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base de dados, distribuído, tolerância a falhas.

Resumo “Dados” sempre foram um dos mais valiosos recursos das organizações.
Com eles pode-se extrair informação e, com informação suficiente, pode-se
criar conhecimento. No entanto, é necessário primeiro conseguir guardar
esses dados para posteriormente os processar. Nas últimas décadas tem-se
assistido ao que foi apelidado de “explosão de informação”. Com o advento
das novas tecnologias, o volume, velocidade e variedade dos dados tem
crescido exponencialmente, tornando-se no que é hoje conhecido como big

data.

Os operadores de telecomunicações obtêm, através de equipamentos de mo-
nitorização da rede, milhões de registos relativos a eventos da rede, os Call

Detail Records (CDRs) e os Event Detail Records (EDRs), conhecidos como
xDRs. Esses registos são armazenados e depois processados para deles
se produzirem métricas relativas ao desempenho da rede e à qualidade dos
serviços prestados. Com o aumento dos utilizadores de telecomunicações, o
volume de registos gerados que precisam de ser armazenados e processados
cresceu exponencialmente, inviabilizando as soluções que assentam em ba-
ses de dados relacionais, estando-se agora perante um problema de big data.

Para tratar esse problema, múltiplas contribuições foram feitas ao longo dos
últimos anos que resultaram em soluções sólidas e inovadores. De entre
elas, destaca-se o Hadoop e o seu vasto ecossistema. O Hadoop incorpora
novos métodos de guardar e tratar elevados volumes de dados de forma
robusta e rentável, usando hardware convencional.

Esta dissertação apresenta uma plataforma que possibilita aos actuais sis-
temas que inserem dados em bases de dados relacionais, que o continuem
a fazer de forma transparente quando essas migrarem para Hadoop. A
plataforma tem de, tal como nas bases de dados relacionais, dar garantias
de entrega, suportar restrições de chaves únicas e ser tolerante a falhas.

Como prova de conceito, integrou-se a plataforma desenvolvida com um sis-
tema especificamente desenhado para o cálculo de métricas de performance
e de qualidade de serviço a partir de xDRs, o Altaia. Pelos testes de de-
sempenho realizados, a plataforma cumpre e excede os requisitos relativos
à taxa de inserção de registos. Durante os testes também se avaliou o seu
comportamento perante tentativas de inserção de registos duplicados e pe-
rante situações de falha, tendo o resultado, para ambas as situações, sido o
esperado.





Keywords Altaia, Hadoop, HDFS, LevelDB, Hive, Impala, KPI, KQI, CDR, EDR, xDR,
database, distributed, fault tolerance.

Abstract Data has always been one of the most valuable resources for organizations.
With it we can extract information and, with enough information on a subject,
we can build knowledge. However, it is first needed to store that data for later
processing. On the last decades we have been assisting what was called
“information explosion”. With the advent of the new technologies, the volume,
velocity and variety of data has increased exponentially, becoming what is
known today as big data.

Telecommunications operators gather, using network monitoring equipment,
millions of network event records, the Call Detail Records (CDRs) and the
Event Detail Records (EDRs), commonly known as xDRs. These records are
stored and later processed to compute network performance and quality of
service metrics. With the ever increasing number of telecommunications sub-
scribers, the volume of generated xDRs needing to be stored and processed
has increased exponentially, making the current solutions based on relational
databases not suited any more and so, they are facing a big data problem.

To handle that problem, many contributions have been made on the last years
that have resulted in solid and innovative solutions. Among them, Hadoop
and its vast ecosystem stands out. Hadoop integrates new methods of storing
and process high volumes of data in a robust and cost-effective way, using
commodity hardware.

This dissertation presents a platform that enables the current systems
inserting data into relational databases, to keep doing it transparently
when migrating those to Hadoop. The platform has to, like in the relational
databases, give delivery guarantees, support unique constraints and, be fault
tolerant.

As proof of concept, the developed platform was integrated with a system
specifically designed to the computation of performance and quality of service
metrics from xDRs, the Altaia. The performance tests have shown the platform
fulfils and exceeds the requirements for the insertion rate of records. During
the tests the behaviour of the platform when trying to insert duplicated records
and when in failure scenarios have also been evaluated. The results for both
situations were as expected.
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chapter 1
Introduction

This chapter makes an introduction of the motivation for this dissertation, making an overview of data

storing and processing challenges. Then the objectives are set and finally it is presented the structure

of this document.

1.1 preamble

Data has always been one of the most valuable resources. With it, we can create information,

and with enough information on a subject, we can build knowledge. With that knowledge, people

and organizations can make better predictions, better decisions, thriving in a always more demanding

world.

The “information explosion”, as called in the Lawton Constitution newspaper in 1941 [1][2] is the

acknowledgement that data has been growing at a rate that is making it harder to store, organize and

process. Data growth has always led to technology improvements allowing more and more information

to be created from data, enabling organizations to generate more knowledge and then better predictions

and decisions. In 1997, scientists at NASA published a paper [3] describing the issues they were having

visualizing large data sets that could not fit in main memory not even on local disk. They called that

the problem of big data.

Nowadays big data is a broad term encompassing any collection so large and/or complex that it

becomes difficult to process it using traditional data processing applications [4]. New technologies have

been developed to deal with the big data problem. Google alone have contributed with papers of their

own platform, including a distributed file system, Google File System (GFS) [5], a new processing

paradigm, MapReduce [6], a high performance data storage, BigTable [7] and a scalable and interactive

ad-hoc query system [8]. Based on those papers by Google, several projects have been born being

Hadoop and its vast ecosystem the reference.

1
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For a telecommunications operator, dealing with millions of Call Detail Records (CDRs) and

Event Detail Records (EDRs) (the xDRs) coming from network monitoring equipments (probes) may

be a challenge. These xDRs need to be stored and processed to gather valuable information to the

business. The xDRs are used, for example, to compute Key Performance Indicators (KPIs) and

Key Quality Indicators (KQIs) allowing a telecommunications operator to know the usage level of its

network infrastructures and how are they performing. With that information it can diagnose network

infrastructure problems and Quality of Service (QoS) problems that would compromise Service-Level

Agreements (SLAs) and, it can plan future network infrastructure upgrades more intelligently.

More recently, operators are concerned about not only how their network infrastructure performs

but how is that performance perceived by a certain client. This user centric approach to the problem,

rather than network centric, is called Customer Quality Management (CQM).

With an always increasing demand for telecommunication services, as shown in Figure 1.1 for

wireless broadband subscriptions, resulting in the millions of users worldwide, depicted in Figure 1.2,

the amount of xDRs a telecommunications operator has to process to calculate KPIs and KQIs, for

example, has grown to big data sizes. This leads to the need of migrating their current data systems,

typically RDBMSs, to more specialized, more scalable and more cost effective systems designed from

the ground up to deal with the big data problem.
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Figure 1.1: Wireless brodband penetration in G7 countries from 2009 to 2013, in number of
subscriptions per 100 inhabitants.1

1Available at: http://www.oecd.org/sti/broadband/1i-BBPenetrationHistorical-G7-2013-

12.xls
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Figure 1.2: Total wireless broadband subscriptions by country, in millions of subscriptions.2

1.2 motivation

With the big data movement came the urge to migrate existing systems to that new reality. Many

of those systems integrate with RDBMSs. Specifically, at Portugal Telecom Inovação e Sistemas, it is

developed an Operations Support System (OSS) product, named Altaia, responsible for the processing

of xDRs to then generate metrics: the KPIs and KQIs.

Figure 1.3 shows an overview of Altaia’s architecture. The DBN0 s is where raw data, including

the xDRs, is stored upon being captured from the probes and other external systems. Preprocessed

data coming from the Altaia Mediation systems is also stored in the DBN0 s. In DBN1 it is stored the

dimensional hierarchies with the KPIs and KQIs upon processing DBN0 s’ raw data with the Altaia

Framework. From the Altaia Portal it is possible for a client to request the raw records that have

originated a certain metric, that is, drilling-down back to the original raw data stored in the DBN0 s.

It is at the DBN0 s level that data is getting bigger. At the moment, both DBN0 and DBN1 are

supported by Oracle RDBMS instances but due to cost, scalability and performance requirements, new

alternatives involving big data tools, specifically from the Hadoop ecosystem, are being investigated.

Altaia is an example of a system bound to the SQL query language to interact with its DBN0 s

and DBN1. Moreover, the systems composing the Altaia Mediation are also bound to the features

2Available at: http://www.oecd.org/sti/broadband/1c-TotalBBSubs-bars-2013-12.xls
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RDBMSs offer when inserting data, like delivery and durability guarantees of data and, the checking

of data restrictions like unique key constraints.

Figure 1.3: Altaia architecture overview.

The Hadoop ecosystem has some tools, like Hive and Impala, that will be presented in Sections 2.3.1

and 2.3.2 respectively, that offer a SQL-like language to interact with data stored into Hadoop, more

specifically HDFS, that will be presented in Section 2.2.1. Because of Altaia’s dependency on SQL,

these tools are the straightforward choices to migrate the DBN0 s to Hadoop.

Choosing Hive and Impala facilitates the data querying part. Making mediation systems to

insert data into Hadoop, however, requires extra effort due to the lack of RDBMSs semantics and

guarantees from both Hive and Impala. Those systems can relax the need of using Data Manipulation

Language (DML) statements to insert data but they cannot relax other needs like data delivery and

durability guarantees and the data constraints offered by RDBMSs.

To tackle the issue of inserting data into Hadoop allowing existing systems to more easily migrate

to Hadoop technologies, a solution providing applications the features they expect from a RDBMS

had to be created.

This dissertation was developed during a curricular internship at Portugal Telecom Inovação e

Sistemas that had a duration of six months.
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1.3 objectives

The main goal of this dissertation is the development of a mediation framework to insert data

into Hadoop. It has to provide some features of RDBMSs like data delivery guarantees and data

constraints. The inserted data has to be ready to be queried by both Hive and Impala.

To allow the development of a mediation framework, the first goal is the study and familiarization

with current big data systems and tools like Hadoop, Hive, Impala, HBase, and others that may be

found useful to achieve the main goal.

As Proof Of Concept (POC), the developed framework needs to be tested against an already

existing CQM mediation system (Section 4.1) and fulfil some performance requirements, discussed in

Section 3.1.

At the beginning of the internship the goal was more focused on trying big data tools to do Extract

Transform Load (ETL) jobs and, in trying alternative big data technologies for the DBN0 s. Later,

Impala was imposed as the technology to be used to query data from the DBN0 s and so the main goal

for this dissertation was set up and carried on.

1.4 structure

This document is divided into five chapters. The current chapter presents the motivation of the

work of this dissertation and its goals. The remaining chapters cover the following aspects:

• Chapter 2: presents the background supporting the work on this dissertation;

• Chapter 3: clearly outlines the problem to solve and the requirements for a solution. Then it

presents the architecture and implementation details of that solution;

• Chapter 4: evaluates and discusses the implemented solution, at architectural, implementation

and performance levels;

• Chapter 5: wraps up the dissertation into a brief overview of the developed work and gives

directions of future improvements to be considered.
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chapter 2
Background

This chapter starts by giving an historical overview of what is today called big data. Then it describes

the technologies needed for this dissertation, giving a historical overview of them and how they relate to

each other.

2.1 big data history

Dealing with ever increasing amounts of data has always been a problem, forcing new techniques

to be developed to take advantage of the available data and so extract information from it and build

knowledge.

Back in 1880 the U.S. Census took seven years to process the results and by the time it was

completed, they were already obsolete [9]. It was just too many data to process. In 1941 scholars

began to coin the ever increasing amounts of data as “information explosion” [1]. The first warning of

data’s storage and retrieval issues was made in 1944 when Fremont Rider estimated the American

university libraries were doubling in size every sixteen years [10].

In the early 1960, Derek Price observed that the amount of scientific research was too much for

humans to keep abreast of [2] and that the abstract journals created in the late 1800s as a way to

manage the knowledge base were also growing at the same trajectory, multiplying by a factor of ten

every half-century. New ways of keeping and organizing data, information and knowledge were needed.

During the 60s yet, organizations began automating their inventory systems to centralized comput-

ing systems. In 1970 Edgar Codd revolutionized the databases with the relational model [11], allowing

users of large data banks to access data without having to know its internal representation.

As storage capacity and data continued to grow, Parkinson’s law [12] was paraphrased by Tjomsland

in 1980 as “Data expands to fill the space available” [13] because data was being retained as users no

longer were able to identify obsolete data.

7



MSc Computer and Telematics Engineering

The need for consistent storage of historically complete and accurate data resulted in Barry Devlin

and Paul Murphy defining, in 1988, an architecture for business reporting and analysis [14], which

became the foundation of data warehousing.

In 1997, scientists at NASA published a paper [3] describing the issues they were having in

visualizing large data sets that could not fit in main memory not even on local disk. They called that

the problem of big data. Since then, the term started to gain popularity and be applied any time it

was at hands a problem involving large data sets that could not possibly be stored and processed by an

organization. In that same year, Michael Lesk concludes there may be a few petabytes of information

in the world and that by the year 2000 there would be enough disk and tape to save everything [15].

He has been proved wrong.

In 2001, Doug Laney describes the 3Vs [16] - Volume, Velocity and Variety - as dimensions describing

data management solutions. The 3Vs are today the generally accepted big data characteristics.

Several studies [17] [18] have tried to measure how much information is there and predict the rate

of data growth, analysing what was causing it, that is, find out from where was that data coming from.

Later in 2008, the term big data is popularized, predicting that “big-data computing” will “transform

the activities of companies, scientific researchers, medical practitioners, and our nation’s defense and

intelligence operations.” [19].

2.2 hadoop

Doug Cutting had a goal to build a web search engine from scratch and so he started the development

of Lucene. While developing Lucene’s web crawler (now with Mike Cafarella too), called Nutch, they

realized their architecture would not scale to the billions of pages on the Web [20]. With the help of

a Google paper published in 2003 describing their Google File System (GFS) [5], they thought that

something like it would solve their storage needs for the large files produced as part of the web crawl

and indexing processes [20]. And so, they started writing an open source implementation of Google

File System (GFS), the Nutch Distributed Filesystem (NDFS).

Later in 2004, Google (again) published a paper introducing MapReduce [6], a new programming

model and an implementation for processing and generating large data sets. The Nutch developers

started working immediately on an implementation of MapReduce and by 2005 they already had

ported Nutch’s algorithms to run using MapReduce and NDFS.

Because NDFS and Nutch’s implementation of MapReduce were being used beyond Nutch’s

purpose, crawling and indexing, they moved them out of Nutch, creating an independent subproject of

Lucene, and so, in 2006, named after Doug Cutting’s son’s elephant toy, Hadoop has born. The NDFS

was renamed to Hadoop Distributed File System (HDFS).

