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Resumo Esta tese está inserida na equipa FC Portugal 3D, que compete na liga de
futebol robótico simulado 3D. Os objetivos da tese são melhorar os compor-
tamentos já existentes e desenvolver ferramentas de suporte ao desenvolvi-
mento e depuração para o agente robótico.
Nesse sentido, foi melhorado o processo de optimização de comportamentos
de forma a torná-lo mais eficiente e adaptado para incluir os novos mode-
los heterogéneos disponibilizados. Ao executar o processo de optimização,
usando o algoritmo de estado de arte CMA-ES, foi obtido reduções para me-
tade do tempo nos comportamentos de levantar-se. Seguidamente o agente
foi colocado a correr em modo síncrono, o que permite que as simulações
corram à velocidade de processamento do computador em uso, e não à velo-
cidade da simulação da competição em que cada ciclo demora 20ms. Assim
é possível executar simulações e consequentemente inferir conclusões muito
mais rapidamente.
Passou-se a usar a informação de giroscópio e o cálculo dos ângulos de euler
para obter uma melhor estimativa da rotação do robô. Por outro lado, devido
ao lançamento de novos tipos de robôs, a arquitectura do agente teve de ser
atualizada e novos comportamentos foram criados e optimizados para estes
novos modelos. Em relação ao modelo original, alguns comportamentos são
executados mais rapidamente e melhor pelos modelos novos, devido às suas
alterações físicas. Por fim, nos comportamentos foi dada a possibilidade de
definir pré condições em etapa do mesmo, para que possa ser abortado caso
as condições não se verifiquem. Esta alteração veio reduzir o tempo desper-
diçado a executar a totalidade do comportamento em situações em que não
é provável o seu sucesso .
Em termos de ferramentas, foi colocada uma Janela de Monitor de Agente
para cada agente que, apresenta em tempo de simulação variáveis que o
código do agente disponibiliza, interage com código através de widgets de
seleção ou preenchimento, e se a simulação estiver a correr em modo sín-
crono, permite definir o tempo de ciclo da simulação, pausá-la e executar ciclo
a ciclo, o que permite vantagens óbvias em termos de análise de execução
dos agentes. Seguidamente, foi criada uma ferramenta de teste para compor-
tamentos definidos em XML, que permite, em tempo de execução, alterar o
ficheiro a testar, alterar o seu conteúdo, agrupar vários ficheiros em sequên-
cias e executar vários agentes em paralelo. Por fim, a última ferramenta é
um Analizador de Logs gerados pelos agentes e pelo simulador que permite,
entre outras funcionalidades, ver em forma de gráficos variáveis da simula-
ção, exportar para diferentes formatos, filtrar a simulação usando informação
da mesma e correr um servidor de forma a ser possível analizar em paralelo,
gráficos de variáveis escolhidas e a simulação num visualizador.
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Abstract This thesis in inserted in the FC Portugal 3D team, which competes in the
humanoid simulation league 3D from RoboCup. The objectives of this thesis
are to improve the behaviours already created and to develop tools to support
the development and debugging of the robotic agent.
With this in mind, the process of optimization was improved to make it more ef-
ficient and adapted to include the new heterogeneous models. Executing the
optimization process, using the state of the art algorithm CMA-ES, the time of
the getup was reduced by half. Afterwards, the agent was put running in sync
mode, which allows the simulations to run as fast as the computer in use can
process, and not the simulation speed of the competion with cycles of 20ms.
In the agent posture, it is now used the information from the gyroscope and the
euler angles are calculated to get a better estimative of the robot orientation.
On the other hand, the agent architecture was updated and new behaviours
were created and optimized to support the new heterogeneous models. In re-
lation to the standard model, some behaviours execute faster because of their
physical difference.
In the slot behaviours, it is now possible to defined preconditions in each step,
so the agent can abort the behaviour when any condition does not comply.
This change reduces the time wasted executing all the behaviour in situations
in which the success is improbable.
In terms of tools, a Agent Monitor Window was created for each agent which
can: present in runtime variables from the agent code; interact with the code
trough widgets; and if the simulation is in sync mode, defined the simulation
cycle time, with the possibility to pause it and execute step by step, which
gives a great advantage in terms of analysing the agent execution. The sec-
ond tool was a behaviour testes for behaviours defined in XML, which allows,
in runtime, to change the behaviour to test, edit its content, aggregate different
files in sequence and finally the tolls can execute various agents in parallel.
The last tools is Log Analyser of the logs generated by the agents and the
server, which allows: exporting in different formats, see in form of plots the
variables parsed, filtrate the simulation information; and create a server simu-
lation which can be used to analyse, in parallel, the plots of chosen variables
and the simulation in a monitor.





Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 RoboCup Simulation3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Simspark and Rcssserver3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Network Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Server/Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Server/Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Humanoid Behaviours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Center of Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Zero Moment Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Static vs Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 FC Portugal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Slot Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Central Pattern Generators Behaviour . . . . . . . . . . . . . . . . . 15
3.2.3 Omnidirectional walk . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Omnidirectional Kick . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Population Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



4.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 CMA-ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Behaviours and Agent Improvement . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Improving Posture Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.3 Agent Posture State . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Preconditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Optimization Process Improvement . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Sync Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Sync Mode Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Constraint Free Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Optimization Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.4 Update Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 41
6.5 Heterogeneous Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Development and Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . 45
7.1 Agent Monitor Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Developer API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.1.2 Controlling the Cycle Time . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Log Analyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.1 Extracting Information . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.2 Export Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2.4 Configuration Save . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2.5 Server Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 XML Defined Behaviour Tester . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ii



List of Figures

2.1 SoccerSimulation Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 RobovizVsRcssmonitor3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Environment information message example . . . . . . . . . . . . . . . . . . . . . 6
2.4 Representation of a Frame in a Fixed Reference Frame [13] . . . . . . . . . . . . 7
2.5 Homogeneous transformation matrix . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Static Mesh node format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Static Mesh node example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Static Mesh Node (SMN) format . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 SMN node example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 ZMP support polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Slot behaviour example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 CPG example behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Omnidirectional walk architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Omnidirectional walk Cart-table model from [31] . . . . . . . . . . . . . . . . . . 17
3.6 Omnidirectional walk preview controller . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Omnidirectional kick parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8 Omnidirectional kick sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Pseudo code version of GA algorithm from [37]. . . . . . . . . . . . . . . . . . . 23
4.2 Pseudo code version of the standard PSO algorithm . . . . . . . . . . . . . . . . 25
4.3 Pseudocode version of the CMA-ES algorithm. . . . . . . . . . . . . . . . . . . . 26

5.1 Comparison between vertical inclination front using the old method versus com-
puting pitch. Green is the ground truth from the server, red is using the old
method and blue is the computed pitch. . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Comparison between lateral vertical inclination using old method versus computing
roll. Green is the ground truth from the server, red is using the old method and
blue is the computed roll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Comparison between only computing pitch versus using gyroscope. Green is the
ground truth from the server, blue is only using euler angles and red using also
the gyroscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Comparison between only computing roll versus using gyroscope. Green is the
ground truth from the server, blue is only using euler angles and red using also
the gyroscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Preconditions example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



6.1 Trainer Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Example of XML behaviour file to optimize . . . . . . . . . . . . . . . . . . . . . 40
6.3 Initial part of nao3.xml file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 Optimization Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 Agent Monitor Window running 11 agents, each with his window. . . . . . . . . 46
7.2 Agent Monitor Window show variables . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Register Combo Box in Agent Monitor Window . . . . . . . . . . . . . . . . . . 47
7.4 Agent Monitor Window with ComboBox . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Register Spin Button in Agent Monitor Window . . . . . . . . . . . . . . . . . . 47
7.6 Agent Monitor Window with SpinButton . . . . . . . . . . . . . . . . . . . . . . 47
7.7 Register keyboard key in Agent Monitor Window . . . . . . . . . . . . . . . . . . 48
7.8 Agent Monitor Window with cycle time controls . . . . . . . . . . . . . . . . . . 48
7.9 Two types of plots available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.10 Log Analyser XLS export example . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.11 Example of the exported Extensible Markup Language (XML) file. . . . . . . . . 51
7.12 Log Analyser agent log selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.13 Log Analyser server log selected . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.14 Example of the configs.xml file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.15 Server running with one plot selecting the time . . . . . . . . . . . . . . . . . . . 56
7.16 Behaviour Tester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

iv



List of Tables

3.1 Omnidirectional kick parameters description . . . . . . . . . . . . . . . . . . . . 19

6.1 GetUpBack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 GetUpFront . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v





List of Acronyms

PID
Proportional Integral Derivative

TCP
Transmission Control Protocol

CPG
Central Pattern Generator

CoP
Center of Pressure

CM
Center of Mass

GCoM
Ground projection of the Center of Mass

ZMP
Zero Moment Point

FZMP
Fictitious Zero Moment Point

PSO
Particle Swarm Optimization

CMA-ES
Covariance Matrix Adaptation - Evolution
Strategy

SPL
Standard Platform League

SMN
Static Mesh Node

AI
Artificial Intelligence

RoboCup
Robot Soccer World Cup

XML
Extensible Markup Language

RDS
Ruby Diff Scene

RSG
Ruby Scene Graph

GTK
GIMP Toolkit

GUI
Graphical User Interface

GRAL
GRAphing Library

WBMP
Wireless Application Protocol Bitmap For-
mat

BMP
Bitmap image file

PNG
Portable Network Graphics

JPEG
Joint Photographic Experts Group

PDF
Portable Document Format

GIF
Graphics Interchange Format

SVG
Scalable Vector Graphics

EPS
Encapsulated PostScript

Simspark
Spark Generic Physical Multiagent Simula-
tor

vii





chapter 1
Introduction
1.1 Motivation

In the Robot Soccer World Cup (RoboCup) initiative there are researchers trying to push the area
of Artificial Intelligence and Robotics further. The environment of robotic soccer is a great benchmark
to test the progress made in the area and each league has its set of problems and research focus. In this
thesis the focus is in the 3D Simulation League, in which it is necessary to create a soccer humanoid
agent, with the challenges that come with it.

For the aforementioned initiative, the FC Portugal[1] team was created. Since 2000, it participated
in 2D and 3D and had achieved some great results. Recently the team got 4th place in 2014 RoboCup,
1st in Robocup German Open and 1st in Robotica 2014 in Portugal.

Writing an agent that behaves autonomously and cooperates with its teammates is a difficult task,
but the 2D simulation got some good results in that area. On the other hand, the 3D simulation,
besides still having to deal with cooperation and coordination, has also does face the challenge of
having to control humanoid models. These models have particular needs, as the bipedal locomotion
is difficult to achieve. Furthermore, the biped humanoid agent not only needs to walk stably, it also
needs to walk and rotate in all directions, kick and pass the ball, getup, and any other behaviour that
is expected from a humanoid soccer player.

