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Chapter

Hypoxic Brain Injury
Zeynep Özözen Ayas, Gülgün Uncu 
and Demet Özbabalık Adapınar

Abstract

Hypoxic brain injury (HBI) is a clinical condition that results from a decrease 
in brain blood flow and oxygenation. The damage due to cerebral hypoperfusion 
is caused by many possible reasons, which leads to severe wide spectrum of clini-
cal presentations. It can be difficult to manage disease process of HBI because the 
clinical outcomes are poor and treatment options are limited. Neuroprotective trials 
against different underlying pathophysiological pathways are promising. In spite 
of all the difficulties, promising signals are obtained in the recent studies. In this 
article, we aim to provide the details of neurotoxic mechanisms and new interven-
tions for neuroprotection of HBI.
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1. Introduction

Hypoxic brain injury (HBI) is a clinical condition that results from a decrease 
in brain blood flow and oxygenation. Energy in the brain is mainly derived from 
oxygen and glucose by 95% oxidative metabolism [1, 2]. About 50% of the energy 
obtained is used for communication and synaptic activity between neurons, 25% 
for the passage of ions through the cell membrane and 25% for molecular transport 
and biosynthesis [3, 4]. Metabolic need increases in seizure and fever but decreases 
in deep coma and anaesthesia. HBI can be defined as a damage to brain cells due to 
hypoxia. In HBI, the clinical definition is more complex, indicating hypoxia with 
many etiologic causes, and broad-spectrum brain injury caused by ischemia with or 
without reperfusion. Clinic developmental stage of the brain, condition of develop-
ment of damage, regional weakness, ethology, difficult predictability of treatment 
and outcomes are heterogeneous due to the differences in accepted guidelines and 
management standards. Although effective treatment has not yet been found, 
progress has been made in the prevention of HBI.

2. Hypoxic-ischemic brain injury

Encephalopathy—the neurologic syndrome composed of abnormalities of con-
sciousness, tone and autonomic control is the hallmark of acute HBI [5]. The stage 
of encephalopathy depends on the timing and severity of the hypoxia. HBI is an 
important cause of mortality and morbidity in the paediatric age group. Although 
effective treatment has not been found yet, progress has been made in the preven-
tion of HBI. Advances in conservation have been achieved with neonatal asphyxia 
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and mild hypothermia in ventricular fibrillation after cardiac arrest in adulthood 
and early use of thrombolytics after embolic stroke in adults.

3. Cellular mechanisms of neuronal death following HBI

Neurons consistently require a source of metabolic substrates, especially glucose 
and oxygen. HI brain injury results from intracellular and intracellular processes 
during and after the imbalance of the presence and consumption of these substrates 
in the brain. In animal models, neuronal death after HBI occurs in two phases [6]: 
Immediately after HBI, neurons begin to die rapidly, possibly a cell death process 
characterised by necrosis, loss of acute plasma membrane integrity and loss of ATP 
[7]. In the second stage, neurons die from hours to days [8], primarily through 
apoptosis [9], which is cascade of active, tightly regulated intracellular pathways. 
Neuropathological evidence of classical neuronal apoptosis after HBI is less pro-
nounced in humans than in animal models [10]. However, there is no doubt that 
urgent and delayed neuronal deaths are below neurological damage after HBI. New 
approaches to salvage neurons following HBI have strengthened the existing 
understanding of HI-induced brain injury mechanisms to specifically target central 
mechanisms of neuronal death. We will briefly review excitotoxicity, free radical 
toxicity and inflammation procedures in order to place these treatments in the 
context of their targeted cellular mechanisms.

3.1 Excitotoxicity

Glutamate is a stimulating neurotransmitter everywhere in the brain. Under 
pathological conditions, including HI, neuronal receptors for glutamate are over-
active due to pathologically high glutamate concentration in the extraneuronal 
domain. This high concentration occurs as a result of synaptic release of glutamate 
pathologically, dysfunction of glutamate uptake mechanisms and release of glu-
tamate from the intracellular metabolic pool. Glutamate receptor overactivation 
results in neuronal death, hence excitotoxicity. Overactivation of the N-methyl-
D-aspartate (NMDA), subtype of the glutamate receptor, was highly effective in 
neuronal death after HI. NMDA receptor overactivation allows intracellular calcium 
to rise to toxic levels and causes cell death by activating cytotoxic phospholipases, 
proteases, lipases and endonucleases. Calcium is also absorbed by the mitochondria, 
causing loss of ATP synthesis, oxidative stress, release of proapoptotic factors and 
activation of the apoptotic cascade.

