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Abstract

In order to characterize the landslide susceptibility in the central zone of 
Guerrero State in Mexico, a spatial model has been designed and implemented, 
which automatically generates cartography. Conditioning factors as geomorpho-
logical, geological, and anthropic variables were considered, and as a detonating 
factor, the effect of the accumulated rain. The use of an inventory map of land-
slides that occurred in the past (IL) was also necessary, which was produced by an 
unsupervised detection method. Before the design of the model, an analysis of the 
contribution of each factor, related to the landslide inventory map, was performed 
by the Jackknife test. The designed model consists of a susceptibility index (SI) 
calculated pixel by pixel by the accumulation of the individual contribution of 
each factor, and the final index allows the susceptibility cartography to slide in 
the study area. The evaluation of the obtained map was performed by applying an 
analysis of the frequency ratio (FR) graphic, and an analysis of the receiver operat-
ing characteristic (ROC) curve was developed. Studies like this can help different 
safeguarding institutions, locating the areas where there is a greater vulnerability 
according to the considered factors, and integrating disaster attention management 
or prevention plans.

Keywords: landslide susceptibility, accumulated susceptibility index, explanatory 
factors, jackknife test, frequency ratio, receiver operating characteristic curve

1. Introduction

The landslides are phenomena of great importance due to their spatial dimen-
sion effects on socio-ecological systems. Typically, the landslides are present in 
areas where hydrometeorological phenomena also occur [1–3]. In recent years, an 
increase in landslide risk has been recorded due to the increase of population settle-
ments in vulnerable areas such as coastal and mountain regions.

This problematic and global situation has aroused the interest of governments 
and academics, and significant efforts have been made to characterize and identify 
the areas that have the potential to suffer landslides. Under a territorial approach, 
studies and susceptibility models have been developed, where factors related to 
instability processes and their spatial distribution are analyzed and linked to the 
landslide inventories.
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The remote sensing techniques and the management of geospatial information 
through geographic information systems (GIS) currently play a leading role in 
numerous studies in which statistical or semi-statistical methods are applied to the 
modeling and generation of landslide susceptibility cartography [4].

In the last four decades, different probabilistic methods have been developed to 
predict, model, assess, and produce cartography about the risk related to landslides. 
Van Westen et al. [5] propose three scale levels in risk maps:

A. The qualitative-heuristic approach, with empirical recognition and small-scale 
maps (1: 100,000–1: 250,000)

B. The statistical approach, to determine the causal factors in the quantitative 
susceptibility mapping (scale 1: 25,000–1: 50,000)

C. The deterministic approach, for detailed large-scale studies (1: 2000–1: 
10,000)

Guzzetti et al. [6] describe that the most important proposed methods can be 
grouped mainly in the following categories:

1. Geomorphological risks mapping

2. Analysis of landslide inventories

3. Heuristic or indexing methods

4. Functional and statistical models

5. Geotechnical models or based on the physical structure

The literature about the evaluation of susceptibility to landslide events is vast; 
Carrara [7], Guzzetti [8], Chung et al. [9], Baeza and Corominas [10], Hervás et al. 
[11], Ayalew and Yamagishi [12], Lee [13], Mancini et al. [14], Kayastha et al. [15], 
and Dou et al. [16], among others, use the statistical methods of multivariate analy-
sis (discriminant analysis, processes of analytical hierarchies or logistic regression). 
According to Feizizadeh and Blaschke [17], the use of these methods has increased 
in landslide susceptibility mapping; however, the results are sensitive to the quality 
of the dependent variable, for instance, the inventory of previous landslide events 
[18, 19, 4].

Other authors have analyzed damaged scenarios with a geostatistical approach 
applying kernel density maps to evaluate geological, geomorphological, and risk 
data [20]. Lazzari and Danese proposed a multi-temporal kernel density estimation 
approach for local landslide susceptibility evaluation and forecasting, based on 
spatial statistics techniques and in particular on kernel density estimation, consid-
ering the interaction between landslides that are located close to each other, as a 
second-order effect in landslide spatial distribution [21].

Due to the complexity of landslides, many authors have focused on nondeter-
ministic methods to assess the susceptibility. Lee et al. [22], Gómez and Kavzoglu 
[23], Park et al. [24], and Conforti et al. [25] have applied data mining methods 
using artificial neural networks, while Ercanoglu and Gokceoglu [26] and Pistocchi 
et al. [27] have applied the fuzzy logic methods.
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Ward et al. [28], Terlien et al. [29], Fall et al. [30], and Jia et al. [31] have 
adopted a mechanical approach, using deterministic and/or numerical methods, 
which have been successful for the analysis of the stability of a slope [32].

