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Neurodegeneration
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Abstract

Several therapeutic approaches have been suggested so far for the treatment 
of neurodegenerative diseases, but to date, there are no approved therapies. The 
available ones are only symptomatic; they are employed to mitigate the disease 
manifestations and to improve the patient life quality. These diseases are character-
ized by the accumulation and aggregation of misfolded proteins in the nervous 
system, with different specific hallmarks. The onset mechanisms are not completely 
elucidated. Some promising approaches are focused on the inhibition of the amy-
loid aggregation of the proteins involved in the etiopathology of the disease, such 
as Aβ peptide, Tau, and α-synuclein, or on the increase of their clearance in order 
to avoid their aberrant accumulation. Here, we summarize traditional and new 
therapeutic approaches proposed for Alzheimer’s and Parkinson’s diseases and the 
recent technologies for brain delivery.

Keywords: Alzheimer’s disease, Parkinson’s disease, amyloidosis,  
protein fibrils and oligomers, polyphenols, brain delivery technologies

1. Introduction

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common 
neurodegenerative disorders. They are multifactorial, progressive, age-related, 
and influenced by genetic and environmental factors. Despite being public health 
problems and widely studied, there are no effective treatments. The therapies in use 
at the moment are only symptomatic and focused to ameliorate patients’ life quality. 
Moreover, there are no diagnostic methods for the early detection of these diseases 
that, especially at the onset, share some pathological hallmarks. There are specific 
proteins associated with the diseases, but it is still unclear when and how they lose 
their functionality and become toxic. Several pathways of cellular dysfunction have 
been described to explain the toxicity associated with the disease, but the pathologi-
cal role of proteins involved still remains controversial. Currently, the most promis-
ing therapeutic approaches are focused on personalized treatments and targeted 
drugs.

Here, we summarize some relevant features of the new proposed therapies for 
AD and PD. In the last decade, renewed interest rises toward alternative pharma-
cological treatments and products of natural origin, especially those associated 
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with the Mediterranean diet, such as polyphenols. The unexpected benefits and 
the wide-range properties of polyphenols suggest deepening the study of these 
molecules for a more comprehensive understanding of their mechanism of action in 
order to use them in effective therapies.

2. Molecular aspects of Alzheimer’s and Parkinson’s diseases

2.1 Brief introduction to AD and PD

AD is characterized by the gradual decline in the cognitive function, memory 
loss, and behavior changes [1]. Typical features of the disease are a synaptic deficit 
in the neocortex and the limbic system, neuronal loss, white matter loss, astroglio-
sis, microglial cell proliferation, and oxidative stress [2]. The major areas of the 
human brain affected by AD are schematically represented in Figure 1. The patho-
logical hallmarks of AD are the presence of intracellular flame-shaped neurofibril-
lary tangles and extracellular plaques in the brain. The tangles are especially present 
in the perinuclear cytoplasm and are prevalently formed by the Tau protein, in a 
hyperphosphorylated form. The plaques derive from the progressive accumula-
tion of amyloid β-peptide (Aβ) in a filamentous form [3]. The neuritic plaques 
have a diameter ranging from 10 to more than 120 μm [2]. The methods used for 
the diagnosis of the pathology have been standardized. They refer to the density 
and the grade of compactness of the neuritis amyloid plaques and neurofibrillary 
tangles [4]. AD aggregates can be classified into positive and negative lesions as a 
function of their localization and level of progression [5]. Typical positive lesions 
are represented by amyloid plaques and neurofibrillary tangles, neuropil threads, 
and dystrophic neurites, essentially formed by hyperphosphorylated Tau [6]. The 
negative lesions provide loss of neurons and neuropil threads [7].

Clinically, PD typically manifests with motor symptoms, such as bradykinesia, 
rigidity, tremor at rest, and instability. Since there is no definitive test for the 
diagnosis of PD, the appearance of these clinical manifestations is important for the 
early treatment of the disease [8]. PD is characterized by the loss of dopaminergic 
neurons in the Substantia nigra pars compacta (Figure 1) and by the deposition of 

Figure 1. 
Affected brain regions in AD and PD. Cross-section of human brain showing the principal districts affected by 
AD (green) and PD (blue). AD typically involves parts of the brain involved in memory, like hippocampus 
and ventricles, and the cerebral cortex responsible for language. In PD nerve cells of the motor cortex and in 
part of the basal ganglia (composed by substantia nigra, putamen, caudate nucleus, globus pallidus, and locus 
coeruleus) degenerate. As a result, the basal ganglia cannot control muscle movement as it normally does, 
leading to tremor, bradykinesia, and hypokinesia.
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intraneuronal proteinaceous aggregates, mainly composed by α -synuclein (Syn), 
named Lewy bodies and Lewy neurites [9]. Syn was also found in the pathologi-
cal inclusions of Lewy body variant of both AD and multiple system atrophy. 
Furthermore, Syn inclusions characterize other neurodegenerative diseases, defined 
as α-synucleinopathies, including Down’s syndrome, progressive autonomic failure, 
and familial and sporadic AD [10]. In a very recent study, Shahmoradian and coll. 
have reported that Lewy bodies are not only formed by Syn deposit but also by 
clusters of lipid vesicles [11]. These important findings further correlate Syn-lipid 
interaction with neurodegeneration [12, 13].

