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Chapter

The Early Life Influences on Male 
Reproductive Health
Jennifer Pontré and Roger Hart

Abstract

Increasing concern exists regarding male reproductive health worldwide. This 
is due to the appearance of medical reports outlining apparent adverse trends, such 
as a worldwide decline in total fertility rate, and an increase in testicular disorders 
such as testicular cancer, cryptorchidism—in parallel with a probable decline in 
semen quality. This is of particular concern as there is evidence to suggest that a 
poor sperm count is potentially associated with overall lifelong morbidity and mor-
tality, and is effectively a predictor of lifelong health risk. This chapter examines the 
evidence for this decline and its potential early life causes, from in-utero exposures 
to childhood development.

Keywords: male reproduction health, sperm, testosterone, in-utero, phthalate, BPA

1. Introduction

Between 1986 and 1993, British physician and epidemiologist David Barker pub-
lished a series of articles in the Lancet, proposing his hypothesis of the foetal origins 
of adult health and disease [1–3]. In these publications, he argued that adverse altera-
tions in the developmental early life environment in utero, had potential to induce 
and initiate phenotypic and adaptive changes affecting an individual’s responses to 
their later life environment, which might prove maladaptive when the early and late 
environments were markedly different [4, 5]. Barker’s specific foetal concerns were 
inadequate nutrition, [6] intrauterine growth retardation, low birth weight and 
premature birth and their causal relationship to the origins of hypertension, coronary 
heart disease and non-insulin-dependent diabetes, in later life [7]. However there is 
now growing evidence to suggest that this ‘developmental programming’ and the foe-
tal environment, which includes placental function, maternal metabolism, exposures 
and lifestyle factors (including maternal smoking), may influence additional systems 
including reproductive health and development in both males and females [5, 8].

Increasing concern exists regarding male reproductive health worldwide due to the 
appearance of medical reports outlining apparent adverse trends, in the context of a 
worldwide decline in total fertility rate (Figure 1) [9, 10]. This includes an increase in 
the incidence of the proposed ‘testicular dysgenesis syndrome’ [10] which encompasses 
a constellation of testicular disorders including testicular cancer, [11, 12] cryptorchi-
dism and hypospadias [13]. This is in parallel with population-based evidence to suggest 
declining semen quality, [14] alterations in serum testosterone levels and a change in 
the timing of onset of male puberty [9]. Worryingly, one comprehensive review of the 
literature proposed that semen quality had declined by 52.4% between 1973 and 2011 
among unselected men from Western countries [14]. Another recent report, published 
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in 2015, found that a high proportion of healthy, unselected 20-year-old Caucasian 
men displayed suboptimal semen quality which did not meet the lower limit of World 
Health Organization reference ranges for sperm concentration, motility and morphol-
ogy values [15]. These findings were echoed by a further Swiss study published in 2019 
where over 60% of participants displayed suboptimal median sperm concentration 
[12]. Sperm count is of obvious importance in fertility and reproduction, however 
recent studies have now demonstrated that poor sperm count is potentially associated 
with overall lifelong morbidity and mortality, and is effectively a ‘canary in the mine’ 
marker for lifelong health risk [14, 16–18]. To elicit a greater understanding of the early 
life influences on these important, early determinants of male reproduction and health 
are therefore of great importance.

In this chapter, we present and discuss the evidence for the developmental 
programming of male reproductive maturation and function.

2. Male reproductive development

Male reproductive development has a long time to maturation, with onset in the 
embryo and completion in puberty. The critical and narrow prenatal window for 
the normal differentiation and growth of male reproductive tissue during which 
testosterone and its potent metabolite dihydrotestosterone, (DHT) masculinise the 
male foetus is estimated to be around 8–14 weeks of gestation [19–21]. The forma-
tion of the indifferent bipotential gonad occurs between the fourth and sixth weeks 
of foetal life, and male reproductive development subsequently begins when the 
SRY gene, encoding a ‘testis-determining factor’ on the Y chromosome stimulates 
the development of the primitive sex cords to form the medullary cords. Sertoli cells 
appear, and in the eighth week, Leydig cells appear and commence production of 
testosterone. In the presence of this testosterone, the mesonephric ducts develop 
to form the primary male genital ducts. They give rise to the efferent ductules, 
epididymis, vas deferens and seminal vesicles, whilst the paramesonephric ducts 
degenerate. Meanwhile, in the presence of DHT, the male external genitalia differ-
entiate as the genital tubercle elongates to become the phallus and the urethral folds 
close over, forming the penile urethra.