On that same year Doug Cutting moved to Yahoo!, which provided a dedicated team and resources

8 Micael Capitão
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to continue the development of Hadoop, turning it the technology used by Yahoo! to generate their

search index.

In 2008, Hadoop was made a top-level project at Apache, confirming its success. Hadoop itself is

composed of HDFS and of an implementation of MapReduce. However, the term is also used “for a

family of related projects that fall under the umbrella of infrastructure for distributed computing and

large-scale data processing” [20], forming the Hadoop ecosystem.

The Hadoop ecosystem is composed of several tools (coming from other projects) helping in

different tasks. There are data warehousing tools, analytical tools, data importing and exporting tools

between RDBMS and Hadoop, data capturing tools, NoSQL databases with columnar storage, system

coordination and management tools, etc. Figure 2.1 presents some of the projects composing the

Hadoop ecosystem and their roles.

Figure 2.1: Hadoop ecosystem overview.1

2.2.1 Hadoop Distributed File System

The GFS article [5] presented a distributed file system for large distributed data-intensive applica-

tions, providing fault tolerance while running on commodity hardware. It describes an architecture

composed of a single master and multiple chunkservers. In GFS files are divided into fixed-size chunks,

being each chunk identified by a unique handle assigned by the master at the time of the chunk creation.

Chunkservers store the chunks on local disks and read or write chunk data specified by a handle and a

byte range. The master maintains all the file system metadata.

1Available at: http://dbaquest.blogspot.pt/2013/08/hadoop-eco-system-map.html
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One of the key designs parameters of GFS is its chunk size of 64 MB. Having a large chunk size

minimizes the need to interact with the master in scenarios where big files are read and/or written

sequentially. The design of HDFS was based on the following assumptions [20] [21] [22] borrowed from

the GFS design:

• Many expensive commodity hardware that often fail;

• Very large files. “files that are hundreds of megabytes, gigabytes, or terabytes in size”;

• Streaming data access: “write-once, read-many-times pattern”;

• High sustained bandwidth is more important than low latency.

Figure 2.2 shows the HDFS architecture. According to [21], HDFS has a master/slave architecture

consisting of a NameNode, which is a master server that manages the file system namespace and

controls the access to files, and multiple DataNodes, which manage the storage of the nodes they run

on. The file system namespace exposed to clients allows them to access data as files when, in reality,

those files are split into blocks stored across the cluster’s DataNodes. When a file is loaded into HDFS,

it is broken up into blocks, as shown in Figure 2.3, which are stored across the cluster’s DataNodes. As

a fault tolerance measure, each block is replicated (with a factor of 3 by default) across different nodes.

The block size and replication factor are configurable per file.

Figure 2.2: Architecture of HDFS.2

The NameNode manages the file system NameNode operations like opening, closing and renaming,

and manages the mappings between file’s blocks to DataNodes. The DataNodes serve reads and writes

requests from the clients.

2Available at: http://edu-kinect.com/blog/2014/06/16/hdfs-architecture/

10 Micael Capitão

http://edu-kinect.com/blog/2014/06/16/hdfs-architecture/


Mediator Framework for Inserting Data into Hadoop

HDFS has a hierarchical file organization in directories, being files identified by path-names. Files

and directories can be created, removed, moved and renamed. These operations affecting the NameNode

are guaranteed to be atomic.

Figure 2.3: Architecture of HDFS showing the files’ blocks distributed across the multiple DataNodes.3

One of the concepts in HDFS its the block. In file systems for a single disk, the block is the

minimum amount of data that can be read or write and so files’ sizes are integral multiples of the block

size, typically 512 bytes. In HDFS there is the concept of block too, each one of 64 MB by default, so

files are split into block-sized chunks, being each one stored as independent units. If a file in HDFS is

smaller than the block size - and unlike files systems for a single disk - the block will not occupy “a

full block’s worth of underlying storage” [20].

namenode limitations

The HDFS architecture consists of a single NameNode. In order to keep the rate of metadata

operations high, the whole namespace is kept in RAM [23]. The NameNode stores persistently the

namespace image and its modification log (from Figure 2.3, the FsImage and EditLog respectively).

This architecture has a single point of failure, the NameNode, and does not scale horizontally as the

whole namespace is managed by that single node. Currently, both issues have been mitigated, being

those mitigation mechanisms briefly described in this subsection.

Prior to Hadoop 2.0 (currently 2.5), the NameNode was a single point of failure and so, if the

machine or process running the NameNode went down, the whole cluster would be unavailable until

the NameNode was either restarted or brought up on a separate machine [24]. Now, two separate

machines are configured as NameNodes. At any point in time one of the NameNodes is in active state

and the other is in standby mode. The active one is responsible for all the operations while the other is

3Available at: http://www.revelytix.com/?q=content/hadoop-ecosystem
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simply a slave, maintaining enough state to provide a fast automatic failover, if necessary [25]. This is

called HDFS High Availability and has allowed to mitigate the single point of failure in the NameNode.

To allow to scale the NameNode horizontally, HDFS federation, introduced with Hadoop 2.0, uses

multiple independent NameNodes (as shown in Figure 2.4), each with its own namespace [26]. The

NameNodes do not require coordination with each other. Each NameNode has a block pool managed

independently of other block pools. The DataNodes are used as common storage by all the NameNodes.

To seamlessly access this federated architecture, at the client side, there is a mount table (using

ViewFs [27]), so different top level directories are served by different namespaces.

Figure 2.4: HDFS federation architecture. 4

The HDFS federation provides scalability and isolation, allowing, for example, to have different

namespaces for different applications so, a misbehaving application overloading a NameNode would

not interfere with other applications.

accessing HDFS

Interacting with HDFS is done through its Java Application Programming Interface (API) or by a

shell utility. Those interactions imply communicating to the cluster through Transmission Control

Protocol (TCP), so network is always involved.

From the Figure 2.2, when a client wants to read data from HDFS, it first contacts the NameNode

so it can know in which nodes the file’s blocks are. Then the client retrieve those blocks directly

from the DataNodes. When creating a file, the file data is first staged locally at the client slide and

when there is enough data to be worth sending (one HDFS block size), the client then contacts the

namenode, which inserts the file name into the file system hierarchy and allocates a block for it in

a DataNode and answers the client with the identity of the DataNode to where the block should be

4Available at: http://www.edureka.co/blog/overview-of-hadoop-2-0-cluster-

architecture-federation/
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sent. The client flushes the block to the DataNode and after that tells the NameNode the file is closed,

which commits the file creation.

A file/directory in HDFS is identified by an Uniform Resource Identifier (URI) of the format

hdfs://<namenode>/<path> (example hdfs://namenode.host.pt:8020/user/capitao/file).

2.2.2 mapreduce

MapReduce [6] is a programming model and an implementation for processing and generating

large data sets in which users write a map function that processes a key/value pair to generate a set of

intermediate key/value pair and, a reduce function that merges all the intermediate values associated

with the same intermediate key. It was presented by Google in 2004, followed by an open source

implementation from the then Nutch team. That implementation is now part of Hadoop.

As an example using MapReduce, consider the problem of counting the number of occurrences

of each word in a large collection of documents. The user has to write code similar to the following

pseudo-code [6]:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The map function is executed by the mapper instances and the reduce function is executed by the

reducer instances. Figure 2.5 shows the execution of the word count program. First, the input is split

line by line and then, each line goes to a different mapper in which, for each word in the line, it emits

a tuple containing the word (the key) and a counter (the value) starting with 1. In the next stage,

the tuples are shuffled (by key) into a logical order (in this case in alphabetical order). The goal of

shuffling is to have all the tuples with a same key going to the same reducer. The reducers receive, for

each key, all the values present in the tuples and, in the word count example, they simply sum all the

values for a key and emit a resulting tuple consisting of the key and the sum, which is the number of

occurrences of that key.

MapReduce takes advantage of files blocks locality in HDFS, so when a MapReduce task is

scheduled, the map part, which is the one that reads the input files, is set up to run on a machine

containing the corresponding input data. This is important because when having limited bandwidth,

it is cheaper to move computation to the data rather than moving data to the computation.
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Figure 2.5: Word count program flow executed with MapReduce.5

architecture

In Hadoop, prior to version 2.0, a MapReduce job was supported by a dedicated component

responsible for coordinating the computation across the nodes of the cluster, splitting the work across

them. On each node of the cluster, the assigned work was handled and tracked by another component.

Figure 2.6 shows the MapReduce architecture existing in those older Hadoop versions.

Figure 2.6: MapReduce architecture prior Hadoop 2.0.6 There are two MapReduce tasks, submitted
by different clients, running.

5Available at: http://www.alex-hanna.com/tworkshops/lesson-5-hadoop-and-mapreduce/
6Available at: http://blog.spryinc.com/2013/11/hadoop-fundamentals-yarn-concepts.

html
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From Figure 2.6, the Job Tracker is responsible of accepting jobs from clients, scheduling them

for execution, distributing the map and reduce tasks across the worker nodes, handling task failure

recovery, and tracking the job status [28]. Each worker node has a Task Tracker responsible of spawning

the map and reduce tasks according to the Job Tracker ’s instructions and reporting status back to it.

As mentioned in Section 2.2.1, in HDFS the files are split into blocks each one going to, possibly,

different DataNodes. When reading data from HDFS it is more advantageous to place the reading

processes (in the case of MapReduce, the maps) running on the same nodes where the blocks of the

files they want to read are locally stored. This means a worker/slave node in Hadoop has both a

DataNode and a Task Tracker, as shown in Figure 2.7. When the Job Tracker is assigning the map

tasks, it takes into consideration which DataNodes have the blocks that are to be read, assigning the

maps to the Task Trackers of the nodes having those DataNodes.

Figure 2.7: Hadoop general architecture discriminating the components belonging to HDFS and
MapReduce.7

The Job Tracker in this MapReduce architecture is a single point of failure and poses restrictions

to scalability [29]. Besides that, it is also the resource manager of the cluster and is only able to cope

with MapReduce. To tackle these issues, beginning in Hadoop 2.0, it was introduced the YARN.

Yet Another Resource Negotiator

Yet Another Resource Negotiator (YARN) is a resource management and execution framework. It

separates the resource management from the workload management, previously carried out by the Job

Tracker. This way, there is a generic resource management and execution framework, and MapReduce

is just one data processing application that can be run on top of it.

7Available at: http://www.revelytix.com/?q=content/hadoop-ecosystem
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The job of YARN is scheduling jobs on a Hadoop cluster [29]. To do that, it introduces some

new components, shown in Figure 2.8: the Resource Manager, an Application Master, application

containers and Node Managers.

Figure 2.8: Hadoop 2.0 architecture with YARN.8 There are two Application Masters running, each
with their own containers and submitted by different clients.

The Resource Manager is a scheduler which arbitrates all available cluster resources among

competing applications [30]. The Application Master is an instance of a framework specific library (for

example MapReduce) and is responsible for requesting and managing Containers [29], which grant

right to an application to use a specific amount of resources (CPU, memory, disk, etc.) on a specific

worker/slave node. The Application Master is itself a Container. The Node Manager is responsible

for the Containers on the host it is running, monitoring its resource usage and reporting back to the

Resource Manager.

In YARN, an application, according to [30] and [20], starts by requesting the Resource Manager

for a container to run its Application Master. The Resource Manager gets a Container and launches

the Application Master on that Container. After that, the now running Application Master negotiates

appropriate containers with the Resource Manager and launches them by providing their definition to

the corresponding Node Managers. After an application is done with its job, the Application Master

deregisters with the Resource Manager and shuts down, freeing its own Container.

In the case of MapReduce, each job is a new instance of an application[31] so each MapReduce job

starts by launching an Application Master (which corresponds to the older Job Tracker but without

the resource management of the cluster). The Application Master in MapReduce requests Containers

8Available at: https://hadoop.apache.org/docs/r2.5.2/hadoop-yarn/hadoop-yarn-site/

YARN.html
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as needed for the several map and reduce tasks that need to be executed. The containers for the map

and reduce tasks are freed after being no longer needed by the job. After the job is complete, the

Application Master container is freed too.

In YARN, the Resource Manager has become a single point of failure because if it is unavailable, no

applications can be scheduled to run on the cluster. To solve that, and like the HDFS High Availability

referred in Section 2.2.1, it is possible to have two Resource Managers, one in the active state and

another in standby, allowing for a fast failover [32][33].

Summing up, prior to Hadoop 2.0, MapReduce was treated like a first-class data processing

framework requiring specific components to run on the cluster to handle resources management and

tasks assignment and execution. Other data processing tools wanting to use the cluster’s resources

would need to have their own mechanisms of resource management and execution. In Hadoop 2.0, with

the introduction of YARN, MapReduce became a data processing tool running on top of a generic

resource management and execution framework. This allows to run any data processing tool on top of

a Hadoop cluster, having its resources efficiently managed. Figure 2.9 shows the functional change

between Hadoop 1.0 and Hadoop 2.0.

Figure 2.9: Differences between Hadoop 1.0 and Hadoop 2.0 concerning the responsibilities of
MapReduce.9

2.3 analytical tools on hadoop

Hadoop brought what was needed to store and process large amounts of data with HDFS and

MapReduce respectively. However, writing MapReduce programs is generally too low level and rigid,

time consuming and error prone [34]. To mitigate those issues, several analytical tools running on

Hadoop have appeared: some use MapReduce, others do not. The following sections will present some

of the analytical tools relevant for this dissertation.

9Available at: http://www.natalinobusa.com/2014/02/hadoop-20-beyond-mapreduce-

distributed.html
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2.3.1 hive

The amount of log and dimension data in Facebook that needs to be processed and stored has

increased with the increasing of usage of the site. At that time they started to experiment with Hadoop

as a replacement for their current solution based on Oracle. The results with Hadoop and MapReduce

were promising [20]. The problem with using MapReduce is because it is too low level, requiring

developers to write custom programs which are hard to maintain and reuse. At the same time it was

missing the ability of expressing common computations in the form of SQL, a language in which most

engineers and analysts are familiar with. From that need, Hive [35] was born.

Hive is an open source, now a subproject of Hadoop, data warehousing and SQL infrastructure

built on top of Hadoop. It can run SQL queries on data stored in HDFS by automatically generating

and running MapReduce jobs so, in some way, it improves the usability of Hadoop. Because Hive

provides a SQL-like language, the HiveQL, it is well positioned to integrate with already existing

systems that can only speak SQL.

Hive structures data into well known RDBMS concepts, like databases, tables, columns, rows, and

partitions. The supported data types range from the primitives integers, floats, doubles and strings, to

the more complex types like maps, lists and structs, being the latter allowed to be nested arbitrarily to

construct more complex types [35]. The users can extend Hive with their own types and User-Defined

Functions (UDFs).