AD and PD are generally sporadic and occur in individuals between ages 60 
and 70, but the ~20% of patients have a genetically linked familial form. The 
onset of these forms occurs earlier, and it is associated with mutations in several 
genes [14]. The main mutations are listed in Table 1. The proteins involved in such 
neurodegenerative diseases, Aβ, tau, and Syn, are completely distinct in terms 
of structure and putative functions, most of which are not completely clarified. 
However, the formation of aggregated structures is a common feature among these 
macromolecules. Fibrils, which originate from the association of monomeric forms 
of the proteins, pass through intermediate species such as oligomers (Figure 2). 
Generally, they can cross the membrane and spread throughout the brain. Several 

Disease Mutated 

protein

Phenotype Notes Refs

AD APP Abnormal 
production of Aβ

www.molgen.ua.ac.be/ADMutations [207]

ApoE Increase of the 
density of Ab 

plaques
High risk of AD, 

late onset of 
AD and Down 

syndrome

www.molgen.ua.ac.be/ADMutations [208]

Presenilin1 Increased the 
Aβ42/Aβ40, and 

reduced γ-secretase 
activity

>200 mutations [209, 
210]

Presenilin2 Increased the 
Aβ42/Aβ40, and 

reduced γ-secretase 
activity

Rare, <40 mutations [211]

PD Syn Familiar and early 
onset PD

A53T; A30P, E46K, G51D, H50Q , gene 
duplication and triplication

[108, 
212–216]

Leucine-
rich repeat 

kinase 2 
(LRRK2)

Autosomal 
dominant PD; 

mid-to-late onset 
and slow progress

>20 mutations [217, 
218]

E3 ubiquitin 
ligase Parkin

Early-onset PD and 
parkinsonism

>150 mutations, deletions, insertions [219]

PINK1 Sporadic 
early-onset 

Parkinsonism

>60 mutations [220]

DJ-1 Autosomal 
recessive PD

>10 mutation, deletions [221]

Table 1. 
Main mutations involved in familiar forms of AD and PD.
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evidences suggest that oligomers are the species responsible for the cytotoxicity. 
There are many proofs in support of this hypothesis, but unfortunately, due to the 
extreme heterogeneity in oligomer structures and their transient nature, a conclu-
sive view has not been obtained yet [15–17]. The atomic structure of fibrils has been 
studied by several biophysical techniques. A quite accepted hypothesis agrees with 
the presence of a common molecular organization independent from the original 
structure of the involved protein: repetitive β-sheet units parallel to the fibril axis 
with their strands perpendicular to it [18, 19]. Amyloid fibrils can self-assemble 
in vitro from many structurally different proteins and peptides, not necessarily 
involved in diseases. It has been postulated that the cross-β structure represents a 
generic conformation, which represents another folding state for proteins [20, 21]. 
In addition to these characteristics, there are also some common aspects in the onset 
of the diseases. Several studies suggest possible interplays and synergistic activities 
between the involved proteins. Clinton et al. [22] provided evidence that Aβ, tau, 
and Syn could interact in vivo to promote their self-aggregation, thus accelerating 
the cognitive dysfunction [22]. High levels of Syn were found in patients suffering 
from AD [23]. Aβ stimulates Syn fibril formation in the transgenic mouse model 
through a seed mechanism [24]. In another study, Syn seems to inhibit the deposi-
tion of Aβ into the amyloid plaques [25].

2.2 Key proteins in neurodegeneration

2.2.1 Aβ peptide

The Aβ peptide was found in the amyloid plaques in 1984 [3]. Aβ represents 
a group of peptides constituted by 37–49 residues (Figure 3A), derived from the 
proteolytic processing of the amyloid precursor protein (APP) [26, 27] (Figure 4). 

Figure 2. 
Scheme of the aggregation process of amyloid proteins. The formation of fibrils occurs through a nucleation-
dependent pathway starting from the monomeric form of the protein and leading to fibril elongation through 
intermediates (oligomers and protofibrils). The formation of the nucleus is the rate limiting step, and at this stage, 
the protein has acquired an aggregation-prone conformation. Fibrils are composed of a β-sheet structure in which 
hydrogen bonding occurs along the length of the fibril, and the β-strands run perpendicular to the fibril axis.
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APP is a single membrane-spanning domain protein, containing a large extracellu-
lar glycosylated N-terminus and a shorter cytoplasmic C-terminus. The enzymatic 
processes responsible for the release of Aβ from APP are to date well elucidated 
[2]. Specifically, APP undergoes several proteolytic cleavages. The processing by 
α-secretase results in the release of the large fragment sAPPα in the lumen, and the 
C-terminal fragment (CTF83) remains in the membrane. Two membrane endopro-
teases β- and γ-secretase sequentially hydrolyze APP. Firstly, APP releases sAPPβ by 
the action of β-secretase in the extracellular space. A fragment of 99 amino acids, 
CTFβ, remains bound to the membrane. CTFβ is successively and rapidly processed 
by γ-secretase generating Aβ. A precise cleavage site was not defined; therefore, 
Aβ is characterized by heterogeneity at the C-terminal and the peptide can end at 
position 40 (Aβ40) with a high frequency of occurrence (~80–90%) or at position 
42 (Aβ42, ~5–10%). It is well established that Aβ42 generally generates fibrils more 
quickly than Aβ40 [28]. The production of Aβ is a normal metabolic event; in fact, 
these species are found in the cerebrospinal fluid and the plasma in healthy subjects 
[29]. Their abnormal accumulation, deriving from an imbalance between the 
production and clearance of these peptides, is associated with the pathogenesis of 
AD. Monomer, oligomer, and fibril forms of Aβ are differently involved in the onset 
of AD. The most common hypothesis is the Aβ-amyloid cascade [30]. The overpro-
duction or the reduced clearance of Aβ leads to the deposition of fibrillar Aβ in the 