1.2 Objectives
In the context of the FC Portugal team and the 3D Simulation League, the objectives of this thesis

are:

• Develop robust and efficient behaviours of kick, getup, dribble and any other behaviour needed,
using manual control of the joints, or inverse kinematic or using optimization techniques.

• Create tools to support the development and debugging process, make it more efficient and/or
easier.
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1.3 Structure
The structure of this thesis is as follows:

• Chapter 1: As seen, this chapter presents this thesis motivation and its objectives

• Chapter 2: Present the RoboCup, its leagues, challenges and software used.

• Chapter 3: Description of the problems faced when working in humanoid behaviours, some
solutions and concepts used nowadays, and some RoboCup teams research in that area.

• Chapter 4: Brief description of some optimization algorithms used in the FC Portugal team.

• Chapter 5: Improvements in the optimization process and its results.

• Chapter 6: Adaptation to the new heterogeneous models, use of the gyroscope and addition of
conditions in some behaviours.

• Chapter 7: Tools developed to make development process easier and quicker.

• Chapter 8: Present the conclusion and some future work that can be done in sequence to this
thesis.
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chapter 2
RoboCup Simulation3D
This chapter outlines the RoboCup project and its Simulation 3D competition, where this thesis is
inserted, and execution environment.

Founded in 1997, RoboCup is a project to promote Artificial Intelligence (AI) and robotics research.
It has set a challenging long term goal:

“By the middle of the 21st century, a team of fully autonomous humanoid robot

soccer players shall win a soccer game, complying with the official rules of FIFA,

against the winner of the most recent World Cup.” [2][3]
For that purpose, there is an annual international robotics competition an integrated research task

covering broad areas of AI and robotics. Such areas include: real-time sensor fusion, reactive behaviour,
strategy acquisition, learning, real-time planning, multiagent systems, context recognition,vision,
strategic decision-making, motor control, intelligent robot control.

In order to reach the proposed goal, various competitions were created, separating the research
tasks, each one of them focusing in a different set of problems.

• Middle-Size League

• Small-Size League

• Standard Platform League

• Humanoid League

• Simulation League

Besides soccer, there are others leagues with different lines of development in the form of rescue
challenges, either simulated [4] of real [5], and challenges aimed to develop service and supportive robot
technology with high relevance for future personal domestic applications [6].

In this competitions, the physical ones have some disadvantages, inherent of using physical models:

• The robot is subject to be damaged during its usage or even during its transporting, in addition
to sometimes being costly to repair.

• The testing process is slow. Any change has to be loaded in the robot and its test runs at a
slow rate.

3



• It is costly to always buy the newer versions, year after year, or just new components for
repairing.

• Multiple team members cannot work at the same time on one robot.

To address these issues, a simulated environment is a good option, but it needs to be as close as
possible to the physical environment. The RoboCup 3D Simulation Soccer League is a competition
where software agents control humanoid robots in a soccer game. The platform tries to simulate
the rules and physics of a soccer game, reproducing physical robot limitations, like hinges movement
restriction, sensors noise,etc. The soccer field dimensions are 30 by 20 meters as we can see in image
2.1.

Figure 2.1: Field dimensions.

In 2004, the 3D Simulation was introduced, beginning with a spherical agent model. The first
humanoid model was the Fujitsu HOAP-2, which changed the development from strategic behaviours
to low level control and basic behaviours like walk, kick, getting up, turn, etc.

In 2008, both the Standard Platform League (SPL) and the 3D Simulation began to use the NAO
robot [7] from Aldebaran as their model. This permitted the researchers to try their development in
the simulated NAO version before putting the code in the physical robots from the SPL.

The number of robots in the game increased over the years, till 2012 when 11 vs 11 games where
implemented. In 2013 the teams were able to use heterogeneous robot types, which are variations
of the standard NAO robot so the development would not be attached to only one humanoid model.
With the new models, some behaviours work better in some models than others, making way to a new
strategic configurations.

Besides soccer simulation, other challenges were created to promote the resolution of some specific
problems. In 2013 the first Drop In Player Challenge proposes a game where there is one agent per
league team, so the communication between teammates is crucial. In 2014 the first running challenge
occurred, pushing the teams to develop running behaviours to be faster and more human alike.
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2.1 Simspark and Rcssserver3d
In order to run the Robocup3D simulation Spark Generic Physical Multiagent Simulator (Simspark)

server was the elected tool. It is a generic physical multi-agent simulator system for agents in three-
dimensional environments built on the flexible Spark application framework. On top of that, the
rcssserver3d was created, which is a 3D soccer simulation with the rules set for the RoboCup 3D
simulation league.

2.1.1 Monitor
While running the simulation, it is possible to visualize it by using a Simspark monitor. It connects

to a running Simspark server, then starts to receive periodic messages describing the simulation
state. Besides the game visualization, the messages contain the score, current playmode, time, etc.
Furthermore, the monitors can send commands to the server stated in the next section or play back
recorded Log Files. There are three forms to use monitors:

• If network overhead is not intended, one can configure the Simspark server to render the
simulation itself.

• rcssmonitor3d is the basic monitor that comes with rcssserver3d. It can render the game and
show the game info, but it is somewhat limited.

• Another monitor used by the community is RoboViz [8] [9]. It has enhanced visualization
capabilities and it was the one used in this thesis. Some of its features are:

– Enhanced Graphics which give a new dimension to the simulation and its move attractive
to the spectators.

– Interaction and control of the agents, ball position, switching play modes.
– Debugging visual elements can be displayed such as circles, text and lines, which help in

the development process.

We can see the graphics difference between the two monitors in figure 2.2.

Figure 2.2: RoboViz(Left) vs rcssmonitor3d(Right)
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2.2 Network Protocol
The Simspark communications are based in Transmission Control Protocol (TCP) connections

between nodes, where messages in the form of S-expressions [10] are exchanged. These expressions are
well known in Lisp programming language for coding and data declaration, being easy to parse and
are readable by humans.

In each message there is a 32 bit unsigned integer in network order, where the length of the payload
is declared. Furthermore, the messages use the default ASCII character set, which means one character
is encoded in one byte. [11]

The network communications are divided in two types, presented in the following sections.

2.2.1 Server/Agent
In this type of communication the server sends messages to the agent containing the agent’s

perceptors, hinge positions, heard messages, seen objects. In response, the agent sends message with
commands to be applied to its effectors and its beam.

2.2.2 Server/Monitor
The Simspark server binds to TCP port 3200 by default, where it listens for monitors connections.

When a monitor connects to it, the information arrives at the monitor in the following order:

• An environment information message followed by the full scene graph. A example message is as
follows

(
(FieldLength 18)
(FieldWidth 12)
(FieldHeight 40)
(GoalWidth 2.1)
(GoalDepth 0.6)
(GoalHeight 0.8)
(FreeKickDistance 1.3)
(WaitBeforeKickOff 2)
(AgentRadius 0.4)
(BallRadius 0.042)
(BallMass 0.026)
(RuleGoalPauseTime 3)
(RuleKickInPauseTime 1)(RuleHalfTime 300)
(play_modes BeforeKickOff KickOff_Left KickOff_Right PlayOn
KickIn_Left KickIn_Right corner_kick_left corner_kick_right
goal_kick_left goal_kick_right offside_left offside_right
GameOver Goal_Left Goal_Right free_kick_left free_kick_right)
)

Figure 2.3: Environment information message example

• A game state message followed by the full scene graph [12].
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• Periodically sends partial game state messages followed by a full or partial scene graph, depending
on what has been updated lately. The rate at which the server sends messages is defined in the
file spark.rb which is located in the installation directory.

For trainer purposes the monitors can send commands such as:

• Moving an Agent
• Positioning the Ball
• Setting the Play Mode
• Drop the Ball
• Kick Off
• Select Agent
• Kill Agent
• Repositioning an Agent
• Ack

The partial or full scene graph are composed by nodes of different types in order to describe the
simulation scenes. Two important nodes types used further in the thesis for developing a debugging
tool are the Transform and Geometry ones:

• Transform node
This node represents a 4x4 homogeneous transformation matrix 2.5 used to represent a geometric
transformation. It defines a translation, a rotation and a scaling factor. To represent a reference
frame in three dimensional space (see figure 2.4), a homogeneous transformation matrix (see
figure 2.5) has three mutually perpendicular unit vectors: n,o,a, which stand for normal,
orientation and approach, respectively .

Figure 2.4: Representation of a Frame in a Fixed Reference Frame [13]
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[nx ox ax Px]

[ny oy ay Py]

[nz oz az Pz]

[ 0 0 0 1]

Figure 2.5: Homogeneous transformation matrix

In Simspark, this transformation matrix is represented as:
(nd TRF (SLT nx ny nz 0 ox oy oz 0 ax ay az 0 Px Py Pz 1 )) where TRF stands for
Transform and SLT for Set Local Tranform which is a ruby function for setting the local
transformation of a given node in the scene graph.

• Geometry node
These nodes are used to describe the objects models, materials and scales. They are divided in
two types:

– StaticMesh
Defines a mesh which should be loaded from a .obj file located in the Simspark path. As
a example we can see2.6 and 2.7.

(nd StaticMesh
(load <model>)
(sSc <x> <y> <z>)
(setVisible 1)
(setTransparent)
(resetMaterials <material-list>)

)

Figure 2.6: Static Mesh node format

(nd StaticMesh
(load models/naohead.obj)
(sSc 0.1 0.1 0.1)
(resetMaterials matLeft naoblack naogreynaowhite)

)

Figure 2.7: Static Mesh node example

– SMN
Defines a mesh using one of the predefined models of the Simspark: StdUnitBox,
StdUnitCylinder, StdUnitSphere, StdCapsule. A example is present in figure 2.8
and 2.9.

(nd SMN
(load <type> <params>)
(sSc <x> <y> <z>)
(setVisible 1)
(setTransparent)
(sMat <material-name>)

)

Figure 2.8: SMN format
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(nd SMN
(load StdUnitCylinder 0.015 0.08)
(sSc 1 1 1)
(sMat matDarkGrey)

)

Figure 2.9: SMN node example

2.3 Summary
Ending this chapter, the reader should be familiar with the simulation environment components

and its network protocol. A brief description of the messages exchanged between server-agents and
server-monitors is presented to help understand the type of interaction between components.
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chapter 3
Humanoid Behaviours
This chapter presents some concepts used in humanoid behaviours an some FC Portugal 3D current
work on behaviours.

Humanoid models present multiple complex challenges such as the creation of stable behaviours in
different circumstances. In order to create an omnidirectional walk, a kick or a getup behaviour there
are various methods and approaches to consider.