In this study, we apply a heuristic method, which considers the relationship 
between the location of landslide events previously occurred and the geomorpho-
logical and geological environment [33–36]. In the heuristic methods, the experts’ 
criteria are essential, due and based on their expertise, and they determine the 
factors that influence the instability [37]; here each factor is weighted according 
to its importance/influence on the landslide triggering. A final map is obtained by 
superimposing the thematic layers related to each factor. Examples of the applica-
tion of this type of indirect methods are described below.

Irigaray [38, 39] proposes the critical slope method, with which the susceptibility 
of lithology in slope intervals is estimated. The critical slope per lithological unit is 
obtained from the relation of the increase of the percentage occupied by the surface of 
rupture of the class of immediate lower slope and the increase of slope of both classes.

Van Westen [40, 41] developed a procedure that calculates the landslide density, 
assigning a weight to the variables (factors), through the difference with the total 
density and finally adding the weighted densities. An important feature is that this 
method contemplates different types of landslides and activity stages, considering 
the slid zones.

Sarkar et al. [42] performed a similar procedure, but without assigning 
weights, they calculate the landslide density for each class and factor, obtain-
ing a susceptibility index through the weighted accumulation of the individual 
indices corresponding to each factor included and thus obtaining the final 
susceptibility map.

Barredo et al. [43] apply two knowledge-based methods. The direct method 
performs a very detailed geomorphological cartography using specifically coded 
polygons that were evaluated one by one by experts to assess the type and risk 
degree. The indirect method is based on an indexing technique, where the condi-
tioning factors are combined using multicriteria evaluation techniques.

Hervás and Barredo [44] and Hervás et al. [11] propose an indirect method of 
indexing to evaluate the landslide susceptibility, through the pondered linear sum 
of the weights of the considered factors and classes, for the assignation of the final 
weight corresponding to each conditioning factor. In their study, they applied the 
analytical hierarchy method, creating a matrix with the relative value judgments 
between pairs of conditioning factors of instability. The resulting susceptibility 
index was presented in a five-category thematic map.

Ayalew et al. [34] applied the linear weight combination method to determine 
classes of control parameters (factors): lithology, slope, terrain orientation, eleva-
tion, profile, and flat curvature, considering the order of importance in the process 
of landslides and weighing the impact of one parameter against another.

Wati et al. [35] applied a heuristic approach with the weighted scoring 
method, where the judgment of an expert determines the weighting and scor-
ing, which represents the effect of each factor in the process of a landslide. The 
higher the weight and the score, the higher will be the influence of a particular 
factor to trigger a landslide. The weight designation to the corresponding fac-
tors was aided by the Integrated Land and Water Information System (ILWIS) 
software, and they used a rank of values, 1 to 4. The results were presented 
in a thematic susceptibility map organized in five classes whose ranges were 
 determined by the Natural Breaks method [45] based on the accumulated  
weight score.
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The work presented here is only one phase of a global susceptibility analysis 
project in the Guerrero State, which includes landslides, floods, earthquake damage, 
and environmental effects due to industrial activity, among other phenomena that 
occur in the study area.

Under this background, the present work consists of the analysis, design, and 
implementation of a spatial model to characterize the landslide susceptible zones in 
the central area of Guerrero State in Mexico.

2. Study area

The study area covers a space of 3300 km2, in the central zone of Guerrero State 
in Mexico, and consists of a mountainous region, with elevations ranging from 
280 m to 3540 m above mean sea level and slopes over 40 (Figure 1).

According to the Mexican Institute of Statistics and Geography (INEGI), for the 
year 2013, temperature variations were recorded from 14.3°C (December) to 28.3°C 
(May) [46].

The records of precipitation of the National Meteorological Service (SMN-
CONAGUA) for the year 2013 indicate that the ranges vary from 800 mm as mini-
mum average to 2100 mm as maximum recorded from June to September [47]. The 
area was 74.8% covered by forest (coniferous, mesophilic, and mixed), 14.1% by 
deciduous forest, 7.8% by agricultural land, 3.2% by induced vegetation, and 0.1% 
by human settlements and urban areas [48]. According to the 2010 Population and 
Housing Census, there are 187 cities and towns, in which there are 15,230 homes 
inhabited by 59,098 people [49].

