPi) molecule that is initiated from the incorporation of a nucleotide in the 
DNA polymerase (Figure 2) [29]. Briefly, the 454 pyrosequencing technology is 
proceeding as follows: (i) the library fragments are connected to beads that carry 
oligonucleotides complementary to adapter sequence ligated at the ends, (ii) ampli-
fying the library fragments by emulsion PCR resulting in DNA beads that carry 
millions of copies of DNA fragments on their surface, and (iii) the amplified beads 
are inserted into picotiter plate (PTP) that consists of millions of wells. Each well 
can hold only one amplified bead and contains diluted pyrosequence enzyme beads, 
DNA amplified beads, PPiase beads, and pyrosequence beads. Finally, the light 
emission from PTP is recorded by a CCD camera and is translated to nucleotide 
sequences [29]. In comparison with other NGS platform, 454 pyrosequencing has 

First generation Second generation Third generation

Fundamental 
technology

Size separation of 
specifically end-labeled 
DNA fragments, 
produced by SBS or 
degradation

Wash-and-scan SBS SBS, by degradation, or 
direct physical inspection 
of the DNA molecule

Resolution Averaged across 
many copies of the 
DNA molecule being 
sequenced

Averaged across 
many copies of the 
DNA molecule being 
sequenced

Single-molecule resolution

Current raw read 
accuracy

High High Moderate

Current read 
length

Moderate 
(800–1000 bp)

Short, generally much 
shorter than Sanger 
sequencing

Long, 1000 bp, and longer 
in commercial systems

Current 
throughput

Low High Moderate

Current cost High cost per base Low cost per base Low-to-moderate cost per 
base

RNA sequencing 
method

cDNA sequencing cDNA sequencing Direct RNA sequencing and 
cDNA sequencing

Time from start 
of sequencing 
reaction to result

Hours Days Hours

Sample 
preparation

Moderately complex, 
PCR amplification not 
required

Complex, PCR 
amplification required

Ranges from complex to 
very simple depending on 
technology

Data analysis Routine Complex because of 
large data volumes and 
because short reads 
complicate assembly 
and
alignment algorithms

Complex because of large 
data volumes and because 
technologies yield new 
types of information and 
new signal processing 
challenges

Primary results Base calls with quality 
values

Base calls with quality 
values

Base calls with quality 
values, potentially other 
base information
such as kinetics

Table 1. 
The features and principles of first-generation sequencing, SGS, and TGS.
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the longest reading (up to 1000–1200 bp). On the other hand, 454 pyrosequencing 
has the highest cost per base and the lowest output [30].

2.2.1.2 Illumina sequencing (Solexa genome analyzer)

Illumina, formerly known as Solexa, has been introduced commercially in 2007. 
Illumina technology utilizes bridge PCR amplification coupled with SBS in the flow 
cell (Figure 3). Simply, the principle of Illumina sequencing is that the DNA frag-
ments with barcoding primer (adaptor) are attached to the flow cell. The sequenc-
ing reaction is performed in the flow cell by adding labeled nucleotides. When the 
nucleotide is incorporated, a luminescent signal is generated and then recorded 
by optical sensors. After that, the fluorescent molecules are removed and the next 
labeled nucleotide incorporated. However, the DNA fragment can be sequenced on 
one side that is called single-end (SE) or from both sides known as paired-end (PE). 
Nowadays, the most common sequencing used is PE due to the ability to generate 
two reads for one DNA fragment which is useful in order to determine the distance 
between two ends of the DNA fragment [31]. In fact, due to its low cost per base and 
high yield, Illumina becomes the most widely used and popular NGS platform. The 
output of Illumina sequencing is the highest among all NGS, making it suitable for 
multiplexing hundreds of samples at the same time [32].

2.2.1.3 Applied biosystems (AB) SOLiD sequencer

AB SOLiD refers to sequencing by oligonucleotide ligation and detection. It has 
been developed by Applied Biosystems (Life Technology) and became commer-
cially available in 2007. The AB SOLiD sequencing approach differs from the other 

Figure 2. 
Pyrosequencing technique. (1) Beads coated with either streptavidin or complementary oligonucleotides 
complementary to adapter sequences attached to the ends of the fragment to be sequenced. This allows the 
binding of sequencing fragments to the beads. (2) The fragments to be sequenced are amplified through 
emulsion PCR. (3) Loaded beads are transferred into the sequencing plate with millions of wells. (4) By 
the addition of a nucleotide to the nascent chain that is connected to the beads by DNA polymerase, the ATP 
sulfurylase enzyme converts released pyrophosphate to ATP with the emission of light that is detected by a CCD 
camera and is translated to nucleotide sequences.
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two next-generation sequencing technologies, Illumina, and 454 pyrosequencing. 
AB SOLiD platform relies on sequencing-by-oligo-ligation (SBL) (Figure 4), 
whereas others rely on sequencing-by-synthesis (SBS) [33]. In SOLiD sequencer, 