3.2 Free radical toxicity

Free radicals are molecules containing one or more unpaired electrons that 
allow increased intermolecular reactivity. Primary oxygen-free radical superoxide 
anion is produced in cells (O2

−). Superoxide is an important intracellular signalling 
molecule, as is the metabolite hydrogen peroxide (H2O2). Together with the highly 
reactive hydroxyl radical, O2

− and H2O2 are oxygen-derived free radicals present in 
the cell. Oxidative stress refers to increased levels of these radicals. Oxidative stress 
contributes to neuron death after HI [11], by breaking down cellular proteins and 
DNA.

In addition to oxidative stress, increased nitric oxide (NO), nitrogen-free 
radical, production is a central mechanism of HI-induced neuronal death [12]. 
Increased NO production is mediated by neuron-specific NO synthase (nNOS) and 
elevated by HI (and excitotoxicity)-induced intracellular calcium concentrations. 
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Endothelial NOS (eNOS), a second NO synthase isoform, controls vascular resis-
tance in all organs, including the brain. Maintaining eNOS activity during and 
after experimental HI improves cerebral blood flow and neuronal survival [13]; 
therefore, treatments aimed at reducing neuronal NO production should specifi-
cally target nNOS and maintain eNOS activity. In addition to its direct effects, 
NO interacts with O2

− to form highly reactive and toxic radical peroxynitrite [14]. 
Peroxynitrite-mediated peroxidation of lipid components of cellular membranes 
[15] and mitochondrial proteins oxidative modification [16] are important mecha-
nisms of neuronal damage. In particular, lipid peroxidation changes the cellular 
membrane structure and function that triggers cellular necrosis or apoptosis.

3.3 Inflammation

Improved results in HBI animal models following inflammation inhibition 
[17] show that inflammation is an important mechanism of HI-induced neuronal 
death. After HBI, microglia is activated [18], proinflammatory cytokines, e.g. 
IL-1 and TNF-alpha. In addition, microglia-derived chemokines increase acutely 
to receive peripheral immune cells into the brain [19]. HBI activates the comple-
mentary stage in the brain [20]. Complement activation results in the formation 
of membrane attack complexes that form pores within the plasma membranes and 
lead to cell lysis [21]. Therefore, after HBI, a coordinated inflammatory response 
emerges, which makes a significant contribution to HBI-induced neuron death in 
the brain.

4. New treatments for HBI

The understanding of the mechanisms of HI-induced neuronal approaches to 
neuroprotection have shown promise in pre-clinical studies and early clinical trials. 
Below, we review some of the most promising approaches at different stages of 
development from early stage research to clinical studies and FDA approval. Since 
these therapies may address different mechanisms than those mediating hypother-
mized neuroprotection, these novel therapies also provide additional neuroprotec-
tion to those available from hypothermia therapy.

4.1 Erythropoietin

Erythropoietin (EPO) is an endogenous, hypoxia-derived glycoprotein pro-
duced in the kidney that has been shown to first regulate haematopoietic function 
through EPO-specific receptors. [22]. Recombinant EPO (r-EPO), currently 
approved to increase erythropoietin in anaemia, has also been shown in animal 
studies where HBI is neuroprotective [23, 24]. Activation of neuronal EPO recep-
tors prevents HBI-induced activation of NMDA receptors and increases expression 
of anti-apoptotic proteins, potentially reduces excitotoxicity and reduces apoptosis 
[24, 25]. EPO receptor activation also inhibits HBI-induced stimulation of per-
oxynitrite (oxidative stress) and inflammatory cytokines, potentially reducing 
free radical toxicity and inflammation. [25]. EPO receptor expression, which is of 
particular importance for neonatal HBI, is abundant in the developing mammalian 
brain [26]. Systemically administered r-EPO after HBI has been shown to cross 
the blood-brain barrier [27]. In one study, the pharmacokinetics of EPO levels 
in cerebrospinal fluid in babies treated with EPO after HBI was parallel to that 
observed in serum [28], suggesting that r-EPO could cross the blood-brain barrier 
in humans.
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4.2 Melatonin