Geologically, the area is located physiographically in the Sierra Madre del Sur 
[50] and has a variety of metamorphic rock composition consisting of schists and 
gneisses of biotite and quartzite, outcrops of deposited limestone, metavolcanic 
rocks with sedimentary influence, siltstones, sandstones, conglomerates, and 
carbonate rocks. Rhyolitic rocks are also found as a result of Oligocene-Miocene 
volcanism. The youngest rocks correspond to alluvial deposits present in the mar-
gins and riverbeds [51, 52]. Figure 2 shows the geological map of the study area, 
integrated from two geological charts and ten geological-mining charts, referenced 
to 2012.

Figure 1. 
Study area, the south-central region of the state of Guerrero, Mexico. Source: Adaptation of ASTER image 
from Dec 13 2013.
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The study area is interesting because of its geographic location, topographic, 
and geological conditions and also due to the presence of extraordinary hydrome-
teorological phenomena in recent years, which have triggered massive landslides 
that have severely affected the population and infrastructures of their communities. 
The events of September 2013 were particularly notable during tropical depression 
No. 13 in the Pacific Ocean and subsequent simultaneous hurricanes: Manuel in the 
Pacific and Ingrid in the Gulf of Mexico caused significant floods and landslides on 
the coast of the Guerrero State [54] (Figure 3).

In the study area, there is an important concentration of inhabitants. From the 
187 localities distributed in the area, 182 are considered as rural (with less than 2500 
inhabitants), and their environmental conditions, the materials of their homes, and 
characteristics are similar to La Pintada.

3. Dataset and methodology

An overview of the process to characterize, through an accumulated index, the 
areas susceptible to landslides is shown in Figure 4.

Figure 2. 
Geological map of the study area [53].

Figure 3. 
A massive landslide occurred on La Pintada community. September 2013, in the study area. Source: Personal 
adaptation from https://www.jornada.com.mx/2013/09/24/ciencias/a03a1cie.
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As can be seen, the proposal is made up of five stages:

• Dataset. Consists of the acquisition of primary data and the generation of 
maps derived from it.

• Pre-processing. In this stage, additional processes are applied to the derived infor-
mation, such as the categorization of maps with continuous data, the generation 
of kernel density maps, or the combination of maps with related information.

• Jackknife test. In this stage, the factors considered are analyzed to determine 
the contribution of each of them to the global susceptibility model.

• Accumulated index of landslide susceptibility. Here, the proposed model is 
implemented to build the landslide susceptibility map.

• Accuracy assessment. At this stage, the map generated is evaluated.

Each of the stages is explained in detail throughout the work.

3.1 Landslide inventory

An image dated on August 12, 2014, from Google Earth online platform was 
used, just the closest one available after the meteorological events of September 
2013 previously described. Photointerpretation techniques were applied to 
identify and digitize a sample of 617 polygons of which 602 (17,385 pixels) 
represent real landslide areas and 15 (17,632 pixels) represent non-landslide 
zones to integrate an inventory validated through field visits in the study area 
(Figure 5A).

Figure 4. 
Methodology overview.
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Due to the conditions of access and insecurity prevailing in the study area, 
not all the digitized polygons were field verified. The field verification was in 321 
polygons (53.3%) in secure zones near to the largest cities and close to the most 
important roads. The field verification indicated that 320 were translational land-
slides, and only 1 was a debris avalanche.

The size of the slid polygons in the integration of the landslide inventory was 
450 m2, which is the area that corresponds to two pixels, due to the spatial resolu-
tion of the ASTER images used, which is 15 m.

A landslide inventory map (Figure 5B) was used to assess the resulting sus-
ceptibility landslide model. This inventory was automatically produced through 
unsupervised detection methods applied to ASTER-derived products [53].

The described landslide inventory produced by unsupervised detection methods 
consists of 216,174 pixels that represent the landslide zones caused by the extraor-
dinary rains of the simultaneous hurricanes Ingrid and Manuel in September 2013. 

Figure 5. 
Landslide inventory. (A) Landslide polygons digitized in Google earth validated. (B) landslide inventory map 
resulting from unsupervised detection methods [53].
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These pixels were divided into three equal parts, of which 2/3 (144,116 pixels) were 
used to define the degree of contribution of the factor terrain orientation and flat 
curvature to the susceptibility model.

The other part (72,058 pixels) was complemented by a similar number of ran-
domly selected pixels of the inventory map that were identified as non-landslides 
and reserved for the stages of evaluation of the influence of factors on the occur-
rence of landslides and to assess the accuracy of the landslide susceptibility map 
obtained in this work.