Figure 1. 
Total fertility rates for Australia, United States, Europe and Central Asia 1960–2017. Reprinted with 
permission from the World Bank: www.worldbank.org.
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The hypothalamic-pituitary-gonadal axis is active in the mid-gestational foetus, 
but silenced towards the end of gestation. This restraint is removed at birth, leading 
to reactivation of the axis and an increase in serum gonadotropin concentrations, 
often labelled the ‘mini-puberty’ [22, 23]. Testosterone concentration rises to a peak 
at age 1–3 months, but then falls in conjunction with the falling luteinising hormone 
(LH) concentration [22]. Prenatal and postnatal activation of the hypothalamic-
pituitary-gonadal axis is associated with penile and testicular growth and testicular 
descent, and is therefore regarded as important for the development of male genita-
lia. These concentrations then gradually decrease towards age 6 months when there 
is an active inhibition of gonadotrophin-releasing hormone (GnRH) secretion, 
which persists throughout childhood, [22, 24] and the hypothalamic-pituitary-
gonadal axis remains quiescent until puberty.

3. Male pubertal development

Male puberty marks the transitional period during which the infantile boy 
attains adult reproductive capacity with usual age of onset around 11.5 years.

Pubertal development of secondary sexual characteristics is initiated, at least in 
part, by a sustained increase in pulsatile release of GnRH from the hypothalamus. 
There is testicular growth as the seminiferous tubules are stimulated by follicle-
stimulating hormone (FSH), and once their volume exceeds 3–4 ml pubertal onset 
is confirmed. Leydig cells, stimulated by LH, produce testosterone which influences 
penile growth and pubic hair development. Spermatogenesis occurs under the regu-
lation of multiple endocrine and local factors [9]. Although the exact mechanisms 
underlying the commencement of puberty in both males and females is unclear, 
there is evidence for influence of a multitude of factors including genetic, environ-
mental factors, body composition, physical fitness, nutritional and socioeconomic 
status, ethnicity, residence and exposure to endocrine disrupters [25]. Other 
important stimulatory and inhibitory pathways involving glutamate kisspeptin and 
the G protein-coupled receptor GPR54 exist [26, 27].

In essence, the increase of pulsatile GnRH secretion at puberty represents the 
cumulative effect of highly complex and intricate hypothalamic interactions that 
are markedly influenced by genetic factors and environmental signals [26]. An 
advancement in the timing of puberty has been reported worldwide over the past 
two decades [28]. The timing of puberty has important public health ramifications 
because it is related to a number of health outcomes [29]. Early puberty is poten-
tially associated with increased risk of testicular cancer, as well as adolescent alco-
hol abuse, smoking, drug use, early sexual debut, sexually transmitted infections, 
aggressive behaviour and poor academic performance [15, 30]. These observations 
urge further study of the onset of puberty as a possible sensitive and early marker 
of the interactions between environmental conditions and genetic susceptibility 
that can influence physiological and pathological processes [25].

4.  Potential influences of male reproductive development and pubertal 
development

4.1 Placental malfunction and antenatal factors

Impaired placental malfunction, which has the potential to disrupt foetal andro-
gen production, has been theorised to affect male reproductive development, and 
a definite link between impaired foetal growth and reproductive function has been 
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established. Consequences on gonadal differentiation, sexual organ development, 
onset of puberty, gamete quality, hormonal status and fertility have been observed 
[31, 32]. Several studies have described an association between foetal growth 
restriction and an increased risk of male reproductive health problems, includ-
ing hypospadias, cryptorchidism and testicular cancer [13, 33, 34]. In addition, 
twin or triplet pregnancy and preterm birth have also been shown to be associated 
with non-gestational-related impaired reproductive development [35]. One study 
demonstrated an inverse relationship between the incidence of cryptorchidism, and 
decreasing gestational age at birth, suggesting that premature delivery is important 
in view of the timing of testicular descent in foetal life [36]. A strong association 
between low birth weight and hypospadias has been demonstrated [37, 38].