3.1 Stability
For creating a stable and robust behaviour there needs to be some form of control, so the robot

mantains a motion in which it will not fall. The most used stability criteria are the Center of Mass (CM),
Center of Pressure (CoP) and Zero Moment Point (ZMP)

3.1.1 Center of Mass
The CM is the point where all of the mass of the object is concentrated. It represents the mean

position of the matter in a body. Normally, it is in the CM that external forces are considered to be
applied.

In a system of particles the CM is calculated as follows:

R = 1
M

n∑
i=1

miri (3.1)

where

• R denotes the coordinates of the center of mass

• n denotes the number of particles

• mi denotes the mass of the particle i

• ri denotes the coordinates of the particle i
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• M is the sum of the masses of all the particles

In a volume V with a continuous mass distribution:

R = 1
M

∫
V

ρ(r)rdV (3.2)

where

• R denotes the coordinates of the center of mass

• ρ(r) denotes the density of a mass within the volume V

• r denotes the coordinates of the mass within the volume V

• M denotes the total mass of the volume

The projection of the CM in the ground it is known as Ground projection of the Center of
Mass (GCoM). This criterion it used, for example, in static gait to check stability. For that, the
GCoM must be in the foot-support area.

3.1.2 Center of Pressure
The CoP in the humanoid model is the point where the sum of all the forces between its feet and

the ground are applied. The forces may be obtained from the force-torque sensors at the feet of the
robot. In addition to the CM, normally the CoP its used to measure balance in bodies.

3.1.3 Zero Moment Point
The ZMP represents the point in the ground where the total of horizontal inertia and gravity

forces equals zero. In other words p is the point where Tx = 0 and Ty = 0, where Tx, Ty represent the
moments around x- and y-axis generated by reaction force Fr and reaction torque Tr , respectively.
When ZMP exists within the domain of the support polygon (see figure 3.1), the contact between the
ground and the support leg is stable [14].
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Figure 3.1: ZMP support polygon

3.1.4 Static vs Dynamic Stability
Using static stability the GCoM is maintained inside the support polygon so the robot does not

fall [15] [16] [17]. The support polygon is the convex hull of the foot support area. For this, the robot
must adjust its posture very slowly to minimize the dynamic effects [18]. The support polygon varies
during the walk; it is the contact area between the foot and the ground when the robot has only one
foot on the ground (single-support phase) and the convex hull of both contact areas between the feet
and the ground, when both feet are on the ground (double-support phase).

In the human walk there is no static stability, since the humans walk in a state of constant falling,
falling forward and catching themselves using the swinging foot while continuing to walk forward.
In this falling movement, the GCoM moves forward getting outside the support polygon, without
expending energy to adjust itself. However, it has dynamic stability because it results in a stable walk
if the walking motion is continuous. Its stability is assured by maintaining the ZMP or CoP inside the
support polygon. In a dynamically stable walk, the ZMP coincides with the CoP [14] [19]. When the
ZMP leaves the support polygon the gait is not dynamically stable because the ground cannot exert
the forces needed to keep it from rotating around one of the edges of the support polygon. The ZMP
outside the support polygon is called the Fictitious Zero Moment Point (FZMP) and its distance to
the foot edge is proportional to the intensity of the instability.

The advantages of static stability is its simplicity and that the robot can pause its motion at
any moment of the gait stably. However, it makes the walk slow and generally leads to more power
consumption since the robot has to adjust its posture so that the GCoM is always inside the support
polygon. On the other hand, using dynamic stability generally leads to faster and reliable walking
gaits.
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3.1.5 Other Approaches
The HFutEngine3D team use a 3D linear inverted pendulum to plan the walking pattern and

L3SIM, Mithras3D the ZMP and CM to detect stability in motion [20] [21][22]
The RoboCanes team uses genetic algorithms to optimize motions created with sequence of

keyframes containing joint angles, and uses CMA-ES and PSO for making kinect based motions
robust [23]

3.2 FC Portugal
During the years of research in the FC Portugal, different approaches were implemented and tested

to tackle the challenges of walking, kicking the ball, getup, etc. The following sections present the
most recent ones.

3.2.1 Slot Behaviour
This type of behaviour was implemented by Hugo Picado [24] as a simple version of the method

proposed in [25]. Basically it define an interpolation using sin functions over an amount of time between
the current and the target angles.

The definition of the behaviour is made using slots. They correspond to an interval of time from 0
to δ where multiple joints can be moved in parallel. It’s possible to define multiple slots sequentially,
each one with its δ interval of time. In each, besides the initial and final angle, one can define the
initial and final angular velocities, and the parameters of the Proportional Integral Derivative (PID).
So, for each joint, the trajectory is generated as follows:

f(t) = A ∗ sin
(
φf − φi

δ
t+ φi

)
+ α,∀t ∈ [0, δ] (3.3)

where

• f(t) is the trajectory function

• δ is the duration of the slot in milliseconds

• φi is the initial phase (influence the initial angular velocity)

• φf is the final phase (influence the final angular velocity)

• A is the amplitude

• α is the offset

A and α are calculated as follows:

A = θf − θi
sin(φf )− sin(φi)

(3.4)

α = θi −A ∗ sin(φi) (3.5)

where θi and θf are respectively, the initial and final angles, which should be defined between −π
and π. A slot behaviour example is presented in figure 3.2.
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE joints [
<!ENTITY head1 "0" >
...
<!ENTITY rarm4 "21" >
]>

<behavior name="FallBack" type="SlotBehavior">

<slot name="ForceFalling" delta="0.5" >
<move id="&head1;" angle="0" />
<move id="&head2;" angle="0" />
<move id="&lleg1;" angle="0" />
<move id="&rleg1;" angle="0" />
<move id="&lleg2;" angle="0" />
<move id="&rleg2;" angle="0" />
<move id="&lleg3;" angle="0" />
<move id="&rleg3;" angle="0" />
<move id="&lleg4;" angle="0" />
<move id="&rleg4;" angle="0" />
<move id="&lleg5;" angle="-45" />
<move id="&rleg5;" angle="-45" />
<move id="&lleg6;" angle="0" />
<move id="&rleg6;" angle="0" />
<move id="&larm1;" angle="-90" />
<move id="&rarm1;" angle="-90" />
<move id="&larm2;" angle="0" />
<move id="&rarm2;" angle="0" />
<move id="&larm3;" angle="0" />
<move id="&rarm3;" angle="0" />
<move id="&larm4;" angle="0" />
<move id="&rarm4;" angle="0" />

</slot>
<slot name="ResetPositionAndWait" delta="0.5">
<move id="&lleg5;" angle="0" />
<move id="&rleg5;" angle="0" />

</slot>

</behavior>

Figure 3.2: Slot behaviour example

3.2.2 Central Pattern Generators Behaviour
Central Pattern Generator (CPG) is a neural oscillator that produces rhythmic patterned outputs

without the need for any rhythmic input [26] [27]. In biology, there are many animals that have CPG
for their behaviours (i.e human walking), with different CPG controlling different limbs. The generator
doesn’t need sensory feedback information to generate its output, but it could be used to correct
motion and/or do compensation [28].

In robotics, by defining a mathematical model it’s possible to simulate these biological neural
oscillators. Based on that, Sven Behnke created an omnidirectional walk [29] with walk direction,
speed and rotational speed as input. Despite that, normally it is hard to determine the parameter
configuration that generates the desired walking pattern.
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A CPG example is presented in figure 3.3.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE joints [
<!ENTITY head1 "0" >
...
<!ENTITY rarm4 "21" >
<!ENTITY amp1 "12">
<!ENTITY amp2 "24">
<!ENTITY amp3 "10">
<!ENTITY amp4 "4">
<!ENTITY amp5 "24">
<!ENTITY period "0.25">
]>

<behavior name="SideRight" type="CPGBehavior">

<patterns>
&lleg2;: -&amp3; &period; 1.570796327 0;
&rleg2;: &amp3; &period; 1.570796327 0;

&lleg3;: -&amp1; &period; 0 28.44;
&rleg3;: &amp1; &period; 0 28.44;

&lleg4;: &amp2; &period; 0 -46.33;
&rleg4;: -&amp2; &period; 0 -46.33

&lleg5;: -&amp1; &period; 0 31;
&rleg5;: &amp1; &period; 0 31;

&lleg6;: &amp3; &period; 1.570796327 0;
&rleg6;: -&amp3; &period; 1.570796327 0;

&lleg1;: &amp4; &period; 1.570796327 0;
&rleg1;: &amp4; &period; 1.570796327 0;

&larm1;: 0 &period; 0 -90;
&rarm1;: 0 &period; 0 -90;

</patterns>

<delta>&period;</delta>

</behavior>

Figure 3.3: CPG example behaviour

3.2.3 Omnidirectional walk
From a turn and front walk to navigate the field, to CPG [24], passing by Truncated Fourier

Series [30], the walk behaviour has seen some implementations. The current one is the Nima Shaffi
omnidirectional walk based on the ZMP criterion for its stability [31]. In this approach, the biped
walking trajectory is derived from the desired ZMP by computing the feasible CM trajectory .This
trajectory is calculated using an approximation for the dynamics of the biped robot, the 3D linear
inverted pendulum model [32].
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So, the architecture is divided in different modules as follows 3.4:

Figure 3.4: Omnidirectional walk architecture

The input of the walk is the desired speed in X,Y and its angle θ. Based on that input and the
restrictions, like the foot reachability and feet inner collision, the foot planner generates the future
support steps positions in 2D. Using the planned steps, the support polygon of ZMP and its position,
the ZMP trajectory is calculated. From there, the Cart-table model (see figure ??) is used to project
the possible body swing and its CM trajectory.

(a) Cart-table in a humanoid robot (b) Cart-table schematic

Figure 3.5: Omnidirectional walk Cart-table model from [31]

This model assumes that all masses are concentrated on the cart and the support legs doesn’t
have any mass. The simplification is not far from reality, as the legs have normally less mass than the
upper body.

However, to apply the model, one must solve its differential equations, whose solution consists of
unbounded hyperbolic cosine functions, and the CM trajectory is very sensitive to time step variation
of the walk.

So, another CM trajectory generation possibility is using ZMP Preview Controller, based on the
Kajita work [33] extended with the Park method [34]. Its equation and diagram 3.6 is:

u(k) = −Gi
k∑
i=0

e(i)−Gxx(k) (3.6)
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Figure 3.6: Preview controller

where

• Gi is the gain for the ZMP tracking error

• Gx is the gain for state feedback

• e(i) = p− pd is the controller error

• x(k) is the position of the CM in the k sample time

• k denotes the kth sample time

• pd is the desired ZMP position

• p is the ZMP position calculated from the cart-table model

With this controller is not sufficient to follow the reference ZMP because of the phase delay. For that,
preview samples of ZMP in the future are used as follows:

u(k) = −Gi
k∑
i=0

e(i)−Gxx(k)−
NL∑
j=1

Gpp
d(k + j) (3.7)

where

• NL is the number of samples in the future used

• Gp is the preview gain

• pd(k + j) is the ZMP previewed k + j in the future

Even after the walking trajectory calculations are done with the use of ZMP criteria, the stability
is not totally guaranteed because of the leg’s effectors and the simplification of the cart-table. So,
before sending the final feet position to the Inverse Kinematics module, there’s a need for an active
balance module. It tries to maintain the trunk still with zero pitch and roll. For that, it makes use of
a PID controller with the measures from the robot inertial measurement unit as input.

