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Chapter

Axisymmetric Indentation
Response of Functionally Graded
Material Coating
Tie-Jun Liu

Abstract

In this chapter, the indentation response of the functionally graded material
(FGM) coating is considered due to the contact between the coating and axisym-
metric indenter. The mechanical properties of FGM coating is assumed to vary
along the thickness direction. Three kinds of models are applied to simulate the
variation of elastic parameter in the FGM coating based on the cylindrical coordi-
nate system. The axisymmetric frictionless and partial slip contact problems are
reduced to a set of Cauchy singular integral equations that can be numerically
calculated by using the Hankel integral transform technique and the transfer matrix
method. The effect of gradient of coating on the distribution of contact stress is
presented. The present investigation will provide the guidance for the indentation
experiment of coating.

Keywords: functionally graded material, coating, indentation, axisymmetric
contact

1. Introduction

Functionally graded material (FGM) [1] which is new kind of nonhomogeneous
composite material has many predominant properties, so it has been widely used in
many fields. In recent years, many researchers have conducted the experiment to
prove that FGM used as coatings can resist the contact deformation and reduce the
interface damage [2], so it is very important to study the indentation response of
FGM coating. Because FGM are composites whose material properties vary gradu-
ally along a coordinate axis, the governing equations which represent the mechan-
ical behaviors of the materials are very difficult to solve. Researchers usually
describe the properties of FGM according to some specific functional forms such as
exponential functions and power law functions of elastic modulus [3, 4]. By
assuming the elastic modulus of FGM varying as exponential function form, Guler
and Erdogan [5, 6] studied the two-dimensional contact problem of functionally
graded coatings. Liu et al. [7, 8] investigated the axisymmetric contact problem of
FGM coating and interfacial layer with exponentially varying modulus by using the
singular integral equation. The axisymmetric problems for a nonhomogeneous
elastic layer in which the shear modulus follows the power law function are taken
into account by Jeon et al. [9]. Because solving the controlling equations of FGM is
difficult, the contact problem of FGM is limited to assume the elastic modulus
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varying as some specific functional forms. To eliminate this disadvantage, Ke and
Wang [10, 11] applied the linear multilayered (LML) model to simulate the FGM
with arbitrarily varying elastic parameter. Based on the model, some two-
dimensional contact problems are studied. The axisymmetric contact problem of
FGM coating with arbitrary spatial variation of material properties is considered by
making use of the extended linear multilayered model [12, 13]. Recently, a piece-
wise exponential multilayered (PWEML) model [14] is presented to solve the
frictionless contact problem of FGM with the shear modulus of the coating varying
in the power law form. Subsequently, Liu and Li [15] applied the model to solve the
two-dimensional adhesive contact problem.

When two bodies are brought together under the applied force, contact occurs at
interface. Hertz [16] first considers the frictionless contact problem between elastic
bodies. Researchers obtained the classical solution to the indentation problem under
the flat, cylindrical, and cone punch based on Hertz’s theory [17]. The contact
tractions and displacement field can be given to characterize the mechanical prop-
erties of various materials. Liu et al. [7, 12, 14] solved the axisymmetric frictionless
contact problem for FGM coating by using the singular integral equation. They
discussed the effect of the gradient of FGM coating on the indentation response.
Because the materials of the two contact solids are dissimilar, the slip will take place
at the contact surface. If slip is opposed by friction, the contact region is divided
into two parts: the stick region and the slip region. Spence [18] gives the contact
stress fields in homogeneous materials by assuming a self-similarity at each stage of
finite friction contact when the normal load monotonically increases. Ke and Wang
[19] solved the two-dimensional contact problem with finite friction for FGM
coating. Liu et al. [13] considered the axisymmetric partial slip contact problem of a
graded coating. When the coefficient of friction is sufficiently large, slip might be
prevented entirely. The self-similar solution to nonslip contact problems with
incremental loading was considered by Spence [20]. Goodman [21] investigated the
axisymmetric contact problem with full stick when elastically dissimilar spheres are
pressed together. Mossakovski [22] studied contact with adhesion for the elastic
bodies under condition of adhesion. Norwell et al. [23] adopt an iteration method to
solve the coupled equations which can describe the partial slip contact problem.