Increasing birth weight in males has also been shown to be positively correlated 
with adult serum testosterone levels, however no effect on other reproductive hor-
mone levels has been shown [39]. Adult men born with lower birth weights have, in 
another study, been shown to display features of hypogonadism, with reduced tes-
ticular size, lower testosterone levels and higher LH values, than controls born with 
appropriate weights [39]. Male children with early onset of their pubertal growth 
spurt are more likely to have been born underweight [40]. In a cohort of Australian 
men followed from birth, men born with gestational appropriate birth weights were 
significantly less likely to be grouped in the lowest quartile for their total motile 
sperm counts. Those men who were born preterm demonstrated reduced serum 
testosterone levels in adulthood, suggesting an adverse influence of growth restraint 
and prematurity on later life testicular function [41]. A prospective Danish birth 
cohort study of more than 2500 live born males found statistically significant asso-
ciations between cryptorchidism and low birth weight, prematurity, being small for 
gestational age, substantial vaginal bleeding in pregnancy and breech presentation, 
which is in accordance with other studies [42].

4.2 Maternal medical complications of pregnancy

Abnormal maternal glucose metabolism in pregnancy may be associated with 
an increased risk of genital malformation for the male offspring [8, 43]. In women 
with gestational diabetes, the risk of delivering a male infant with cryptorchidism 
is increased by a factor of four compared to women without diabetes [43]. It is 
postulated that early growth delay of the foetus in the first trimester might play a 
role. This early failure of normal growth has been demonstrated even in children 
of diabetic mothers who are ultimately born large for gestational age [44]. The 
evidence is conflicting however, as no association between gestational diabetes 
and cryptorchidism was found in another registry-based study from Israel [45]. 
Maternal hypertension during pregnancy and preeclampsia are associated with 
hypospadias and other genital malformations, [37, 46] suggesting that placental 
insufficiency may play an important role in male foetal genital development.

4.3 Maternal undernutrition

The 5 month Dutch Winter Hunger Famine in 1944 gave rise to the suggestion 
that maternal nutrient restriction may play a role in determination of subsequent 
pathologic outcomes [47, 48]. This relationship has been demonstrated in several 
animal models [49–51]. Whilst the exact mechanism is unknown, it is theorised 
that maternal nutrient restriction might reprogram the development of the 
pituitary-adrenal axis, alter the male pituitary response to GnRH, lead to excess 
glucocorticoid exposure and thus exert an adverse effect on gonadal development 
and function [49]. This may vary according to the timing and magnitude of the 
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undernutrition. More studies in both humans and animals are required to further 
explore the effect of maternal undernutrition during the critical programming 
window in the foetus [50].

4.4 Maternal obesity

The prevalence of overweight and obese individuals in their reproductive 
years is increasing worldwide, and there is an established link between obesity 
and reduced fecundity in men and women [52]. Maternal obesity (and potentially 
paternal obesity around the time of conception) creates an adverse intrauterine 
environment for the developing foetus, and may have a detrimental reprogramming 
effect on offspring [52, 53]. Maternal obesity may alter the molecular composition 
of gametes, leading to epigenetic changes which impair the developmental trajec-
tory of the resultant embryo and of future generations [32]. In male rats, maternal 
obesity during pregnancy and lactation has been shown to increase testicular and 
sperm oxidative stress leading to premature ageing of reproductive capacity [54]. 
In humans, one epidemiologic study reported a detrimental influence of high 
maternal body mass index (BMI) on the semen quality and plasma concentration 
of inhibin B of male offspring, [31, 52] a finding confirmed by other studies [52]. 
The exact processes through which maternal nutrition or maternal environment 
affect reproductive function in the offspring remain unclear, and may be due to an 
alteration of oestrogen exposure with the hormonal control of the development of 
the male foetal urogenital organs. Epigenetic modifications are also a clear link [31].

4.5 Maternal smoking

Exposure to cigarette smoking in utero has consistently been shown to negatively 
impact on male reproductive development, and in fact maternal smoking exposure 
during pregnancy may have a stronger effect on subsequent spermatogenesis than 
a man’s own smoking in later life [8]. Reductions in median sperm output and total 
motile sperm are evident, and substantial [41]. One Danish cross-sectional study 
showed maternal smoking during pregnancy to be associated with earlier onset 
of puberty, lower final adult height, higher BMI, reduced testicular volume, lower 
total sperm count, reduced spermatogenesis-related hormones (inhibin-B and FSH) 
and higher free testosterone [55]. Likewise, a study of 1770 young men from the 
general population in Denmark, Norway, Finland, Lithuania and Estonia reported 
that maternal smoking during pregnancy was associated with a 20% reduction in 
sperm concentration [8, 56].