Like RDBMSs, Hive stores data in tables, having each table a set of rows, and each row is

composed of a specified number of columns, having each column an associated data type [35]. When

creating a table in Hive, the DDL (example in Listing A.1) specifies the schema for the table, a

Serializer/Deserializer (SerDe) and input and output formats. The SerDe [36][37] is responsible of

serializing and deserializing the output and input data based on the data types specified in the schema,

for a given file format. For instance, if the file is a text file and an integer field is to be read, the SerDe

has to parse the text corresponding to that field as an integer value. It such a field is to be written,

the SerDe converts that integer into its textual representation.

The input and output formats are related to the file format in which data files are stored. Hadoop

files can be stored in different formats and the file input/output formats specify how records are stored

in those files. For instance, in a text file, the input/output format uses, by default, the rows delimited

by a newline and the columns by a ctrl-A [35]. When reading a text file, the rows and the columns

are constructed by making the splits on those delimiters. When writing, the text file is constructed

by concatenating all the rows delimited by a newline, in which the columns of each row have been

concatenated delimited by a ctrl-A.

Unlike RDBMSs, in which updates, transactions and indices are certain, Hive has not included

those features until recently [20]. That is because Hive was built to run over HDFS using MapReduce,

“where full-table scans are the norm and a table update is achieved by transforming the data into a

new table”. Hive still does not support updates (or deletes) but is does support inserting new rows
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into an existing table, however, that creates a new file (generally small comparing to the block size in

HDFS) for each insert statement, which for Hadoop, in general, is a suboptimal approach for both

HDFS and MapReduce performance. Hive supports indices, allowing it to scan only the needed files to

serve certain queries. For instance, the query SELECT * FROM t WHERE x=a can take advantage of an

index on column x. However, these indices are aimed at speeding up queries and not guaranteeing

unique key constraints, for example.

Figure 2.10: Hive architecture. [35]

Architecturally, from Figure 2.10, Hive is composed by the following components [35]: (1) the

Metastore which stores the system catalog and metadata about tables, columns, partitions, etc.; (2)

the Driver which manages the lifecycle of a HiveQL query as it progresses through Hive, compiles

HiveQL into a Directed Acyclic Graph (DAG) of MapReduce jobs and executes those jobs, interacting

with the Hadoop cluster; (3) the HiveServer which includes a Thrift [38] interface and a Java Database

Connectivity (JDBC) and Open Database Connectivity (ODBC) server, providing a way of integrating

Hive with other applications and (4) the client components like the Command Line Interface and the

Web Interface.

The Metastore is the system catalog for Hive as it stores all the information about tables, including

their partitions, schemas, locations, etc. That information can be queried and modified by several

applications, not only Hive. Because the data in the Metastore need to be served fast to the query

compiler (inside the Driver), it is backed by a RDBMS because of the lower latency. It is the Metastore

that imposes structure on Hadoop files. Without it, everything is just files inside directories with no

real structure or meaning.
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data storage

Hive has a simple, yet effective way of organizing its data. A table’s files reside into the same

HDFS directory. A table is allowed to be partitioned, which is a way of dividing a table into parts

based on the values of partitioning columns. Each partition goes to a different subdirectory of the

table’s directory, allowing queries to be faster when filtering by partitioning columns values because

only the needed partitions are scanned for the query, reducing the amount of data read from HDFS.

By default, when creating tables, Hive stores them in its warehouse directory, assuming the data

on those tables is managed by it, that is, Hive owns them. However, there are use cases in which data

is in some location and is managed by other means different from the Hive ones. If we want Hive to

query that data without assuming ownership of it, and thus allowing Hive to query data outside its

warehouse too, we can create a table as external.

data insertion

Hive has limited support for insertions through DML queries [20]. Hive supports inserting data from

the results of another query (using a INSERT INTO|OVERWRITE TABLE <table> [PARTITION(...)]

<select statement> statement [39]) and supports loading already prepared data files into its tables (us-

ing a LOAD DATA [LOCAL] INPATH <path> [OVERWRITE] INTO TABLE <table> [PARTITION(...)]

statement [39]). However, if one tries to insert single records (using a INSERT INTO TABLE <table>

[PARTITION(...)] VALUES <values>), that results in the creation of a single file for each record,

which is highly inefficient for storage in HDFS and for the reading performance.

Another way of inserting data into a Hive table is by placing the data files directly into the

right directories for that table and/or partition and then, instruct Hive, using a MSCK REPAIR TABLE

<table> statement, to scan HDFS for newly added files and partitions, adding them to the metadata

of that table and so, they will be considered for future queries on that table [40].

2.3.2 impala

In 2010, Google published the Dremel [8] paper, describing a scalable and interactive ad-hoc query

system, combining multi-level execution trees and a columnar data layout. According to the paper,

Dremel is capable, unlike traditional databases, of operating on data “in place”, using for example the

GFS or BigTable [7]. It is able to execute queries that usually would require a MapReduce job to be

run but at a fraction of the execution time. The queries are executed using a SQL-like language.

Based on the ideas of the Dremel paper, Cloudera10, a company providing Hadoop-based software,

has developed Impala. According to [41], Impala is a Massively Parallel Processing (MPP) query

10http://www.cloudera.com/
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engine for Hadoop. It can read data already existing in Hadoop, allowing it to share the same data

with tools like Hive, with no need of duplicating or converting any data. The main difference of Impala

from the other Hadoop tools is the response time. In spite of using and reusing already existing Hadoop

components, Impala does not use the MapReduce engine most Hadoop tools use. Because of that,

Impala is not only positioned for batch queries, but for interactive near real-time queries too [42].

Hive already provides a Metastore with metadata about tables. To not redesign the wheel and to

be easier to use Hive and Impala interchangeably, Impala uses the Hive Metastore as tables’ metadata

repository. According to [41], Impala and Hive tables are highly interoperable, allowing to switch

between performing batch operations with Hive and performing interactive queries with Impala, on the

same tables. Furthermore, Impala also uses the same SQL syntax (HiveQL) and same JDBC/ODBC

driver as Hive [42]. Typically, using Impala instead of Hive requires just to change the connection

Uniform Resource Locator (URL). Although sharing the HiveQL, there are some semantic differences

between Hive and Impala [43] that need to be addressed by the client applications.

Figure 2.11 shows the Impala architecture, including the integration with already existing Hadoop

ecosystem services. The Query Planner, Query Coordinator and Query Exec Engine make part of the

Impalad (Impala Daemon) (not shown in the Figure), which is a daemon process running on the same

nodes as the DataNodes of HDFS. The impalad reads and writes data files, accepts queries, parallelizes

the queries and distributes work to other nodes of the Impala cluster, transmitting the intermediate

query results back to the central coordinator node [44]. During the query planning, the Query Planner

uses the tables’ metadata from the Hive Metastore and uses information about files’ blocks from the

HDFS NameNode, so a query can be scheduled to execute on the nodes containing locally the data

blocks. A query can be submitted to any running impalad, being the node that receives the query, the

coordinator node for that query. The other nodes transmit partial results back to the coordinator,

which constructs the final result set of a query [44].

The impalad instances are in constant communication with the State Store. The State Store is

used to check and maintain the health status of all impalad instances on the cluster so all nodes know

which nodes are ready to accept work. In case of a State Store failure, the cluster continues to work

normally, however, less robust because a node may attempt to schedule work on a failed node.

Another component making part of the Impala cluster is the Catalog Service (not shown in the

Figure too). Because retrieving all the metadata for a table (from the Hive Metastore) can be time

consuming, impalad instances cache information about the tables for which they have run queries

recently. Formerly, when executing statements that change a table’s metadata, only the coordinator of

that statement would be aware of such changes, so to make all the other nodes aware of them, they

had to invalidate or refresh their caches, loading the metadata from the Metastore again. To mitigate

that issue, the Catalog Service propagates all metadata changes to all the Impala cluster nodes. This

way, when executing metadata-changing statements through Impala, all the cluster is immediately

aware of them.

When a metadata-changing statement is executed through Impala, the Hive Metastore is immedi-
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ately updated with that new information. However, if such statement is run through Hive, Impala

nodes do not recognize the changes, needing their caches to be invalidated (when creating new tables)

or refreshed (when changing metadata on an already existing table) [44].

Figure 2.11: Impala architecture [42]. Impala components are in orange and the Hadoop and Hive
ones are in blue.

parquet file format

The Dremel [8] paper described a columnar data layout for data. The columnar-oriented layout

offers several advantages over the row-oriented one [45], allowing to use less Input/Output as only the

needed columns are read and to save storage space because the columnar layout compresses better.

Designed and implemented in collaboration between Twitter and Cloudera, the Parquet file format

was built with nested data structures in mind and uses the record shredding and assembly algorithm

described in the Dremel paper [46]. Currently, Parquet is supported across the Hadoop ecosystem,

with special relevance to Hive and Impala.

To allow to use less Input/Output while reading, Parquet supports projection push down, so only

the needed columns are accessed [47]. Parquet also supports several encoding schemes for different

scenarios, being them the Bit Packing, the Run Length Encoding and the Dictionary encoding.

According to [48], “Parquet is especially good for queries scanning particular columns within a

table, for example to query "wide" tables with many columns, or to perform aggregation operations

such as SUM() and AVG() that need to process most or all of the values from a column.”. Parquet is

in fact the recommended file format to be used with Impala as it is the one that best matches the kind

of workloads for what Impala was made for.

Creating a Parquet file, according to [48], is a memory-intensive operation because the incoming

data is buffered until it reaches one data block in size. Then that chunk of data is organized and

compressed in memory before being written out to the file. The Parquet file format is optimized to

22 Micael Capitão



Mediator Framework for Inserting Data into Hadoop

work with large data files, typically 1 GB each [49]. When dealing with small files, the performance

advantages of Parquet are not apparent.

2.4 leveldb

In 2006, Google published a paper describing a distributed storage system, running on top of

GFS for managing structured data, the BigTable [7]. BigTable is a sparce, distributed, persistent

multidimensional sorted map. The map is indexed by a row key, column key, and a timestamp. Each

value in the map is an uninterpreted array of bytes. One important aspect is that BigTable maintains

data in lexicographic order by row key, which allows for fast random accesses. Based on these concepts,

several projects have been born, namely HBase [50] and LevelDB [51][52], being the later from the

same authors of BigTable.

According to [53], LevelDB is “an open-source, dependency-free, embedded key/value data store”.

It was developed in 2011 by Jeff Dean and Sanjay Ghemawat, the authors of BigTable, borrowing

ideas (but not code) from BigTable. According to [54] and [53], it’s goal was to replace SQLite [55] as

the backing store for Chrome’s IndexedDB [56] implementation.

In LevelDB, keys and values are arbitrary byte arrays and data is, like in BigTable, sorted

lexicographically by key (which is useful for querying it later). It supports batch writes and data can

be traversed forward and backwards. All the data is automatically compressed using Snappy [57].

It does not support SQL, being its basic operations: Put(key,value), Get(key) and Delete(key).

Being an embedded store, an instance of LevelDB can only be accessed by one process at a time.

The Put and Delete operations can be executed in batch and that batch execution is guaranteed

to be atomic [53]. Getting data from LevelDB is done through iterators. Iterators can start at any

specified key and, in case the key does not exist, it jumps to the next key coming lexicographically

after the specified one.

LeveDB features, combined with its simplicity to be embedded into an application, makes it

particularly interesting, for this dissertation, to be used as an index.

2.5 altaia

Altaia is a product from Portugal Telecom Inovação e Sistemas aimed at the management of

performance and QoS of telecommunications networks and services. It fulfils the Quality and Perform-

ance Management assurance areas of the service management & operations of eTOM (as depicted in

Figure 2.12), which is part of the TM Forum Frameworkx guidelines [58].
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Figure 2.12: Diagram of TM Forum Frameworkx’s eTOM.11

Altaia provides traffic and network performance measurements, QoS and network and services

usage measures, service guarantee analysis, threshold alarms generation, network and service metrics

management (KPIs and KQIs) and provides SLA management. Architecturally, Altaia is composed of

four main subsystems: the Altaia Framework, the Altaia Portal, the Altaia Mediation and the Manager.

Figure 1.3 presents an overview of that architecture.

The Altaia Mediation is responsible for the self-discovery of the network, detecting problems with

data collecting from the network monitoring devices, and it is responsible for inserting the collected

data into a normalized (for the usage Altaia gives to it) database, DBN0, which is used by the other

Altaia modules. The mediation is also ready to plug custom adapters that allows it to communicate

with heterogeneous network devices. The DBN0 is where the raw data, including the CDRs are stored

upon being captured from the probes and other external systems.

The Altaia Framework is the central piece of the system. It contains the functionality allowing

it to define and process metrics from data collected from the DBN0s, generating KPIs and KQIs.

The generated metrics are stored into a data warehouse, the DBN1, allowing for a hierarchical and

dimensional view of the data. The Altaia Framework also detects SLA violations and behavioural

changes, notifying those situations.

The Altaia Portal is the entry point for users wanting to access performance and QoS reports, SLA

11Available at: http://www.tmforum.org/Models/Frameworx14/main/

diagramac379ad6e0054204b29009c3d82ff997.htm
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violations and other relevant alarms. From the Altaia Portal it is also possible for a client to request

the raw records that have originated a certain metric, that is, drilling-down back to the original raw

data stored in DBN0.

Currently, as mentioned in Section 1.2, both DBN0 and DBN1 are supported on top of Oracle

RDBMSs. The current requirements regarding data storage and processing capabilities are posing new

challenges to the current implementation. Because of that, big data alternatives for both DBN0 and

DBN1 are being studied.
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chapter 3
Development

This chapter describes the proposed solution that allows the insertion of data into Hadoop to be queryable

by both Hive and Impala. The solution has delivery guarantees and ensures unique key constraints.

First the requirements are presented and an overview of the solution’s architecture is shown, pointing

out its components and general functionality. At last, implementation details of the solution are shown

and explained.

3.1 requirements

Inserting data into Hadoop is done through the creation of files. Those files should be as big as

possible to take advantage of HDFS and MapReduce in general. In HDFS, small files pose problems

to the NameNode as it has to maintain information about more files in memory and, pose performance

problems too as HDFS is designed for batch processing in which high throughput of data is more

important than low latency on data access.

Specifically to Hive, it is only an engine that by using MapReduce is capable of reading HDFS files

and treat their contents as rows of a table, which makes it possible to use a SQL-like language, the

HiveQL, to query data stored in HDFS. Hive has support for inserting data through DML statements.