3.2 Conditioning and detonating factors

In this work, the quantity and type of the analyzed factors were the results of a 
selection process supported on the expertise or researchers based on specific char-
acteristics of each factor and the conditions of the study area. Thus, it is important 
to emphasize that finally, the explanatory factors are considered, depending on the 
characteristics of the study area and the availability of corresponding information. 
The factors considered, as well as the processes applied for their integration, are 
described as follows.

Based on the data obtained from the topographic maps, courtesy of National 
Institute of Statistics and Geography of Mexico (INEGI), a 15 m grid cell digital 
elevation model (DEM) was generated; then, maps of the angular slope, terrain 
orientation, drainage network, and flat curvature were produced from DEM to be 
used as factors in the susceptibility modeling.

From the topographic maps, the road infrastructure data was obtained. The 
lithology map was obtained from the geological-mining charts, while the map of the 
structural elements was obtained from the geological chart courtesy of INEGI and 
the Mexican geological service (SGM).

From the soil chart of Guerrero State (INEGI), the textural class map of the 
study area was obtained. Also, a map of accumulated precipitation was generated 
from the data bank of the daily precipitation from January to September 2013, 
obtained from the meteorological stations located in or near to the study area 
(Figure 6). With the data of accumulated precipitation, textural class, and terrain 
slopes, a new combined product was generated that was called the potential rain 
effect map.

According to the kind of data of each factor, in some cases, additional processing 
was performed to be used in the modeling of susceptibility. For the terrain slopes 
(S), in concordance with Alcantara-Ayala [55], the slope values smaller than 5° 
were considered as flat zones, and then without effect on the susceptibility index, 
while for the upper slope values, a limit value through the statistical parameters 
of all slope data was determined, calculated by the mean plus twice the standard 
deviation (μ + 2σ). The resulting value was 45.3°, and from this value onwards, 
it was considered that the effect on the susceptibility to slip is the same, and thus 
all the upper-value slopes were equalized considering them with the same weight 
(Figure 7A) [56].

About lithology, a susceptibility degree was defined for each lithological unit. 
The map was categorized according to Aramburu Maqua and Escribano Bombín 
[57], who refers to the degree of cohesion, potential erosion, and mechanical 
behavior of each type of rock.

In this sense, the potential erosion index (PEI) was used, since it refers to 
erosion by surface runoff due to hydrological factors, which are considered in this 
study as the primary trigger of landslides. Based on the analysis of the lithological 
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content of the rocks present in the area, five classes were defined that indicate the 
susceptibility degree, related to the potential erosion of the rock type. According to 
the categorization based on the PEI [57] and the identified rock types, four suscep-
tibility classes were determined: (1) very low, (2) low, (3) medium, and (5) very high 
(Figure 7B). It is important to note that the classification corresponds to the cited 
works consulted, and according to the analysis performed, class (4) high does not 
exist in the study area.

Regarding the drainage network maps, road infrastructure, and geological struc-
tures, it was considered to use density maps, since if a point in the space next to an 
“element” (runoff, road, or geological structure) has a certain degree of susceptibil-
ity, then this should be greater if the same point is close to two or more elements; 
therefore, a density map would represent the most susceptible areas to slide accord-
ing to its position with respect to one or more of the elements considered.

From each map (drainage network, road infrastructure, and geological struc-
tures), the density maps were generated by the kernel density estimator (KDE), 
which calculates a magnitude of influence of the “elements” per unit area according 
to the neighborhood of the pixels [58, 20]. The KDE can be applied on specific 
entities or lines. KDE implies the use of parameters, among which the search radius 
(bandwidth) is one of the most important and represents the value of the radius 
within which the density will be estimated.

The default search radius (SR) is computed according to the spatial distribution 
of input dataset to be analyzed using a spatial variant of Silverman’s rule of thumb 
that is robust to spatial outliers (i.e., points that are far away from the rest of the 
points), through the equation

  SR = 0.9 ∗ min  (SD  √ 
_

   1 _ 
ln  (2) 

   ∗ Dm  )  ∗  n   −2   (1)

Conceptually, an adjustment of a uniform curved surface is made on each “ele-
ment.” The value of KDE is higher on the line and decreases as the pixels are farther 

Figure 6. 
Meteorological stations considered in the study. Source: Personal adaptation from ESRI and SMN-CONAGUA.
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Figure 7. 
Explanatory factors of landslide susceptibility in the central zone of Guerrero state. (A) Terrain slope.  
(B) Potential erosion index. (C) Drainage network density. (D) Road density. (E) Structural element density. 
(F) Terrain orientation. (G) Flat curvature. (H) Potential rain effect.
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from the feature, even reaching the zero value. To calculate the density of each 
pixel, the values of all the superposed kernel surfaces are added [59] (Figure 7C–E).