The effect of prenatal exposure to maternal cigarette smoke has been evaluated 
in another study where human gonadal cell numbers were examined by histopatho-
logical analysis following first trimester termination of pregnancy. A significant 
reduction in the number of germ cells and somatic cells in embryonic male (and 
female) gonads and the effect was dose dependent in heavy smokers [57].

4.6 Maternal gestational stress

Maternal exposure to stress in pregnancy has been shown to be a significant 
determinant of male reproductive development later in life. One prospective 
longitudinal cohort study examined this association in almost 650 males at 20 years 
of age. Maternal gestational stress, measured by exposure to stressful life events 
in early gestation was associated with lower total sperm counts, reduced number 
of progressive motile sperm and lower morning serum testosterone concentra-
tion. There was no effect of stressful events in late pregnancy (beyond 18 weeks’ 
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gestation), in keeping with the proposed early foetal masculinisation programming 
window [19]. This is in keeping with animal models reported previously [58]. It is 
unclear as to the mechanism of impact, however it is theorised that alterations in 
cortisol levels within the critical window of programming and development of the 
male reproductive organs may be responsible [59].

4.7 Maternal serum oestrogens

A relationship between increasing incidence of disorders of development of the 
male reproductive tract, declining sperm counts and exposure to exogenous oestro-
gen in utero has been postulated for many years [53]. Animal studies have previously 
shown that exposure to exogenous oestrogens [60, 61] and environmental xenoes-
trogens [61, 62] can damage testicular function, however concern that ubiquitous 
and increasing global oestrogen pollution may have effect on testicular function 
have so far been unconfirmed by the lack of alteration in domestic animal sperm 
production over the past century [41, 63]. Hence this view does have its detractors 
[64]. The first study to formally examine the association of maternal oestrogen 
exposure on male reproductive development was a longitudinal cohort study of 
almost 400 adult males. It found that sperm output in adulthood was inversely 
correlated with cord serum oestradiol and oestrone [41]. Furthermore it has been 
reported that oestrogenic chemical exposure can also cause cryptorchidism [9]. 
It has been suggested that endogenous oestrogens may inhibit the hypothalamic-
pituitary-gonadal axis via steroid negative feedback to reduce LH secretion, which 
may lead to a reduction in intra-testicular testosterone during the crucial window 
of development and programming in the male foetus [41]. A vegetarian diet with 
iron supplementation in pregnant women has been associated with a higher risk of 
hypospadias, perhaps due to greater exposure to phytoestrogens [37, 65].

4.8 Growth and adiposity in childhood and adolescence

Following the conclusion of the gestational period, growth and adiposity in 
childhood and adolescence are also important determinants of future male repro-
ductive health. It is possible that normal growth and BMI through childhood and 
adolescence are associated with better adult testicular function [41]. Optimal body 
mass index trajectory through childhood and adolescence is associated with larger 
testicular volume and higher serum inhibin B and testosterone in adulthood. Rapid 
weight gain between birth and 24 months of age is associated with earlier onset of 
puberty [40]. Rapid early life weight gain has been linked to elevated insulin-like 
growth factor I concentrations and insulin resistance, elevated adrenal androgen 
concentrations, exaggerated adrenarche, obesity and consequently to concentrations 
of hormones such as leptin. These could all promote the activity of the GnRH pulse 
generator, thereby influencing the timing of puberty [40, 66]. It is unclear whether it 
is the predisposition to metabolic disorder that leads to later adverse testicular func-
tion or vice versa. However, it is probable that adverse dietary patterns exacerbate the 
problem, as adopting a Western dietary pattern in adolescence is well known to be 
linked with poor metabolic health, [67] but it is also associated with reductions in 
sperm concentration and serum DHT in young men [68].