Figure 3. 
Sequence and structural domain organization for Aβ (A), tau (B), and Syn (C). For Aβ, the residues 12–24 
and 30–40 involved in the formation of a cross-β fibril structure are highlighted and connected by dashed 
lines. In (B), the longest isoform (441 residues) of tau is shown, where N indicates the possible N-terminal 
insertion defining other isoform, PRR, the proline-rich region, target of phosphorylation (P), and MTBR, 
the microtubule binding region that can contain three or four repeats (R), and other phosphorylations (P) 
occur at the C-terminal. In the case of Syn (C), the N- and C-terminals and NAC domains are shown, as 
well as the position of the mutations responsible for familiar form of PD. Residues 1–95 form the lipid-
binding region.
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brain, determining synaptic and neuronal toxicity and thus neurodegeneration. 
There are many evidences in support of the so-called Aβ-amyloid oligomer hypoth-
esis [15]. The proteolytic degradation of Aβ is a major route of clearance. Neprilysin 
(NEP) is considered one of the most important endopeptidase for the control of 
cerebral Aβ levels [31, 32] and for the degradation of some vasoactive peptides 
including natriuretic peptides and neuropeptides. Aβ clearance is mediated by other 
proteolytic enzymes such as apolipoprotein E (apoE) [33] and by autophagy [34]. 
Reduced activity of the clearance enzymes, which could be caused by aging, can 
contribute to AD development by promoting Aβ accumulation.

The secondary and tertiary structure of Aβ in solution has been studied by 
several biophysical techniques. These conformational studies are difficult for the 
protein high tendency to aggregate in solution. However, Aβ seems to populate 
distinct states in solution and to adopt a collapsed-coil structure, as deduced by 
NMR studies [35, 36]. Aβ preferentially binds to negatively charged lipids and 
acquires α-helical structure in the presence of membranes, membrane-like systems, 
and fluorinated alcohols [37, 38]. In the presence of phospholipids, Aβ undergoes 
conformational transition and forms β-sheets [39, 40]. Oligomeric Aβ binds to 
membranes with high affinity. Upon interaction, a membrane damage can occur 
as causative of the cellular toxicity [41]. It seems that especially oligomeric Aβ can 
disrupt the membrane bilayer by a detergent mechanism [42].

2.2.2 Tau

Tau is a neuronal protein associated with the microtubules [43]. Six Tau iso-
forms, which differ only in their primary structure, were detected in the human 

Figure 4. 
Scheme of metabolism of APP and accumulation of the Aβ peptide. Aβ1–40/42 peptides are released from 
APP by the action of two membrane endoprotease β- and γ-secretases. Firstly, APP releases sAPPβ by the 
action of β-secretase in the extracellular space, and a fragment of 99 amino acids, CTFβ, remains bound 
to the membrane. CTFβ is successively and rapidly processed by γ-secretase generating Aβ peptides. Under 
physiological conditions, Aβ1–40/42 are degraded by enzymatic clearance processes. The proteolytic pathway 
mediated by α-secretase is also shown.



7

Polyphenols as Potential Therapeutic Drugs in Neurodegeneration

DOI: http://dx.doi.org/10.5772/intechopen.89575

brain and central nervous system (Figure 3B), while in the peripheral nervous 
system other Tau isoforms were also found [44]. The longest isoform contains 
441 residues and the shortest 352 residues [45]. Depending on the isoform, the 
N-terminal can contain 0, 1, or 2 inserts (N). The protein appears largely post-
translational modified, especially in terms of phosphorylation (P). Other modifica-
tions are acetylation, deamidation, methylation, glycosylation, or ubiquitination 
[43]. Tau proteins are also subjected to proteolytic degradation that seems to be 
correlated with AD [46]. The region PRR (proline-rich region) contains the main 
sites of phosphorylation. Although all the post-translational modifications seem 
to contribute to the physiological and pathological properties of Tau, the signaling 
cascades and the effect on protein kinases and phosphatases are not completely 
clarified yet. The region 244–369 (microtubule binding region, MTBR) is respon-
sible for the binding to the microtubule and contains three or four repeats (R1-R4). 
Physiologically, Tau stabilizes the microtubule through MTBR, and such binding is 
modulated by the coordinated actions of kinases and phosphatases. Structurally, Tau 
belongs to the intrinsically disordered proteins, lacking a well-defined secondary and 
tertiary structure [43] and can interact with several other proteins. Upon aggregation, 
Tau can form dimers, oligomers, and larger polymers. In such aggregates, cysteine 
residues may play an important role [47]. Similarly, to other proteins involved in neu-
rodegeneration, the oligomeric forms have a cytotoxic effect and might be involved in 
the Tau-related pathogeneses [48]. In neurofibrillary tangles, Tau forms the so-called 
paired helical filaments (PHFs) and straight filaments (SFs) [49, 50]. In PHF, Tau 
is ∼three to four-fold more hyperphosphorylated than in the normal brain. The Tau 
filaments exhibit the typical cross-β structure found in other types of fibrils [51].

