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We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where
the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with
time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control
problem by considering a sequence of delayed problems of the calculus of variations.

1. Introduction

Over the past years, there has been an increasing interest
in time delay problems of the calculus of variations and
control [1–4]. Such interest is explained for their importance
in control and engineering [5–8]. Indeed, time delays are
inherent in various real systems, such as control systems and
optimal control problems in engineering [9, 10].

In this paper we improve recent optimality conditions
for time delay variational problems. In [11] necessary opti-
mality conditions of Euler-Lagrange, DuBois-Reymond, and
Noether type were obtained for problems of the calculus of
variations with a time delay. The results of [11] were then
extended to delayed variational problems with higher order
derivatives in [2]. Here we model time delay variational
problems in a more realistic way: while in [2, 11] the delay
on functions and their derivatives (and control variables) is
always the same, here we consider different delays for the
functions and derivatives/controls.

The text is organized as follows. In Section 2 we formulate
the delayed problem of the calculus of variations, where
the delay in the unknown functions is different from the
delay in their derivatives. The main result in this section is
Theorem 4, which provides necessary optimality conditions
of Euler-Lagrange type. Control strategies via an exterior

penalty method are then investigated in Section 3. The idea
is to replace the optimal control problem with time delays
by a series of delayed problems of the calculus of variations.
The main result gives a convergence theorem that allows us
to obtain a solution to delayed optimal control problems with
linear delayed control systems, by considering a sequence of
variational problems with time delays of the type considered
before in Section 2 (see Theorem 7). We end with Section 4
of conclusions.

2. Calculus of Variations with Time Delays

We consider the following fundamental problem of the
calculus of variations with time delays, where the delay in the
function we are looking for is different from the delay in its
derivative:

min∫
⊤

0

𝐿 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
) , �̇� (𝑡) , �̇� (𝑡 − 𝜏

2
)) 𝑑𝑡 (1)

subject to

𝑥 (𝑡) = 𝜃
1
(𝑡) , 𝑡 ∈ [−𝜏

1
, −𝜏
2
] =: 𝐼
1
,

𝑥 (𝑡) = 𝜃
2
(𝑡) , 𝑡 ∈ [−𝜏

2
, 0] =: 𝐼

2
,

𝑥 (⊤) = 𝛼,
(2)
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where 𝐿 : [0, ⊤] × R4𝑁 → R, (𝑡, 𝑎, 𝑎, 𝑏, 𝑏) → 𝐿(𝑡, 𝑎, 𝑎, 𝑏, 𝑏),
is the Lagrangian, ⊤ > 0 is fixed inR, 𝜏

1
and 𝜏
2
are two given

positive real numbers such that 𝜏
2
< 𝜏
1
< ⊤, and 𝜃

1
(⋅) and

𝜃
2
(⋅) are given piecewise smooth functions. Let 𝐼 := [0, ⊤],

𝐿2(𝐼,R𝑁) be the Lebesgue space of measurable functions
such that

‖𝑥‖
𝐿
2 = (∫

⊤

0

‖𝑥 (𝑡)‖2R𝑁𝑑𝑡)
1/2

< ∞ (3)

and 𝐻1(𝐼,R𝑁) the Sobolev space of functions having their
weak first derivative lying in 𝐿2(𝐼,R𝑁) and represented by

𝑥 (𝑡) = 𝑥 (𝜏) + ∫
𝑡

𝜏

�̇� (𝑠) 𝑑𝑠 (4)

for all 𝜏 and 𝑡 in 𝐼. We denote that

(i) H is the space of all functions 𝑥 : [−𝜏
1
, ⊤] → R𝑁

such that 𝑥
/𝐼
1

∈ 𝐿2(𝐼
1
,R𝑁), 𝑥

/𝐼
2

∈ 𝐻1(𝐼
2
,R𝑁), and

𝑥
/𝐼

∈ 𝐻1(𝐼,R𝑁), which is a Hilbert space with the
norm

‖𝑥‖H = (𝑥/𝐼1

2

𝐿
2
(𝐼
1
,R𝑁)

+ 𝑥/𝐼2

2

𝐻
1
(𝐼
2
,R𝑁)

+ 𝑥/𝐼2𝐻1(𝐼,R𝑁))
1/2;
(5)

(ii) 𝐷 := {𝑥(⋅) ∈ H : 𝑥
/𝐼
1

= 𝜃
1
, 𝑥
/𝐼
2

= 𝜃
2
, and 𝑥(⊤) = 𝛼};

(iii) 𝐽 : H → R is the functional

𝐽 (𝑥 (⋅)) = ∫
⊤

0

𝐿 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
) , �̇� (𝑡) , �̇� (𝑡 − 𝜏

2
)) 𝑑𝑡. (6)

Our problem (1) and (2) takes then the following form:

min
𝑥(⋅)∈𝐷

𝐽 (𝑥 (⋅)) . (7)

We make the following assumptions on the data of problem
(7):

(𝐴
1
) Lagrangian 𝐿 is a 𝐶1 Carathéodory mapping; that is,
it is of class 𝐶1 in (𝑎, 𝑎, 𝑏, 𝑏) for almost all 𝑡 ∈ [0, ⊤]
and is measurable in 𝑡 for every (𝑎, 𝑎, 𝑏, 𝑏);

(𝐴
2
) there exist 𝛾

𝑖
(⋅) ∈ 𝐿2(𝐼,R+), 𝑖 = 1, . . . , 5, such that a.e.

in 𝑡 ∈ 𝐼
𝐿 (𝑡, 𝑎, 𝑎, 𝑏, 𝑏) ≤ 𝛾

1
(𝑡) ,

𝜕𝑖𝐿 (𝑡, 𝑎, 𝑎, 𝑏, 𝑏) ≤ 𝛾
𝑖
(𝑡) , 𝑖 = 2, . . . , 5,

(8)

where 𝜕
𝑖
𝐿 is the partial derivative of 𝐿 with respect to

its 𝑖th argument.

Definition 1 (cone of tangents). Let 𝑍 be a normed space,
𝐴 ⊂ 𝑍, and 𝑎 ∈ 𝐴. The cone of tangents 𝑇(𝐴, 𝑎) is the set
of all 𝑧 ∈ 𝑍 with the property that there is a sequence (𝑎

𝑛
)

in 𝐴 converging strongly to 𝑎 and a sequence of nonnegative
numbers (𝛼

𝑛
) such that 𝛼

𝑛
(𝑎
𝑛
− 𝑎) → 𝑧.