Melatonin is a pineal gland hormone secreted in response to environmental light-
dark cycles [29]. Melatonin has multiple cellular effects, two of which directly target 
known mechanisms of HBI. First, melatonin reduces free radical toxicity, scavenging 
hydroxyl radical and peroxynitrite by direct electron transfer [30]. Melatonin also 
reduces O2

− production in brain slices in vitro following hypoxic ischemic stress 
[31]. Second, melatonin has anti-inflammatory activity. Thus, after umbilical cord 
occlusion in fatal sheep, melatonin reduced the production of 8-isoprostanes [32], a 
potent mediator of HBI-induced inflammation. In addition, melatonin given to rats 
immediately after focal cerebral ischemia decreased neutrophil migration and mac-
rophage/activated microglial infiltration after 48 hours and decreased only in the 
ischemic hemisphere [33]. Finally, melatonin reduces the binding of NF-yaB to DNA, 
resulting in the production of proinflammatory cytokines including interleukin-2, 
interleukin-6 and tumour necrosis factor alpha [34]. These cellular effects have led to 
extensive investigation of melatonin as a treatment for hypoxic brain damage.

Short-term assessments of melatonin, infarct size and neurobehavioural 
outcomes in rats after focal cerebral ischemia are improved [33], suggesting that 
melatonin treatment may be applicable to global brain ischemia in the newborn. 
However, short-term improvements may reflect only the temporary inhibition 
of death-induced procedures without altering the final extent of neuronal death. 
Finally, melatonin may have a neuroproductive effect in addition to hypothermia. 
Following induction of global ischemia in newborn pigs, melatonin with hypother-
mia reduced MR spectroscopic indices of impaired cerebral energy metabolism 
compared to hypothermia alone [35].

4.3 Allopurinol

Allopurinol is a xanthine oxidase inhibitor that is a source of cytosolic O2
−, 

which has attracted attention as a potential neuroprotective agent during HI, espe-
cially as it can cross the placenta to produce therapeutic levels in newborns [36]. 
Animal models including in vivo and in vitro rat models and in vivo sheep models 
have demonstrated that allopurinol is neuroprotective [37].

4.4 Topiramate

Topiramate is an anti-epileptic drug of interest as a potential neuroprotective 
agent for brain injury. Topiramate prevents seizures by inhibiting neuronal excitabil-
ity, including blockade of glutamate receptors [38]. This potential anti-excitotoxicity 
effect suggests topiramate as a candidate treatment for HBI. Indeed, following 
carotid artery ligation in the rat, topiramate significantly reduces neuronal death 
through inhibition of glutamate receptor activity [39], reducing HBI-induced neu-
ronal apoptosis [40]. Of particular interest is the observation that topiramate, when 
combined with hypothermia, adds neuroprotective effects in animal models. [41].

In the pilot study, topiramate associated with whole-body hypothermia in 27 
asphyxia infants did not cause any adverse effects, short-term outcome differences 
or pathological cerebral magnetic resonance imaging incidence compared to 27 
controls [42]. Further extensive clinical studies are needed to assess the efficacy of 
topiramate in preventing HI injury.

4.5 Xenon

Xenon is a chemically non-reactive gas that is extensively studied as a general 
anaesthesia in Europe [43, 44], due to its highly favourable safety profile. One of 
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the activities of xenon is against NMDA receptor activation, which reduces exci-
totoxicity. This reduced activity results from the xenon glycine block that binds to 
its regulatory region on the receptor [45]. Following hypoxia or excitotoxicity in 
cultured murine neurons, increased xenon concentrations significantly increased 
neuronal survival [46]. In neonatal rats, xenon inhalation improved both histologi-
cal and functional outcomes 2 months after global HI [47]. Similarly, following 
global forebrain ischemia in the newborn pig, xenon inhalation proved neuronal 
survival 72 hours after insult [48]. In particular, in these models, xenon-induced 
neuroprotection has been found to add to the neuroprotection provided by induced 
hypothermia.