However they are limited to insertions from query results, which allows inserting multiple rows at a

time and, inserting one single row at a time. In the first case, the size of the resulting files depend on

the size of the data to be stored, depend on the configured block size and, depend on the number of

reducers for that operation. On the second case, for each insert statement, a single file containing the

data related to it is created, resulting in too many small files which is bad for both the namenode and

for the overall performance of insertion and reading from HDFS.

Many applications are more or less tightly coupled to the insertion behaviour of a RDBMS that is

capable of handling batched (or not batched) insertions of single rows and at the same time abstract
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and manage the underlying data. Adding to that, RDBMSs also guarantee that once an insertion

operation returns and reports success, the rows are safely stored and, is also able to guarantee keys

constraints, like the unique key constraints.

Adding support for batch insertions and keys constraints directly to Hive is not the intended

solution but to mitigate the above issues, a mediator responsible of inserting data into Hive, has to

ensure non duplicated keys and the durability of the inserted rows so when a caller returns from an

insertion operation it is guaranteed, like in RDBMSs, the data is safe. Other functional requirement

include managing Hive’s tables, that is, creating and refreshing them so Hive can recognize the newly

added files and; partition data in a configurable manner. Despite configurable, the used and tested

partitioning scheme is time based, by year, month, day and hour.

The mediator has to support flushing in configurable intervals of time so that applications expecting

data to be available in Hive in certain time intervals would see it.

At the beginning of the development there were no performance requirements for the insertion so

an initial functional version was made. Later, because of the POC involving CQM and Altaia, some

changes had to be made to meet the performance requirements. The performance requirement is the

ability to insert at least 10, 000 rows per second of the types VOZ_2G and VOZ_3G (see Appendix A),

which is the expected throughput of the CQM Mediation Module used in the POC. As an another

requirement to the POC, the inserted data should use the Parquet file format and be ready to be

queryable through Impala too.

3.2 architecture

3.2.1 overview

By analysing the problem, it was possible to subdivide it into several sub-problems that could be

handled independently of each other, leading to a solution composed of small independent components,

each one performing a simple and well defined task. In runtime these components are glued together

forming a processing pipeline. There are no restrictions of the ordering of the components in the

pipeline, however only well defined and logical (for the goal) combinations will have the desired

outcomes. At the time of this writing there were only two combinations: one for the insertion of data

and another to the data recovery mechanism, both being described in this chapter. More crucial and

specific details on the implementation will be covered on the Section 3.3. From now on, the solution

will be referred as the mediator.

Because this mediator may be used by any system wanting to insert data into Hadoop to be usable

by Hive, it has to implement its own data validation mechanism to ensure clients do not try to insert

data that would cause issues later when trying to query it through Hive, that is, the data being inserted
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should follow a certain schema.

This mediator requires clients to provide it a table description, which includes:

1. base URI where the table data is going to be stored;

2. table name;

3. row format, which translates to the file format in which the data is stored;

4. compression algorithm to be used on the data files;

5. schema, which includes the definition of the columns and the enumeration of the columns that

should be used for partitioning and as unique keys;

6. partitioner that depending on its implementation and on the columns specified for partitioning

will compute the partition to where a given row should be stored.

In addition of having to specify the table description, the user has to provide an implementation,

for each type of entity being stored, of a conversion method that converts an entity to an internal and

manageable representation of it, the row.

After specifying the table description and the conversion method all a client has to do is to use

one of the two interface methods that allows to insert batches of data. It is allowed to insert data in

their entity, and thus original, form or in their rows converted form. Further on we will see that this

interface accepts these two forms of data because it is both the interface presented to the user and the

interface that glues together the independent components that compose the solution.

As mentioned previously in Section 3.1, there was an initial version (Section 3.2.2) that had

no performance requirements and, an improved version (Section 3.2.3) that allowed to meet those

performance requirements for the POC.

3.2.2 initial version

The initial version was made without performance requirements for the mediator operation, however

it was taken into account the performance of the independent components so each component has a

performance that was thought to be acceptable for the possible use cases.

To facilitate the comprehension of what kind of data really goes through the pipeline let us start

by defining entity and row and how do they relate to each other and how the first is converted into

the second, presenting already some implementation details just to clarify the operation. An entity is

simply a Plain Old Java Object (POJO) with attributes. Because that POJO may have the attributes

it wants with an unknown or heterogeneous API to access them, the first step to facilitate the access

to them is by converting the entity into a standardized representation that can be understood and

manipulated by the mediator system. To do that, the user has to provide an implementation of the

interface on the Listing 3.1 which given the original entity and a row, writes to the second each field of
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the first by the order specified in the schema. A row is defined as in the Listing 3.2, providing a Writer

which allows the implementation of toRow to write each attribute of the entity to the row.

public interface EntityWriteAdapter<T> {
void toRow(T ent i ty , Row. Writer w r i t e r ) ;

}

Listing 3.1: Interface defining a method to convert an entity into a row.

public interface Row<T> {
Class<T> getEnt i tyC la s s ( ) ;
L i s t <Object> g e t F i e l d s ( ) ;
void c l e a r ( ) ;
Writer getWriter ( ) ;

interface Writer {
Writer wr i t e ( Boolean f i e l d ) ;
Writer wr i t e ( S t r ing f i e l d ) ;
Writer wr i t e ( Byte f i e l d ) ;
Writer wr i t e ( Short f i e l d ) ;
Writer wr i t e ( I n t e g e r f i e l d ) ;
Writer wr i t e ( Long f i e l d ) ;
Writer wr i t e ( Float f i e l d ) ;
Writer wr i t e ( Double f i e l d ) ;
Writer wr i t e ( Date f i e l d ) ;
Writer wr i t e ( byte [ ] f i e l d ) ;

}
}

Listing 3.2: Interface defining the internal representation of an entity. The Writer allows the
serialization of an entity into a row.

Based on the requirements it seemed that some kind of pipeline based architecture would cope

with the task of inserting data into Hive as it would allow different components with well defined

tasks to come into play at well defined stages. The pipeline based architecture is the adopted one and

Figure 3.1 shows the different components composing that pipelined architecture.

Each component can live on its own allowing them to be recombined as intended to produce

different behaviours. This is achieved by having them implementing the same interface, Listing 3.3,

which defines methods to receive batches of either entities or their already converted equivalent rows.

The component staying at the beginning of the pipeline will receive batches of entities and the remaining

ones will receive batches of rows. Insights about the internals of each component are given in Section 3.3

so as an overview, the operational flow, as well as the components responsibilities, is explained below.

From the Figure 3.1, the original batch of entities enters the system through the Static Constraints

Checker where they are first converted to rows and then checked against the defined schema for not

nullable columns that happened to be null and, for columns with wrong data types (this may occur if

the implementation of the conversion mechanism, toRow, is wrong). Only the valid rows pass to the

next component and the invalid ones are filtered out. The Mediator task is to send the batch for both

30 Micael Capitão



Mediator Framework for Inserting Data into Hadoop

the Persistence Writer and the Unique Constraints Checker to run in parallel and wait for the results

of both to send them to the next stage. The Persistence Writer, which is backed by a Persistence

Queue (Section 3.3.2), persists the rows while there is no confirmation they are really safe (so they can

be replayed later using the Persistence Queue), that is, the File Writer has not confirmed the file has

been successfully written to its final destination. The Unique Constraints Checker task is to check

the rows are not duplicated and filter out the duplicated ones, if any. The filtered rows from Unique

Constraints Checker are the ones the Mediator sends to the Table Writer.

public interface Writer<T> extends Flushable , C lo seab l e {
void append ( final I t e r a b l e <T> e n t i t i e s ) throws IOException ;
void appendRows ( final I t e r a b l e <Row<T>> rows ) throws IOException ;

}

Listing 3.3: Common interface used by the components allowing them to be plugged as intended to
achieve a certain behaviour.

Static Constraints 

Checker

MediatorPersistence Writer
Unique Constraints 

Checker

File Writer

Table Writer

HDFS partition 1 

directory

Partition 1

File Writer

HDFS partition 2 

directory

File Writer

HDFS partition n 

directory

Partition 2 Partition n

(...)

Table Manager

Figure 3.1: Architecture diagram of the initial version. This version was implemented before knowing
the performance requirements, which led to an almost completely synchronous design.

The batch contains rows related to different times, where rows from different hours must be placed

into different partitions and so, different files. The partitioning is configurable, but the used and tested

one is the [year, month, day, hour] partitioning. For each necessary partition for the rows of the

batch, a File Writer is instantiated to write a file for the right directory of the table for that partition.

That file is of the type specified by the row format in the table descriptor provided by the client. The

Table Writer task is to instantiate file writers as needed for the incoming rows and to split the batch

across them depending on the times of the rows.
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Several batches may be received before flushing and closing the files. The flushing order is given

from time to time by the client and, when received, the opened files from the file writers are closed and

the data persisted by the Persistence Writer is cleared because now it is guaranteed the data is safe.

Because adding files to a table’s directory does not make it automatically known to Hive and

Impala because the metastore has to know them, the Table Manager has to be used to instruct Hive

to scan the partitions’ directories and add to its metastore any new files found. After that Impala is

instructed to refresh its cache of Hive’s metastore so it can see the new files also.

3.2.3 improved version

After having implemented the initial version and made some insertion tests for the POC, presented

in Chapter 4, it was concluded that the initial design did not cope with the established performance

requirements of inserting 10, 000 rows per second of the types VOZ_2G and VOZ_3G. Some improvements

are merely tweaks but others, like the asynchronous sending of files and the bucketing, have forced to

make some changes to the design. Figure 3.2 shows the overview of the improved architecture.

Bucket Splitter

Static Constraints 

CheckerFile Uploader

Bucket 1

Table Manager

Bucket n

MediatorPersistence Writer
Unique Constraints 

Checker

File Writer

Table Writer

Partition 1

File Writer

Local temporary 

directory

File Writer

Partition 2
Partition n

MediatorPersistence Writer
Unique Constraints 

Checker

File Writer

Table Writer

Partition 1

File Writer File Writer

Partition 2
Partition n

(...)

Figure 3.2: Architecture diagram of the improved version. Asynchronous sending of files and splitting
batches across different buckets have made it possible to fulfil and exceed the performance requirements.

The first change is in the way the files were being saved to the table’s directory. In the initial

version, the File Writer created the files directly in an HDFS location. It was observed that creating
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the files locally instead and then sending them to the correct HDFS directory was faster. Because now

there is a local checkpoint, there are guarantees the data is safe, only after closing the files, even before

sending the files to their final destinations. This allows the system to be ready to insert more data,

after closing a file, faster. Because now the sending of the files is not included as a task of the pipeline

itself (more specifically, a task of the Table Writer), a new component, the File Uploader, has been

created, which asynchronously sends the completed local files to their final destinations.

Creating the files locally and sending them asynchronously is one of the major changes but it was

not enough. One drawback of this pipeline architecture is that it is not really a pipeline because a

new batch can only be inserted after the caller returns from the previous one which only occurs after

delivering it to the File Writer. To tackle that issue and to in some way make the design more easy to

distribute, a new component, the Bucket Splitter, capable of splitting the batch into different buckets

has been created. This way, there are as many pipelines as the number of buckets and each one can

run in parallel with no dependencies between each one.

Despite running on a single machine, this bucket design, in addition to the asynchronous sending

of files, has made it possible to fulfil and exceed the performance requirements of the POC.

3.3 implementation

On the previous Sections 3.1 and 3.2 it was presented the overall architecture of the solution

without going into details.

The mediator framework integrates with the client program, running on the same process of the

client. Its operations are triggered by the client. However, there are two actions that run freely once the

client has started the mediator: the asynchronous files uploading and the automatic, and asynchronous,

refreshing of Hive’s tables. This section dives into implementation details supporting the previously

presented architecture.

3.3.1 constraints checking

By recalling the Figure 3.1 and the Static Constraints Checker and Unique Constraints Checker,

their purpose is to validate the data entering the system, either by asserting no invalid rows pass to

next stages and by asserting no rows are stored twice, ensuring unique key constraints. The static

constraints checking includes verifying attributes for null values when they are not allowed to be null

and, includes verifying if the data types for the attributes are correct. The unique constraints checking

verifies whether a row has already been inserted, avoiding duplicated rows.
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static constraints

Static constraints are those depending on the rows themselves. They do not depend on the time of

arrival to the system and so one same row being tested twice gives the same result those two times.

The test is performed against the schema. The schema is composed of a list of columns. Each column

has a name, a data type and an attribute telling whether it is allowed to be null. Columns used for

partitioning and as unique keys are not allowed to be null. These restrictions are automatically checked

by the schema builder (example in Listing 3.4, SCHEMA) so no invalid schemas are constructed.

public class Record {
private final St r ing ims i ;
private final St r ing msisdn ;
private final Date dateEnd ;
private final int year ;
private final int month ;
private final int day ;
private final int hour ;

// The constructor has been omitted.

public static Schema SCHEMA = new Schema . Bui lder ( )
. addColumn ( "imsi" , Schema . Type .STRING, Schema . N u l l i t y .NOT_NULL)
. addColumn ( "msisdn" , Schema . Type .STRING, Schema . N u l l i t y .NULL)
. addColumn ( "dateend" , Schema . Type .TIMESTAMP,

Schema . N u l l i t y .NOT_NULL)
. addColumn ( "year" , Schema . Type .INTEGER, Schema . N u l l i t y .NOT_NULL)
. addColumn ( "month" , Schema . Type .INTEGER, Schema . N u l l i t y .NOT_NULL)
. addColumn ( "day" , Schema . Type .INTEGER, Schema . N u l l i t y .NOT_NULL)
. addColumn ( "hour" , Schema . Type .INTEGER, Schema . N u l l i t y .NOT_NULL)
. unique ( "imsi" , "dateend" )
. par t i t i onBy ( "year" , "month" , "day" , "hour" )
. c r e a t e ( ) ;

public static final TableDesc<Record> TABLE_DESC = new TableDesc<Record >(
"hdfs :/// user/altaia/tables" , // Base URI
"recordtable" , // Table name
SCHEMA,
new Part i t i oner Impl <Record >(SCHEMA) ,
RowFormat .PARQUET,
CompressionType .SNAPPY) ;

public static final EntityWriteAdapter<Record> WRITE_ADAPTER = new

EntityWriteAdapter<Record >() {
@Override
public void toRow( Record e , Row. Writer w r i t e r ) {

w r i t e r . wr i t e ( e . ims i )
. wr i t e ( e . msisdn )
. wr i t e ( e . dateEnd )
. wr i t e ( e . year )
. wr i t e ( e . month)
. wr i t e ( e . day )
. wr i t e ( e . hour ) ;

}
} ;

}

Listing 3.4: Entity definition and its schema, table description and write adapter to convert it to a
row.
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The Static Constraints Checker verifies whether a row complies with the schema specified for it.

Any row not respecting the contract is discarded or, by configuration, make all the batch to fail by

throwing a ConstraintViolationException exception.