Lemma 2. The set𝐷 is an affine linear subspace ofH and the
cone of tangents 𝑇(𝐷, 𝑥(⋅)) is given by

𝑇 (𝐷, 𝑥 (⋅))
= {V (⋅) ∈ H : V(⋅)

/𝐼
1

= 0, V(⋅)
/𝐼
2

= 0, V (⊤) = 0} . (9)

Proof. Let V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)).Then there exist (𝑥
𝑛
(⋅))
𝑛
⊂ 𝐷 and

𝜆
𝑛
≥ 0 such that 𝑥

𝑛
(⋅) → 𝑥(⋅) in 𝐷 implies that 𝜆

𝑛
(𝑥
𝑛
(⋅) −

𝑥(⋅)) → V(⋅) inH. Since 𝑥
𝑛
(⋅), 𝑥(⋅) ∈ 𝐷 for all 𝑛, we have

𝑥
𝑛
(𝜏) = 𝑥 (𝜏) = 𝜃

1
(𝜏) , 𝜏 ∈ [−𝜏

1
, −𝜏
2
] ,

𝑥
𝑛
(𝜏) = 𝑥 (𝜏) = 𝜃

2
(𝜏) , 𝜏 ∈ [−𝜏

2
, 0] ,

𝑥
𝑛
(⊤) = 𝑥 (⊤) = 𝛼.

(10)

Hence,

𝜆
𝑛
(𝑥
𝑛
(𝜏) − 𝑥 (𝜏)) = 0, 𝜏 ∈ [−𝜏

1
, −𝜏
2
] ,

𝜆
𝑛
(𝑥
𝑛
(𝜏) − 𝑥 (𝜏)) = 0, 𝜏 ∈ [−𝜏

2
, 0] ,

𝜆
𝑛
(𝑥
𝑛
(⊤) − 𝑥 (⊤)) = 0.

(11)

Therefore, V(⋅) ∈ Hwith V(𝜏) = 0 for all 𝜏 ∈ [−𝜏
1
, −𝜏
2
], V(𝜏) =

0 for almost all 𝜏 ∈ [−𝜏
2
, 0], and V(⊤) = 0. Thus,

𝑇 (𝐷, 𝑥 (⋅))
⊂ {V (⋅) ∈ H : V(⋅)

/𝐼
1

= 0, V(⋅)
/𝐼
2

= 0, V (⊤) = 𝛼}
= 𝐾.

(12)

Conversely, let V(⋅) ∈ 𝐾 for 𝑥(⋅) ∈ 𝐷. Define 𝑥
𝑛
(⋅) = 𝑥(⋅) +

(1/𝑛)V(⋅). Then 𝑛(𝑥
𝑛
(⋅) − 𝑥(⋅)) = V(⋅) with V(⋅) ∈ H. Hence,

V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)).
For convenience, we introduce the operator [⋅]𝜏2

𝜏
1

defined
by

[𝑥]𝜏2
𝜏
1

(𝑡) = (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
) , �̇� (𝑡) , �̇� (𝑡 − 𝜏

2
)) . (13)

Proposition 3. Under conditions (𝐴
1
) and (𝐴

2
), the mapping

𝐽(⋅) is Fréchet differentiable and

𝐽 (𝑥 (⋅)) (V (⋅)) = ∫
⊤

0

(⟨𝜕
2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡)⟩

+ ⟨𝜕
3
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡 − 𝜏
1
)⟩

+ ⟨𝜕
4
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡)⟩
+ ⟨𝜕
5
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡 − 𝜏
2
)⟩) 𝑑𝑡.

(14)

Proof. Let V(⋅) ∈ H. We have

𝐽 (𝑥 (⋅) ; V (⋅)) = lim
𝜆→0

+

1
𝜆 (𝐽 (𝑥 (⋅) + 𝜆V (⋅)) − 𝐽 (𝑥 (⋅)))

= lim
𝜆→0

+

∫
⊤

0

1
𝜆 [𝐿[𝑥 + 𝜆V]𝜏2

𝜏
1

(𝑡) − 𝐿[𝑥]𝜏2
𝜏
1

(𝑡)] 𝑑𝑡.
(15)
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Define

Ψ
𝜆
(𝑡) = 1

𝜆 [𝐿[𝑥 + 𝜆V]𝜏2
𝜏
1

(𝑡) − 𝐿[𝑥]𝜏2
𝜏
1

(𝑡)] (16)

and

Ψ (𝑡) = ⟨𝜕
2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡)⟩
+ ⟨𝜕
3
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡 − 𝜏
1
)⟩

+ ⟨𝜕
4
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡)⟩
+ ⟨𝜕
5
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡 − 𝜏
2
)⟩ .

(17)

Then, Ψ
𝜆
(𝑡) → Ψ(𝑡) as 𝜆 → 0+ for almost all 𝑡 ∈ [0, ⊤]. On

the other hand,

Ψ𝜆 (𝑡) ≤ 𝑔 (𝑡) (18)

a.e. in 𝑡 ∈ [0, ⊤] with

𝑔 (𝑡) = 𝛾 (𝑡) [‖V (𝑡)‖R𝑁 + V (𝑡 − 𝜏
1
)R𝑁

+‖V̇ (𝑡)‖R𝑁 + V (𝑡 − 𝜏
2
)R𝑁]

(19)

a function not depending on 𝜆, and
Ψ𝜆 (𝑡) ≤ 𝑔 (𝑡) + 1 (20)

for almost all 𝑡 ∈ [0, ⊤] and 𝜆 sufficiently small. Since [0, ⊤]
has finite measure, Lebesgue’s theorem yields that

∫
⊤

0

Ψ
𝜆
(𝑡) 𝑑𝑡 → ∫

⊤

0

Ψ (𝑡) 𝑑𝑡 (21)

as 𝜆 → 0+. Hence,

𝐽 (𝑥 (⋅)) (V (⋅)) = ∫
⊤

0

(⟨𝜕
2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡)⟩

+ ⟨𝜕
3
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡 − 𝜏
1
)⟩

+ ⟨𝜕
4
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡)⟩
+ ⟨𝜕
5
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡 − 𝜏
2
)⟩) 𝑑𝑡.