4.6 nNOS inhibition

The central role of NO in HI-mediated neuronal injury and the presence of spe-
cific small molecule inhibitors of nNOS make nNOS inhibition a potentially attrac-
tive approach. With the discovery of the toxic role of NOS in HI, early studies of 
NOS inhibitors have yielded contradictory results since early inhibitors do not have 
isoform specificity [49]. However, newer, specific nNOS inhibitors may promise 
more [50]. Prophylactic use of highly specific nNOS inhibitor JI-10 in preterm fetal 
sheep increased neuronal survival following deep asphyxia [51]. Although initial 
data for selective nNOS inhibitors are promising, the extent of non-target effects, 
such as inhibition of eNOS activity and any accompanying reduction in cerebral 
blood flow, will need to be investigated to initiate clinical trials.

4.7 Pluronic co-polymers

After HBI, the functions of cellular membranes may change due to lipid peroxi-
dation and lipid signalling changes. After severe HI, neuronal plasma membrane 
dysfunction leads to reduced membrane integrity, infiltration of intracellular 
components into the extracellular space and necrosis. When HI is not severe enough 
to induce necrosis, HI-mediated dysfunction of mitochondrial intracellular mem-
branes can trigger apoptosis [52]. Recently, a class of synthetic molecules has been 
used to address HI-induced dysfunction of injured neuronal membranes in plu-
ronic, in vitro and in vivo. Pluronics, which consist of poly [ethylene oxide] (PEO) 
and poly [propylene oxide] (PPO) chains, have been arranged in a three-block PEO-
PPO-PEO structure. This structure allows the pluronics to interact with the cellular 
membranes [53, 54] and recovers the integrity of the plasma membrane after injury. 
Pluronic F-68, a member of Pluronics, has been shown to immediately rescue neu-
rons from death in in vitro HI models by apoptosis blockage [55, 56]. Preliminary 
evidence also shows that Pluronic F-68, provided to animals for 1 week after HI, 
significantly improves neuronal survival in the hippocampus, a brain region highly 
sensitive to global HI, and saves hippocampus behaviour [57]. The novelty of this 
membrane-targeted approach and the lack of toxicity [58, 59] suggest that targeting 
membrane dysfunction may be a suitable treatment for future HBI.

4.8 Therapeutic hypothermia

The main mechanism underlying hypothermia in reducing ischemic tissue dam-
age is its effect on metabolism [60]. Oxygen use decreases by 7% almost linearly 
with each °C reduction below normal [61]. On the other hand, ischemia becomes 
more tolerable due to the slowdown in metabolism, although a decrease in blood 
pressure of about 5% per degree has been observed. In animal experiments, the 
brain volume is approximately 4% less at 25°C compared to 37°C. Here, the main 
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decreasing cerebral blood flow and volume, the CSF section increases by about 
32%. In conclusion, intracranial and venous pressures decrease [62]. In addition, 
hypothermia reduces the release of excitatory neurotransmitters, such as glutamate 
and glycine, suppresses free radical toxicity, creates favourable effects on intracel-
lular mediator systems, also reduces intracellular acidosis, inhibits the excretion 
of ubiquitin, which binds abnormal proteins and facilitates their excretion, anti-
apoptotic effects and anti-inflammatory effects and other mechanisms by reducing 
ischemic neuron damage [63, 64].

5. Conclusion

Hypoxic-ischemic brain injury is a simple imbalance between demand and 
supply to brain energy. However, cellular mechanisms leading to neuronal death 
are complex and multifactorial. The overall effectiveness of induced hypothermia 
is relatively low and the need for mechanism-oriented therapies for HBI is high. 
Basic research may provide therapeutic targets for translation testing, while defin-
ing the underlying mechanisms of HBI-mediated neuronal death. The approaches 
discussed above target the cellular mechanisms of HBI-mediated neuronal death in 
many different ways. With ongoing research, one or more of these approaches or 
their derivatives may ultimately be effective treatments for HBI.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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