3.2.4 Omnidirectional Kick
Before 2012, the team was using a Slot Behaviour for its kick, which consisted in keyframes defining

the motion required. This basically was a serie of static values for the joints and the movement was
interpolated between keyframes. The problem with static values is that it makes the behaviour very
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inflexible, working with a slow preparation phase, where the robot positions itself in a predefined
position in relation to the ball (based on the desired direction) to kick it forward.

So, in 2012, Rui Ferreira tried a new approach to make the kick more flexible and to give control of
the kick direction [35]. With this approach, the trajectory is created using Bézier curves (see figure 3.7
and table 3.1) [36], steering the kicking foot to the ball, so it will be kicked in the intended direction.
This trajectory is updated in case of any ball movement within the foot range.

Figure 3.7: Kick parameters

Parameter Description

a Distance between the ball and the curve start
b Distance between the ball and the curve end

hP0

Bézier cubic curves parameters
hP1
hP2
hP3

duration Kick duration
Foot Orientation Angle between foot orientation and vector Ball2Target, so it’s

possible to kick using different parts of the foot

Table 3.1: Parameters Description

With this parameters the trajectory is created. A global view of the architecture is presented in
3.8.
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Figure 3.8: Omnidirectional kick sequence

This sequence unfolds into 5 phases. They are:
Lean_Phase

The robot shifts its CM to the support leg.
Raise_Phase

The robot raises the kick foot to the curve start.
Kick_Phase

The robot kicks the ball, executing the created trajectory.
Return_Phase

The kick leg returns to the base position, without touching the ground.
UnRaise_Phase

The robot shifts his CM to both legs, putting the kick foot in the ground.

Furthermore, there is the Inverse Kinematics module to calculate the leg joints values based on
the execution output and the Stability module which tries to stabilize the robot while performing the
movement.

3.3 Summary
Ending this chapter, the reader should be familiar with some concepts used in humanoid behaviours

and the FC Portugal 3D behaviours work.
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chapter 4
Population Based Optimization
In the elaboration of a behaviour there are multiple variables and constants involved. If manually
defined, these values are not optimal, just ones that work more or less in each case. Thus, there
is potential to change the values so the result of the behaviour has better performance. Instead of
manually trying each set of values, an optimization procedure can be applied in order to discover
better solutions.

The FC Portugal team has implemented some optimization algorithms till date, with the most
recent being the following:

4.1 Genetic Algorithms
As the name states, this algorithm is a search heuristic inspired by the biological evolution, and,

as such, it belongs to the class of evolutionary algorithms. Basically, it is an iterative process which
generates a new population of individuals (chromosomes) in each iteration, also called generation.
Each individual is a set of parameters (genes) representing a possible solution. The algorithm starts
with a population of individuals, generated randomly across the solution space or seeded in a specific
area. For each generation each individual is evaluated using a function that returns a fitness value.

From there, the next generations are produced based on the current one by applying some
operators.
Selection

In each iteration some individuals are selected to be parents for the next generation. This
selection is done randomly, with each individual having a probability of being chosen proportional
with its fitness (fitter solutions have greater probability).

Crossover
This operator is analogous to the biological reproduction where two parents generate a child.
Using some crossover technique, the child genes (parameters) are a combination of the ones from
its parents.

Mutation
Analogous to biology mutation, it applies some mutation function to the children parameters,
given a mutation probability.
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Elitism
Carry the best individuals to the next generation without alteration to guarantee that the
solution quality will not decrease during the iterations.

After each iteration, the next generation has normally better average fitness than the previous one,
as the most fitter individuals have more probability to generate a child. Commonly, the algorithm
terminates when either a maximum number of generations has been produced, or a satisfactory fitness
level has been reached for the population. Furthermore, the techniques to be used and parameters like
the percentage of mutation, selection, etc has to be adjusted depending on the context to be applied,
resulting in very different times of convergence and best solution fitness. A example pseudo code is
showed in the figure 4.1.

22



Inputs: size α of population, rate β of elitism, and

rate γ of mutation and number δ of iterations

Output: solution X

//Initialization

generate α feasible solutions randomly;

save them in the population Pop;

//Loop until the teminal condition

for i = 1 to δ do

//Elitism based selection

number of elitism ne = α.β;

select the best ne solutions in Pop and save then in Pop1;

//Crossover

number of crossover nc = (α − ne)/2;
for j = 1 to nc do

randomly select two solution XA and XB from Pop;

generate XC and XD by crossover to XA and

XB;

save XC and XD to Pop2;

endfor

//Mutation

for i = 1 to nc do

select a solution Xj from Pop2;

mutate Xj under the rate γ and generate a

new solution X ′
j;

if X ′
k is unfeasible

update X ′
k with a feasible solution by repairing X ′

j;

endif

update Xj with X ′
j in Pop2;

endfor

//Updating

update Pop = Pop1 + Pop2;

endfor

//Returning the best solution

return the best solution X in Pop;

Figure 4.1: Pseudo code version of GA algorithm from [37].
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4.2 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a population-based stochastic method used in continuous

and discrete optimization problems. In it, these called particles, where their position represent a
candidate solution, that move iteratively in the search space trying to get to better positions by
changing their velocities. These particles move towards their best known position and the swarm’s best
known position. In each iteration, improved positions may be discovered and override the previous ones
which then take place on guiding the swarm, in hope to find a satisfactory solution for the problem.

For evaluating each candidate solution a cost function f is need with the objective of minimizing
it. This function will return a real number for each candidate solution, representing its cost. The goal
of the algorithm is to find a solution a for which f(a) ≤ f(b) for all b in the search-space, which would
mean a is the global minimum.

The candidate solutions are particles (P = p1, p2, . . . , pk) in a swarm where there are
neighbourhood(Ni ⊆ P ) relations between them are represented as a graph G={V,E}. V is a
vertex representing a particle and E is a edge representing a neighbour relation. Furthermore, at a
specific time step t, pi has a position ~xti, a velocity ~vti and the best position(particle’s personal best) it
visited, represented by ~bti.

A pseudo code example is presented in follow image 4.2.
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Inputs: Objective function f : Θ → R , the initialization domain

Θ′ ⊆ Θ , the number of particles |P| = k, the parameters w , ϕ1,

ϕ2 , and the

stopping criterion S

Output: Best solution found

// Initialization

Set t := 0

for i := 1 to k do

Initialize Ni to a subset of P according to the desired topology
Initialize ~xt

i randomly within Θ′

Initialize ~v t
i to zero or a small random value

Set ~b t
i = ~x t

i

end for

// Main loop

while S is not satisfied do

// Velocity and position update loop

for i := 1 to k do

Set ~l t
i : = arg min

~b t
j ∈ Θ | pj ∈ Ni

f(~b t
j )

Generate random matrices ~U t
1 and ~U t

2

Set ~v t+1
i : = w~v t

i + ϕ1~U
t

1 (~b t
i − ~x t

i ) + ϕ2~U
t

2 (~l t
i − ~x t

i )
Set ~x t+1

i : = ~x t
i + ~v t+1

i

end for

// Solution update loop

for i := 1 to k do

if f(~x t
i ) < f(~b t

i )
Set ~b t

i : = ~x t
i

end if

end for

Set t := t + 1

end while

Figure 4.2: Pseudocode version of the standard PSO algorithm. [38].
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4.3 CMA-ES
Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) is an evolutionary algorithm for

non-linear, non-convex black-box optimisation problems in continuous domain. Typically it s applied
to unconstrained or bounded constraint optimization problems, and search space dimensions between
three and a hundred. Furthermore, it should only be applied when derivative based methods fail due
to a rugged search landscape (discontinuities, sharp bends or peaks, noise, local optima, outliers) since
they are usually faster.

As a evolution strategy, the candidate solutions are sampled according to a multivariate normal
distribution in the Rn, in which the pairwise dependencies between the variables are represented by a
covariance matrix. This matrix is updated in each iteration, corresponding to a second order approach
to a positive definite matrix. Thus it tries to learn the second order model of the underlying objective
function, similar to the approximation of the inverse Hessian matrix in the Quasi-Newton methods.

The algorithm does not need much parameter tuning from the user as the strategy parameters are
considered as part of the algorithm design. As such, the user only need to provide a initial solution, an
initial standard deviation (step-size) σ, and an optional termination criteria [39] [40].
A simple pseudo of the algorithm is shown in figure 4.3.

set λ // number of samples per iteration, at least two, generally > 4

// initialize state variables

initialize m, σ, C = I, pσ = 0, pc = 0
while not terminate // iterate

// sample λ new solutions and evaluate them

for i in {1...λ}

xi = sample_multivariate_normal(mean=m,covariance_matrix=σ
2 C)

fi = fitness(xi)

// sort solutions

x1...λ ← xs(1)...(λ) with s(i) = argsort(f1...λ, i)

m′ = m // we need later m − m′ and xi − m′

// move mean to better solutions

m ← update_m(x1, . . . , xλ)

// update isotropic evolution path

pσ ← update_ps(pσ, σ
−1 C−1/2 (m − m′))

// update anisotropic evolution path

pc ← update_pc(pc, σ
−1(m − m′), ||pσ||)

// update covariance matrix

C ← update_C(C, pc, (x1 − m′ )/σ,..., (xλ − m′)/σ)

//update step-size using isotropic path length

σ ← update_sigma(σ, ||pσ||)
return m or x1

Figure 4.3: Pseudocode version of the CMA-ES algorithm. [41].

where
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• m ∈ Rn is the distribution mean and current favorite solution

• pσ ∈ Rn, pc ∈ Rn are two evolution paths (isotropic and anisotropic correspondingly), initially
set to the zero vector

• σ > 0 is the step-size

• C is the a symmetric and positive definite n× n covariance matrix initialized with the identity
matrix
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chapter 5
Behaviours and Agent Improvement
The first steps taken in the code were some changes that could help achieve better results running
the behaviours. Firstly, the sync mode was implemented to get faster simulations, then the gyroscope
data was used for improving the agent known posture and finally, preconditions were added in the Slot
Behaviours so they could reduce the execution in case of probable failure.

5.1 Improving Posture Estimate
During the course of the game, the agent must keep a model of the world state, and update it

when possible so it knowns how to act in a given situation. One important information for the agent is
its vertical lateral and frontal inclination so it knows if it is up, falling or is on the ground. For this,
the vision is used to estimate the agent position using field flags, and from there is calculated the
Torso reference frame vectors Torsox, T orsoy, T orsoz.