(22)

This is the directional derivative of 𝐽 in the direction V. To
finish the proof, we need to show that 𝐽(𝑥(⋅); V(⋅)) is linear
and bounded in V and continuous in 𝑥. The linearity is

obvious. We begin by proving that 𝐽(𝑥(⋅); ⋅) is bounded from
H to R:

𝐽 (𝑥 (⋅) ; V (⋅)) ≤ ∫
⊤

0

⟨𝜕2𝐿[𝑥]𝜏2𝜏1 (𝑡) , V (𝑡)⟩
 𝑑𝑡

+ ∫
⊤

0

⟨𝜕3𝐿[𝑥]𝜏2𝜏1 (𝑡) , V (𝑡 − 𝜏
1
)⟩ 𝑑𝑡

+ ∫
⊤

0

⟨𝜕4𝐿[𝑥]𝜏2𝜏1 (𝑡) , V̇ (𝑡)⟩
 𝑑𝑡

+ ∫
⊤

0

⟨𝜕5𝐿[𝑥]𝜏2𝜏1 (𝑡) , V̇ (𝑡 − 𝜏
2
)⟩ 𝑑𝑡

≤ ∫
⊤

0

𝛾
2
(𝑡) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝛾
3
(𝑡) V (𝑡 − 𝜏

1
)R𝑁𝑑𝑡

+ ∫
⊤

0

𝛾
4
(𝑡) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝛾
5
(𝑡) V̇ (𝑡 − 𝜏

2
)R𝑁𝑑𝑡

≤ ∫
⊤

0

𝛾
2
(𝑡) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤−𝜏
1

−𝜏
1

𝛾
3
(𝑡 + 𝜏
1
) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝛾
4
(𝑡) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤−𝜏
2

−𝜏
2

𝛾
5
(𝑡 + 𝜏
2
) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

≤ ∫
⊤

0

𝛾
2
(𝑡) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
−𝜏
2

−𝜏
1

𝛾
3
(𝑡 + 𝜏
1
) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
0

−𝜏
2

𝛾
3
(𝑡 + 𝜏
1
) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤−𝜏
1

0

𝛾
3
(𝑡 + 𝜏
1
) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝛾
4
(𝑡) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

+ ∫
0

−𝜏
2

𝛾
5
(𝑡 + 𝜏
2
) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

≤ 𝑀‖V (⋅)‖H.

(23)
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We still need to prove the continuity of 𝐽(⋅). Let 𝑥
𝑛
(⋅) → 𝑥(⋅)

inH. Then,
[𝐽 (𝑥𝑛 (⋅)) − 𝐽 (𝑥 (⋅))] (V (⋅))

≤ ∫
⊤

0

⟨𝜕2𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡)⟩ 𝑑𝑡

+ ∫
⊤

0

⟨𝜕3𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) , V (𝑡 − 𝜏
1
)⟩ 𝑑𝑡

+ ∫
⊤

0

⟨𝜕4𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡)⟩ 𝑑𝑡

+ ∫
⊤

0

⟨𝜕5𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) , V̇ (𝑡 − 𝜏
2
)⟩ 𝑑𝑡

≤ ∫
⊤

0

𝜕2𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) ‖V (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝜕3𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) V (𝑡 − 𝜏
1
)R𝑁𝑑𝑡

+ ∫
⊤

0

𝜕4𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) ‖V̇ (𝑡)‖R𝑁𝑑𝑡

+ ∫
⊤

0

𝜕5𝐿[𝑥𝑛 − 𝑥]𝜏2
𝜏
1

(𝑡) V̇ (𝑡 − 𝜏
2
)R𝑁𝑑𝑡

= I
2
+I
3
+I
4
+I
5
,

(24)

where

I
2
≤ 𝜕2𝐿[𝑥𝑛 − 𝑥]𝜏2

𝜏
1

(⋅) ‖V (𝑡)‖𝐿2 ,
I
3
≤ 𝜕3𝐿[𝑥𝑛 − 𝑥]𝜏2

𝜏
1

(⋅) ‖V (𝑡)‖𝐿2([−𝜏1 ,⊤],R𝑁),
I
4
≤ 𝜕4𝐿[𝑥𝑛 − 𝑥]𝜏2

𝜏
1

(⋅) ‖V̇ (𝑡)‖𝐿2 ,
I
5
≤ 𝜕3𝐿[𝑥𝑛 − 𝑥]𝜏2

𝜏
1

(⋅) ‖V̇ (𝑡)‖𝐿2([−𝜏1 ,⊤],R𝑁).

(25)

On the other hand, 𝑥
𝑛
(⋅) → 𝑥(⋅) in H. From Lebesgue’s

theorem, there exists 𝕜
1
, 𝕜
2
, 𝕜
3
⊂ N such that 𝕜

1
⊂ 𝕜
2
⊂ 𝕜
3

and

𝑥
𝑘
(𝑡) → 𝑥 (𝑡) , a.e. 𝑡 ∈ [0, ⊤] , ∀𝑘 ∈ 𝕜

1
,

�̇�
𝑘
(𝑡) → �̇� (𝑡) , a.e. 𝑡 ∈ [0, ⊤] , ∀𝑘 ∈ 𝕜

1
,

𝑥
𝑘
(𝑡) → 𝑥 (𝑡) , a.e. 𝑡 ∈ [−𝜏

2
, 0] , ∀𝑘 ∈ 𝕜

2
,

�̇�
𝑘
(𝑡) → �̇� (𝑡) , a.e. 𝑡 ∈ [−𝜏

2
, 0] , ∀𝑘 ∈ 𝕜

2
,

𝑥
𝑘
(𝑡) → 𝑥 (𝑡) , a.e. 𝑡 ∈ [−𝜏

1
, −𝜏
2
] , ∀𝑘 ∈ 𝕜

3
.

(26)

Hence,

�̇�
𝑘
(𝑡 − 𝜏
2
) → �̇� (𝑡 − 𝜏

2
) , a.e. 𝑡 ∈ [0, 𝜏

2
] , ∀𝑘 ∈ 𝕜

2
,

𝑥
𝑘
(𝑡 − 𝜏
1
) → 𝑥 (𝑡 − 𝜏

1
) , a.e. 𝑡 ∈ [0, 𝜏

1
] , ∀𝑘 ∈ 𝕜

3
.
(27)

Since 𝐿(𝑡, ⋅, ⋅, ⋅) is 𝐶1-Carathéodory, assumption (𝐴
2
) assures

from Lebesgue’s theorem that
𝜕𝑖𝐿[𝑥𝑛 − 𝑥]𝜏2

𝜏
1

(⋅) → 0, 𝑖 = 2, 3, 4, 5. (28)

This implies thatI
2
+I
3
+I
4
+I
5
→ 0.Then, 𝐽(𝑥

𝑘
(⋅)) →

𝐽(𝑥(⋅)). The proof is complete.