Listing 3.4 shows what a client has to provide to the mediator in order to have its entity Record

stored. From the code listing we can see the Record has several attributes. Those entity’s attributes

cannot be accessed directly by the mediator without converting it first to its row representation. In the

WRITE_ADAPTER, the toRow method converts an entity to its row representation, writing the entity’s

attributes one by one to the Row.Writer (defined in Listing 3.2). The order by which the attributes

are written relates to the order the columns supporting them are defined in the SCHEMA.

A row has a list of fields. The field at index 0 corresponds to the first column defined in the schema

and so on. The Static Constraints Checker goes through the rows of a batch and checks (1) if not

nullable columns have their corresponding field values as null, which is a violation, and then (2) checks

if the data types present in the rows’ fields correspond to the ones defined by their columns. Failing

to pass the second check, depending on the way the client and the entity is implemented, means the

toRow implementation is not correct.

unique constraints

Unique constraints refer to unique key constraints. As previously mentioned in Section 3.1, Hive

does not support unique key constraints so a mechanism to check whether a given row, with a given

key, already exists had to be implemented in the mediator framework.

The implementation of the Unique Constraints Checker involves the creation and maintenance

of an index composed of the unique keys of the rows already inserted. Any time a new row is to be

inserted, this index in queried to check whether a row with the same unique key has already been

inserted and then the new unique key is stored in the index. This index is supported by LevelDB

(Section 2.4).

Just as example, and considering the POC scenario, the unique keys are expected to be 20 bytes

in length (concatenating all the fields composing them), and the index has to be maintained for rows

as old as one month. 10, 000 rows per second are expected which makes the index as big as ≈ 483 GiB,

without being compressed.

In the unique index it is stored the concatenated bytes of the unique key columns, concatenated

with the version number of the batch. The version is explained with more detail in the Section 3.3.7.

Because keys in LevelDB are sorted that means that a same unique key with different versions would

have the oldest version first but, because it is more handy to have the newest version first, the version

is stored as Integer.MAX_VALUE - version, making the newest version of an unique key to appear

first when iterating the keys in ascending order, which is the natural ordering in LevelDB.

Taking Listing 3.4 as example, the columns imsi and dateend are defined as unique. The imsi is
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a string value and the dateend a timestamp one. A LevelDB key in that case would be in the form

[imsi | dateend | version], where | denotes concatenation. imsi is 8 bytes (for simplicity, let us

assume a fixed size), dateend is 8 bytes (in the Java’s long representation) and version is 4 bytes,

totalling 20 bytes.

When we want to know if a certain key is in the index we seek the key by [imsi | dateend] and

if we find it, then we use the provided version number to check if the key existed for a version less

than or equal to that provided version, that is, the floor version of a key, which is the greatest version

less than or equal to the given one. The reason to force the newest version of a key to appear first is

to make it possible this floor version searching.

Figure 3.3 shows a unique index example and different keys to be tested against that index for a

given version. Key a is tested positive because there is already in the index that key with a version

number less than or equal to 3, which is the key 2. The same holds true for key b because of key 1.

Testing key c gives negative because, in the index, there is no version less than or equal to 1 for that

key, which, if existing, would be between keys 2 and 3. Testing key d gives negative for the same

reason as the key c. Finally, testing key e gives positive because that key, for that version, exists in

the index.

12301 4imsi0001

12301 2imsi0001

12302 3imsi0002

12303 3imsi0003

12304 3imsi0004

(8 bytes) (8 bytes) (4 bytes)
imsi dateend version

1

2

3

4

5

..
.

LevelDB index

12301 3imsi0001

12301 5imsi0001

12301 1imsi0001

12303 2imsi0003

12304 3imsi0004

a

b

c

d

e

Which keys are reported as 

existing in the index?






Figure 3.3: Unique index example showing different unique keys and a same unique key with different
versions. On the right side several keys are tested against the index to check whether they exist for a
given version.

The version of a batch, and thus for the unique keys of its rows, is managed by another component,

the Version Store, explained in Section 3.3.7.

In the processing pipeline of the Figure 3.1, the Unique Constraints Checker, (1) receives a batch

of rows, (2) asks the version store for the current version, (3) tests the rows, for that version, against

the index, (4) filters the rows found not to be unique and, (5) stores in the index the newly found

unique rows’ keys, with the given version.
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3.3.2 persistence writer and persistence queue

The frequency by which new files get ready to be inserted into Hive is different from the frequency

by which new batches arrive to the mediator framework. To be able to guarantee the client that the

batch is safe after returning from the insertion, the received batch has to be safely persisted until the

new files are closed. We cannot rely on the files themselves, even partially, because the supported files,

specially the columnar file format ones, require a memory staging to organize all the column’s values

together and only at the end, the file is written.

The Persistence Writer shown in Figures 3.1 and 3.2 is backed by a Persistence Queue. The

Persistence Writer stores rows into the Persistence Queue but when they need to be replayed in case

of failures, they are directly read from the Persistence Queue because the interface of the Persistence

Writer (shown in Listing 3.3) does not allow to read the stored rows.

The Persistence Queue is backed by a memory-mapped file implemented to behave like a First-In-

First-Out (FIFO) queue. Figure 3.4 shows the organization of the memory-mapped file.

cursors

0 8 fileSize-1

R W

Available to read Available to write

data

WURU

Figure 3.4: Memory-mapped file organization, showing the positions to store the cursors and the
data.

The queue supports sequential reads and writes. When writing data, it is only safe upon committing

the write. When reading data, the read data is discarded only after committing the read. In both

write and read, the uncommitted state can be reset, returning to the previously committed states.

The memory-mapped file has two regions: one to save the data and another one to save the cursors

indicating the read (R) and write (W) data positions. The write starts at the W cursor and advances

sequentially. The cursor WU (write uncommitted) indicates the current write position. Upon commit,

W takes the position of WU. Once there is committed data, it can be read. R starts at the beginning

of the committed written data and advances sequentially. The cursor RU (read uncommitted) indicates

the current read position. Upon committing the read, R takes the position of RU, freeing that interval

to write more data. When committing, first it is flushed the data region and only then it is flushed the

cursors region.

The queue is, logically, a circular structure, so in the Figure 3.4, after the position fileSize-1

(the end of the data region) comes the position 8 (the beginning of the data region). The available

data to be read is in between the R and W cursors and, the free available space is in between the W

and R cursors, turning around the queue.
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The queue stores serialized batches of rows. Each row in the batch is serialized using Kryo [59]

and the byte array resulting from serializing all the rows is what is really stored by the queue. With

each batch it is also stored the batch size (to make it possible to read entire batches then) and the

batch version.

In Figure 3.1, as already mentioned, the Persistence Writer uses a Persistence Queue to store

the received batches. The Persistence Writer, (1) receives a batch of rows, (2) asks the Version Store

(Section 3.3.7) for the current version, (3) writes the batch into the persistence queue with the received

version, (4) commits the write. After flushing the files to be inserted into Hive, and thus confirming

the data is safe, the contents of the queue are emptied by simply reading (and ignoring) all of its

contents and committing the read operation.

The size of the queue, while the mediator framework is running, has a fixed size. While the contents

of the queue cannot be discarded it is possible for it to run out of available space. To tackle that, the

Persistence Writer has a callback mechanism allowing it to inform the Mediator of that situation,

which triggers a flush operation, causing the Persistence Queue to be emptied and then the process

can continue. The size of the Persistence Queue should be chosen according to the configured time to

trigger flushes and, the expected size and number of batches to receive during that time.

In Section 3.3.7, it is described the case in which the data stored previously in the persistence

queue is read during a recovery operation, being used to replay batches previously sent by the client.

3.3.3 table writer and file writer

The Table Writer has the responsibility of instantiating the needed File Writers and directing

rows for the correct one, based on its partition.

The table descriptor (example in Listing 3.4, TABLE_DESC), and more specifically the row format,

tells the table writer to which file format the rows should be saved. The row format translates to a

concrete implementation of a file writer supporting a specific file format. At the time of this writing

only the file writer for Parquet files has been implemented as it is the one required for the POC.

file writer selection based on the partition

When the table writer receives a row it first uses the partitioner from the table description to

know to which partition that row should go. The partition is just the relative path, inside the table

directory, where Hive expects data from that partition to be. The partitioner extracts from the row the

fields corresponding to the columns that have been defined as partitioning in the schema and constructs

that relative path. The partition’s relative path is constructed as /col1=val1/col2=val2 and so on.

Taking Listing 3.4 as example, the base URI is hdfs:///user/altaia/tables and the table name

is recordtable so the directory for that table is hdfs:///user/altaia/tables/recordtable. The
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columns used for partitioning are year, month, day and hour. If a row comes with the values 2014, 10,

23 and 13 for the columns year, month, day and hour respectively, the resulting partition’s relative

path is /year=2014/month=10/day=23/hour=13.

After identifying the partition to where the row should go, the table writer creates a new file writer

for that partition so rows belonging to a same partition go to the same file writer and consequently to

the same file. Then, the table writer applies transformations to the row and sends it to the file writer,

moving then to the next row.

row transformations

The transformations are applied directly to the row, changing that same instance. A transform-

ation that is always applied is the strip of the partitioning columns. When a table is partitioned,

Hive takes the values of the partitioning columns from the partition itself. So, if a partition is

/year=2014/month=10/day=23/hour=13, Hive automatically knows the columns year, month, day

and hour have the values 2014, 10, 23 and 13 respectively, so there is no need to waste space storing

those values in the files.

Because in the POC it is intended to use Impala to query the data, another transformation that

is applied is the conversion of the Java’s timestamp in milliseconds to another representation of it.

Impala does not recognize the Java’s timestamp as a valid timestamp, so queries involving times do

not work with that representation. Instead, Impala does recognize timestamps represented as double

numbers in which the integer part is the Unix timestamp in seconds and the fractional part is the

milliseconds and nanoseconds part. So the transformation involves converting all the timestamp fields

of a row into that double representation, which is done by dividing the Java’s timestamp by 1000.

storing of the files

Opening the files for writing directly on their final destinations would potentially make it possible

for Hive to try to read from not yet closed files and worst, from potentially corrupted files if something

fails while writing to them. To avoid that, the files are first stored to a temporary location and after

being written and closed, they are then moved to their final destinations.

In HDFS the move operation is guaranteed to be atomic [5] but the copy operation is not. For

that reason when moving a file to its final destination, that file have to come from another HDFS

location, so a move operation can be performed in an atomic way, guaranteeing that when Hive knows

about new files on its tables, those files are ready to be used and are not files being copied yet or

something else.

Section 3.2 refers an initial and an improved version of the mediator framework. This storing of file

mechanism is one of the differences between the two versions. On the initial version of the mediator,
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the files were open directly on HDFS, in a temporary location, and after being closed they were moved

to their final destination as shown in Figure 3.5.

File Writer

Table Writer

Partition

/year=2014/month=10/day=23/hour=13

writes to

File Writer

Partition

/year=2014/month=10/day=23/hour=14

..
.Table URI

hdfs:///user/altaia/tables/recordtable

<Table URI>/.tmp/

year=2014/month=10/

day=23/hour=13/file1

<Table URI>/year=2014/

month=10/day=23/

hour=13/file1

is moved to

writes to

<Table URI>/.tmp/

year=2014/month=10/

day=23/hour=14/file1

<Table URI>/year=2014/

month=10/day=23/

hour=14/file1

is moved to

Figure 3.5: Sequence of steps to put a file into the correct table directory.

On the improved, and final, version of the mediator, the files are open in a local directory (the local

directory of the File Uploader) and only after being closed they are copied to a temporary location on

HDFS and then, moved to the final destination. In this new mechanism, after closing the File Writer

(and so, the file), the table writer warns the file uploader (Section 3.3.4) a new file is ready to be sent,

and the file uploader sends it asynchronously, taking care of copying it first to a temporary HDFS

location and then moving it to its final destination.

3.3.4 file uploader

Creating the files locally and sending them asynchronously has shown to allow a higher throughput

of rows (Section 4.4) then the more conservative way of creating the files directly in HDFS. This

way of sending the files has allowed to fulfil the performance requirements for the POC, mentioned in

Section 3.1, of inserting at least 10, 000 rows per second.

The File Uploader, is an independent service, inside the same process, that receives requests to

upload files and executes those requests asynchronously. Those requests are immediately stored in

a catalog, backed by a SQLite database to make it possible to resume the operation if the system

is stopped, either abruptly or cleanly. Thinking in future improvements to the mediator framework,

being able to know when a file is enqueued for sending and has been actually sent may be useful (in

fact, the table manager uses that information to more intelligently order refreshes to the tables), so this
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File Uploader supports the registering of listeners for those events. The interface of the File Uploader

is shown in Listing 3.5 and the UploadDesc in the Listing 3.6.

public interface Fi leUploader {
void s t a r t ( ) ;
boolean enqueueFi le ( S t r ing f i l e P a t h , S t r ing dstPath ) ;
S t r ing l o c a l D i r e c t o r y U r i ( ) ;
void shutdown ( ) ;

boolean r e g i s t e r F i l e E n q u e u e d L i s t e n e r ( Fi l eEnqueuedListener l i s t e n e r ) ;
boolean unreg i s t e rF i l eEnqueuedL i s t ene r ( Fi l eEnqueuedListener l i s t e n e r ) ;
boolean r e g i s t e r F i l e U p l o a d e d L i s t e n e r ( F i l eUp loadedLi s t ener l i s t e n e r ) ;
boolean u n r e g i s t e r F i l e U p l o a d e d L i s t e n e r ( F i l eUp loadedLi s t ener l i s t e n e r ) ;

interface Fi leEnqueuedListener {
void onFileEnqueued ( UploadDesc desc ) ;

}

interface Fi l eUp loadedL i s t ener {
void onFileUploaded ( UploadDesc desc ) ;

}
}

Listing 3.5: Interface of the File Uploader.

public class UploadDesc {
private final int id ;
private final Date enqueueTime ;
private final St r ing f i leName ;
private final St r ing dstPath ;

// The constructor and accessors have been omitted.
}

Listing 3.6: Definition of the file upload description used when the File Uploader warns its listeners.

The File Uploader expects files to be stored in its local directory, which can be obtained through

its interface. When files are ready to be sent, that is, when a table writer instructs its file writers

to close their files and they finish that task, the table writer enqueues each of those files in the File

Uploader, indicating the file (under the local directory) to be sent and its final destination and, the

File Uploader registers that request into its catalog. Then, for each file the File Uploader has to send,

it first sends it to a temporary HDFS location and then moves it to its final location. Having the file

been delivered, its entry is deleted from the catalog.