2.2.3 α-Synuclein (Syn)

Syn is a small protein (14.4 kDa) mainly expressed in pre-synaptic nerve termi-
nals of the central nervous system and very abundant in erythrocytes and platelets 
[52]. Despite the intensive investigation and the discovery that the protein plays a 
central role in synaptic transmission and vesicle recycling [53], the complete Syn 
biological function remains still elusive. Syn may control the neurotransmitter 
release, promoting the formation and assembly of the SNARE complex [54, 55]. Syn 
structure could be divided into three main domains: N-, central, and C-terminals 
(Figure 3C). The N-terminal region (amino acids 1–60) contains seven imperfect 
repeats, with a hexameric consensus motif (KTKGEV). All the known missense 
mutations of Syn, responsible for the familiar forms of PD, are located in this 
region (Table 1). The central hydrophobic domain (amino acids 61–95) is known 
as the non-amyloid-β component of AD amyloid plaques (NAC). It is responsible 
for Syn amyloid aggregation [56]. N-terminal and NAC domains together (amino 
acids 1–95) mediate the interaction of Syn with lipids, membranes, and fatty acids 
[57]. The C-terminal domain (amino acids 96–140) is an acidic, negatively charged, 
highly soluble, and disordered tail, target of post-translational modifications. This 
region plays a series of important roles, modulates Syn binding to membrane and 
metals, Syn aggregation and its protein-protein interaction properties. The deletion 
of this domain increases the aggregation rate of Syn in vitro and in cells [58].

Syn is the prototype of the natively unfolded proteins, but adopts a stable 
secondary structure as a function of the environment [59]. Multiple studies have 
demonstrated that Syn is more compact than expected for a random coil due to 
long-range interactions between the C-terminal tail and the NAC domain as well as 
electrostatic interactions between the N terminus and the C terminus [60]. Syn is 
supposed to populate different conformers in solution and can undergo conforma-
tional transition as a function of the environment and/or upon binding. The extreme 



Neuroprotection - New Approaches and Prospects

8

Syn conformational flexibility is responsible for its multifunctional properties, its 
capability to adopt different conformations, and to interact with different systems 
and other proteins [61]. For example, the interaction of Syn with negatively charged 
membranes, vesicles, bilayers, and lipids in general has important physiological 
consequences [62, 63], corroborating the hypothesis that Syn functions are corre-
lated with lipids [64].

3.  Overview of recent therapeutic approaches in Alzheimer’s and 
Parkinson’s diseases

3.1 Traditional ongoing therapies

Current pharmacological therapies (Table 2) for neurodegenerative diseases 
focus to ameliorate the life conditions of patients and are generally only palliative. 
Since in many cases, the aberrant deposition of the protein strongly contributes to 
the toxicity associated with the diseases, some treatments are currently thought 
to target such specific proteins (i.e., Syn and Aβ) in order to restore their correct 
physiological levels in vivo. Given the complexity in the onset and progression of 
these diseases, treatments should be customized and tailored to the individual 
needs of the patients.

In the case of AD, a therapy based on the use of cholinesterase inhibitors (ChEIs) 
and the N-methyl-d-aspartate (NMDA) antagonist is currently available and Food 
and Drug Administration (FDA)-approved. In particular, three ChEIs are used: 
donepezil, rivastigmine, and galantamine [65]. The aim is to increase the levels of 
acetylcholine, a neurotransmitter responsible for memory and cognitive function, 
by reducing its enzymatic breakdown. Another class is represented by NMDA 

Table 2. 
Current available drugs for the treatment of AD and PD.



9

Polyphenols as Potential Therapeutic Drugs in Neurodegeneration

DOI: http://dx.doi.org/10.5772/intechopen.89575

receptor antagonists, such as memantine, a noncompetitive antagonist, capable 
to block the effects of the excitatory neurotransmitter glutamate [66]. There are 
a series of molecules under study referred to as “disease-modifying” drugs. They 
should interfere with key steps in AD development, including the deposition of Aβ 
plaques and neurofibrillary tangle formation, inflammation, oxidative damage, iron 
deregulation, and cholesterol metabolism. Many drugs are proposed for their ability 
to alleviate behavioral symptoms of AD. A few examples include antidepressants, 
such as escitalopram and mirtazapine, anticonvulsants, that is, carbamazepine 
and levetiracetam, mood stabilizers, and stimulants, such as methylphenidate [67].
The treatments for PD are still based on dopaminergic drugs, such as levodopa, the 
precursor of dopamine [68]. Long-term use of levodopa determines the develop-
ment of motor problems. In association with levodopa, a decarboxylase inhibitor is 
administered to prevent some side effects. PD therapy involves the use of dopamine 
agonists, such as ropinirole or rotigotine, monoamino oxidase B inhibitors, such as 
rasagiline and selegiline, and catechol-O-methyltransferase (COMT) inhibitors, 
which can reduce the metabolism of endogenous dopamine.

3.2 New generation therapies

Novel experimental approaches are under investigation and the most promis-
ing have as a target the protein involved in the diseases. The stages of intervention 
could be at the level of the protein synthesis or clearance and at the level of protein 
aggregation or propagation of the toxic species or their precursors (Figure 5).