Theorem 4 (necessary optimality conditions of Euler-La-
grange type for problem (1) and (2)). Under conditions (𝐴

1
)

and (𝐴
2
), if 𝑥(⋅) is a minimizer to problem (1) and (2), then

𝑥(⋅) satisfies the following Euler-Lagrange equations with time
delay:

𝑑
𝑑𝑡 {𝜕4𝐿[𝑥]

𝜏
2

𝜏
1

(𝑡) + 𝜕
5
𝐿[𝑥]𝜏2
𝜏
1

(𝑡 + 𝜏
2
)}

= 𝜕
2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) + 𝜕
3
𝐿[𝑥]𝜏2
𝜏
1

(𝑡 + 𝜏
1
) ,

𝑎.𝑒. 𝑡 ∈ [0, ⊤ − 𝜏
1
] ,

𝑑
𝑑𝑡 {𝜕4𝐿[𝑥]

𝜏
2

𝜏
1

(𝑡) + 𝜕
5
𝐿[𝑥]𝜏2
𝜏
1

(𝑡 + 𝜏
2
)} = 𝜕

2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) ,

𝑎.𝑒. 𝑡 ∈ ]⊤ − 𝜏
1
, ⊤ − 𝜏

2
] ,

𝑑
𝑑𝑡𝜕4𝐿[𝑥]

𝜏
2

𝜏
1

(𝑡) = 𝜕
2
𝐿[𝑥]𝜏2
𝜏
1

(𝑡) , 𝑎.𝑒. 𝑡 ∈ ]⊤ − 𝜏
2
, ⊤] .

(29)

Proof. If 𝑥(⋅) is a minimizer to problem (1) and (2), then

𝐽 (𝑥 (⋅)) (V (⋅)) = 0 (30)

for all V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)); that is,

∫
⊤

0

(⟨𝑝
2
(𝑡) , V (𝑡)⟩ + ⟨𝑝

3
(𝑡) , V (𝑡 − 𝜏

1
)⟩

+ ⟨𝑝
4
(𝑡) , V̇ (𝑡)⟩ + ⟨𝑝

5
(𝑡) , V̇ (𝑡 − 𝜏

2
)⟩) 𝑑𝑡 = 0

(31)

for all V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)) with 𝑝
𝑖
(𝑡) = 𝜕

𝑖
𝐿[𝑥]𝜏2
𝜏
1

(𝑡), 𝑖 = 2, 3, 4, 5.
Integration by parts yields

∫
⊤

0

⟨𝑝
4
(𝑡) , V̇ (𝑡)⟩ 𝑑𝑡 = −∫

⊤

0

⟨�̇�
4
(𝑡) , V (𝑡)⟩ 𝑑𝑡,

∫
⊤

0

⟨𝑝
5
(𝑡) , V (𝑡 − 𝜏

2
)⟩ 𝑑𝑡 = ⟨𝑝

5
(⊤) , V (⊤ − 𝜏

2
)⟩

+ ∫
⊤

0

⟨�̇�
5
(𝜏) , V (𝜏 − 𝜏

2
)⟩ 𝑑𝜏.

(32)

By (31) and (32), we obtain that

∫
⊤

0

(⟨𝑝
2
(𝑡) , V (𝑡)⟩ + ⟨𝑝

3
(𝑡) , V (𝑡 − 𝜏

1
)⟩

− ⟨�̇�
4
(𝑡) , V (𝑡)⟩ + ⟨�̇�

5
(𝑡) , V (𝑡 − 𝜏

2
)⟩) 𝑑𝑡

+ ⟨𝑝
5
(𝑡) , V (⊤ − 𝜏

2
)⟩ = 0

(33)
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for all V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)). On the other hand,

∫
⊤

0

⟨𝑝
3
(𝑡) , V (𝑡 − 𝜏

1
)⟩ 𝑑𝑡 = ∫

⊤−𝜏
1

−𝜏
1

⟨𝑝
3
(𝜏 + 𝜏

1
) , V (𝜏)⟩ 𝑑𝜏

= ∫
0

−𝜏
1

⟨𝑝
3
(𝜏 + 𝜏

1
) , V (𝜏)⟩ 𝑑𝜏

+ ∫
⊤−𝜏
1

0

⟨𝑝
3
(𝜏 + 𝜏

1
) , V (𝜏)⟩ 𝑑𝜏

= ∫
⊤−𝜏
1

0

⟨𝑝
3
(𝜏 + 𝜏

1
) , V (𝜏)⟩ 𝑑𝜏,

∫
⊤

0

⟨�̇�
5
(𝑡) , V (𝑡 − 𝜏

2
)⟩ 𝑑𝑡 = ∫

⊤−𝜏
2

−𝜏
2

⟨�̇�
5
(𝜏 + 𝜏

2
) , V (𝜏)⟩ 𝑑𝜏

= ∫
0

−𝜏
2

⟨�̇�
5
(𝜏 + 𝜏

2
) V (𝜏)⟩ 𝑑𝜏

+ ∫
⊤−𝜏
2

0

⟨�̇�
5
(𝜏 + 𝜏

2
) , V (𝜏)⟩ 𝑑𝜏

= ∫
⊤−𝜏
2

0

⟨�̇�
5
(𝜏 + 𝜏

2
) , V (𝜏)⟩ 𝑑𝜏.

(34)

Hence,

∫
⊤

0

⟨𝑝
2
(𝑡) − �̇�

4
(𝑡) , V (𝑡)⟩ 𝑑𝑡

+ ∫
⊤−𝜏
1

0

⟨𝑝
3
(𝑡 + 𝜏
1
) , V (𝑡)⟩ 𝑑𝑡

− ∫
⊤−𝜏
2

0

⟨�̇�
5
(𝑡 + 𝜏
2
) , V (𝑡)⟩ 𝑑𝑡

+ ⟨𝑝
5
(⊤) , V (⊤ − 𝜏

2
)⟩ = 0

(35)

for all V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)). Put

𝑝
3
(𝑡 + 𝜏
1
) = {𝑝3 (𝑡 + 𝜏

1
) if 𝑡 ∈ [0, ⊤ − 𝜏

1
] ,

0 if 𝑡 ∈ ]⊤ − 𝜏
1
, ⊤] ,

𝑞 (𝑡 + 𝜏
2
) = {�̇�5 (𝑡 + 𝜏

2
) if 𝑡 ∈ [0, ⊤ − 𝜏

2
] ,

0 if 𝑡 ∈ ]⊤ − 𝜏
2
, ⊤] .