Figure 4. 
Applied biosystems (AB) SOLiD sequencing approach. (1) Preparation of DNA library from the sample and 
ligation of specific adaptor and the beads are then covered with the sequences complementary to one of the 
adapter sequences. (2) The adapter sequences will then bind to its complementary sequences on the beads. (3) 
The hybridization process resulted in the attachment of millions of DNA sequences to the bead. (4) Removal of 
the unloaded beads and selection of the loaded beads. (5) An interrogation probe contains six universal bases 
and two-base encoded probe. The universal bases are attached to the fluorescent label. (6) When an integrated 
probe is ligated with primers using DNA ligase, fluorescent light is generated and detected. This process is 
repeated several times till the targeted DNA is completely sequenced.

Figure 3. 
Illumina/Solexa sequencing approach. (1) The DNA templates with the attached adapter sequences are 
connected via a glass surface coated with oligos complementary sequences (2, 3, 4). DNA molecules fold over 
into a bridge shape and bridge PCR amplification is applied. (5) Bridge amplification and the formation of 
millions of copies or cluster formation. (6) Cluster sequencing is achieved through the process of cyclic reversible 
termination method. Finally, the resulting reads (tens of millions) are analyzed and the DNA sequence is 
recoded.
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the DNA library is prepared from the sample, and specific adaptor is then amplified 
by emPCR [34]. Instead of utilizing DNA polymerase, short nucleotides marked 
by DNA ligase known as interrogation probes are used. The interrogation probe 
contains six universal bases and two-base encoded probe. The universal bases are 
attached to the fluorescent label. When an integrated probe is ligated with prim-
ers using DNA ligase, fluorescent light is generated and detected. After the 5′ end 
that is linked to the fluorescent label by cleavable linkage is cleaved and removed, 
thereby the next interrogation probe is connected. This process is repeated several 
times until the targeted DNA is completely sequenced. In fact, the read length 
of SOLiD is short about 85 bp leading to inaccurate read assembly as it requires 
more time for sequencing but it has the highest accuracy among other NGS [35]. 
Application of SOLiD includes whole genome sequencing, targeted sequencing, 
transcriptome, and epigenome [35].

2.2.1.4 Ion torrent sequencing

Ion Torrent has been launched in 2010 by Life Technology. Some authors have 
classified the Ion Torrent platform as a technique between the next-generation and 
the third-generation sequencing. This could be attributed to the dependence of this 
approach on optical sensors. However, it relies on chemical sensors that detect the 
hydrogen-ion concentration change that occurred during the incorporation of a 
nucleotide in the sequence [21]. Ion Torrent sequencing quality is high and stable 
due to the utilizing of a chemical sensor instead of fluorescence and camera. In 
addition, the Ion Torrent approach is characterized by its high speed and low cost 
compared with pyrosequencing and Illumina [35].

2.2.2 Third-generation sequencing

The major limitations of NGS are that the short-read length and the PCR bias are 
introduced by clonal amplification and the fluorescent-based signaling detection 
[21]. Therefore, the third-generation sequencing or single-molecule-sequencing 
technologies (SMS) overcome these limitations by dispensing PCR before sequenc-
ing, and the signal is captured in real time by monitoring the enzymatic reaction 
[36, 21]. The following sections discuss some TGS platforms.

2.2.2.1 Helicos biosciences (HeliScope)

The first single-molecule-sequencing (SMS) that has been introduced in 2008 
is HeliScope. It is a fluorescent-based, single-molecule-sequencing platform. In 
HeliScope platform, the preparation step depends on preparing a single-strand 
DNA, and there is no need for PCR amplification in the preparation step. During 
sequencing, repetitive cycles of DNA polymerase and one labeled nucleotide are 
flowed, resulting in DNA template extension which depends on the flow of nucleo-
tides. The labeled nucleotides are modified by attaching a poly-A tail in order to stop 
polymerase extension until the fluorescence that generates from the incorporated 
nucleotide is recorded by a CCD camera. Then unincorporated nucleotides are 
washed out and the fluorescent labels on the strand chemically removed, allowing 
for next base incorporation [37, 38]. HeliScope Genetic Analysis System plat-
form allows the sequencing of RNA, and there is no need for converting them to 
cDNA. Furthermore, HeliScope Genetic Analysis System platform is in its infancy 
due to small read length (24–70 bases) and low data output (20 GB) [39].