1. Control of the protein concentration in vivo. To reduce the production of Aβ, Tau, and 
Syn, the RNA interference approach is to date quite attractive [69–71]. It is based 
on the idea to inhibit specific protein expression by activating a sequence-specific 
RNA degradation process. This technology results useful to study gene function, 

Figure 5. 
New generation therapies in AD and PD. Potential levels of intervention to counteract the abnormal 
accumulation of the amyloidogenic proteins and restore their physiological concentration, which results from a 
balance between the rates of synthesis, clearance, aggregation, and propagation.
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investigate the mechanism of the disease, and validate drug targets. Of course, the 
suppression of the target protein might have negative implications, due to the altera-
tion of its physiological equilibrium. Additionally, the transcription of the gene can 
be reduced. Clenbuterol was shown to be efficient in reducing Syn expression by 35% 
in neuroblastoma cell lines [72]. Some AD therapies based on the modulation of AD 
gene expression are proposed on the basis of the important progresses made in the 
understanding of the transcriptional regulation of some enzymes such as beta-secre-
tase 1 (BACE1), apolipoprotein E (apoE), APP amyloid precursor protein (APP), 
and presenilin (PSEN) promoters [73]. Alternatively, to reduce the level of the active 
protein in vivo, its clearance can be enhanced. This can be obtained by increasing 
the intracellular degradation via autophagy or via the ubiquitin system. This topic is 
excellently reviewed by Boland et al. [74].

2. Protein aggregation inhibitors. An attractive approach would be the use of small 
molecules able to bind the monomeric form of the protein preventing its assembly 
into potentially toxic aggregates. Unfortunately, it remains still unclear which confor-
mation of these proteins must be targeted, since all of them are natively unfolded, 
and multiple and concurrent events contribute to their conversion in oligomers and 
fibrils [75]. In this ambit, the use of polyphenols is quite promising, and, as described 
below, these compounds exhibit in some cases the ability to disaggregate preformed 
oligomers and fibrils [76].

4. Effect of polyphenol compounds in neurodegeneration

4.1 Natural polyphenol products

Polyphenols are natural compounds, generally secondary metabolites, produced 
by plants and found mainly in fruits, vegetables, and cereals and in their deriva-
tives. Some of them are synthetized during the normal development of the plant 
while others are produced in response to stress stimuli [77, 78]. They exert their 
function acting during the phase of development, reproduction, nutrition, growth, 
and communication with other plants, as well as in plant defense mechanisms like 
resistance to microbial pathogens, herbivore, insects, and protection to UV-light 
radiation [79]. More than 8.000 polyphenols have been identified in different plant 
species. They all derive from common precursors like phenylalanine and shikimic 
acid [80]. Often, they are linked with a sugar through the hydroxyl moiety, directly 
to the aromatic ring or conjugated with other compounds [81]. Polyphenols are 
characterized by a minimal hydroxyphenyl structure, and despite the multitude 
of existing polyphenols, they are grouped into different classes according to the 
number of phenol rings. The main groups are phenolic acids, flavonoids, stilbenes, 
and lignans [82] (Figure 6).

4.2 Potential therapeutic applications of polyphenols

Several epidemiological studies have been reported concerning the potentiality of 
polyphenols compounds in disease treatment and prevention [83, 84]. Polyphenols 
exert a positive role in cardiovascular disease [85–87], diabetes [88, 89], cancer [90, 91], 
aging, and neurodegeneration [92, 93]. One of the main activities of polyphenol resides 
is their antioxidant properties. Indeed, they are capable to protect cells and macro-
molecules from oxidative damage which in turn leads to degenerative age-associated 
diseases [94, 95]. Nevertheless, polyphenol function is also bound to its action on 
enzymes, immune defense, inflammation, cell signaling, and other pathways critical 
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for the onset of the disease [96]. All these properties make the polyphenols potential 
drugs for preventing and treating neurodegenerative diseases, in particular AD and 
PD. Actually, these compounds have shown to be effective in epidemiological, in vitro, 
and pre-clinical studies, but not in the early phase of the disease.

4.3 Polyphenols in Alzheimer’s and Parkinson’s disease

The effects of polyphenols on AD and PD can be divided into two main catego-
ries: the effects on nonamyloidogenic pathways (i.e., anti-oxidation pathway, inter-
action with cell signaling events, and interactions with enzymes) and the effects on 
amyloidogenic pathways. Below, the main beneficial effects shown by polyphenols 
on AD and PD are analyzed.

1. Effects on memory. One of the hallmarks of AD is the memory impairment. This 
can be due to deficiency of factors, such as the brain-derived neurotrophic factor 
(BDNF) and the accumulation of formaldehyde. Polyphenols have been shown to 
improve the long-term memory by increasing BDNF concentration in vivo and 
decreasing the accumulation of formaldehyde [97–99].

2. Effects on inflammation pathway. Inflammation plays an important role in the develop-
ment of neurodegeneration. It is demonstrated that there is a correlation between the 
microglia activation and the neuroinflammatory response [100, 101]. Upon microglia 
activation, the transcription factor NF-kB (nuclear factor k-light-chain-enhancer 
of activated B cells) moves from cytoplasm to nucleus, inducing the expression of 
interleukins (i.e., IL-1β, IL-6, IL-12, and IL-23), other factors (i.e., TNF-α and iNOS), 

Figure 6. 
Scheme of the main polyphenols and their chemical structures. Polyphenols are grouped into four principal 
classes: stilbenes, lignans, phenolic acids, and flavonoids. The last one is organized into six subclasses: 
anthocyanins, flavonols, flavanols, flavanones, chalcones, and others.
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and cyclooxygenase 2 (COX-2). In this scenario, polyphenols can interact with certain 
types of kinases (including the mitogen-activated protein (MAP) kinase) preventing 
the activation of proinflammatory mediators [102, 103]. Polyphenol compounds are 
able to protect cells from inflammation by acting on reactive oxygen species (ROS), 
decreasing the secretion of prostaglandin E2 [104–107] and increasing the amount of 
the regulatory enzyme sirtuin1 over sirtuin2, unbalanced after accumulation of Aβ 
[108]. Cell and PD-mouse model studies demonstrated that these compounds decrease 
the expression of NF-kB and other inflammatory factors [109–111].