(36)

Then,

∫
⊤

0

⟨𝑝
2
(𝑡) − �̇�

4
(𝑡) + 𝑝

3
(𝑡 + 𝜏
1
) − 𝑞 (𝑡 + 𝜏

2
) , V (𝑡)⟩ 𝑑𝑡

+ ⟨𝑝
5
(⊤) , V (⊤ − 𝜏

2
)⟩ = 0

(37)

for all V(⋅) ∈ 𝑇(𝐷, 𝑥(⋅)). In particular, for V such that V(𝜏) = 0
for almost all 𝜏 ∈ [−𝜏

1
, 0] and V(𝜏) = 0 for almost all 𝜏 ∈

[⊤ − 𝜏
2
, 0], we have

𝑝
2
(𝑡) − �̇�

4
(𝑡) + 𝑝

3
(𝑡 + 𝜏
1
) − 𝑞 (𝑡 + 𝜏

2
) = 0 a.e. 𝑡 ∈ [0, ⊤]

(38)

or
�̇�
4
(𝑡) + �̇�

5
(𝑡 + 𝜏
2
) = 𝑝
2
(𝑡) + 𝑝

3
(𝑡 + 𝜏
1
)

a.e. 𝑡 ∈ [0, ⊤ − 𝜏
1
] ,

�̇�
4
(𝑡) + �̇�

5
(𝑡 + 𝜏
2
) = 𝑝
2
(𝑡) a.e. 𝑡 ∈ ]⊤ − 𝜏

1
, ⊤ − 𝜏

2
] ,

�̇�
4
(𝑡) = 𝑝

2
(𝑡) a.e. 𝑡 ∈ ]⊤ − 𝜏

2
, ⊤] .

(39)

The proof is complete.

3. Optimal Control with Time Delays

Now we prove existence of an optimal solution to more
general problems of optimal control with time delays. The
result is obtained via the exterior penalty method [12, 13] and
Theorem 4. The optimal control problem with time delays is
defined as follows:

min∫
⊤

0

𝑙 (𝑡, 𝑥 (𝑡) , �̇� (𝑡 − 𝜏
2
) , 𝑢 (𝑡)) 𝑑𝑡 (40)

subject to

�̇� (𝑡) = 𝐴𝑥 (𝑡 − 𝜏
1
) + 𝐵𝑢 (𝑡) , 𝑡 ∈ [0, ⊤] =: 𝐼,

𝑥 (𝑡) = 𝜃
1
(𝑡) , 𝑡 ∈ [−𝜏

1
, −𝜏
2
] =: 𝐼
1
,

𝑥 (𝑡) = 𝜃
2
(𝑡) , 𝑡 ∈ [−𝜏

2
, 0] =: 𝐼

2
,

𝑥 (⊤) = 𝛼,

(41)

where 𝑥(⋅) ∈ H, 𝑢(⋅) ∈ 𝑈
0
= {𝑢(⋅) ∈ 𝐿2([0, ⊤], 𝑈) : 𝑢(0) = 0},

𝐴 is an 𝑁 × 𝑁 matrix, 𝐵 is an 𝑁 × 𝑚 matrix, and 𝑙 : [0, ⊤] ×
R𝑁 × R𝑁 × R𝑚 → R, (𝑡, 𝑎, 𝑏, 𝑐) → 𝑙(𝑡, 𝑎, 𝑏, 𝑐). The final
time ⊤ > 0 is fixed in R, 𝜏

1
and 𝜏

2
are two given positive

real numbers such that 𝜏
2
< 𝜏
1
< ⊤, and, as before, 𝜃

1
(⋅) and

𝜃
2
(⋅) are given piecewise smooth functions. In the sequel, we

denote by 𝜃(⋅) the function defined by 𝜃(𝑡) = 𝜃
1
(𝑡), 𝑡 ∈ 𝐼

1
, and

𝜃(𝑡) = 𝜃
2
(𝑡), 𝑡 ∈ 𝐼

2
. We make the following assumptions on

the data of the problem.
(𝐻
1
) The mapping 𝑙 is a 𝐶1-Carathéodory mapping; that
is, 𝑙 is 𝐶1 in (𝑎, 𝑏, 𝑐) for almost all 𝑡 ∈ [0, 𝑇] and is
measurable in 𝑡 for every (𝑎, 𝑏, 𝑐) ∈ R𝑁 ×R𝑁 ×R𝑚.

(𝐻
2
) There exist 𝛾

𝑖
(⋅) ∈ 𝐿2(𝐼,R+), 𝑖 = 1, . . . , 5, such that
𝑙 (𝑡, 𝑎, 𝑏, 𝑐)

 ≤ 𝛾
1
(𝑡) ,

𝜕𝑖𝑙 (𝑡, 𝑎, 𝑏, 𝑐)
 ≤ 𝛾
𝑖
(𝑡)

a.e. 𝑡 ∈ 𝐼, 𝑖 = 2, . . . , 4,
(42)

where 𝜕
𝑖
𝑙 is the partial derivative of 𝑙 with respect to

its 𝑖th argument, 𝑖 = 2, . . . , 4.
(𝐻
3
) There exists 𝜌 > 0 such that for almost all 𝑡 ∈ [0, 𝑇]
and for all (𝑎, 𝑏, 𝑐) ∈ R𝑁 ×R𝑁 ×R𝑚

𝑙 (𝑡, 𝑎, 𝑏, 𝑐) ≥ 𝜌‖𝑐‖R𝑚 . (43)

(𝐻
4
) 𝑙(𝑡, 𝑎, 𝑏, 𝑐) is convex in (𝑏, 𝑐).
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Using the exterior penalty function method, we consider
the following sequence of unconstrained optimal control
problems corresponding to (40) and (41):

inf ∫
⊤

0

𝑙 (𝑡, 𝑥 (𝑡) , �̇� (𝑡 − 𝜏
2
) , 𝑢 (𝑡)) 𝑑𝑡

+ 𝑐
𝑛

2 ∫
⊤

0

�̇� (𝑡) − 𝐴𝑥 (𝑡 − 𝜏
1
) − 𝐵𝑢 (𝑡)2R𝑁𝑑𝑡,

𝑥 (𝑡) = 𝜃
1
(𝑡) a.e. 𝑡 ∈ 𝐼

1
,

𝑥 (𝑡) = 𝜃
2
(𝑡) a.e. 𝑡 ∈ 𝐼

2
,

𝑥 (⊤) = 𝛼,
𝑥 (⋅) ∈ H, 𝑢 (⋅) ∈ 𝑈

0
,

(P
𝑛
)

where 𝑐
𝑛+1

≥ 𝑐
𝑛
, 𝑐
𝑛
→ ∞. Denote

𝐿
𝑛
(𝑡, 𝑎, 𝑎, 𝑏, 𝑏, 𝑐) := 𝑙 (𝑡, 𝑎, 𝑏, 𝑐) + 𝑐

𝑛

2 ‖𝑏 − 𝐴𝑎 + 𝐵𝑐‖2R𝑁 ,

𝐽
𝑛
(𝑥 (⋅) , 𝑢 (⋅))

:= ∫
⊤

0

𝐿
𝑛
(𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
) , �̇� (𝑡) , �̇� (𝑡 − 𝜏

2
) , 𝑢 (𝑡)) 𝑑𝑡,

𝐷 := {𝑥 (⋅) ∈ H : 𝑥 (⊤) = 𝛼} .
(44)

The sequence of unconstrained optimal control problems
takes then the following form:

inf 𝐽
𝑛
(𝑥 (⋅) , 𝑢 (⋅)) ,

𝑥 (⋅) ∈ 𝐷,
𝑢 (⋅) ∈ 𝑈

0
,

(P
𝑛
)

𝑛 ∈ N.