Before, the frontal vertical inclination, as being calculated using the direction of the vector with the
components z and x of the unity vector TorsoZ 5.1. On the other hand, the lateral vertical inclination
used the components z and y of the same vector 5.2.

vertInclinFront = V ector(TorsoZz, T orsoZx).getDirection() (5.1)

vertInclinSide = V ector(TorsoZz, T orsoZy).getDirection() (5.2)

5.1.1 Euler angles
Using the unit vectors Torsox, T orsoy, T orsoz, which correspond to a reference frame, it is possible

to calculate the euler angles [42] pitch 5.3 and roll 5.4, which are equivalent to vertical inclination
frontal and lateral , respectively.

vertInclinFront = rad2degree(atan2(TorsoXz, T orsoZz)) (5.3)
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vertInclinSide = rad2degree(atan2(−TorsoY.z,
√
TorsoXz2 + TorsoZ2

z )) (5.4)

As we can see in 5.1 the pitch error in the old method is large when the agent falls laterally.
Besides that, the roll error is large when the agent falls on its back 5.2.

Furthermore, the correlation difference using the old method and using euler angles is:
0.62495->0.83339 in the pitch and 0.70878->0.99945 in the roll.

Figure 5.1: Comparison between vertical inclination front using the old method versus computing pitch. Green
is the ground truth from the server, red is using the old method and blue is the computed pitch.
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Figure 5.2: Comparison between lateral vertical inclination using old method versus computing roll. Green is
the ground truth from the server, red is using the old method and blue is the computed roll.

5.1.2 Gyroscope
One problem is that this perceptor is only available every third cycle, so there are a cycles where

the agent does not update its inclination data. In order to resolve this issue, it is used of the gyroscope
sensor, which is received every cycle. In the cycles where the vision is not available, the gyro rate
received in degrees per second is integrated between the cycle duration and added to the current values
of the vertical inclination frontal 5.5 and lateral 5.6 (agent pitch and roll, respectively).

vertInclinFront− = GyroRatex ∗ CY CLE_DURATION_S (5.5)

vertInclinSide+ = GyroRatey ∗ CY CLE_DURATION_S (5.6)

With the use of gyroscope, the vertical inclination gets closer to the ground truth. As we can see
in 5.3 and 5.4, the gyroscope removes that ladder effect resulted from the cycles in which the vertical
inclination is not updated. Furthermore, the correlation difference using only euler angles and using
gyroscope is: 0.83339->0.83560 in the pitch and 0.99945->0.99992 in the roll.
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Figure 5.3: Comparison between only computing pitch versus using gyroscope. Green is the ground truth
from the server, blue is only using euler angles and red using also the gyroscope.

Figure 5.4: Comparison between only computing roll versus using gyroscope. Green is the ground truth from
the server, blue is only using euler angles and red using also the gyroscope.
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5.1.3 Agent Posture State
With better values of the vertical and lateral inclination, a state for the agent was implemented,

so the developer gets a better understanding of the agent state, to simplify the conditions made in the
code and so the agent can react depending on the current situation. The various sates are:

UP
The agent is up and can execute the normal game behaviours.

GETTING_UP
The agent is executing a get up behaviour. While is not in successfully in UP state it must not
execute any game behaviour such as walk and kick.

FALLING_FRONT, FALLING_BACK, FALLING_SIDE_LEFT,
FALLING_SIDE_RIGHT

The agent as passed a point of no return, where it cannot recover its balance. So it goes to Zero

Position behaviour, which reset all the joints positions to a standard start joint configuration,
so when it hits the ground, a get up behaviour starts as fast as it can.

GROUND_BACK, GROUND_CHEST, GROUND_SIDE_LEFT,
GROUND_SIDE_RIGHT

The agent is fallen on the ground. It calls the appropriate get up behaviour.

5.2 Preconditions
The simulation environment is very dynamic and has many conditions that are difficult to manage

and to foresee. One behaviour could function well in one situation and fail in some other. In behaviours
that are not adaptable, they will run every time till they reach the finished condition, as nothing
exterior happened. For example, when a agent is in the ground and is trying to getup, if it is pushed,
the getup behaviour is executed till the end. This leads to a loss of time that can be critical in the
game, for example, in a ball dispute.

With this in mind, a solution was implemented based on preconditions and applied to Slot
Behaviours. They are defined in XML files, where a behaviour is declared divided in various slots.
In the beginning of the execution of each slot, the preconditions declared are verified. If they pass,
the behaviour executes the corresponding slot, if not the behaviour considers that it must end and it
activates its finished flag. Till now, the parameters accepted are:

incl_front:gt
Frontal inclination greater than

incl_front:lt
Frontal inclination less than

incl_side:gt
Lateral inclination greater than

incl_side:lt
Lateral inclination less than

incl_front:outer
Frontal inclination Outer interval

incl_front:inner
Frontal inclination Inner interval
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incl_side:outer
Lateral inclination Outer interval

incl_side:inner
Lateral inclination Inner interval

incl_front:abs_gt
Absolute Frontal inclination greater than

incl_front:abs_lt
Absolute Frontal inclination less than

incl_side:abs_gt
Absolute lateral inclination greater than

incl_side:abs_lt
Absolute lateral inclination less than

z_position:gt
Z position of the agent greater than

z_position:lt
Z position of the agent less than

As we can see in 5.5 there are conditions in the first slot incl_front:abs_lt="10"

incl_side:abs_lt="10", that must be meet for the slot to execute.
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE joints [
<!ENTITY head1 "0" >
...
<!ENTITY rarm4 "21" >
]>

<behavior name="FallBack" type="SlotBehavior">

<slot name="ForceFalling" delta="0.5" incl_front:abs_lt="10"
incl_side:abs_lt="10">↪→

<move id="&head1;" angle="0" />
<move id="&head2;" angle="0" />
<move id="&lleg1;" angle="0" />
<move id="&rleg1;" angle="0" />
<move id="&lleg2;" angle="0" />
<move id="&rleg2;" angle="0" />
<move id="&lleg3;" angle="0" />
<move id="&rleg3;" angle="0" />
<move id="&lleg4;" angle="0" />
<move id="&rleg4;" angle="0" />
<move id="&lleg5;" angle="-45" />
<move id="&rleg5;" angle="-45" />
<move id="&lleg6;" angle="0" />
<move id="&rleg6;" angle="0" />
<move id="&larm1;" angle="-90" />
<move id="&rarm1;" angle="-90" />
<move id="&larm2;" angle="0" />
<move id="&rarm2;" angle="0" />
<move id="&larm3;" angle="0" />
<move id="&rarm3;" angle="0" />
<move id="&larm4;" angle="0" />
<move id="&rarm4;" angle="0" />

</slot>
<slot name="ResetPositionAndWait" delta="0.5" incl_front:gt="80"

incl_front:lt="100">↪→
<move id="&lleg5;" angle="0" />
<move id="&rleg5;" angle="0" />

</slot>
</behavior>

Figure 5.5: Preconditions example
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chapter 6
Optimization Process Improvement
In the FC Portugal code, there are already some optimization algorithms implemented such as Genetic
Algorithms, PSO and CMA-ES. In this thesis the optimizations were performed using CMA-ES. Still,
there was some room to improve and automatize the optimization process. The next sections described
what was done in that sense.

6.1 Sync Mode
According to the competition rules the server runs in real-time, which means its cycles have a

duration of 20 ms, in which the server is listening for the agent effector commands. This creates two
problems. The agent has limited time to process and send its commands within the cycle time, if it ca
not, the commands will only be applied in the next cycles, which worsen the expected behaviour. The
other problem is the usage of the resources that are not used to the maximum, since the server waits
till the end of the cycle to process, even if it has already received all the agent commands. For the
competition, this problems makes sense as the cycle time provides a just processing time restriction to
all the teams. But, for developing and optimization purposes, it is way better to run the simulation
as fast as the CPU can. This way, the server only waits for the agent commands and a synchronise
message which signals the end of the agent cycle. After it receives all the agents Sync message, the
server processes all the commands and proceeds to the next cycle. In addition to simulation speed
time improvement, it can also be used to detect strange cycle times from the agents.

6.1.1 Sync Mode Usage
Before this sync mode implementation, for each command the agent generated, one message was

sent to the server. This approach was not working when transiting to sync mode. To exploit this mode,
the server connection code in the agent was changed so all messages from the same cycle are now
aggregated and for each message sent by the agent, a synchronize was added. Since then, the agent
code can support sync mode. If the server is not running in agent sync mode, the synchronize messages
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are ignored. Finally, to configure the server in sync mode, enableRealTimeMode variable in the file
/usr/local/share/rcssserver3d/rcssserver3d.rb file must be set to false and agentSyncMode

in /home/$USER/.simspark/spark.rb to true. To simplify changing between real time mode sync
mode, a python script was created, which can be called as following:

./syncMode <true|false>

As a result the time a simulation takes is drastically decreased. Without sync mode, each cycle
takes 20 ms and each part takes 5 minutes, regardless the number of agents in game. With sync mode,
the simulations runs as fast as the computer can, so the number of agents in game affect the simulation
time. In a laptop with few agents the simulation time is drastically decreased, but with many agents,
the difference between running in sync and real mode it is not visible. On the other hand, in a desktop,
even when running with all the 22 agents, the simulation time is greatly reduced.

6.2 Constraint Free Environment
The normal simulation execution is the same as during the competition games. Because of that,

there are some constraints such as: the game has limited time, 5 minutes for each part; the agents can
not move the ball and cannot beam themselves after the game have started. This affect badly the
optimization process because it needs to run for as long as needed without human intervention.

For that purpose, a constraint free environment was created as explicated below.

6.2.1 Solution
Step 1. The first step was to create a patch for the server code. It is a simple modification in the
rcssserver3d code so the playmode can be calculated based on the existence of a Linux environment
variable named ALWAYS_PLAYON. When this variable exists and is set to 1, the server is always in
PlayOn mode, otherwise the server runs normally. The PlayOn mode is used as the normal state of
the game when the ball is running. With PlayOn mode always active the game never ends. After the
application of this patch, the server code needs to be compiled and installed. To set the environment
variable, "export ALWAYS_PLAYON=1" must be run in the console before calling the server executable,
or defined in a ∼/.profile file or similar Linux file.

Step 2. According to the game rules, the agent can only beam itself during the kickoff, and the
ball only can be moved after the kickoff. To overcome this, it was created a trainer proxy (see image
6.1), which allows the agent to call all the trainer commands (see section 2.2). The most useful trainer
commands are those to control the robot and the ball, imperative to run kick behaviour optimizations.
There was a tentative of connecting the agents directly to the server using the monitors port, but the
connections were failing, so a proxy was needed. The proxy allows connections from the agents and
connects itself to the server as a monitor. By default, it listen for agent incoming connections using
port 3300.
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Figure 6.1: Trainer Proxy

./trainerProxy.py -pp <proxyport> -s <server_port>

proxy_port
Port number to listen for agent incoming connections.(default=3300)

server_port
Port number which rcssserver3d exposes for monitor connections (default=3200).