The terrain orientation (TO) was classified according to Rawat et al. [60], 
excluding the value of −1 since it represents flat areas and does not contribute 
any degree of susceptibility to landslides in the model. The rest of the orientation 
values were organized in eight classes, to which a cross-tabulation was applied 
with 2/3 of the slides taken from the ground truth (landslide inventory map) to 
determine the frequency of each class of orientation of the terrain in which the 
pixels are slid.

From the crossing of information of the class of terrain orientation and the pix-
els of the landslide inventory map, the map of orientations was reclassified accord-
ing to the frequency of the slid pixels in each class, being the order of frequency and 
the degree of susceptibility assigned (Table 1, Figure 7F).

The flat curvature (FC) is an important topographic feature commonly used in 
landslide susceptibility studies [61]. The slopes can be subdivided into regions of 
flat curvature, lateral concave, lateral convex, and linear; however, statistical analy-
sis of the flat curvature and landslide datasets indicates that slopes with linear flat 
curvature have the highest probability of landslides, and this probability decreases 
as the slopes become more concave or convex [62].

The flat curvature map contains values from −25,798 to 30,944, which were 
adjusted according to the empirical information of the landslide inventory map, 
using a similar methodology to that applied in the terrain orientation; first, the 
curvature values were analyzed, and then the data were cross analyzed with the 
landslide inventory information, using two-third of the slid pixels considered as 
ground truth. Thus, the sampled slid pixels show curvature values from −12,427 
to 5486; to these range values, a classification was applied in three ranges by the 
Natural Breaks method [45]; and for each class, the frequency of slid pixels was 
obtained (Table 2).

Most of the sampled pixels (72.1%) are included in the range (−1.328 to 0.358) 
that corresponds to class 2; therefore this class was assigned with the highest 
degree of susceptibility, and according to the frequency values, to class 1 the 
medium susceptibility was assigned, and to class 3 the low susceptibility was 
assigned. For curvature values outside of the analyzed ranges [values lower than 
−12,427 (convex areas) and higher than 5486 (concave zones)], a null suscep-
tibility was assigned for effects of the development of the susceptibility model; 
this is because they were not linked to slid pixels, according to the empirical 
analysis (Figure 7G).

N. Class Azimuth terrain orientation (°) Frequency (%) Reclassification

1 North 337.5–22.5 2.48 1

2 Northeast 22.5–67.5 5.42 3

3 East 67.5–112.5 13.95 5

4 Southeast 112.5–157.5 19.74 7

5 South 157.5–202.5 25.36 8

6 Southwest 202.5–247.5 17.68 6

7 West 247.5–292.5 11.31 4

8 Northwest 292.5–337.5 3.60 2

Source: [56].

Table 1. 
Reclassification of terrain orientation according to slid pixel frequency.
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The potential rain effect (PRE) map (Figure 7H) did not require any empirical 
analysis.

3.2.1  Evaluation of the influence of factors on the occurrence of landslides: the 
jackknife test

Once the information of the considered factors in the study was integrated, the 
Jackknife test was applied, which allows identifying the importance degree of each 
factor by executing the models in a separate way, with different sets of factors and 
excluding the factor analyzed. The Jackknife test provides alternative estimators of 
landslide patterns as a function of the factors, allowing so the identification of the 
significance of each of them, by their contribution degree and by their importance 
regarding the global results of the model [63–66].

In this study, the Jackknife test graph was produced as a useful tool to assess the 
individual contribution of each factor used and also to assess the contribution of 
each range or category of each factor to the susceptibility landslide.

3.3 Accumulated index of landslide susceptibility

The applied model consists of the integration of an accumulated global index of 
landslide susceptibility, calculated from the individual contributions of each factor 
in the following described stages.

3.3.1 Factors standardization

Each factor reports continuous or discrete values. Therefore, a standardization 
process was applied; in this way, individual contribution values were assigned to the 
susceptibility model, calculated between 0 (null contribution) and 1 (maximum con-
tribution); and thus, evaluate the corresponding contribution in the global accumu-
lated susceptibility index. So, all the factors will have the same weight in the model.

The standardization process was made according to the data of each factor. 
Thus, for instance, for the PEI factor which is represented in a thematic map of 
five categories of contribution to susceptibility ((1) very low, (2) low, (3) medium, 
(4) high, and (5) very high), the standardized value was determined by finding the 
relationship of each pixel in connection with the value corresponding to the highest 
category, resulting in the PEI factor with values between 0 and 1.