Lemma 5. The cone of tangents 𝑇(𝑈
0
, 𝑢(⋅)) is given by

𝑇 (𝑈
0
, 𝑢 (⋅)) = {𝑤 (⋅) ∈ 𝐿2 (𝐼,R𝑚) : 𝑤 (0) = 0} . (45)

Proof. It is similar to the proof of Lemma 2.

It is well known that the penalty function method is a
very effective technique for solving constrained optimization
problems via unconstrained ones. The main question is the
convergence of the sequence of solutions of the uncon-
strained optimal control problems to the original/constrained
problem. Before giving the convergence theorem, we begin
with some preparatory results, which are a direct con-
sequence of the necessary optimality conditions given by
Theorem 4.

Proposition 6. For every 𝑛, if (𝑥
𝑛
(⋅), 𝑢
𝑛
(⋅)) ∈ 𝐷 × 𝑈

0
is an

optimal solution to (P
𝑛
), then

(i)

𝑑
𝑑𝑡𝜙𝑛 (𝑡) = 𝐴∗𝜙

𝑛
(𝑡 + 𝜏
1
) + 1

𝑐
𝑛

𝑎
𝑛
(𝑡) − 1

𝑐
𝑛

𝑒
𝑛
(𝑡)

𝑎.𝑒. 𝑡 ∈ [0, ⊤ − 𝜏
1
] ,

𝑑
𝑑𝑡𝜙𝑛 (𝑡) =

1
𝑐
𝑛

𝑎
𝑛
(𝑡) − 1

𝑐
𝑛

𝑒
𝑛
(𝑡) 𝑎.𝑒. 𝑡 ∈ ]⊤ − 𝜏

1
, ⊤ − 𝜏

2
] ,

𝑑
𝑑𝑡𝜙𝑛 (𝑡) =

1
𝑐
𝑛

𝑎
𝑛
(𝑡) 𝑎.𝑒. 𝑡 ∈ ]⊤ − 𝜏

2
, ⊤] ,

𝐵∗𝜙
𝑛
(𝑡) = 1

𝑐
𝑛

𝑏
𝑛
(𝑡) 𝑎.𝑒. 𝑡 ∈ [0, ⊤] ,

(46)

where

𝜙
𝑛
(𝑡) = �̇�

𝑛
(𝑡) − 𝐴𝑥

𝑛
(𝑡 − 𝜏
1
) + 𝐵𝑢

𝑛
(𝑡) ,

𝑎
𝑛
(𝑡) = 𝑙

𝑎
(𝑡, 𝑥
𝑛
(𝑡) , �̇�
𝑛
(𝑡 − 𝜏
2
) , 𝑢
𝑛
(𝑡)) ,

𝑒
𝑛
(𝑡) = 𝑙

𝑏
(𝑡, 𝑥
𝑛
(𝑡) , �̇�
𝑛
(𝑡 − 𝜏
2
) , 𝑢
𝑛
(𝑡)) ,

𝑏
𝑛
(𝑡) = 𝑙

𝑐
(𝑡, 𝑥
𝑛
(𝑡) , �̇�
𝑛
(𝑡 − 𝜏
2
) , 𝑢
𝑛
(𝑡)) ;

(47)

(ii) there exists 𝑀 > 0 such that ‖𝜙
𝑛
(𝑡)‖
𝑋

≤ 𝑀 for all 𝑡 ∈
[0, ⊤] and all 𝑛 sufficiently large.

Proof. (i) Let (𝑥
𝑛
(⋅), 𝑢
𝑛
(⋅)) ∈ 𝐷 × 𝑈

0
be an optimal solution

to (P
𝑛
). Then, by Lemmas 2 and 5 andTheorem 4, we obtain

the necessary conditions of item (i) for problem (P
𝑛
).

(ii) Since 𝑢
𝑛
(0) = 0 and ̇𝜃(0+) exists, �̇�

𝑛
(0) is defined and

there exists 𝑘 > 0 such that ‖𝜙
𝑛
(0)‖ ≤ 𝑘. By the first equation

of item (i), we have

𝜙
𝑛
(𝑡) = 𝜙

𝑛
(0) + 𝐴∗ ∫

𝑡

0

𝜙
𝑛
(𝜏 + 𝜏

1
) 𝑑𝜏

+ 1
𝑐
𝑛

∫
𝑡

0

(𝑎
𝑛
(𝜏) + 𝑒

𝑛
(𝜏)) 𝑑𝜏,

𝑡 ∈ [0, ⊤ − 𝜏
1
] .

(48)

Consequently,

𝜙𝑛 (𝑡) ≤ 𝜙𝑛 (0) + 𝐴∗ ∫
𝑡

0

𝜙𝑛 (𝜏 + 𝜏
1
) 𝑑𝜏 + 𝑅

𝑛

≤ 𝑘 + 𝛼∫
𝑡

0

𝜙𝑛 (𝜏 + 𝜏
1
) 𝑑𝜏 + 𝑅

𝑛

(49)

for all 𝑡 ∈ [0, ⊤ − 𝜏
1
] with 𝑘 = ‖𝜙

𝑛
(0)‖, 𝛼 = ‖𝐴∗‖, and 𝑅

𝑛
=

(1/𝑐
𝑛
)(‖𝛾
2
(⋅)‖
𝐿
2 + ‖𝛾

3
(⋅)‖
𝐿
2). By Gronwall’s lemma, we obtain

that
𝜙𝑛 (𝑡) ≤ (𝑘 + 𝑅

𝑛
) exp (𝛼 (⊤ − 𝜏

1
)) ∀𝑡 ∈ [0, ⊤ − 𝜏

1
] .
(50)



Mathematical Problems in Engineering 7

The second and third equalities of item (i) give
𝜙𝑛 (𝑡) ≤ 𝜙𝑛 (⊤ − 𝜏

1
) + 𝑅

𝑛
∀𝑡 ∈ ]⊤ − 𝜏

1
, ⊤] . (51)

Now, inequalities (50) and (51) imply that
𝜙𝑛 (𝑡) ≤ 𝑀

𝑛
∀𝑛, ∀𝑡 ∈ [0, ⊤] (52)

with

𝑀
𝑛
= 𝑘 exp (𝛼 (⊤ − 𝜏

1
)) + 𝑅

𝑛
(1 + exp (𝛼 (⊤ − 𝜏

1
))) . (53)

Since 𝑅
𝑛
→ 0, there exists𝑀 > 0 such that

𝜙𝑛 (𝑡)R𝑁 ≤ 𝑀 (54)

for all 𝑡 ∈ [0, ⊤] and for all 𝑛 large.
We are now ready to prove the convergence theorem,

which reads as follows.