3. Effects on oxidative pathway, cell death and mitochondrial dysfunction. In neurode-
generation, there is an uncontrolled production of free radicals and ROS that are not 
detoxified by the dedicated systems [112]. This leads to macromolecule damage and 
progressively to cell death [113]. Polyphenols lower the amount of ROS, increase 
the expression of enzymes, like glutathione, dedicated to scavenger the free radicals 
and prevent the disruption of mitochondrial membranes [114]. In addition, these 
compounds seem to prevent the lipid peroxidation [115]. These effects indirectly 
influence the fibrillation process of Syn, affected by some byproducts of lipid oxida-
tion and peroxidation [116], as demonstrated in PD-animal model studies [117]. 
Moreover, polyphenols inhibit the cell death by acting on proteins involved in the 
apoptosis mechanism like Bcl/Bax, caspase 3, and protein kinases and by decreas-
ing the accumulation of Aβ fibrils that exert cytotoxic effects [118, 119]. Another 
important scenario affected by polyphenols is the mitochondrial dysfunction (MD) 
that becomes increasingly important in the onset of PD [120]. Different factors play 
a pivotal role in MD: the presence of neurotoxin, Complex 1 deficiency (involved in 
mitochondrial electron transport), and penetration of mitochondrial membrane by 
amyloid aggregates [121, 122]. Polyphenol compounds exert their activity restoring 
membrane potential, increasing the expression and activity of the Complex 1 and 
scavenging the ROS, free radicals, and metals [123–126].

4. Effects on acetylcholinesterase activity. Nearly 30 years ago, dysfunction in the cho-
linergic system was found correlated with AD and cognitive impairment [127]. This 
dysfunction can be originated by a reduction in acetylcholine synthesis, reduced 
levels of choline acetyltransferase, reduced choline uptake, or cholinergic neurons 
degeneration [128]. The use of acetylcholinesterase inhibitors to restore the cholin-
ergic pathway has proved to alleviate the cognitive dysfunction in neurodegenerative 
diseases [129]. Polyphenol compounds have shown to inhibit acetylcholinesterase, 
improving memory, learning, and cognitive functions [130].

5. Effects on Aβ formation. Polyphenol compounds act on the enzyme responsible for 
Aβ formation, decreasing the cleavage of APP into the peptide. They interact with 
and inhibit β-secretase [131]. In addition, they are able to restore the normal levels of 
γ-secretase, another enzyme involved in APP processing [132].

6. Effects on the amyloidogenic pathways. Polyphenols can act on Aβ monomer prevent-
ing its fibrillation, through the stabilization of the monomer and/or to the formation of 
an off-pathway oligomer. This can be due to the interaction of polyphenols with metal 
ions that promote the Aβ aggregation or to the noncovalent interaction with the pep-
tide [133]. They are also able to disaggregate oligomers and fibrils, interacting with the 
β-sheet structure. This has been confirmed by in vivo studies where polyphenol intake 
reduces the amyloid deposit in the mouse brain [134, 135]. Polyphenols exert their 
anti-amyloidogenic action by interfering also with the aggregation of Tau [136–138], 
inhibiting Tau phosphorylation in vitro [139] and in vivo [140]. Several polyphenols 
have been tested for their anti-fibrillogenic properties in vitro and in PD-animal models. 



13

Polyphenols as Potential Therapeutic Drugs in Neurodegeneration

DOI: http://dx.doi.org/10.5772/intechopen.89575

Their main activity regards the interaction with Syn monomers leading to protein 
stabilization and fibrillation prevention [76]. Another factor concerns the formation of 
not toxic off-pathway oligomers that do not form fibrils nor interact with the mem-
brane [141, 142]. Some polyphenols are also able to interact with oligomeric and fibril-
lar species, leading to their destabilization [49, 76]. The major effect of polyphenols is 
due to the noncovalent interaction with the Syn C-terminal domain. In addition, these 
compounds can chemically modify the lysine residues, present mainly in the N-termi-
nal region, through Michael addition and Schiff-base formation [143]. This reduces the 
conformational plasticity of Syn and its tendency to be converted into fibrils. More-
over, structure-activity relationship studies indicate that the differences in polyphenols 
activities reside in the number and position of OH groups in the phenyl ring [144].