Metagenomics - Basics, Methods and Applications

8

2.2.2.2 PacBio technology/SMRT sequencer

Pacific Bioscience has launched a single-molecule real-time (SMRT) technol-
ogy in 2010. It is a real-time, fluorescent-based, and single-molecule-sequencing 
platform. In SMRT, there is no need for PCR amplification during DNA preparation 
[36]. In this platform, a nanostructure known as zero-mode waveguide (ZMW) 
is utilized for real-time observation of DNA synthesis. During the sequencing 
process, a single-stranded template is used to synthesize the complementary. 
Unlike other NGS platforms, four different colored fluorescent labels are attached 
to the terminal phosphate group instead of attaching to a nucleotide, resulting in 
the release of a fluorescent signal during nucleotide incorporation [40]. Then the 
camera captures the fluorescent signal in real time (like a movie) [41]. In SMRT, 
the washing step between nucleotide flows is not required, resulting in increasing 
the nucleotide incorporation and improving the quality of sequencing [42]. SMRT 
has several advantages including fast sample preparation (hours instead of days like 
NGS), no need for PCR amplification during the preparation step, and longer-read 
length than any other next-generation sequencing platform [42].

2.2.2.3 Oxford Nanopore technology

Nanopore sequencing, developed by Oxford Nanopore Technology, relies 
on passing the DNA sequence through 1 nm diameter hole (nanopore) where 
electric current is applied. The electrical current of the pore is altered for each 
nucleotide, and signal is detected in real time [39]. Like other third-generation 
sequencing approaches, this technology does not require PCR amplification or 
chemical labeling of the sample [43]. In May 2015, Oxford Nanopore Technologies 
has introduced commercially the MinION. The MinION is a pocket-size portable, 
real-time detection of bases (fluorescent tag-free), has long-read length, and is a 
low-cost technology [44, 41, 45]. Interestingly, by utilizing this technology, samples 
can be sequenced in the field directly, instead of collecting samples and sequencing 
them in the lab, which means nanopore sequencing will make all other sequencing 
machines redundant [46, 44].

2.3 Metagenomic data analysis

Several bioinformatic tools were developed to analyze the metagenomic data 
at the molecular level (e.g., 16S rRNA), species level, and strain level. 16S rRNA 
sequence strategy is among the most common approaches to understand microbial 
taxonomy and phylogeny. This could be attributed to the stable functions of 16S 
rRNA gene over time, the existence of 16S rRNA in nearly all microorganisms, and 
its size which is enough for bioinformatics analysis [47, 48]. A number of bioinfor-
matics tools are available for the analysis of 16S rRNA: QIIME, MOTHUR, DADA2, 
UPARSE, and minimum entropy decomposition (MED) [49]. The QIIME software 
is designed to analyze data generated on the Illumina or other NGS platforms via 
graphics and statistics. This involves the demultiplexing and quality filtering, OTU 
picking, taxonomic assignment, and phylogenetic reconstruction, and diversity 
analyses and visualizations [50, 51]. QIIME depends on the use of the PyCogent 
toolkit to identify misinterpretations and database deposition using raw sequencing 
results [51]. Operational taxonomic units (OTUs) can be generated from NGS data 
by UPARSE [52]. The UPARSE software acts by filtering and trimming reads into 
equals lengths, removing singleton reads and clustering the remaining reads [52].
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Community sequence data can be analyzed by a flexible and comprehensive 
software package called MOTHUR. The MOTHUR package includes the following 
algorithms: DOTUR, SONS, TreeClimber, LIBSHUFF, Ð-LIBSHUFF, and UniFrac 
[50]. DADA2 is a suitable approach for correcting amplicon errors with no option to 
generate OTUs [53]. DADA2 uses a new quality-aware model of Illumina amplicon 
errors to improve the DADA algorithm [53]. MED is applied to solve the limitations 
of fine-scale resolution descriptions of microbial communities [54]. MED acts 
through partitioning the data set of amplicon sequences into homogenous OTUs for 
alpha- and beta-diversity analyses [54].

For species-level metagenomic data analysis, there are at least six metagenomic 
analysis software including MetaPhlAn2 [55], Kraken [56], CLARK [57], FOCUS 
[58], SUPERFOCUS [59], and MG-RAST [60]. All of these software programs can 
be used to profile organisms in metagenomic samples and to score their abundance. 
MetaPhlAn2 applies Bowtie2 and UCLUST [52, 61] as its main algorithms, whereas 
k-mers (DNA words of length k) is the core algorithm for Kraken and CLARK. On 
the other hand, FOCUS uses the NNLS (nonnegative least squares) to identify the 
microbial profile [49].

3. Conclusion

At the beginning, the metagenomic workflow was complicated that it requires 
many steps, sophisticated equipment, and qualified technicians to perform. 
Likewise, it was very expensive that not all scientists or laboratories were able to 
afford its cost. However, nowadays, due to the presence of many different com-
peting companies and laboratories that led to the development of more efficient 
sequencing approaches, the metagenomic workflow became easier. It is easy now 
to study and identify organisms directly from their habitats without prior prepara-
tions. In terms of cost, NGS is also much cheaper, and with the appearance of third-
generation sequencing approaches, it is not required to conduct sample sequencing. 
Surprisingly, sequencing can be carried out in the field by utilizing a pocket-size 
portable sequencer. The advancements in the field of metagenomics are amazing, 
and it became easier, cheaper, and faster.
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