Consistent height above the 50th percentile for age through childhood is associ-
ated with larger adult mean testicular volume [41]. In addition, adolescents with 
features of metabolic disorder at 17 years, or insulin resistance at 20 years of age, 
have been shown to have impaired testicular function and altered hormone levels 
compared to those without metabolic disorder. One study showed that men with 
features of metabolic risk evident at age 17 years of age had lower concentrations 
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of serum testosterone and inhibin B compared with those considered at low risk of 
metabolic disorder. Furthermore men with ultrasound evidence of non-alcoholic 
fatty liver disease (NAFLD) had reduced total sperm output, testosterone and 
inhibin B compared to men without NAFLD, when assessed at 20 years of age [69]. 
In analysing the data higher concentrations of systemic inflammatory markers 
were associated with an apparent gonadotoxic influence; with reductions in sperm 
output, seminal volume, sperm concentration, serum inhibin B, with increases in 
serum LH and FSH. Whereas, a higher concentration of systemic C-reactive protein 
had an apparent central negative influence on serum FSH and LH secretion induc-
ing a central hypogonadal state with reductions in serum testosterone and seminal 
volume [59].

4.9 Oestrogenic endocrine disruptors: bisphenol A and phthalate exposure

A large number of ubiquitous anti-androgenic endocrine disruptors exist in 
increasing volumes within the environment. These chemicals interfere with the 
synthesis, secretion, transport, binding, action or elimination of hormones with 
potential adverse effects on male reproductive health. Endocrine-disrupting 
chemicals have been shown in animal models to decrease spermatogenic capacity 
and increase incidence of male infertility. In rats, exposure to anti-androgenic 
chemicals during the masculinisation programming window resulted in cryptor-
chidism, hypospadias, micropenis, short anogenital distance (a surrogate marker of 
androgen activity) and reduced sperm count [8, 20]. It is postulated that exposure 
to endocrine disruptors during the initiation of male reproductive tract develop-
ment may interfere with the normal hormonal signalling and formation of male 
reproductive organs [70]. Of note, oestrogenic and anti-androgenic compounds are 
well established to induce hypospadias in humans and mice [37, 38].

Bisphenol A (BPA) has been used extensively for decades in the manufacture of 
polycarbonates, epoxy resins and plastics [71]. Unconjugated BPA binds to oestro-
gen receptors producing weak oestrogenic activity. Anti-androgenic effects are also 
seen. Free BPA is metabolised by the liver of the mother and foetus, and even at low 
environmental levels can transfer across the human placenta [72]. BPA studies on 
experimental animals show that effects are generally more detrimental during in 
utero exposure, a critical developmental stage for the embryo [73]. In vivo studies 
on rats showed a relationship between BPA exposure and inhibition of testicular 
steroidogenesis, hypogonadotropic hypogonadism, decreased sperm count and 
proliferation of mammary tissue [74–77].

In human studies, there is conflicting evidence for the reproductive effects of 
BPA. Concurrent BPA exposure has been shown to be associated with decreased 
sperm concentration and total sperm count, [78] increase in sperm DNA damage, 
[79]altered serum reproductive hormone levels and reduced semen quality [80]. 
However, the influences with regard to antenatal maternal BPA exposure are less 
evident, as a recent longitudinal cohort study of 700 healthy men evaluated stored 
maternal antenatal serum from a birth cohort and related total maternal BPA 
concentrations (as a surrogate of foetal exposure) to mature male reproductive 
function [71]. Whilst a small positive correlation between maternal serum BPA 
level and sperm concentration and motility was present, no other associations of 
maternal serum BPA with testicular function were observed [81]. In another review 
of concurrent adult exposure, whilst evidence of a link was noted in five of six 
included studies, no consistent relationships or trends could be observed across all 
studies [82].