In case of a system failure, the process of sending a file may be interrupted at any phase, be it

while sending from the local directory to the temporary directory, or from the temporary directory

to the final destination or, while deleting the entry from the catalog. When starting again, the file

uploader just loads the entries from the catalog and tries to do the procedure from the beginning but

if it is not possible, then it resumes the procedure from the possible intermediate stages.
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3.3.5 table manager

Having the files into their right locations it is only needed Hive to recognize those newly added

files, adding them to its metastore as belonging to that table. After that, and because Impala uses a

cached version of Hive’s metastore, it is needed to instruct Impala to refresh that cache so it can see

those new files too. The described above is the job of the Table Manager.

The refresh operations are triggered by DDL commands that can be run through JDBC. In Hive

the MSCK REPAIR TABLE <table_name> makes it recognize new partitions that are added directly

to HDFS (what is exactly what mediator framework does) or that have been modified (added or

removed files), adding that new information to its metastore. After running the command in Hive it is

needed to instruct Impala to refresh its cache of the Hive’s metastore by issuing the DDL command

REFRESH <table_name>.

The Table Manager also has the ability to create tables in Hive based on the provided table

description. For instance, with the table description from Listing 3.4, the Table Manager produces the

DDL of Listing 3.7 an then executes it in Hive to create the table. Because of the decision of issuing

the DDL commands to create tables over Hive instead of Impala (as Impala is just for the POC),

Impala needs to have its metastore cache invalidate to be able to recognize those newly added tables.

Because the command to invalidate the cache is not supported by HiveQL, and so it is not supported

via JDBC, the Table Manager opens a SSH session to a host having an Impala Shell and then executes

the invalidate command on the Impala Shell, making Impala recognize the newly added tables.

CREATE EXTERNAL TABLE IF NOT EXISTS r e c o r d t a b l e (
ims i STRING,
msisdn STRING,
dateend DOUBLE

) PARTITIONED BY (
year INT ,
month INT ,
day INT ,
hour INT

)
ROW FORMAT SERDE ’parquet.hive.serde.ParquetHiveSerDe ’
STORED AS

INPUTFORMAT ’parquet.hive.DeprecatedParquetInputFormat ’
OUTPUTFORMAT ’parquet.hive.DeprecatedParquetOutputFormat ’

LOCATION ’hdfs :/// user/altaia/tables/recordtable ’

Listing 3.7: Hive DDL produced by the Table Manager to create the table recordtable.

The Table Manager operations are executed inside retry cycles, so in case of connection failures,

the operations are retried after a backoff period, allowing the Table Manager to be resilient.
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table refresher

The Table Manager itself has no autonomy. Operations like the table creation are performed once

at the mediator framework startup. However, other operations like the refresh of tables need to be

performed after files have been added to tables.

The Table Refresher is a service, making use of the Table Manager, that issues refresh operations

over Hive and Impala after files have been uploaded, and so, added to tables. To do that, it relies on

the events of the File Uploader (Section 3.3.4) telling when files have successfully been sent. To not

trigger the refresh after each uploaded file, the Table Refresher waits some time (by default, 5 seconds)

to allow other files to be uploaded. After that time of no files being uploaded, the Table Refresher

gives the refresh order (first to Hive and then to Impala), and then waits for more file uploads and the

procedure repeats.

3.3.6 bucketing

Section 3.2.3 refers that splitting the batch into multiple buckets results in performance gains

and Section 4.4 shows it does. The bucketing has to guarantee that a same row passing through the

mediator but in different times goes to same bucket. Without guaranteeing that, the unique index

cannot ensure the unique constraints.

To do the splitting, the Bucket Splitter, is introduced in the pipeline just after checking the static

constraints. This component splits the batch for the n different buckets and then sends them in parallel

for each of the subsections of the pipeline dealing with that specific bucket.

The rows are split based on their unique columns, giving a bucket number. To determine that

bucket number, the unique columns of a row are converted to bytes and concatenated together. Then

they pass through an hash function, giving an hash_number. The bucket number is then determined

by the operation (hash_number mod number_of_buckets).

Any time the number of buckets change, the persistence queues and unique indices have to be

rebuilt, which is not supported at the time of the writing of this document. For now, the only solution

is to just discard the already existing queues and indices taking into account the consequences of that.

3.3.7 version store and recovery mode

On the Sections 3.3.1 and 3.3.2 it was mentioned the existence of a Version Store. That store

keeps versions and their creation timestamps. Like the unique index, this Version Store is backed by a

LevelDB instance.

The creation timestamps stored are in seconds (an integer) and the version is another integer. The

versions are always incremented by one. To easily reach the most recent version in the store and to
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allow to find a floor version for a given time (that is the version whose timestamp is less than or equal

to a given one), the timestamp and the version are inverted, using Integer.MAX_VALUE - value (like

in the unique index, for the versions) and stored in the form [timestamp | version].

The Version Store is used to give batches an ID that can, in case of failure, be used as a transaction

ID, allowing to recover the batches of rows already delivered by the client without having the unique

index to report those batches of rows as already existing when they are not (because of the failure).

Knowing the batches have to be persisted to account for a possible system failure before having

the final files generated, let us picture some possible configurations of the pipeline and the expected

outcomes in the case of a failure, without having versions.

Unique Constraints 

Checker

Persistence Writer

Case A

..
.

..
.

Unique Constraints 

Checker

Persistence Writer

Case B

..
.

..
.

Case C

MediatorPersistence Writer
Unique Constraints 

Checker

..
.

..
.

Figure 3.6: Possible configurations of the pipeline for the persistence queue and unique index checking.

Figure 3.6 presents some possible configurations of the pipeline, accounting with the need to persist

the batches of rows in case of a failure, and without versions. Remember that a batch is only considered

successfully inserted after being delivered to the File Writer without any issues while passing through

the pipeline. Remember also that after having a batch stored in the queue, even if something fails

before reaching the file writer, it is possible to replay the contents of the queue. An unsuccessful

insertion, depending on the client, would make it to retry the same batch.

Case A shows a situation in which the batch is first tested for duplicated unique keys and only

then persisted in the queue. In this case if the persistence in the queue fails, the insertion fails but the

unique index has been left inconsistent. When the client retries the batch, all of its rows are reported

as duplicated. But if the insertion succeeds and only after that something goes wrong and the queue is

replayed, we know the rows stored in the queue are not duplicated.

Case B persists the batch first and tests for duplicated unique keys after. In this case the queue

may have duplicated rows as they have not been tested yet. If something fails after checking the unique

rows, we cannot simply replay the queue as it may have duplicated rows and, we cannot also query the

unique index for the rows in the queue because they will be reported as duplicated.

Because cases A and B cannot guarantee consistency in failure scenarios and, because of the

Input/Output intensive nature, combined with serialization, of the queue and of the unique index,

parallelizing both tasks have shown performance improvements. Case C shows that parallel scenario.
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In this case the issues from both case A and B are present depending on which component finishes its

task first when running in parallel.

None of the presented cases can guarantee consistency in case of failure and because of that, the

batches versioning and the Version Store were introduced so, in an normal system operation, the

Version Store is located as shown in Figure 3.7.

MediatorPersistence Writer
Unique Constraints 

Checker

..
.

..
.

Version 

Store

Generate new version

Read current versionRead current version

Figure 3.7: Location of the Version Store in the mediator framework architecture.

During a normal system operation, that is, without having to recover any rows from the Persistence

Queue, the Mediator receives a batch of rows, orders the Version Store to generate a new version and

then sends the batch for both the Persistence Queue and the Unique Constraints Checker, in parallel.

Those two components retrieve the last version from the Version Store, which both receive the version

generated upon the mediator request to do so and, do the rest of their tasks.

Figure 3.8 shows the configuration of the mediator to be able to recover. When a client instantiates

the mediator framework, it gets a component, the Broker Writer. The first time the client tries to

insert a batch, the Broker Writer builds the recovery mode (the structure on the left). In this mode,

the Bucketed Data Recovery instantiates one recovery pipeline for each existing bucket, so the data

recovery runs in parallel and independently on each bucket. The recovery pipeline is composed by the

Persistence Queue, followed by the Unique Constraints Checker and the Table Writer. The remaining

pipeline is like the one of the Figure 3.2.

After having the recovery pipeline instantiated, the rows of the Persistence Queue are replayed

and checked against the unique index (through the Unique Constraints Checker). For that check, it is

used the version number stored with the rows −1, so the unique index will not report those rows as

duplicated if they are not.

The unique rows are then sent to the Table Writer and the process continues normally as described

in Section 3.3.3. After replaying all the rows from the Persistence Queue, the newly generated files are

closed and submitted to the File Uploader to be sent, finishing the recovery operation and emptying

the Persistence Queue.
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Finished the recovery operation, the Broker Writer builds the structure on the right shown in

Figure 3.8, which is the pipeline of the Figure 3.2 and, proceeds with the normal operation of the

mediator framework. For the client it is completely transparent whether or not a data recovery has

occurred.
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Figure 3.8: Configuration of the mediator framework when recovering data and its reconfiguration
to perform normally after the recovery.
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Evaluation

This section describes the POC that was set up to test the mediator framework described in Chapter 3.

Then, it presents the tests performed on the mediator framework, including the ones resulting in the

need of improving the architecture presented initially.

The tests were first made to the whole system to check its global performance and then to each individual

component to be able to identify the bottlenecks. After identifying the bottlenecks, some architectural

changes had to be made, followed by new performance tests to the global system performance to validate

the requirement of inserting 10, 000 rows per second.

4.1 Proof Of Concept

To test the mediator framework in a real scenario, a POC was set up. Section 2.5 described Altaia,

a system capable of computing metrics (KPIs and KQIs) from CDRs and EDRs (xDRs) coming from

network monitoring equipments (probes). Those xDRs (intact and/or preprocessed first) compose the

raw data that is stored in the DBN0, which is now being migrated to an Hadoop solution (previously

Oracle).

The computing of metrics with a user centric approach, Customer Quality Management (CQM),

rather than a network centric one, requires the xDRs to be preprocessed to perform enrichments before

being ready to be consumed by Altaia. The enrichments are performed by an ETL system, the CQM

Mediation Module, which reads, from a directory, the original xDRs coming from the probes, processes

them and, stores the results in an Oracle RDBMS (the current DBN0).

The CQM Mediation Module has the notion of Sink to where data is sent to be stored. That

sink may have several implementations, being the original one to Oracle. Despite that decoupling,

the system is indeed coupled to RDBMSs behaviours concerning guarantees of delivery, so if the sink
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succeeds in accepting a batch, the system assumes its contents are stored and safe. Concerning Altaia,

duplicated rows are not accepted as they would change the final results of the metrics. At this point

the CQM Mediation Module and Altaia need already two functional requirements of the mediator

framework to insert data into Hadoop.

Because Hive has too much latency for Altaia’s needs, the goal is to query the data in DBN0 with

Impala. Using Impala requires the mediator framework to manage Hive’s tables and ensure Impala

has an updated information of those Hive’s tables. Because Impala performs better when used with

Parquet files, the mediator framework is required to store the rows using that file format. To allow

Impala to perform even better for the Altaia needs, namely the collecting of data, the destination

tables are required to be partitioned by year, month, day and hour, as described in Section 3.3.3. The

collecting of raw data to compute the metrics is done by Altaia every 5 minutes, so in this POC the

files created by the mediator framework are flushed, closed and placed into their final destinations

every 5 minutes.

Figure 4.1 shows an overview of the system responsible for preprocessing the xDRs for the CQM

scenario. It shows the existing sink, the Oracle Sink, which is now being replaced, for the POC, by the

Impala Sink.
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Figure 4.1: Diagram of the existing system in which the mediator framework integrates to replace
the existing insertion mechanism into an Oracle RDBMS.

4.1.1 impala sink

Shown in Figure 4.1, the Impala sink is the bridge between the already existing system that performs

ETL operations on xDRs, the CQM Mediation Module, and the mediator framework. Section 3.2.1

refers the mediator framework requires a set of informations/utilities from the client, namely the table

descriptions and the write adapters to convert entities to rows. Impala Sink’s job is to set up the

mediator framework, providing it with the information/utilities it requires and starting up its services,

like the File Uploader and the Table Refresher, as well as giving the order to create the tables.

When the Impala Sink receives batches of data from the CQM Mediation Module, it directs them

to the mediator framework using the append method of the interface of Listing 3.3. It is also de Impala
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Sink that triggers the time based flush orders, causing the mediator framework to flush and close the

files to be sent to HDFS.

4.1.2 concerns

memory consumption while creating parquet files

Writing Parquet files is a memory-intensive operation because the incoming data is buffered until

it reaches one data block in size, and only then that chunk of data is organized and compressed in

memory before being written out to the file [60].

Because the mediator framework writes to partitioned tables, for each partition there is one Parquet

file being buffered first to memory, and so several large chunks of data may be manipulated in memory

at once. In the normal operation of the CQM Mediation Module the data is usually from sequent

periods of time, which results in between one to three Parquet files being generated at the same time.

The problem resides when reprocessing operations are scheduled, which may result in records with

not sequent periods of time being processed, resulting in potentially too many Parquet files being

generated at once, leading to the crash of the whole application because of not enough memory.

The API to write Parquet files does not offer ways of knowing the state of memory consumption

and other statistics so, to avoid out of memory crashes, some dimensioning needs to be made to know

how much memory give to the Java Virtual Machine (JVM). That amount of memory should be

roughly (block_size ∗ number_partitions). The block_size is 1 GB by default [60] but can be

tuned to a lower size. The number_partitions requires the analysis of the situations resulting in

several files to be generated simultaneously.

small files

The time between flushes in the POC scenario is 5 minutes. In that time the quantity of data,

in MB, buffered for a Parquet file is far from the recommended 1 GB, as mentioned in Section 2.3.2.

Because the data is inserted into hourly partitions, that means a partition will have lots of small files,

posing performance issues when running queries on top of it.

Dealing with that issue requires the small files of each partition to be consolidated into a bigger

one when no more data is expected to arrive a partition. One possible way of doing that consolidation

is by selecting all the rows of a partition and inserting them back to it, overwriting the existing data.

This “read everything” and write again approach generates a consolidated/compacted file. However, if

there are running queries using the original small files during the compaction, they may fail.

The goal is to have an automated compaction mechanism capable of doing its job without interfering

with the running queries. This small files and compaction issue is out of the scope of this dissertation

and is not currently supported by the mediator framework.
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4.2 the environment

The tests were conducted on a sixteen-node cluster each one with 2 Intel Xeon E5-2670 2.60GHz

CPUs and 128GB of main memory. The nodes are interconnected by 10Gbps Ethernet interfaces. The

cluster was running Red Hat Enterprise Linux 6.5 with Java 1.7.0_51. Cloudera Distribution Including

Apache Hadoop (CDH) 5.0.0 is the Hadoop distribution and was already installed on it.