5. Polyphenols as a drug in the brain delivery system

5.1 Blood-brain barrier and neurodegeneration

The human brain comprises more than 600 km of blood vessels that guarantee oxy-
gen, energy metabolites, and nutrients to brain cells and remove carbon dioxide and 
toxic metabolic products from the brain to the systemic circulation. A highly selective 
semipermeable border, called blood-brain barrier (BBB), separates the circulating 
blood from the central nervous system (CNS), regulating CNS homeostasis. Brain 
microvascular endothelia cells, neurons, astrocyte, pericytes, tight junctions, and basal 
membrane constitute tight brain capillaries in the BBB [145, 146]. It follows that BBB 
does not have fenestrations or other physical fissures for diffusion of small molecules. 
In fact, ions, solutes, and hormones can pass the BBB by passive diffusion through the 
paracellular pathway between adjacent cells. Hydrophilic biomolecules (i.e., proteins 
and peptides) can cross the BBB within specific and saturable receptor-mediated 
transport mechanisms [147]. The components of BBB constantly adapt in response to 
various physiological and pathological modifications into the brain [148, 149]. Loss of 
BBB integrity is correlated with vascular permeability increase, cerebral blood flow 
impairs, and hemodynamic response alteration [150]. In neurodegenerative disorders, 
endothelia degeneration leads to loss of tight junctions [151, 152], brain capillary leak-
ages [153, 154], pericyte degeneration [155], endothelial cell remodeling [149], cellular 
infiltration [156, 157], and aberrant angiogenesis [158, 159]. All these BBB disruptions 
let different blood proteins (i.e., fibrinogen, plasminogen, and thrombin), water, and 
electrolytes to accumulate in different zones of CNS, enhancing the on progress of PD 
and AD [150]. Consequently, to project effective drugs for neurodegeneration, it is 
necessary to understand in detail BBB pathological aberrations.

Due to their safeness and tolerance [160–162], polyphenols are currently stud-
ied as neuroprotectors. It is important to point out that for exerting their action, 
polyphenols must accumulate in the brain in an active form and in sufficient 
concentration. The limiting step is choosing the right administration route. In most 
of the clinical studies, the oral administration is the preferred way, but recently the 
nasal delivery is taken into consideration for the easiness to bypass the BBB [163], 
the increased bioavailability, the decreased metabolism, and peripheral side effects 
[164, 165]. The major problem of oral administration relies on poor absorbance of 
the modified form of polyphenols (i.e., glycosides and ester polymers) in the upper 
portion of the gut leading to the passage in the colon in which polyphenols are con-
verted by gut-microbiota in the aglycone form or other substances able to be better 
absorbed [166, 167]. Once absorbed, they can be further modified by enzymes and 
eliminated [168, 169] or adsorbed to plasmatic proteins (i.e., albumin) and then 
accumulated in different districts [170].
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5.2 Nanotechnology-based delivery system: An innovative strategy

Nanotechnology is a new branch of science involving the formulation, syn-
thesis, and characterization of small particles, with diameters ranging from 1 to 
1000 nm [171], which become key players in innovative drug delivery and cell 
targeting. Recent studies suggest that nanoparticle-based delivery systems rep-
resent innovative and promising approaches to improve drug solubility, prevent 
acid-degradation, minimize toxic side effects, and increase blood availability [172, 
173]. Considering the low bioavailability of polyphenols, different strategies have 
been developed in order to enhance their chemical stability, solubility, and cell-
membrane permeability. These goals have been achieved by adding chemical agents 
to preserve the structure [174], enzyme inhibitors to contrast biotransformation 
[175], and lipids or proteins to increase the solubility [176]. Recently, nanoparticle-
mediated delivery system is emerged as the most promising approach. Using biode-
gradable and biocompatible polymers, polyphenols can be encapsulated in different 
nanostructures and then possibly administrated via intravenous, transdermal, 
nasal, and oral route. As describe above, this aspect is fundamental in neurologi-
cal diseases, in which polyphenols must cross the BBB, with the opportune grade 
of lipophilicity [147, 177, 178] and reach the brain tissue in sufficient quantities 
for therapeutic use. These new delivery systems are represented by nanospheres, 
nanocapsules, nanoemulsions, solid lipid nanoparticles, cyclodextrins, liposomes, 
and micelles (Figure 7).

Nanospheres (10–200 nm) [179] are homogeneous solid matrix particles charac-
terized by a hydrophobic portion in the inner part and hydrophilic chains anchored 
on the surface. In nanospheres, the drug is dissolved, entrapped, encapsulated, or 
attached to the matrix of the polymer, so protected from chemical and enzymatic 
degradation. Various kinds of polymers are used to prepare nanospheres: polylactic 
acid (PLA), poly-glycolic acid (PGA), poly-lactic-co-glycolic acid (PLGA), polyeth-
ylene glycol (PEG), poly ε-caprolactone (PCL), and chitosan (CS) [180, 181].

Figure 7. 
Schematic representation of nanosized delivery systems for polyphenols. Nanoparticles can enhance polyphenol 
bioavailability, enhancing their adsorption across intestinal epithelium, increasing their concentration in the 
bloodstream, and improving their ability to cross the blood-brain barrier.
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Nanocapsules (10–1000 nm) have a similar chemical composition but comprise 
an oily or aqueous core, which is surrounded by a thin polymer membrane [182, 
183]. The cavity can contain the drug in liquid or solid form. Furthermore, the 
medication can be carried on nanovector surface or absorbed in the polymeric 
membrane [183–185].

Nanoemulsions are oil-in-water or water-in-oil emulsions stabilized by one or 
more surfactants (i.e., phosphatidylcholine, sodium deoxycholate, sorbitan mono-
laurate, poloxamers, sodium dodecyl sulfate, and poly(ethylene glycol)) delivered 
in droplets of small dimensions (100–300 nm) [176]. The strategy allows having 
a higher surface area and a long-term chemical and physical stability [186, 187]. 
Nanoemulsions represent an innovative formulation to deliver polyphenols directly 
into the brain through the intranasal route. In fact, mucoadesive polymers, such as 
CS, can be added to slow down nasal clearance [176].