Step 3. Finally, the agent used for optimization purposes has to connect to both the server and
the proxy. A command line option is used to specify the port number. There is a argument called pp

<proxy_port>. For example, if the proxy uses the port 3400:
./fcpagent -pp 3400

6.3 Optimization Agent
Normally the optimization process of finding good value sets consumes a lot of time and resources,

as it needs to evaluate a lot of possible solutions, and for each solution, resample multiple times to
average each individual cost value. Before, the process of optimization was being done running only
one agent for server to optimize one behaviour each time. In order to improve this, a new executable
was created so multiple agents can run in the same server (maximum of 22 agents for server), running
different optimizations with the same executable.

This executable was divided in multiple scenarios (GETUP, KICK and WALK), each one with
its parameters and its behaviours.Currently any XML defined behaviour is supported for GETUP
and KICK. This scenarios execute the behaviour passed as argument and each learning scenario has
specific sequence and cost or fitness function.

GETUP
Scenario where the getup behaviours can be evaluated. This will execute a fall behaviour, followed
by the getup behaviour. It has a cost function associated with the time it takes to execute. If, at
the end of the getup behaviour, the agent is not up, the cost function is affected greatly to reflect
the error. Furthermore, the fall type and the getup file path need to be passed as argument.

KICK
Scenario where kick behaviours can be optimized. The ball will be positioned in front of the
agent and then the kick behaviour is executed. The fitness function is related to the distance
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that the ball travels and if it goes straight forward. This fitness value is affected greatly if the
ball does not move, indicating that the agent missed it. The behaviour file path need to be
passed as argument.

WALK
Scenario used for optimizing the walk behaviour. Currently, it executes the ZMP walk in the
goal direction. The fitness function evaluates the distance covered during a limited defined time
and its deviation from the target position (goal). Furthermore, this fitness is affected greatly if
the agent falls.

The optimization agent needs to know what parameters to optimize. In the slot behaviours this
is done adding new attributes to the XML file, stating the parameters to be optimized. The new
attributes have the same name as the attributes representing the parameters with the prefix ’o:’

added. The value of the new attributes is just an enumeration and can be used to specify that two or
more parameters should have the same value during the optimization process. Figure 6.2 shows an
example with several parameters to be optimized. For instance, lines 10 and 11 show two parameters
whose values should be the same.

1 <?xml version=’1.0’ encoding=’ISO-8859-1’?>
2 <!DOCTYPE behavior [
3 <!ENTITY head1 "0">
4 ...
5 <!ENTITY rarm4 "21">
6 ]>
7 <behavior name="r0_GetUpFront" type="SlotBehavior" correctAnglesOutOfRange="false">
8
9 <slot name="leftLegUp" delta="0.205311" o:delta="1">

10 <move id="&larm1;" angle="14.514300" o:angle="10"/>
11 <move id="&rarm1;" angle="14.514300" o:angle="10"/>
12 <move id="&larm4;" angle="0"/>
13 <move id="&rarm4;" angle="0"/>
14 <move id="&lleg3;" angle="0"/>
15 <move id="&rleg3;" angle="0"/>
16 <move id="&lleg4;" angle="0"/>
17 <move id="&rleg4;" angle="0"/>
18 <move id="&lleg5;" angle="0"/>
19 <move id="&rleg5;" angle="0"/>
20 <move id="&lleg5;" angle="0"/>
21 <move id="&rleg5;" angle="0"/>
22 </slot>
23
24 <slot name="leftLegUp" delta="0.079244" o:delta="2">
25 <move id="&lleg3;" angle="259.929000" o:angle="11"/>
26 <move id="&rleg3;" angle="259.929000" o:angle="11"/>
27 <move id="&lleg4;" angle="-133.612000" o:angle="12"/>
28 <move id="&rleg4;" angle="-133.612000" o:angle="12"/>
29 <move id="&lleg5;" angle="124.630000" o:angle="13"/>
30 <move id="&rleg5;" angle="124.630000" o:angle="13"/>
31 </slot>
32 ...
33 </behavior>

Figure 6.2: Example of XML behaviour file to optimize

The current version of the optimization agent accepts the following configuration parameters:
-r <robotType>

Heterogeneous model type to use.
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-scenario <Getup,Kick,Walk> (default is Getup)

Optimization scenario to run.
-b x y z

Agent initial beam position. As the server may be running with multiple agents, their positions
must be disperse so they do not interfere with each other optimization.

-opt <behaviourFile>

Path of the behaviour to optimize.
-fallType <None,FallFront,FallBack>

Fall behaviour to be used in the getup scenario.
-res

Number of resamples to run (default is 5).
-pop

Population (default is 20).

6.4 Update Optimization Parameters
The result of an optimization is a set of possible solutions, stored in a text file. The user must

manually test some of them and choose one before update the working behaviour. A tool was developed
to aid in the updating of a slot behaviour. The tool receives as arguments the file to be updated and
the new parameter values.

The tool was implemented as a python script, which parses and updates the behaviour file. Every
time an attribute with the prefix ’o_’ is found, the corresponding normal attribute is updated with
the given new value. More details on the attributes format are in 6.3.

Requisites: Python2.7 python2-lxml

./updateOptParams.py [filename] [newValues]

Ex: ./updateOptParams.py movs/type0/getup/GetupFront.xml 0.2 0.3 0.4

6.5 Heterogeneous Models
The simulation league has evolved since the use of a sphere in 2004 to represent a agent till the use

of humanoid agents in 2007. In 2013, heterogeneous models were introduced and, in 2014, rules were
made mandatory to force their use in the teams (at least three different model types must be used). In
order to fulfill these new requirements, some changes had to be done in the agent code/project.

1. In the FC Portugal project there exists a XML file describing the robot model used. It describes
the body parts, joints information like its position, etc. To support heterogeneity, one file for each
model type was used, with its custom information. The name of the file is nao%d.xml, replacing
%d with the heterogeneous model number (0-4) . Furthermore, note the "nao/nao_hetero.rsg
3" in the beginning of nao3.xml 6.3 which is the string that is sent to the Simspark server so it
knowns which model to use.
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<?xml version="1.0" encoding="ISO-8859-1"?>

<agentmodel name="nao" type="humanoid" rsgfile="nao/nao_hetero.rsg 3">

<bodypart name="head" mass="0.35" />
<bodypart name="neck" mass="0.05" />
<bodypart name="torso" mass="1.2171" />
<bodypart name="lshoulder" mass="0.07" />
<bodypart name="rshoulder" mass="0.07" />
<bodypart name="lupperarm" mass="0.15" />
<bodypart name="rupperarm" mass="0.15" />
<bodypart name="lelbow" mass="0.035" />
<bodypart name="relbow" mass="0.035" />
<bodypart name="llowerarm" mass="0.2" />
<bodypart name="rlowerarm" mass="0.2" />
<bodypart name="lhip1" mass="0.09" />
<bodypart name="rhip1" mass="0.09" />
<bodypart name="lhip2" mass="0.125" />
<bodypart name="rhip2" mass="0.125" />
<bodypart name="lthigh" mass="0.275" />
<bodypart name="rthigh" mass="0.275" />
<bodypart name="lshank" mass="0.225" />
<bodypart name="rshank" mass="0.225" />
<bodypart name="lankle" mass="0.125" />
<bodypart name="rankle" mass="0.125" />
<bodypart name="lfoot" mass="0.2" />
<bodypart name="rfoot" mass="0.2" />

<!-- joint 0 -->
<joint name="head1" perceptor="hj1" effector="he1" xaxis="0" yaxis="0"

zaxis="-1" min="-120" max="120">↪→
<anchor index="0" part="neck" x="0" y="0" z="0.0" />
<anchor index="1" part="torso" x="0" y="0" z="0.09" />
</joint>
...
</agentmodel>

Figure 6.3: Initial part of nao3.xml file

2. In the code, the walk parameters and mid level skills had to be tuned for each model type.

3. At last, new behaviours for each heterogeneous type were created. First, it was used the standard
model behaviours, then they were manually tuned for each type, so they behaved properly. After
that, each used behaviour defined in a XML files was optimized described in the Optimization
Results section 6.6.

6.6 Results
The process of optimization was automated to some extent.
It envolves 4 applications: the optimization agent, the trainer proxy, the 3D soccer server, and

a matlab program running the CMA-ES algorithm. After connection, the optimization agent sends
the required optimization data to the matlab program, that, afterwards, uses the agent as a server to
compute the cost function of the individuals. By its turn, the agent, in order to compute the value
of the cost function, runs a simulation in the soccer server, and returns the computed value to the
matlab program. These interactions last until the optimization process ends. Figure 6.4 illustrate the
interaction among the different applications.

42



Figure 6.4: Optimization Flow

Some decisions were taken in how to configure the optimizations that were realized. Not all the
robot joints were managed to be manipulated by the optimization algorithm, as it could be a very long
process and unnecessary. It was decided to consider only the most important joints for each behaviour.

Different runs of the simulation of a behaviour, for the same initial conditions, can lead to different
results. So, a single run should be avoided to calculate the cost function. It was decided to do several
runs and calculate the average of the values. However, the number of runs has a great influence in
the optimization process time. It was decided to use 5 runs. With 3 evaluations, it was verified that
the behaviours were not consistent, and using more than 5 evaluations is just in cases where we want
really consistency, which, on the other hand, affect the possible achievable fitness. The population
used was 30 because it is not so small to be a local search, neither is to big to be a global search.

As a result of this tuning, better times were obtained for the behaviours optimized as shown
below. The robots type 1 and 3 were not optimized because they are not currently used in the team
heterogeneous setup.

For the getups, the Getup scenario was used, being obtained the following values 6.1 6.2 (in
seconds).
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Model Type
0 2 4

Before 2.6 2.6 2.6
After 1.12 0.74 0.98

Table 6.1: GetUpBack

Model Type
0 2 4

Before 1.42 1.42 1.41
After 0.74 0.68 0.72

Table 6.2: GetUpFront
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chapter 7
Development and Debugging Tools

In any software project, the development and debugging processes/tools are critical to quickly pass
from an idea into a fully working and robust solution. Furthermore, the understanding of what is
happening in the simulation is greatly increased. It became clear that the project could make good use
of new tools. So, three tools were developed. The first is a monitoring interface for the agents where,
in runtime, it is possible to see code variables, input data and control the cycle time. The second is a
post simulation analyser which uses the logs from the agents and the server as input and then, parsing
and filtering the data, it is possible to export in multiple formats, view plots of the data, etc. Finally,
the last one is a tester for behaviours defined in XML files which gives, in runtime, the possibility to
edit behaviours, run a sequence of behaviours, change the robot heterogeneous type, etc.