The mediator framework, from now on referred as only mediator, was deployed on one of the

cluster nodes, the blade1. The global system performance tests involved running the mediator on

blade1 to insert data to the HDFS installed on the cluster, making it available to Hive and Impala.

The individual components tests involved only the blade1, except for the table writer which has, on

its initial version, to write to HDFS, so there is network involved.

All the tests were performed using randomly-generated records of a real type used in production,

the VOZ_3G (the biggest record that will be used in the mediator for now), whose table creation DDL

is shown on Listing A.2. The record generator generates batches of 100, 000 records and is able to

generate as much as ≈ 40, 000 records per second. The time it takes to generate the batch is not

included in the measurement of times for the system and individual components performances. The

VOZ_3G record is composed of 189 fields and each row has a size of ≈ 2.5KiB, which makes a batch to

be ≈ 244MiB.

For each test, several time measurements, one for each processed batch, were taken, making it

possible to reach an average value.

Table 4.1 reminds of the several components and their correspondence to the Figures 3.1 and 3.2,

indicates whether they convert entities to rows or not and suggests a shorter name to be used from now

on. In the case they do not convert entities to rows (when assembled in the final mediator), the batch

of entities/records is first converted to rows and only then the time measuring test proceeds. Despite

being generic in the architecture overview, the File Writer in here refers to the Parquet file writer one.

Number Name Converts entities Short name

1 Static Constraints Checker Yes static-chk

2 Mediator No mediator

3 Persistence Writer No persist-wr

4 Unique Constraints Checker No unique-chk

5 Table Writer No table-wr

6 File Writer (Parquet) No file-wr

8 Bucket Splitter No bucket-split

Table 4.1: Correspondence between components and their short names used in this chapter. It is
presented whether a component is supposed to convert entities to rows when assembled in the final
mediator framework.
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4.3 testing the initial version

In Section 3.2.2 it is presented the architecture, Figure 3.1, of the implemented solution before

knowing the performance requirements. After the tests it was concluded that some tweaks to Parquet

file writing and architectural changes were needed.

global performance

Making successive batches pass through the mediator it was verified that it took ≈ 31 seconds

to complete, which is ≈ 3, 200 rows per second. The writing to Parquet files was thought to be the

culprit and, to check that case, the mediator was tested disabling the Parquet writing, allowing it to

take only ≈ 5 seconds to complete, which is 20, 000 rows per second.

Identified the slowest component, several tests were made to determine the issue and how to tackle

it. Those tests were directed to the Parquet file writer itself and so will be covered on the next section.

components performance

The architecture of the mediator allows to easily test each one of the components. Those tests

serve as a way of checking bottlenecks and to have a performance overview of all the components.

When testing the components independently the following results on Table 4.2 were obtained.

Short name
Time Throughput

Note
(s) (rows/s)

static-chk ≈ 0.5 200, 000

mediator ≈ 4.0 25, 000

persist-wr ≈ 3.5 ≈ 28, 500

unique-chk ≈ 2.0 50, 000

table-wr ≈ 0.5 200, 000

file-wr ≈ 26 ≈ 3, 800 Writing to HDFS

Table 4.2: Performance of the several components of the mediator.

The static-chk test includes the conversion of entities to rows and checking whether the rows

violate any constraint, concluding it is not a bottleneck. The mediator sends the batch to the

persist-wr and the unique-chk in parallel so its time was expected to be the greatest of the two. In

fact it adds an overhead of ≈ 0.5 seconds, which adding to the time of the persist-wr (the greatest

time of the 2 running in parallel) gives ≈ 4.0 seconds obtained in the test.
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Judging the time of the persist-wr, and so its throughput, it can be, in the future, a possible bot-

tleneck. The table-wr test includes checking to which partition the rows belong, includes instantiating

the file writers (stub versions in this case) and, includes applying row’s transformations.

The file-wr test revealed the true bottleneck of the mediator: writing to Parquet. Several tests

including only this component were performed to try to understand the problem and overcome it.

Table 4.3 shows the results of the several tests performed on the file-wr.

While writing to Parquet files, the dictionary encoding, which allows to save space if there common

values (as the value is saved once and other occurrences will have only an index for the value), is

enabled by default. Experimenting with the dictionary encoding enabled or disabled and with writing

to HDFS or to local, some interesting findings showed up.

Test A is the same presented already in Table 4.2. Test B experimented to write the Parquet file

locally instead of in HDFS. It seems that just by removing the network part the performance improved

by about 45% compared with Test A.

Test
Time Throughput

Description
(s) (rows/s)

A ≈ 26.0 ≈ 3, 800 Writing to HDFS. Dictionary encoding enabled.

B ≈ 18.0 ≈ 5, 500 Writing to local file. Dictionary encoding enabled.

C ≈ 14.0 ≈ 7, 100 Writing to HDFS. Dictionary encoding disabled.

D ≈ 7.0 ≈ 14, 200 Writing to local file. Dictionary encoding disabled.

E ≈ 10.0 ≈ 10, 000 Writing to local file. Dictionary encoding disabled. Send
the file to HDFS

Table 4.3: Several tests performed on file-wr component to try to understand how its performance
could be improved.

Tests C and D are similar to tests A and B but without having the dictionary encoding enabled. Test

C represents an improvement of about 85% comparing with test A. Test D represents an improvement

of about 160% comparing with test B. The dictionary encoding does play a big part on the performance

issue but the writing to HDFS is not free of guilt.

Test E is the same as test D but once the file is closed it sends it to HDFS. It would be expected

to see both tests C and E performing similar as both involve HDFS but test E was about 40% faster

than test C. The difference could be caused by Parquet writer sending small chunks of data over

the network, not taking advantage of the machine’s network capabilities and being delayed by the

Round-Trip Time (RTT). Some profiling tests made to verify that possibility did not prove conclusive

because the Parquet writer was not sending small chunks of data but the whole data at once when the

file was being closed.

Tests D and E seem promising for the performance issue but those are the times for the file-wr

alone. Before reaching the file-wr, the remaining mediator has already spent 5 seconds, so even
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with the result of test E (the files need to be sent to HDFS anyway), the system takes 15 seconds

which gives a throughput of ≈ 6, 600 rows per second. While not enough, it already represents an

improvement of about 100% compared with the originally 31 seconds it took to write a batch.

4.4 testing the improved version

In section 4.3 the performance of the initial version was tested, concluding that even improving

the file-wr, it was not enough to meet the requirement. Because of that some architectural changes

had to be made. Section 3.2.3 refers the bucketing and the asynchronous file uploading to HDFS as

the improvements that have been made to meet the performance requirement.

Because improving the file-wr more is not feasible, having more file-wr and splitting a batch

across them might help. With that in mind the bucketing was introduced as shown in Figure 3.2.

The performance was not expected to improve linearly with the number of buckets, as increasing that

number means potentially having more Input/Output on the machine when components persist-wr,

unique-chk and file-wr come into play, but it was expected to reduce the time needed to process

the whole batch as now it was being split across the different buckets and run in parallel.

At this time it was considered to use the conditions of test E presented on Table 4.3, disabling the

Parquet dictionary encoding and creating the files locally and then send them synchronously to HDFS.

The bucket-split component introduces a delay of ≈ 0.5 seconds determining the bucket for

each row and preparing the sub-batches for each bucket. Testing with several number of buckets, the

results are shown on Table 4.4 and Figure 4.2.

Buckets
Time Throughput

(s) (rows/s)

1 ≈ 15.5 ≈ 6, 400

2 ≈ 10.3 ≈ 9, 700

3 ≈ 8.9 ≈ 11, 200

4 ≈ 8.3 ≈ 12, 000

5 ≈ 7.6 ≈ 13, 100

6 ≈ 7.4 ≈ 13, 500

7 ≈ 7.2 ≈ 13, 800

8 ≈ 6.9 ≈ 14, 400

9 ≈ 6.8 ≈ 14, 700

10 ≈ 6.6 ≈ 15, 100

Table 4.4: Results obtained with different numbers of buckets.
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Figure 4.2: Performance with different numbers of buckets. With the increasing number of buckets,
the improvements tend to be less apparent.

When going from 1 bucket to 2 buckets the performance improved by about 50% but when going

from 2 buckets to 3, that improvement is only about 15% and when going from 3 to 4 buckets we see

an improvement of only about 7% and so on.

Comparing 1 and 4 buckets, we see an improvement of about 90% which is the difference between

inserting ≈ 6, 400 rows per second or inserting ≈ 12, 000 rows per second, being the later already

about ≈ 20% above the performance requirement. However, the bucketing accentuates an undesired

performance issue brought by having small Parquet files, as discussed in Section 4.1.2. That issue can

be solved with a compaction operation performed later on the small files to produce only a big one.

However, that issue is out of the scope of this dissertation.

To decouple the sending of the files to HDFS with the creation of the files themselves, it was

created the File Uploader, Section 3.3.4. This way we could make the mediator to be able to process

another batch without having to wait for the files to be sent to HDFS, potentially resulting in

performance improvements. The Table Refresher, Section 3.3.5, was already asynchronous even before

the existence of the File Uploader, so Hive and Impala only knew about the new files later. This way,

the asynchronous file sending is a pertinent improvement.

The benefits of asynchronously sending the files to HDFS can only be seen by letting the whole

mediator run for a long time and from time to time checking how many rows Impala reports to exist

in the voz_3g table. To do that, and to check how many rows are inserted per second, the mediator

was set up with 4 buckets and with the asynchronous file sending. The mediator was left running for 5

hours and at the end of each hour a count of the rows, performed by Impala, was made. With those

counts it was possible to determine how many rows were being inserted per second.

The voz_3g table already had data on it. The rows count is rounded to the millions as having

exact values is not realistic due to the asynchronous nature of both the File Uploader and the Table

Refresher. The initial count of the voz_3g table was 43, 000, 000 rows. The results are shown in
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Table 4.5.

Hour
Total Rows Throughput

rows per hour (rows/s)

0 ≈ 43, 000, 000 - -

1 ≈ 93, 000, 000 ≈ 50, 000, 000 ≈ 13, 800

2 ≈ 140, 000, 000 ≈ 47, 000, 000 ≈ 13, 000

3 ≈ 188, 000, 000 ≈ 48, 000, 000 ≈ 13, 300

4 ≈ 238, 000, 000 ≈ 50, 000, 000 ≈ 13, 800

5 ≈ 287, 000, 000 ≈ 49, 000, 000 ≈ 13, 600

Table 4.5: Performance results obtained running the mediator framework for a period of 5 hours.

In Table 4.4 it is seen that with 4 buckets and with sending the file synchronously, the throughput

is of about 12, 000 rows per second. In this last test, with the files being sent asynchronously it was

registered a throughput of about 13, 500 rows per second, which results in an improvement of about

12%. The performance improvement with the File Uploader does not seem a big deal but adding to

that performance improvement is the ability to recover more easily after a failure and having all the

file sending logic into one shared component instead of split across all the file writers.

Comparing with the requirement of 10, 000 records per second, the 13, 500 rows per second fulfils

the requirement and exceeds it by about 35%.
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chapter 5
Conclusion

This chapter wraps up the dissertation into a brief overview of the developed work and gives directions

of future improvements to be considered.

5.1 work overview

The work of this dissertation consisted on the development of a mediator framework to insert

data into Hadoop. The mediator integrates with systems used to insert data into Relational Database

Management System (RDBMS) making it easier for those systems to insert their data into Hadoop.

Because the data was intended to be queried by Hive, as it uses a SQL-like language, the HiveQL, it

had to be inserted in a format recognized by it.

The insertion of data into Hadoop consists in accumulating rows in order to create a big file that

can be sent to HDFS then. Because of that accumulating process, in case of a failure, all the data

perceived as being inserted is lost if the destination file gets corrupted or if its contents, at the time of

the failure, were in memory yet. Hadoop, and more specifically Hive, does not support indices like the

traditional RDBMSs, so it does not support unique key constraints, for example.

The mediator framework had to guarantee the durability of the inserted rows, even in case of

failures, and guarantee unique key constraints. It also had to support data partitioning and the

management of Hive’s tables.

The proposed solution consists on multiple components, each one carrying out a well defined task.

The components are allowed to be glued together as intended, resulting in different configurations with

different outcomes. That flexibility has allowed the mediator framework to have a configuration to

insert data and another configuration to recover data after a failure.

57



MSc Computer and Telematics Engineering

The configuration to insert data is a pipeline. Data, more specifically batches of rows, enter that

pipeline and pass through the components on a well defined order. That order makes the rows to

be checked for validity against a schema, to be checked for uniqueness, to be temporarily stored to

account for system failures, to be split into different partitions and, finally, to be written to a file that

is then sent to HDFS to be part of a Hive table.

The requirement of guaranteeing the data was safe was specially hard to fulfil because of the

different frequencies in which batches arrive and files are closed and sent to HDFS. To fulfil that

requirement, a persistent queue was introduced. That queue stores the accepted batches that are not

yet in HDFS so in case of a system failure, when restarting, the data on that queue is replayed and

the lost files are rebuilt.

Supporting unique key constraints implied the construction of an index to store the already known

keys. Because of the requirement of guaranteeing data was safe, it was possible for the index, in case

of failure, to report not duplicated records as duplicated when replaying the data on the persistence

queue. To solve that, the batches were versioned when arriving to the mediator so, in the case of a

data replay, the version number is used to allow the index to ignore records that otherwise would be

reported as duplicated.

To test the mediator framework, a POC was set up in which it had to integrate with an existing

system that performs ETL operations on xDRs for a CQM scenario. The result is intended to be then

used by another system, Altaia, to compute metrics, the KPIs and KQIs. For the POC there was the

requirement of inserting 10, 000 rows per second of records of the types VOZ_2G and VOZ_3G and, the

data had to be queryable not only by Hive but by Impala also.

The first performance tests (using the VOZ_3G as it is the biggest record) were disappointing, as

the mediator was only able to insert at a rate of ≈ 3, 200 rows per second. Thorough tests have shown

the problem resided mostly in the write of the Parquet files. Tweaking dictionary encoding options and

writing the file locally and then sending it to HDFS resulted in ≈ 6, 600 rows per second. To improve

the insertion rate even more, the mediator framework had to be changed to include bucketing. That

way, a batch is split into sub-batches and each sub-batch is processed in a bucket, each one having its

own independent insertion pipeline, allowing the insertion to be done in parallel, potentially improving

the insertion rate.

Testing the mediator framework with all the added improvements (and configuring it to use 4

buckets) has shown it was able of inserting data at a rate of 13, 500 rows per second, fulfilling and

exceeding the performance requirement by about 35%.