Theorem 7 (penalty convergence theorem). If hypotheses
(𝐻
1
)–(𝐻
4
) hold and problem (40) and (41) has a finite value,

then the sequence (𝑥
𝑛
(⋅), 𝑢
𝑛
(⋅))
𝑛
of solutions to (P

𝑛
) contains a

subsequence (𝑥
𝑘
(⋅), 𝑢
𝑘
(⋅))
𝑘
such that

(i) 𝑥
𝑘
(⋅) → 𝑥(⋅) strongly in 𝐶(𝐼,R𝑁);

(ii) 𝑢
𝑘
(⋅) → 𝑢(⋅) weakly in 𝐿2(𝐼,R𝑚);

(iii) �̇�
𝑘
(⋅) → �̇�(⋅) weakly in 𝐿2(𝐼,R𝑁);

with (𝑥(⋅), 𝑢(⋅)) a solution to problem (40) and (41).

Proof. Let (𝑥
𝑛
(⋅), 𝑢
𝑛
(⋅)) ∈ 𝐷 × 𝑈

0
be an optimal solution to

(P
𝑛
) for every 𝑛. By Proposition 6,
�̇�𝑛 (𝑡) ≤ 𝑀 + ‖𝐴‖ 𝑥𝑛 (𝑡 − 𝜏

1
) + ‖𝐵‖ 𝑢𝑛 (𝑡)

≤ 𝑀 + 𝛽 𝑥𝑛 (𝑡 − 𝜏
1
) + 𝜎 𝑢𝑛 (𝑡) .

(55)

Because

𝑥
𝑛
(𝑡) = 𝜃 (0) + ∫

𝑡

0

�̇�
𝑛
(𝜏) 𝑑𝜏 ∀𝑡 ∈ [0, ⊤] ,

𝑥
𝑛
(𝑡) = 𝜃 (𝑡) a.e. 𝑡 ∈ [−𝜏

1
, 0] ,

(56)

it follows that

𝑥𝑛 (𝑡) ≤ ‖𝜃 (0)‖ + ∫
𝑡

0

�̇�𝑛 (𝜏) 𝑑𝜏

≤ ‖𝜃 (0)‖ + 𝑀⊤ + 𝛽∫
𝑡

0

𝑥𝑛 (𝜏 − ℎ) 𝑑𝜏

+ 𝜎∫
𝑡

0

𝑢𝑛 (𝜏) 𝑑𝜏.

(57)

On the other hand, ifM denotes the finite value of (40) and
(41), then

∫
⊤

0

𝑙 (𝑡, 𝑥
𝑛
(𝑡) , 𝑢
𝑛
(𝑡)) 𝑑𝑡 ≤ 𝐽

𝑛
(𝑥
𝑛
(⋅) , 𝑢
𝑛
(⋅)) ≤ M. (58)

By assumption (𝐻
3
), there exists 𝐾 > 0 such that

𝑢𝑛 (⋅)𝐿2 ≤ 𝐾. (59)

Thus,
𝑥𝑛 (𝑡) ≤ ‖𝜃 (0)‖ + 𝑀⊤ + 𝜎⊤𝐾

+ 𝛽∫
0

−𝜏
1

‖𝜃 (𝜏)‖ 𝑑𝜏 + 𝛽∫
𝑡−𝜏
1

0

𝑥𝑛 (𝜏) 𝑑𝜏.
(60)

By Gronwall’s lemma, we obtain that
𝑥𝑛 (𝑡) ≤ 𝜓 for 𝑛 sufficiently large, ∀𝑡 ∈ [0, ⊤] , (61)

where

𝜓 = (‖𝜃 (0)‖ + 𝑀⊤ + 𝜎⊤𝐾 + 𝛽𝜏
1
‖𝜃 (⋅)‖) exp (𝛽 (⊤ − 𝜏

1
)) .
(62)

Similarly, for 𝑛 sufficiently large,
�̇�𝑛 (𝑡) ≤ 𝑀 + 𝛽 𝑥𝑛 (𝑡 − 𝜏

1
) + 𝜎 𝑢𝑛 (𝑡) . (63)

For all 𝑡 ∈ [0, ℎ], we have
�̇�𝑛 (𝑡) ≤ 𝑀 + 𝛾 (𝑡) + 𝛽 𝜃 (𝑡 − 𝜏

1
) + 𝜎 𝑢𝑛 (𝑡) = 𝜔 (𝑡) .

(64)

Since 𝜔(⋅) ∈ 𝐿2(𝐼,R) and (𝑢
𝑛
(⋅))
𝑛
is bounded in 𝐿2(𝐼,R𝑚),

with [0, ℎ] of finite measure, there exists  > 0 such that

�̇�𝑛 (⋅) ≤  in 𝐿2 ([0, 𝜏
1
] ,R𝑁) , for 𝑛 sufficiently large.

(65)

For all 𝑡 ∈ [𝜏
1
, ⊤] we have

�̇�𝑛 (𝑡) ≤ 𝑀 + 𝛾 (𝑡) + 𝛽𝜓 + 𝜎 𝑢𝑛 (𝑡) . (66)

As before, we can assert that

∃ > 0 : �̇�𝑛 (⋅) ≤ 
in 𝐿2 ([𝜏

1
, ⊤] ,R𝑁) for 𝑛 sufficiently large.