For the standardization of some other factors, such as the flat curvature or the 
terrain orientation, the landslide inventory map was used to empirically obtain 
range values of curvature or orientation in slid areas (ground truth). A schematic 
example of the terrain orientation standardization process is shown in (Figure 8).

The standardization of the factors registered in maps of continuous values was 
determined by finding the relationship between the value of each pixel and the 
highest pixel value recorded.

Class Minimum Maximum Pixels %

1 −12.427 −1.328 10.8

2 −1.328 0.358 72.1

3 0.358 5.486 17.0

Source: [56].

Table 2. 
Flat curvature and relative frequency from the sampled slide pixels.
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All the models and processes described in this paper were developed using the 
Dinamica EGO software [67–69].

3.3.2 Landslide susceptibility map through the susceptibility index (SI)

The final value of the SI is integrated by the accumulation of the individual 
contribution of each factor considered in the study [70], calculated by the 
equation:

  SI =  S  S   +  TO  S   +  DD  S   +  FC  S   +  PEI  S   +  SED  S   +  RD  S   +  PRE  S    (2)

where
 SI =  Cumulated landslide susceptibility index.
  S  S   =  Standardized terrain slope.
 TO =  Standardized terrain orientation.
  DD  s   =  Standardized drainage network density.

Figure 8. 
Terrain orientation standardization process.
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  FC  S   =  Standardized flat curvature.
  PEI  S   =  Standardized potential erosion index.
  SED  S   =  Standardized geological structural elements density.
  RD  S   =  Standardized roads density.
  PRE  S   =  Standardized potential rain effect.
Under the premise that each factor provides a degree of susceptibility with 

standardized values ranging from 0 (null) to 1 (high), the final map obtained 
represents the pixel by pixel accumulated index of landslide susceptibility of the 
analyzed area, according to the considered factors. It is important to note that from 
the obtained results of the Jackknife test, the accumulated SI model can be modified 
by excluding some factors due to its degree of contribution.

3.4 Accurate assessment of the accumulated index of landslide susceptibility

The accuracy in the susceptibility mapping refers to the degree of agreement 
between the prediction of areas susceptible to landslides obtained by the applied 
methods and the location of actual landslides, according to the information consid-
ered as reference data or ground truth in the landslides inventory.

The implementation of the accumulated SI model produces a susceptibility map 
with continuous values, in which, according to their ranks, applying natural breaks 
were categorized into five classes: (1) very low, (2) low, (3) medium, (4) high, and 
(5) very high. On the other hand, there is a landslide inventory map organized into 
two categories: (1) non-landslides and (2) landslide. So, to determine the accumu-
lated SI model accuracy, two methods were used:

I. The radio frequency graph (RFG). The frequency ratio was graphed, taking 
the slid pixels from the inventory sample reserved for the validation stage 
and superimposing them on the landslide susceptibility map resulting from 
the applied SI method. We identify and quantify the coincidence frequency 
of slide pixels in both: the map produced by the model and landslide inven-
tory map, for each class considered in the model (very low, low, medium, 
high, and very high) [71]. In an ideal landslide susceptibility map, the 
frequency value should be increased from a low susceptibility to a very high 
susceptibility [72, 73].

II. The analysis of the receiver operating characteristic (ROC) curve. It is a 
standard method to evaluate the accuracy of a diagnostic test [74]. The ROC 
curve is a comparative graphical representation of ordered pairs between 
the false-negative and false-positive rates, resulting in a diagnosis for classes 
of values. Conventionally, the graph shows the rate of the pixels diagnosed 
as false-positive (false-positive rate (FPR)) on the X-axis (Eq. (3)) and the 
rate of the pixels diagnosed as true positive (true-positive rate (TPR)) on 
the Y-axis (Eq. (4)):

  X = FRP = 1 −  [  TN _ 
TN + FP

  ]   (3)

  Y = TRP = 1 −  [  TP _ 
TP + FN

  ]   (4)

where
 TN  represents the true-negative pixels.
 FP  represents false-positive pixels.
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 TP  represents the true-positive pixels.
 FN  represents false-negative pixels.
The area under the ROC curve (AUC) characterizes the quality of the predicted sys-

tem, describing its ability to anticipate the occurrence or nonoccurrence of predefined 
events. The value of the AUC varies from 0.5 to 1.0. If a model does not predict the 
occurrence of landslides better than randomly, then the AUC would be equal to a value 
of 0.5, while a ROC curve with an AUC value of 1 represents the perfect prediction. 
The quantitative-qualitative relationship between the AUC and the prediction accuracy 
can be classified as follows: values from 0.9 to 1, excellent; from 0.8 to 0.9, very good; 
from 0.7 to 0.8, good; from 0.6 to 0.7, medium; and finally from 0.5 to 0.6, poor [75].