Phthalates are another group of environmentally pervasive industrial endocrine-
disrupting chemicals, some of which are potent anti-androgens, [83] which are 
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suspected to interfere with developmental androgen action [84]. In rats, prenatal 
exposure to several phthalates elicits a syndrome of genital dysmorphology in 
males, including incomplete testicular descent, smaller testis weight and penile 
size, alterations to the vas deferens and epididymis, and most notably, shortened 
anogenital distance [85]. Animal studies demonstrating adverse effects of phthalate 
exposure on semen quality, preceded those showing the same effect in humans [86]. 
Critical to the induction of these effects is a marked reduction in foetal testicular 
testosterone production at the critical window for the development of the repro-
ductive tract normally under androgen control [85]. In infants exposed in-utero to 
higher concentrations of maternal phthalates there are reports of a reduction in the 
anogenital distance, a reproducible marker of prenatal androgenisation [83, 87]. 
In human adult males, the data suggests equally concerning effects, with antenatal 
maternal serum phthalate levels showing negative associations with testicular 
volume, total serum testosterone and serum FSH concentration [84]. However, it 
is important to state that it is more customary in the scientific literature to report 
urine concentrations of phthalates rather than serum. In addition to in-utero expo-
sures, phthalate levels in breast milk have been linked to an increased LH to free 
testosterone ratio in male offspring at 3 months of age, suggesting testicular impair-
ment may occur postnatally during lactation and breast feeding [9]. However, no 
definite association has been made between breastmilk phthalates and cryptorchi-
dism [88, 89]. Later in adulthood, adult exposure to environmental phthalates has 
been linked with reductions in semen parameters in men seeking paternity [90].

Endocrine-disrupting chemicals clearly present potential for significant impact 
on male reproductive health related to early exposures, however further research is 
necessary to clarify their risk, as there are a myriad of chemicals within the environ-
ment with endocrine-disrupting properties. Their effects may be synergistic, [91] 
non-dose dependent and the influence of each chemical may vary according to an 
individual’s genetic susceptibility [92].

4.10 Multigenerational and transgenerational environmental effects

There is increasing evidence to suggest that early life perturbations due to 
various exposures are able to exert a direct effect on the human epigenome, both 
in utero and in adulthood. Both multigenerational and transgenerational effects of 
certain environmental or lifestyle exposures are possible due to epigenetic dys-
regulation and inheritance in germ cells [62, 93]. These epigenetic effects include 
DNA methylation, histone post-translational modifications and non-coding RNAs 
[93]. As shown in Figure 2, these two phenomena differ depending on whether 
the affected generation had direct exposure to the original endocrine disruptor or 
not. If a pregnant mother (designated as the filial or F0) is exposed to an adverse 
stimulus, her child (F1) may be affected as a consequence of direct exposure to the 
same stimulus in utero. Because the germ cells of the F1 offspring are developing 
throughout gestation, their children (F2) are also directly exposed. Effects seen in 
the F2 generation are therefore multigenerational. In contrast, effects observed in 
the F3 generation that had no direct exposure would be transgenerational [93].

Numerous exposures described above, including endocrine disrupters and other 
lifestyle-related factors such as smoking, diet and stress may affect the male repro-
ductive health of future generations. DNA methylation is perhaps the best known 
mechanism of epigenetic gene modification, and a direct effect of some environ-
mental factors on DNA methylation has been demonstrated in experimental studies 
in animal models [9]. In a rat model, gestational exposure to endocrine disruptors 
led to heritable effects in second and third generation offspring, [94] including 
decreased spermatogenic capacity and increased incidence of male infertility [95]. 
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Although no human data exist to attest to this, this exciting and evolving area of 
research requires further work to validate findings.

5. Conclusion

There is a growing body of clear and compelling evidence for the early life 
origins of male reproductive health (Figure 3). Considering the central role the 

Figure 2. 
Multigenerational and transgenerational effects. Reprinted with permission from Elsevier. © Xin et al. [93].

Figure 3. 
Early determinants of male reproductive health. Reprinted with permission from Oxford university press.  
© Parent et al. [25].



Male Reproductive Health

10

reproductive hormones have in male sex differentiation, it is more than reasonable 
to suspect the involvement of factors that affect the production and the action of 
androgens during crucial windows of foetal development. However, although this 
developmental programming begins in utero, there is further convincing evidence 
for the effect of additional postnatal influences in early and later life. The specific 
mechanisms through which these associations exert their effect are as yet poorly 
understood. Disorders of male reproduction are clearly on the rise worldwide, and 
this escalation is predicted to only increase exponentially given the current obesity 
epidemic and the increasing impact of humans on the environment. Therefore, given 
the significant disease burden expected to result from declining male reproductive 
health, attention to further research and public health policy in this area is of the 
utmost importance. In addition, given the evidence for a significant number of 
maternal exposures and behaviours, public health measures and education focusing 
on maternal health are of obvious importance.
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