(67)

By (65) and (67), there exists 𝜂 > 0 such that
�̇�𝑛 (⋅) ≤ 𝜂 (68)

in 𝐿2([0, ⊤],R𝑁) for 𝑛 sufficiently large. Therefore, there
exists a subsequence (�̇�

𝑘
(⋅))
𝑘
of (�̇�
𝑛
(⋅))
𝑛
converging to 𝜎(⋅) ∈

𝐿2(𝐼,R𝑁). Since 𝑥
𝑛
(𝑡) = 𝜃(0) + ∫𝑡

0
�̇�
𝑛
(𝜏)𝑑𝜏 for all 𝑡 ∈ 𝐼, by

the use of (61), the sequence (𝑥
𝑛
(⋅))
𝑛
is equi-bounded and

equi-continuous (because (�̇�
𝑛
(⋅))
𝑛
is bounded in 𝐿2(𝐼,R𝑁)).

Ascoli’s theorem implies that

𝑥
𝑘
(⋅) → 𝑥 (⋅) strongly in 𝐶 (𝐼,R𝑁) . (69)

Since

𝑥
𝑘
(0) = 𝜃 (0) , ∫

𝑡

0

�̇�
𝑛
(𝜏) 𝑑𝜏 → ∫

𝑡

0

𝜎 (𝜏) 𝑑𝜏, (70)
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we obtain that 𝑥(𝑡) = 𝜃(0) + ∫𝑡
0
𝜎(𝜏)𝑑𝜏 and �̇�(𝑡) = 𝜎(𝑡) a.e. 𝑡 ∈

𝐼. The sequence (𝑢
𝑛
(⋅))
𝑛
is bounded in 𝐿2(𝐼,R𝑚). Thus, there

exists a subsequence (𝑢
𝑘
(⋅))
𝑘
such that 𝑢

𝑘
(⋅) → 𝑢(⋅) weakly

in 𝐿2(𝐼,R𝑁). To complete the proof, we show that (𝑥(⋅), 𝑢(⋅))
is an optimal solution to (40)-(41). By Proposition 6, we have

𝐵∗𝜙
𝑘
(𝑡) = 1

𝑐
𝑘

𝑏
𝑘
(𝑡) a.e. 𝑡 ∈ 𝐼. (71)

Hence,

∫
𝑡

0

𝐵∗𝜙𝑘 (𝜏) 𝑑𝜏 = 1
𝑐
𝑘

∫
𝑡

0

𝑏𝑘 (𝜏) 𝑑𝜏 ≤ 1
𝑐
𝑘

𝑀 (72)

with𝑀 = ⊤‖𝛾
4
(⋅)‖
𝐿
2 . We conclude that

∫
𝑡

0

𝐵∗𝜙
𝑘
(𝜏) 𝑑𝜏 → 0 ∀𝑡 ∈ 𝐼. (73)

On the other hand,

∫
𝑡

0

𝐵∗𝜙
𝑘
(𝜏) 𝑑𝜏 → ∫

𝑡

0

𝐵∗𝜙 (𝜏) 𝑑𝜏 ∀𝑡 ∈ 𝐼. (74)

Consequently,

∫
𝑡

0

𝐵∗𝜙 (𝜏) 𝑑𝜏 = 0 ∀𝑡 ∈ 𝐼. (75)

This implies that

𝐵∗𝜙 (𝑡) = 0 ∀𝑡 ∈ 𝐼. (76)

Thus,

𝜙 (𝑡) = 0 ∀𝑡 ∈ 𝐼,
�̇� (𝑡) = 𝐴𝑥 (𝑡 − 𝜏

1
) + 𝐵𝑢 (𝑡) ∀𝑡 ∈ 𝐼

(77)

and 𝑥(𝑡) = 𝜃(𝑡) a.e. 𝑡 ∈ [−𝜏
1
, 0], 𝑥(⊤) = 𝛼. Then, (𝑥(⋅), 𝑢(⋅)) is

an admissible pair and

∫
𝐼

𝑙 (𝑡, 𝑥 (𝑡) , �̇� (𝑡 − 𝜏
2
) , 𝑢 (𝑡)) 𝑑𝑡 ≥ M. (78)

On the other hand,

∫
𝐼

𝑙 (𝑡, 𝑥
𝑘
(𝑡) , �̇�
𝑘
(𝑡 − 𝜏
2
) , 𝑢
𝑘
(𝑡)) 𝑑𝑡 ≤ M. (79)

Now the hypotheses (𝐻
1
), (𝐻
2
), and (𝐻

4
), together with

Lebesgue’s theorem, assert that

∫
𝐼

𝑙 (𝑡, 𝑥 (𝑡) , �̇� (𝑡 − 𝜏
2
) , 𝑢 (𝑡)) 𝑑𝑡 ≤ M; (80)

that is,

∫
𝐼

𝑙 (𝑡, 𝑥 (𝑡) , �̇� (𝑡 − 𝜏
2
) , 𝑢 (𝑡)) 𝑑𝑡 = M. (81)

This implies that the pair (𝑥(⋅), 𝑢(⋅)) is a solution to problem
(40) and (41).

4. Conclusion
New optimality conditions for problems of the calculus of
variations and optimal control with time delays, where the
delay in the unknown function differs from the delay in its
derivative/control, were obtained.Theproofs are first given in
the simpler context of the delayed calculus of variations and
then extended to delayed optimal control problems by using a
penalty method. New results include a convergence theorem
(see Theorem 7), which is of great practical interest because
it allows us to obtain a solution to a delayed optimal control
problem by considering a sequence of simpler problems of
the calculus of variations. Previous results in the literature
[2, 3, 11] consider the delay in the unknown function to be
the same as the delay in its derivative. There is, however,
no justification for the delays to be the same. In contrast
with those results, here we consider the case of multiple time
delays. Moreover, the procedure of our proofs is completely
different from the case of one time delay only, which relies on
the Lagrange multiplier method. Such approach introduces a
new unknown function, the Lagrange multiplier, for which it
is hard to set the interpolation space. Indeed, the Lagrange
multiplier must be carefully selected in order to be possible
to obtain an accurate solution. Otherwise, the resulting
system of equations may become singular, in particular if
the number of degrees of freedom is too large. Here we use
a penalty method, which requires only the choice of one
scalar parameter. Big values of this parameter are used in
order to impose the boundary conditions in a propermanner.
Furthermore, in our case the use of the penalty method
replaces a constrained optimization problem (the delayed
optimal control problem) by a sequence of unconstrained
problems of the calculus of variations with time delay whose
solutions converge to the solution of the original constrained
problem. Similarly to [11], our results can be easily extended
for controls with time delay.
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[9] L. Göllmann, D. Kern, and H. Maurer, “Optimal control
problems with delays in state and control variables subject to
mixed control-state constraints,” Optimal Control Applications
& Methods, vol. 30, no. 4, pp. 341–365, 2009.
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