In the application of accuracy assessment, one-third of the total of pixels 
identified as a landslide in the inventory map (72,058 pixels) were used, which were 
omitted from the previous stages of training and preparation of the factors. This 
information was supplemented with an equal number of pixels randomly selected 
from the landslide inventory map that were identified as non-landslides.

4. Results and discussion

4.1 Analysis of the jackknife test

As we explained before, the Jackknife test allows identifying the degree of 
importance of each considered factor, executing the model in a separate way with 
different sets of factors and excluding each factor in turn. Figure 9 shows the 
results of the Jackknife test for the factors used in the present study.

The graph shows in blue the individual contribution of each factor in the 
implementation of the model; in cyan color, the gain of the model is shown, exclud-
ing the factor analyzed; and finally, the bar in red represents the gain of the model 
including all the factors.

According to the graph, we can see that the factor with the highest individual 
contribution corresponds to the potential erosion index, followed by terrain 
orientation and terrain slope factors. Also, we can see that the factor with the lowest 
contribution to the model corresponds to the flat curvature and can also be veri-
fied that the gain of the model is not affected if the flat curvature is omitted in the 
execution of the model.

One of the most important contributions of the Jackknife test is the possibility 
of identifying the degree of contribution and importance of each of the analyzed 
factors. Thus, we can determine which of them are essential in the reproduction 
of the pattern represented by the random sample of the landslides observed in the 
ground truth and so determine its degree of importance concerning the results 
reported by the global model. Thus, it is also possible to identify those factors that 
do not substantively contribute individual gains to the global model and observe the 
gain that is achieved when they are excluded. It is also possible to consider eliminat-
ing them in the model implementation, knowing previously the result that would 
be obtained when doing so. So, it is theoretically possible that the accuracy of the 
results achieved by the global model remains the same, and it is even likely that 
there will be improvements in the overall result by excluding them from the model 
in a new performance.

According to the results of the Jackknife test (Figure 9), it may be possible to 
propose the elimination of the flat curvature in the application of the model, since it 
is the factor that records the lowest individual contribution to the global result and 
at the same time is the factor that if omitted in the execution would not affect the 
overall result of the model.
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4.2 Accumulated SI model

The implementation of the cumulative global model resulted in the landslide 
susceptibility map shown in Figure 10.

The resulting map is represented in continuous values, which according to their 
ranks was categorized into five classes; thus, the areas identified as (1) very low and 
(2) low susceptibility can be seen in blue tones; in shades of yellow are the areas 
with category (3) medium and in orange and red the areas evaluated by the model 
with categories (4) high and (5) very high susceptibility.

A concentration of areas with the highest susceptibility levels can be seen in the 
north and center of the study area, while the zones with low and very low suscepti-
bilities are concentrated towards the south.

Analyzing the behavior of the factors in the zones identified with high sus-
ceptibility, we can note that in these areas the slopes have a terrain orientation to 
the south, southeast, and southwest (Figure 7F), which favor the occurrence of 
landslides in the study area. On the other hand, in those same areas identified as 
having high susceptibility, there are slopes greater than 30° (Figure 7A), which 
further favors, in addition to the orientation, the presence of landslides.

It should be noted that the SI method considers the logical, empirical, and even 
intuitive effect designated to each factor, that is, higher terrain slopes correspond 
to greater susceptibility; greater proximity to faults also corresponds to greater 
susceptibility. In other words, the weight is not assigned to the factors according to 
the presence of landslides but mainly is assigned as a function of the characteristics 
and factor attributes, although, as previously explained, in some specific cases the 
contribution of susceptibility index was determined empirically according to the 
presence of landslides.

Figure 11 shows a zoom to the northeast zone of the study area, which is 
characterized by having recorded a significant presence of landslides occurred in 
September 2013.

In the figure, an acceptable degree of accuracy is observed in the susceptibil-
ity map generated by the SI model, since in general, the occurrence of landslides 
coincides with the areas categorized with high or very high susceptibility.

Figure 9. 
Jackknife test result graph.
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It can be observed that most of the landslides occurred to the north of the 
stream are over an area identified by the model in the very high susceptibility 
class, and the few landslides that did not meet this condition occurred in another 
area identified as high susceptibility. On the other hand, also it can be seen that 
most of the landslides located to the south of the stream occurred over areas 

Figure 10. 
Map of the cumulative susceptibility index model.