Solid lipid nanoparticles (50–1000 nm) [179] are composed of high melting 
point lipid, organized in a solid core, coated by aqueous surfactants (i.e., sphingo-
myelins, bile salts, and sterols) [183]. Even though these nanoparticles present high 
biocompatibility, bioavailability and physical stability, the common undesirable 
disadvantages are particle growth, arbitrary gelation tendency, and unpredicted 
dynamic of polymorphic transitions [183].

Cyclodextrins (1–2 nm) [179] are a group of structurally related natural products 
formed from the bacterial digestion of cellulose. Cyclodextrins are cyclic oligosac-
charides consisting of (α-1,4)-linked α-D-glucopyranose units with a lipophilic central 
cavity and a hydrophilic outer surface [188]. The hydroxyl functions are orientated to 
the exterior, while the central cavity is wrinkled by the skeletal carbons and ethereal 
oxygens of the glucose residues. Natural cyclodextrins are classified by the number 
of glucopyranose units in α-(six units), β-(seven units), and γ-(eight units) [189]. 
Recently, cyclodextrins containing from 9 to 13 glucopyranose units have been reported. 
These carriers are useful for increasing the solubility and the stability of poorly water-
soluble drugs. Moreover, cyclodextrins can be derivatized with hydroxypropyl, methyl, 
and sulfobutyl-ether additives [188]. So, drugs can be allocated into the cavity via van 
der Waals forces, hydrophobic interactions, or hydrogen bonds [190].

Liposomes (30–2000 nm) [179] are phospholipid vesicles containing one or 
more concentric lipid bilayers enclosing an aqueous space. Liposomes can assemble 
spontaneously by hydration of lipid-derivate powder (i.e., cholesterol, glycolipids, 
sphingolipids, long chain fatty acids, and membrane proteins) in aqueous buffer 
[180]. Due to their ability to capture hydrophilic and lipophilic substances, in the 
aqueous space or into the lipid bilayer membrane, respectively, they can protect 
drugs from early inactivation, degradation, and loss [191].

Micelles (5–100 nm) are colloidal dispersions, consisting of amphiphilic copo-
lymers (i.e., PEG, PLGA, and PCL) that assemble naturally in water at a specific 
concentration and temperature [192]. When polymer concentration is greater than 
the critical micelle concentration, micelles start to be assembled: hydrophobic 
fragments of amphiphilic reagents form the core, whereas hydrophilic portion form 
the shells [193]. Micelles are characterized by high stability, biocompatibility, and 
ability to keep in solution poorly soluble drugs.

5.3 Nanotechnology as an innovative delivery system of polyphenols

The use of biodegradable and biocompatible polymers allows rationalizing the 
design of innovative nanostructures able to encapsulate polyphenols that can cross 
the BBB, improving the limitations associated with conventional administrations. 
In this scenario, curcumin is the most studied drug candidate, due to the prominent 
results obtained in the animal model of neurodegenerative diseases [194–196]. In 
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fact, the efficacy of curcumin is so far limited by the poor aqueous solubility, low 
adsorption in the gastrointestinal tract, and rapid metabolism. Nanosphere of 
PGLA containing curcumin can be the right strategy for crossing BBB. Recent stud-
ies indicated how curcumin-PGLA nanoparticles can interfere with Aβ aggregation 
and improve the brain self-repair mechanism, increasing the neural stem cell prolif-
eration and neuronal differentiation [197]. In the same way, liposomes loaded with 
curcumin can efficiently inhibit the in vitro formation of Aβ fibrils and deposition 
in the brain [198]. Curcumin-solid lipid nanoparticles seem to be effective for MD 
and central oxidative stress [199]. In addition, curcumin and piperine co-loaded 
glycerol mono-oleate nanoparticles can interfere with Syn aggregation, reducing 
oxidative damage and apoptosis [200]. Curcumin was also taken in consideration 
for intranasal delivery to the central nervous system by nanoemulsions. In the 
presence of CS, nanoemulsions of curcumin (added in the oil phase) can effectively 
cross the mucosa without showing cytotoxicity [194].

Another good candidate is resveratrol. It is known for its ability to induce the degra-
dation of APP and to remove Aβ [201]. But, due to its rapid and extensive metabolism, 
resveratrol is subjected to a person-to-person bioavailability. PEG-PCL and PGLA 
nanoparticles loaded with resveratrol let a controlled release profile of the drug, essen-
tial for prolonging its plasmatic level and the antioxidant activity [202, 203]. A promis-
ing approach is the oil-in-water nanoemulsion [204]. Adding Vitamin E and other 
surfactants, this formulation can reach the brain via the nasal route, with encouraging 
efficacy [205]. Furthermore, the co-encapsulation of curcumin and resveratrol (1:1 
weight ratio) in mucoadhesive nanoemulsions protects the active substances from 
degradation and preserves their antioxidant properties. Notably, in vivo quantifica-
tion in animal brain indicated an increase of the amount of the two polyphenols after 
6 hours [206]. Unfortunately, these systems have not yet reached clinical trials, but the 
results accumulated so far encourage new original therapeutic approaches.
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