They are detailed in the following sections.

7.1 Agent Monitor Window
Before, the analysis of each code change was being done by visualizing the result in the simulation

monitor, then, in the end of the simulation, analysing the log containing the standard output from the
executable. This log normally contain thousands of lines just for one agent, so, to simply search for
a game situation and understanding what is happening was quite difficult. Furthermore, during the
execution of a simulation it becomes greatly useful to have the possibility to see the values from the
code variables as they change in each situation, or other debug information.

The solution found was to use a graphical interface to monitor program variables specified by the
user through an API. Each agent can have its own windows. Thus, in order to allow all windows to be
seen at the same time, their position on the screen depends on the id of the agent. Figure 7.1 shows
the 11 windows of 11 agents, partially overlapped by the server window.
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Figure 7.1: Agent Monitor Window running 11 agents, each with his window.

The interface was implemented in GIMP Toolkit (GTK) [43] and runs in a separated thread. To
use the tool one must use the parameter -s.

Ex:./fcpagent -s

Requisites: >=libboost1.48-all-dev (Ubuntu), >=boost 1.48.0 (Arch Linux)

7.1.1 Developer API
During development, it is often necessary to change the values of given internal variables and

see the effect of such changes. Being possible to do this without recompiling the program is a major
advantage. The API available to the developer/programmer, in addition to the possible visualization
of internal variables, allows for the change of given variables. The changes are done though the use
of three different types of inputs, associated with callbacks. When a changed event is detected in
a registered input, the corresponding callback will be triggered, and, from there, the new value is
processed by the developer.

Show variable
The main feature is to give the ability to show any value/string and update it during the course
of the simulation. Giving a variable name and its value, one can call the following functions 7.2:

void showVariable(string variableName, float value);
void showVariable(string variableName, string value);

Figure 7.2: Agent Monitor Window show variables

Register ComboBox
Registering a ComboBox gives a set of possible selectable values (see figures 7.4a and 7.4b) that
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can be used for example, for controlling which behaviour should the agent execute next. The
register function is presented in the figure 7.3.

void registerComboBox(string comboBoxName, vector<string> values, int active, void*
changedCallback);↪→

Figure 7.3: Register Combo Box in Agent Monitor Window

(a) ComboBox Closed (b) ComboBox Opened

Figure 7.4: Agent Monitor Window with ComboBox

Register SpinButton
Registering a SpinButton (see figure 7.6) let the developer to write any string to be interpreted
by the callback he wrote. One possible use is to test a parameter or multiple ones to achieve the
expected behaviour. The register function is presented in the figure 7.5.

void registerSpinButton(string spinButtonName, GtkAdjustment* spinnerAdjustment,
void* valueChangedCallback);↪→

Figure 7.5: Register Spin Button in Agent Monitor Window

Figure 7.6: Agent Monitor Window with SpinButton
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Register keyboard key
Registering a keyboard key may be used, for example, to control an agent dribbling direction,
testing different angles and situations. The register function is presented in the figure 7.7.

void registerKeyPressed(int keyValue, gboolean (*keyPressedCallback)(GtkWidget*,
GdkEventKey*, gpointer));↪→

Figure 7.7: Register keyboard key in Agent Monitor Window

7.1.2 Controlling the Cycle Time
As the simulation cycle is 20 ms in real mode, it is humanly impossible to see the variation of one

or more variables in each cycle. To give the developer total time control of the simulation, server sync
mode was explored. The server, running in sync mode, will always wait for all agents’ synchronize
messages. Controlling the sending time of one agent synchronize message, one can control all the
simulation cycle time. To implement this, it was used the boost chrono library, available since version
1.47.0, which contains a high resolution clock. With this clock, it is measured the agent cycle time:
the time between the agent receives a message from the server and finish processing it. From there,
the agent waits until the cycle time the user sets in the interface, to send the synchronize message.
Calling the -ss parameter in one agent, the Agent Monitor Window show the cycle time controls (see
image 7.8), in which is possible to:

1. Pause simulation

2. Go to next simulation cycle

3. Change simulation cycle time

Figure 7.8: Agent Monitor Window with cycle time controls
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Ex:./fcpagent -u 2 -ss

7.2 Log Analyser
Using the Agent Monitor Window, it is possible to view the simulation state in runtime. In other

cases, a developer may want to use the resulting agent and server logs to do after-simulation analysis.
So, a Graphical User Interface (GUI) tool was developed, increasing also the information obtained
through the manipulation of the log files and the information visualization. Due to its simplicity to
deal with strings and good documentation, Java was used for programming the GUI tool, with Swing
[44] toolkit being used to display the interface elements.

7.2.1 Extracting Information
The input for the application is the logs generated from the agents and the server. In

the server, the simulation must be configured to record a log file. In the ruby file in
/usr/local/share/rcssserver3d/rcssserver3d.rb or similar path, there is a variable in the begin-
ning of the file named recordLogfile that must be set to true.

In each execution of the server, a sparkmonitor.log file containing all the information needed for
a monitor to reproduce the simulation is generated. This file contain S-expressions using the protocol
detailed in section 2.2.2.

On the other hand, the log files from the agents have their standard output from the execution
of the code, without any standard format. So, to extract meaningful data, the program gives the
user the possibility to declare regex expressions with groups in it. Each group as a meaning, which
currently can be: the simulation time named time; a matrix position Ny, Nz, Zero3, Ox, Oy, Oz,

Zero7, Ax, Ay, Az, Zero11, Px, Py, Pz, One15; an Euler angle Pitch, Roll, Yaw; or a custom
variable Val1, Val2, Val3, Val4. These regex expressions are applied in the agent logs, extracting
the groups data. An example expression can be gameTime:(FLOAT) vertInclinFront:(FLOAT) with
the Group 1 denoting the Time and Group 2 as the Pitch . This expression will search for lines in the
log file such as gameTime:2.4 vertInclinFront:45.2, extracting 2.4 and 45.2 as Time and Pitch ,
respectively.

7.2.2 Export Options
As output, the application has various options such as:

Log
The Log export option will generate a file with the same format as the sparkmonitor.log

detailed in sub section2.2.2. The generated log can then be viewed in any simspark monitor. It
may be helpful, for example, to put a 3D model of a ball in the positions that the agent thinks
the ball was. So, in this case, two balls would appear in the screen, and the user could see the
difference between the real position of the ball and the one it calculates from the vision system.
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Plots
The Plots export option produces either line or point plots (see figure 7.9 for an example of
each type). This is helpful to see the variation of a variable through the simulation, and/or to
compare it with other variables.

(a) Lines Plot (b) Points Plot

Figure 7.9: Two types of plots available

XLS
The XLS export option produces a file like the figure 7.10.

Figure 7.10: XLS export example.

XML
With the well known and used XML output (see figure 7.11), the data can them be used as
input for another program for further manipulation and processing.
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<elems>
<elem name="Left4_Torso">
<matrix time="0.18">-0.00341114 -0.999994 -1.52527E-7 0.0 0.999994 -0.00341114

7.23039E-5 0.0 -7.2304E-5 9.41126E-8 1.0 0.0 -4.56328 1.19874 0.383706
1.0 -0.004142708 8.739153E-6 1.5258789E-5</matrix>

↪→
↪→
<matrix time="0.38">-0.00341107 -0.999994 -1.7801E-7 0.0 0.999994 -0.00341107

1.09919E-4 0.0 -1.09919E-4 1.96932E-7 1.0 0.0 -4.56692 1.19875 0.37809
1.0 -0.0062978948 1.0199222E-5 1.5258789E-5</matrix>

↪→
↪→
<matrix time="0.46">-0.00341107 -0.999994 -2.13309E-7 0.0 0.999994 -0.00341107

8.19609E-5 0.0 -8.19612E-5 6.62669E-8 1.0 0.0 -4.56863 1.19876 0.372325
1.0 -0.0046960134 1.2221705E-5 1.5258789E-5</matrix>

↪→
↪→
</elem>
</elems>

Figure 7.11: Example of the exported XML file.

7.2.3 Interface
After launching the application, a graphical interface appears and the user can select the server

and/or agent log files to be manipulated. Then, a set of parse and process features are available for
both the server and the agent logs.

The interface is composed of a top common banner area and bottom agent/server specific area.
Figures 7.12 and 7.13 show, respectively, the available options from the agent and server perspectives.
Supported in these two figures, it follows an explanation of both the graphical elements and the
operation performed when they are selected.

Figure 7.12: Log Analyser agent log selected
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Figure 7.13: Log Analyser server log selected

1. File path of the current selected log.

2. Button used to refresh all the program. This is useful, for example, when the logs selected in
the interface are changed because new simulation was run. This way, there is no need to select
the log files again or restart the program. To refresh, the program begins by saving the current
interface state (log tree selection, playmodes checkboxes, time, etc), then all the interface is
reset and all the logs are parsed again. At the end, the initial interface state is applied and if
any plot is visible, iti s refreshed too.

3. Let the user select a server log. This log, called sparkmonitor.log, is generated by simspark if
recordLogfile variable in simspark.rb file is set to true. Only one server log can be used by
the program at a time, corresponding to one simulation. After the file is selected, the program
tries to parse it, and, if successful, presents in the log tree the agents present in the log, and its
components (Ex: head, neck, etc).

4. Let the user select a agent log. The agent logs are the files generated from the standard output
of the agents code. Multiple agent logs can be selected, as multiple agents can generate their log
in one simulation. After the file is selected, the program parses it, and adds it to the log tree.

5. Tree representation of the logs loaded in the program and its components. Using this tree
representation it is possible to select which components to be used in the multiple export options.
In the server node, the children are the agents and the ball present in the server log. In the
agent, its children represent regex expressions added by the user. First, the user creates a new
regex expression with 16, then fill the options 6,10,11-15. Afterwards, the user needs to save
17. Finally, with a agent tree selected in the tree log, the button in 19 creates a new element
based on the regex expression and adds it to the children of the agent log.

6. Identifier of the current selected regex expression (must be unique).

7. To simplify the regex visualization and its creation, there are two buttons corresponding to the
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two most used expressions (Float, Integer), that are replaced with the correct regex when all
the expression is applied. Click in this button to insert FLOAT macro in current caret position.
It will be replaced with:
[-+]?[0-9]*\\.?[0-9]+([eE][-+]?[0-9]+)?