Figure 11. 
Massive landslide zone occurred in 2013.
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identified as high susceptibility, but it is also possible to see landslides recorded 
in the ground truth that occurred in areas identified in the medium susceptibil-
ity category.

4.3 Accuracy assessment of the accumulated SI model

4.3.1 Analysis of the radio frequency graph (RFG)

Following the methodology for the accuracy assessment, the sampled pixels 
categorized as landslides from the map inventory reserved for validation were 
superimposed on the resulting susceptibility map from the implemented model, 
and then the frequency of the occurrence of landslides was obtained on each map 
category, building the graph of the frequency radius (Figure 12).

It can be observed that the pattern of the resulting graph shows that the fre-
quency of the slid pixels of the ground truth is lower in the very low susceptibility 
category, and this value gradually increases over the following categories to finally 
reach the highest frequency value in the very high category; in concordance with 
Pradhan and Lee [72], Pourghasemi et al. [73] and Pradhan and Lee [76] in their 
work conclude that in an ideal map of landslides susceptibility, the value of the slid 
frequency should gradually increase from a low susceptibility zone to very high one.

If we group the extreme categories, the very low and low classes in one hand, 
and the high and very high classes on the other, we confirm that the susceptibility 
map shows an accumulated frequency of 15.4% of pixels slid in the very low and 
low susceptibility categories, and on the other end (high and very high susceptibility 
categories), we can see that the susceptibility map shows an accumulated frequency 
of 68.1% of pixels slid. This fact confirms the positive trend of the results obtained 
in congruence with the previously cited works.

4.3.2 Analysis of the receiver operating characteristic (ROC) curve

From the cross-validation between the categories included in the SI model, and 
the random sample of the ground truth taken from the landslide inventory map, 

Figure 12. 
Frequency ratio graph.
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including for this case both landslides and non-landslides, the graph corresponding 
to the ROC curve was constructed, and the area under the curve (AUC) was calcu-
lated (Figure 13).

As previously mentioned, the AUC describes the ability of a model to predict the 
occurrence or nonoccurrence of predefined events. According to Chen et al. [77], 
the higher AUC represents the higher performance of the model analyzed.

The AUC value reported by the model is 0.79, indicating that its predictive 
capacity is good, under the classification values consulted in the work of Yesilnacar 
[75], Devkota et al. [78], and Kim et al. [79].

According to the results, the SI accumulated model, in the way that has been 
implemented in the present work, has proven to be a valid method to charac-
terize the areas susceptible to the occurrence of landslides in the study area. 
However, one of the main problems consists in assigning the correct weight 
value to each of the explanatory factors considered. According to Barredo et al. 
[43] and Clerici et al. [80], the heuristic methods use selective criteria that 
require expert knowledge to be applied properly, which implies a substantial 
degree of subjectivity insofar as each factor is assigned with a certain degree of a 
priori importance.

It is important to highlight the design of the model to be implemented and the 
explanatory factors to be considered depending on the specific characteristics of the 
study area and the availability of the corresponding data. In other words, the results 
shown here may be different if the described methodology and the same amount 
and type of explanatory factors are applied in a study area with characteristics 
different from those considered in the present study. However, the methodological 
proposal can be taken as a starting point and as a guide for the specific design of 
a model applied to a different study area and adjusted according to the available 
information and the topographic, geological, hydrological, or environmental condi-
tions prevailing in that area.

Figure 13. 
ROC curve and AUC from the accumulated SI model.



Landslides

20

5. Conclusions

According to the Jackknife test, lithology is the factor that records the most 
significant individual contribution to the global susceptibility, followed by the 
orientation and slope of the terrain. On the other hand, the factor with the least 
contribution to the model is the flat curvature.

According to the results obtained by the SI method, the heuristic approach 
proved to be valid and straightforward, in agreement with similar works [43], to 
assess the susceptibility of landslides on a medium scale such as the central zone of 
the State of Guerrero.

Cartographic information about landslide susceptibility is necessary for 
areas prone to landslides since it can be used as a support to the establishment 
of early warning systems for localities and residents in risk areas. It can also be a 
support to the institutions and organizations responsible for safeguarding in the 
management of events of this type, locating the areas with a higher vulnerability 
according to the factors considered and integrating care or disaster prevention 
plans considering areas with higher priority than others. It is also important to 
mention that this work can be complemented with the definition of evacuation 
routes, identification of care centers, and identification and capacity of shel-
ters, among other possible actions, all this putting as a fundamental focus, the 
knowledge of the territory through the application of geographic information 
technologies.
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