Using the bucketing approach accentuates the problem of generating too many small files, which is

bad for the HDFS namenode and for Parquet files in general, as the benefits of the columnar storage

approach are more noticeable with big files. That problem, however, can be solved by a compaction

operation applied later on the files of a table’s partitions.
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5.2 future work

Although the goals for this dissertation were met, there are certain areas needing to be improved.

So the following is suggested as future work and improvements:

• Explore alternatives to Parquet files. Generating Parquet files requires too much memory and,

in the use case of the POC, they were not being generated with the adequate size to be relevant

later to the query performance;

• In case Parquet files are maintained for the insertion, develop a mechanism of detecting the

current size of the in-memory buffers and, in case they are dangerously reaching the limits of

available memory for the process, trigger a flush.

• Implement an automatic compactions mechanism that can safely compact the small files into a

big one. In the worst case, this mechanism would have to deal with running queries on the files

it wants to compact and then delete;

• Explore alternatives to LevelDB. Although simple and with good performance, being embedded

makes it harder to execute maintenance operations, like removing old keys that are not needed any

more, while being used by the mediator framework. HBase or Cassandra could be replacements,

although maybe too bloated for the purpose;

• When adding files to HDFS and, in order to Hive and Impala to recognize them, issue a

LOAD DATA DML directly on Impala instead of instructing Hive to search for new files and

instructing Impala to refresh its metastore cache after that.
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appendix A
Tables creation DDL

CREATE EXTERNAL TABLE IF NOT EXISTS voz_2g (
date_start DOUBLE,
date_end DOUBLE,
week INT ,
minute INT ,
week_day BOOLEAN,
week_end BOOLEAN,
ho l iday BOOLEAN,
work_period STRING,
ims i STRING,
ims i_va l id BOOLEAN,
imei sv STRING,
imei STRING,
tac INT ,
f a c INT ,
snr INT ,
svn INT ,
f i l e_co l_t ime DOUBLE,
rec_col_time DOUBLE,
inser t_t ime DOUBLE,
seq BIGINT ,
a_msisdn STRING,
a_imsi STRING,
trm_brand STRING,
trm_model STRING,
trm_type STRING,
trm_os STRING,
trm_technology STRING,
trm_band_gsm STRING,
trm_band_umts STRING,
trm_band_lte STRING,
trm_bw_800 STRING,
trm_bw_1800 STRING,
trm_bw_2600 STRING,
trm_hd_voice STRING,
trm_class_gprs STRING,
trm_class_edge STRING,
trm_mod_edge STRING,
trm_baud_umts STRING,

67



MSc Computer and Telematics Engineering

trm_cat_hsdpa STRING,
trm_cat_hsupa STRING,
trm_cat_lte STRING,
trm_chipset STRING,
account_id INT ,
sub_account_id INT ,
account_name STRING,
account_type STRING,
a_imsi_valid BOOLEAN,
line_number INT ,
f i l ename STRING,
s e r v i c e STRING,
technology STRING,
f i l e STRING,
num_events INT ,
opc INT ,
dpc INT ,
f i r s t _ l a c INT ,
current_lac INT ,
f i r s t _ c i INT ,
cur rent_c i INT ,
c a l l i n g _ d i g i t s STRING,
c a l l e d _ d i g i t s STRING,
sms STRING,
category STRING,
forward_vm_progress DOUBLE,
b_number STRING,
setup_time DOUBLE,
a lert_t ime DOUBLE,
connect_time DOUBLE,
disconnect_time DOUBLE,
cal l_proceed_time DOUBLE,
cal l_conf irm_time DOUBLE,
b_msisdn STRING,
b_imsi STRING,
i n i t i a l _ c o d e c STRING,
message STRING,
ca l l_act ive_durat ion BIGINT ,
ca l l_setup_durat ion BIGINT ,
i n s u c c e s s BOOLEAN,
lec_technology STRING,
cause STRING,
result_end STRING,
sub_result_end STRING,
lec_p1_pname STRING,
lec_p1_cause STRING,
lec_p1_result_end STRING,
lec_p1_sub_result_end STRING,
lec_p2_pname STRING,
lec_p2_cause STRING,
lec_p2_result_end STRING,
lec_p2_sub_result_end STRING,
lec_p3_pname STRING,
lec_p3_cause STRING,
lec_p3_result_end STRING,
lec_p3_sub_result_end STRING,
lec_p4_pname STRING,
lec_p4_cause STRING,
lec_p4_result_end STRING,
lec_p4_sub_result_end STRING,
sms_isnul l BOOLEAN,
sms_isnull_msg_mobileterm BOOLEAN,
a lert_t ime_notnul l BOOLEAN,
connect_time_notnull BOOLEAN,
disconnect_time_notnul l BOOLEAN,
a l e r t_t ime_i snu l l BOOLEAN,
forwardvm_progress_notnull BOOLEAN,
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sms_notnull BOOLEAN,
sms_notnull_msg_mobileterm BOOLEAN,
alert_time_isnul l_sms_notnul l BOOLEAN,
fst_ci_rnc_bsc STRING,
fst_ci_nodeb_bts STRING,
f s t _ c i _ c e l u l a STRING,
f s t_c i_cod igo_s i t e STRING,
f s t_c i_ lac INT ,
f s t_c i_rac INT ,
f s t _ c i _ d i s t r i t o STRING,
f s t_c i_conce lho STRING,
f s t _ c i _ f r e g u e s i a STRING,
f s t _ c i _ f a b r i c a n t e STRING,
f s t_c i_sgsn STRING,
f s t _ c i _ l a t i t u d e STRING,
f s t_c i_ long i tude STRING,
cur_ci_rnc_bsc STRING,
cur_ci_nodeb_bts STRING,
cur_c i_ce lu la STRING,
cur_ci_codigo_site STRING,
cur_ci_lac INT ,
cur_ci_rac INT ,
c u r _ c i _ d i s t r i t o STRING,
cur_ci_concelho STRING,
cur_c i_f regues ia STRING,
cur_c i_fabr i cante STRING,
cur_ci_sgsn STRING,
cur_c i_lat i tude STRING,
cur_ci_longitude STRING,
mcc INT ,
mnc INT ,
a l e r t_t ime_i snu l l_ fa lha BOOLEAN,
a lert_t ime_notnul l_fa lha BOOLEAN,
c ida INT ,
call_qty_ho INT ,
call_ho_time DOUBLE,
cal l_intra_qty_ho INT ,
cal l_inter_qty_ho INT ,
call_intra_dwn_qlt_qty_ho INT ,
call_intra_up_qlt_qty_ho INT ,
call_intra_dwn_str_qty_ho INT ,
call_intra_up_str_qty_ho INT ,
call_inter_dwn_qlt_qty_ho INT ,
call_inter_up_qlt_qty_ho INT ,
call_inter_dwn_str_qty_ho INT ,
call_inter_up_str_qty_ho INT

)
PARTITIONED BY (

year INT ,
month INT ,
day INT ,
hour INT

)
ROW FORMAT SERDE ’parquet.hive.serde.ParquetHiveSerDe ’
STORED AS

INPUTFORMAT ’parquet.hive.DeprecatedParquetInputFormat ’
OUTPUTFORMAT ’parquet.hive.DeprecatedParquetOutputFormat ’

LOCATION ’hdfs :/// user/altaia/tables/voz_2g’ ;

Listing A.1: Table creation DDL for records of type VOZ_2G, composed of 155 columns.
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CREATE EXTERNAL TABLE IF NOT EXISTS voz_3g (
date_start DOUBLE,
date_end DOUBLE,
week INT ,
minute INT ,
week_day BOOLEAN,
week_end BOOLEAN,
ho l iday BOOLEAN,
work_period STRING,
ims i STRING,
ims i_va l id BOOLEAN,
imei sv STRING,
imei STRING,
tac INT ,
f a c INT ,
snr INT ,
svn INT ,
f i l e_co l_t ime DOUBLE,
rec_col_time DOUBLE,
inser t_t ime DOUBLE,
seq BIGINT ,
a_msisdn STRING,
a_imsi STRING,
trm_brand STRING,
trm_model STRING,
trm_type STRING,
trm_os STRING,
trm_technology STRING,
trm_band_gsm STRING,
trm_band_umts STRING,
trm_band_lte STRING,
trm_bw_800 STRING,
trm_bw_1800 STRING,
trm_bw_2600 STRING,
trm_hd_voice STRING,
trm_class_gprs STRING,
trm_class_edge STRING,
trm_mod_edge STRING,
trm_baud_umts STRING,
trm_cat_hsdpa STRING,
trm_cat_hsupa STRING,
trm_cat_lte STRING,
trm_chipset STRING,
account_id INT ,
sub_account_id INT ,
account_name STRING,
account_type STRING,
a_imsi_valid BOOLEAN,
line_number INT ,
f i l ename STRING,
s e r v i c e STRING,
technology STRING,
f i l e STRING,
num_events INT ,
opc INT ,
dpc INT ,
f i r s t _ s a c INT ,
current_sac INT ,
f i r s t _ l a c INT ,
s ource_i rat_c i INT ,
t a rge t_ i ra t_c i INT ,
rabr_time DOUBLE,
raba_time DOUBLE,
irat_t ime DOUBLE,
i r a t STRING,
c a l l i n g _ d i g i t s STRING,
c a l l e d _ d i g i t s STRING,
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sms STRING,
category STRING,
forward_vm_progress DOUBLE,
b_number STRING,
setup_time DOUBLE,
a lert_t ime DOUBLE,
connect_time DOUBLE,
disconnect_time DOUBLE,
cal l_proceed_time DOUBLE,
cal l_conf irm_time DOUBLE,
b_msisdn STRING,
b_imsi STRING,
i n i t i a l _ c o d e c STRING,
message STRING,
ca l l_act ive_durat ion BIGINT ,
ca l l_setup_durat ion BIGINT ,
i n s u c c e s s BOOLEAN,
lec_technology STRING,
cause STRING,
result_end STRING,
sub_result_end STRING,
lec_p1_pname STRING,
lec_p1_cause STRING,
lec_p1_result_end STRING,
lec_p1_sub_result_end STRING,
lec_p2_pname STRING,
lec_p2_cause STRING,
lec_p2_result_end STRING,
lec_p2_sub_result_end STRING,
lec_p3_pname STRING,
lec_p3_cause STRING,
lec_p3_result_end STRING,
lec_p3_sub_result_end STRING,
lec_p4_pname STRING,
lec_p4_cause STRING,
lec_p4_result_end STRING,
lec_p4_sub_result_end STRING,
sms_isnul l BOOLEAN,
sms_isnull_msg_mobileterm BOOLEAN,
a lert_t ime_notnul l BOOLEAN,
connect_time_notnull BOOLEAN,
disconnect_time_notnul l BOOLEAN,
a l e r t_t ime_i snu l l BOOLEAN,
forwardvm_progress_notnull BOOLEAN,
sms_notnull BOOLEAN,
sms_notnull_msg_mobileterm BOOLEAN,
alert_time_isnul l_sms_notnul l BOOLEAN,
irat_t ime_notnul l BOOLEAN,
a l e r t_t ime_i snu l l_ fa lha BOOLEAN,
a lert_t ime_notnul l_fa lha BOOLEAN,
mcc INT ,
mnc INT ,
fst_sac_rnc_bsc STRING,
fst_sac_nodeb_bts STRING,
f s t_sac_ce lu l a STRING,
f s t_sac_cod igo_s i te STRING,
f s t_sac_lac INT ,
f s t_sac_rac INT ,
f s t _ s a c _ d i s t r i t o STRING,
fst_sac_conce lho STRING,
f s t_ sa c _f r eg u e s i a STRING,
f s t_sac_fabr i cante STRING,
fst_sac_sgsn STRING,
f s t_sac_ la t i tude STRING,
f s t_sac_long i tude STRING,
cur_sac_rnc_bsc STRING,
cur_sac_nodeb_bts STRING,
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cur_sac_celula STRING,
cur_sac_codigo_site STRING,
cur_sac_lac INT ,
cur_sac_rac INT ,
cu r_sac_d i s t r i to STRING,
cur_sac_concelho STRING,
cur_sac_fregues ia STRING,
cur_sac_fabr icante STRING,
cur_sac_sgsn STRING,
cur_sac_lat i tude STRING,
cur_sac_longitude STRING,
src_irat_ci_rnc_bsc STRING,
src_irat_ci_nodeb_bts STRING,
s r c_ i ra t_c i_ce lu l a STRING,
s rc_i rat_c i_cod igo_s i t e STRING,
s rc_i rat_c i_lac INT ,
s rc_irat_c i_rac INT ,
s r c _ i r a t _ c i _ d i s t r i t o STRING,
src_irat_c i_conce lho STRING,
s r c _ i r a t _ c i _ f r e g u e s i a STRING,
s r c_ i ra t_c i_ fabr i can te STRING,
src_irat_ci_sgsn STRING,
s r c _ i ra t_c i _ l a t i tude STRING,
s rc_i rat_c i_long i tude STRING,
tgt_irat_ci_rnc_bsc STRING,
tgt_irat_ci_nodeb_bts STRING,
tg t_ i ra t_c i_ce lu l a STRING,
tgt_irat_c i_cod igo_s i te STRING,
tgt_irat_c i_lac INT ,
tgt_irat_ci_rac INT ,
t g t _ i r a t _ c i _ d i s t r i t o STRING,
tgt_irat_ci_conce lho STRING,
tg t_ i ra t_c i_ f r egue s i a STRING,
tg t_ i ra t_c i_fabr i cante STRING,
tgt_irat_ci_sgsn STRING,
tg t_ i ra t_c i_ la t i tude STRING,
tgt_i rat_c i_long i tude STRING,
c ida INT ,
ca l l_qty_re loc INT ,
req_reloc_time DOUBLE,
call_qty_ho INT ,
call_ho_time DOUBLE,
cal l_intra_qty_ho INT ,
cal l_inter_qty_ho INT ,
call_intra_dwn_qlt_qty_ho INT ,
call_intra_up_qlt_qty_ho INT ,
call_intra_dwn_str_qty_ho INT ,
call_intra_up_str_qty_ho INT ,
call_inter_dwn_qlt_qty_ho INT ,
call_inter_up_qlt_qty_ho INT ,
call_inter_dwn_str_qty_ho INT ,
call_inter_up_str_qty_ho INT

)
PARTITIONED BY (

year INT ,
month INT ,
day INT ,
hour INT

)
ROW FORMAT SERDE ’parquet.hive.serde.ParquetHiveSerDe ’
STORED AS

INPUTFORMAT ’parquet.hive.DeprecatedParquetInputFormat ’
OUTPUTFORMAT ’parquet.hive.DeprecatedParquetOutputFormat ’

LOCATION ’hdfs :/// user/altaia/tables/voz_3g’ ;

Listing A.2: Table creation DDL for records of type VOZ_3G, composed of 189 columns.
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