8. Click in this button to insert INTEGER macro in current caret position. It will be replaced
with:
[-+]?[0-9]*

9. Click to preview the effect of the current regex expression applied in the selected agent log.

10. Input box with the regex expression to use. Each parentheses pair represents a regex group, or
in other words, a value to be retrieved when applying the regex expression to the log file. Each
group has a meaning, it can represent the time, a transformation matrix element, pitch, roll,
yaw or simply a custom value to analyse. For the former there are Val<n> from 1 to 4 in the
combo box to be used. The groups combo boxes are automatically updated as the user changes
the regex expression.

11. Groups combo Boxes actually present in the regex expression and its meanings.

12. Checkbox to indicate if the regex expression has a 3D model associated. If so, a group of
configurations for the 3D model are presented, otherwise they are hidden. With this feature,
when exporting in log format, a new visual element is created using the 3D model options in
13-15 and added to the server log. This way, when using a monitor to view the exported log,
the selected model, a 3D model will appear in the positions extracted from the regex expression
in 10.

13. Select the 3D model to use. The ComboBox is filled with the known models used by the simulation
server, plus any .obj files found in /usr/local/share/rcssserver3d/models directory. The
standard models StdUnit (Cylinder, Box and Sphere) are only displayed in the rcssmonitor3d,
they don’t appear in Roboviz.

14. Define the scale in X,Y and Z.

15. Defined the material to use in the model. The ComboBox is filled with the known materials
used by the simulation server.

16. Create new regex expression. The new expression get as identifier the current date.

17. Save any changes to the selected expression.

18. Remove the selected expression.

19. Add selected regex expression to the selected agent log.

20. List with the identifiers of all the regex expressions the user has already created.

21. List where the first results of the preview appears.

22. Select the server time range to process.

23. Select simulation play modes to process.
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24. Global group selection combo box. Used as a plot option.

25. Click to show Lines Plot. At least one log tree node must be selected. Then, the Group to be
used in the plot can be selected globally in the combo box below the "Plot" label, or individually,
in each log tree node. The former is used if the global group combo box has the value "-"

selected.
After clicking the button, a new window is created in which the plot is presented, using GRAphing
Library (GRAL), modified a little. Each group has a different colour and when a plot point is
clicked, a label appears containing the clicked point time and value. Furthermore, the GRAL
[45] gives the option to zoom, move, print and export the plot as image with multiple possible
formats using the right click menu (Wireless Application Protocol Bitmap Format (WBMP),
Bitmap image file (BMP), Portable Network Graphics (PNG), Joint Photographic Experts
Group (JPEG), Portable Document Format (PDF), Graphics Interchange Format (GIF),
Scalable Vector Graphics (SVG), Encapsulated PostScript (EPS)). The images presented in 5.1
were generated using this export options.

26. Click to show Points Plot.

27. Click to export to a simspark log format. All the options in the interface are applied to the
selected logs and its selected elements, then the server log is merged with the agent logs, resulting
in the output log. This contains the 3D models information from the agent logs processing, so
they can be visualized in a simulation monitor.

28. Click to export the selected logs/elements to XLS format. It makes uses of the Java Excel API
(Only one node can be selected for export). [46]

29. Click to export the selected elements to XML format.(Only one element can be selected)

7.2.4 Configuration Save
As the program was being developed, it became useful to save some changes done in each program

execution. For this purpose a XML file was created named configs.xml (see figure 7.14). In it, it is
saved all the logs previously selected by the user, regex expressions created and its options. When the
program is executed, the configuration file existence it is verified. If the file exists, all logs presented
are loaded and all the regex expressions made available, otherwise the file is created.
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<configs>
<expressions>
<expression hasModel="false" identifier="vertInclinFront">
<regex>gTime:(FLOAT) vertInclinFront:(FLOAT)</regex>
<groups>
<group>Time</group>
<group>Pitch</group>

</groups>
</expression>
<expression hasModel="true" identifier="ball">
<regex>gTime:(FLOAT) .*BallPos (FLOAT) (FLOAT) (FLOAT)</regex>
<scale x="1.0" y="1.0" z="1.0"/>
<material>yellow</material>
<model>StdUnitSphere</model>chr
<groups>
<group>Time</group>
<group>Px</group>
<group>Py</group>
<group>Pz</group>

</groups>
</expression>
</expressions>
<openLogs>
<log type="server">/home/test/fcp/sparkmonitor.log</log>
<log type="agent">
<fileName>/home/test/fcp/L3</fileName>
<expressions>
<expression identifier="vertInclinFront"/>
<expression identifier="ball"/>

</expressions>
</log>

</openLogs>
</configs>

Figure 7.14: Example of the configs.xml file.

7.2.5 Server Simulation
A great way to understand what is happening in a giving time is to see it appearing in the

simulation monitor. This is the purpose of this feature, which simulates the rcssserver3d server. It
bounds to the default rcssserver3d port(3200), waiting for monitors connections.

Starting from here, some options in the Log Analyser can be made visible in the monitors in real
time.

It works by cloning the Ruby Scene Graph (RSG) message previous to the current selected time
and applying all the Ruby Diff Scene (RDS) in between. After this aggregation, which creates the
current time RSG message, the resulting message is sent to all the monitors connected to this server.

When a monitor connects to the server, the current time message is sent to it.
One must remember that the processed RSG message is the result of the options configured in the

interface, especially the log tree selection, so it is possible to show in the monitors only some agents, or
some agent elements or some processed regex expressions in the form of a 3D model. This make it
easy to analyse only one agent leg movement in a full game, for example.

In the figure 7.15, we can see a possible setup to analyse the agent torso inclination. Only the
Torso, Neck and Head nodes of one agent are selected and, because of that, only that elements appear
on the monitor. There are also two plots opened with the Torso Nx and Ny of the agent 4 of the Left
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team. When the user changes the time in 2 or click on a point in any of the graphs, all the elements
are synchronized: the time in 2 will be updated; the plots opened will show a label with the value in
the selected time; and the monitor will be updated too.

Figure 7.15: Server running with one plot selecting a time value where we see the agent falling with a pitch
of approximately 45o.

Based on the figure showed above, the description of the server simulation is presented below:

1. Click to start/stop the server simulation. If it is stopped, the current time indicator will be
invisible.

2. Change the server time using the arrows, introducing manually the value, or using the scroll
wheel from the mouse. The possible time values are restricted between the server log last time,
and its first time with all the agents connected.
When the value changes, the current RSG message is sent to all the monitors connected, and all
the plots visible show a label corresponding to the current time.
The time will not change if zero elements are selected in the log tree.

3. Clicking in any plot point, will move the current time indicator to the plot point time, thus
sending to the monitors connected to this server the new time RSG message. Furthermore, the
other plots visible show a label corresponding to the current time.

7.3 XML Defined Behaviour Tester
There are different kinds of behaviours in the FC Portugal team, some of them are dynamically

calculated in runtime (ex:Walk) and others are statically defined in XML files (ex:SlotBehavior,
CPGBehavior, StepBehavior, ImprovedSlotBehavior, ImprovedCPGBehavior). For the last ones, the
process of testing and improving was being done by changing the code to run tests for each behaviours,
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compiling and then using a text editor for editing the XML files. For each change in the XML file,
running a new agent executable was needed to visualize the result.
To improve the efficiency of this process, a new tool (see image 7.16) was created using GTK2, Scintilla
and some agent code. GTK was used for the user interface and Scintilla is a open source library which
provides text editing and XML syntax highlighting.

Figure 7.16: Behaviour Tester

Supported on figure 7.16, it follows an explanation of the features available in the application

1. Choose the behaviour file to use.

2. Edit time to wait after this behaviour ended.

3. Remove this line behaviour from the list.

4. Select how many agents to run in each test iteration.

5. Choose the robot type to use from the list of heterogeneous models.

6. Choose if the agent should fall back, front, side or not at all.

7. Choose first agent initial position

8. Select if the test iteration should be repeated.

9. Add new behaviour file.

10. Save file and run the test.

11. Editable area with syntax highlighting.

12. Save current editable file or choose to edit another file

Requisites: libgtk2.0-dev (Ubuntu), gtk2 (Arch Linux)
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chapter 8
Conclusion
While objectives of this thesis were ambitious, they were mostly accomplished.

Starting with the optimizations, a good progress was done in terms of the process efficiency. With
the optimization agent it is possible to start the process without changing any line of code. The
separated agent also enables to have multiple agents optimizing in one simspark server, which is good
for PCs with low resources or just for simplifying the number of consoles open and processes to control.

In terms of the behaviours, the newly optimized getup have good times, reducing by half the time
taken, depending on the robot model. This is clearly an advantage in the game and can be used in
conjunction with tactics so the best robots are used in specific situations.

The tools developed are quite handy. There is the Agent Monitor Window that can show variables
in real time, for multiple agents. This in conjunction with sync mode, which can pause or change the
game speed, is like a debugger, but with easier access, and with the possibility to send messages or
values to callbacks in the code, so the agent can be changed in execution time, with the advantages
that come with that.

The tester for XML Defined Behaviour is a utility that can load multiple behaviours, from different
model types, in repetition and in execution time, reduces the time needed to rerun the agent for each
change in the XML file and the time to open and edit different model types.

The last tool is the Log Analyser. It has lot of features, it can become useful for the developers to
extract information from the logs, either the server one or the agents output. This information can
then be processed and be redirected to different outputs, like plots, XML, XSL, monitor visualization,
each one with its own possibilities.

In conclusion, this tools gives the team developers new ways to approach the problems, saving
time and energy for other more important problems.

8.1 Future Work
In the FC Portugal project, as part of the RoboCup community, there is always work to be done

and room for improvement. As such, some features that can be done in the future for the project or
on top of this thesis are:
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• The preconditions help reduce the time that some static behaviours consume when they are
expected to fail. Other possibility would be to develop behaviours in order to make them
adaptable, taking in account the known world state and sensors to produce the expected output,
cycle by cycle. This way, in some cases, the agent could recover from unexpected behaviour
variation.

• The optimization process could be further automated, with a flexible tool which should create
the simulations, agents, run multiple types of optimizations and manage all the elements all
by itself. Furthermore, the optimization re-sampling could be made parallel with one agent
running each resample needed, further increasing the efficiency, which could help to optimize
more variables and situations.

• The Log Analyser of the section 7.2 has already implemented the parser for the agents and
server logs, and added some useful features. With this base, the tool has potential to grow and
be extended based on the developers needs. The same applies to Agent Monitor Window and
Behaviour Tester.

• The game is still a lot physical and the dispute for the ball is intense, so it could really help
integrate some stabilization system using the walk and the arms.

• As new heterogeneous models are available for the competition, it could be interesting to see
which types are better or have more potential at some specific behaviour, and incorporate this
knowledge in the tactical roles of the game.

• For the code stability and to assess each commit, could be of use having a battery of tests with
some criteria.

• For the students entering in the project, a wiki would be a good addition as it could help to
explain what already has been done. In it, the overall architecture, major classes description,
documentation, tools descriptions, future and current issues and some tips can be placed.
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