In this chapter, the axisymmetric frictionless and partial slip contact problems for
FGM coating are considered. The basic formulation for nonhomogeneous material
layer with elastic parameter varying along the thickness direction is given in Section
2. Based on the basic formulations for nonhomogeneous layer, three types of compu-
tational model for FGM coating are introduced in Section 3 for axisymmetric contact
problem. The displacement and stress components in the transform domain are
gained by using the Hankel transform technology and transfer matrix method. In
Section 4, we will investigate the solution for the axisymmetric frictionless and partial
slip contact problems. The indentation response of FGM coating under frictionless
and frictional condition will be discussed in Section 5. Finally, we will depict some
conclusions on the axisymmetric indentation response of FGM coating.

2. Basic formulations for nonhomogeneous material layer

For the present axisymmetric problem, the strain components, stress-strain
relations, and the equilibrium equations in the radial and axial directions
disregarding the body forces are given by the following relations [7]:

εrr ¼
∂u

∂r
, (1a)
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εθθ ¼
u

r
, (1b)

εzz ¼
∂w

∂z
, (1c)

2εrz ¼
∂u

∂z
þ

∂w

∂r
: (1d)

σrr ¼ λ zð Þ þ 2μ zð Þð Þ
∂u

∂r
þ λ zð Þ

u

r
þ

∂w

∂z

� �

, (2a)

σθθ ¼ λ zð Þ þ 2μ zð Þð Þ
u

r
þ λ zð Þ

∂u

∂r
þ

∂w

∂z

� �

, (2b)

σzz ¼ λ zð Þ þ 2μ zð Þð Þ
∂w

∂z
þ λ zð Þ

∂u

∂r
þ
u

r

� �

, (2c)

σrz ¼ μ zð Þ
∂u

∂z
þ

∂w

r

� �

: (2d)

∂σrr

∂r
þ

∂σrz

∂z
þ
1

r
σrr � σθθð Þ ¼ 0, (3a)

∂σrz

∂r
þ

∂σzz

∂z
þ
1

r
σrz ¼ 0: (3b)

in which r and z are the variables of the cylindrical coordinate system; εrr, εθθ,
εzz, and εrz are the strain components; u and w are the displacement components in
the radial and axial directions; σrr, σθθ, σzz, and σrz are the stress components; λ zð Þ
and μ zð Þ are Lame’s constants which vary along the z-axis direction.

3. Computational models for FGM coating

The properties of nonnonhomogeneous material may vary arbitrarily along a
certain spatial direction, which makes the solution of contact problem very difficult
in mathematics. In the present work, we adopt three methods to model the axisym-
metric FGM layer based on the cylindrical coordinate system. First, exponential
function (EF) model [7] is used to assume the elastic modulus of the FGM layer that
varies as the exponential function. Second, the linear multi-layered (LML) model [12]
is applied to simulate the FGM layer with arbitrarily varying material modulus, and
Poisson’s ratio is chosen as 1/3. The model divided FGM layer into a series of sub-
layers in which the shear modulus varies as linear function form. The shear modulus
is taken to be continuous at the sub-interfaces and equal to their real values. Third,
the piecewise exponential multilayered (PWEML) model [14] is employed in model-
ing the functionally graded material layer with arbitrary spatial variation of material
properties. In this model, the functionally graded layer is cut into several sub-layers
where the elastic parameter varies according to the exponential function form. Three
types of computational model for FGM coating are the following.

3.1 Exponential function model

In Figure 1(a), the shear modulus of the functionally graded coating can be
described by

μ zð Þ ¼ μ0e
αz (4)
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where α ¼ h�1
0 log μ0=μ ∗ð Þ is a constant characterizing the material inhomoge-

neity with μ0 being the value of μ zð Þ at the surface, i.e., μ0 ¼ μ h0ð Þ. μ0 and μ ∗ are
related by

μ0 ¼ μ ∗ eαh0 (5)

Substituting Eqs. (2) and (5) into Eq. (3), we obtain

kþ 1ð Þ
∂
2u

∂r2
þ
1

r

∂u

∂r
�

1

r2
uþ

∂
2w

∂r∂z

� �

þ k� 1ð Þα
∂u

∂z
þ

∂w

∂r

� �

þ k� 1ð Þ
∂
2u

∂z2
�

∂
2w

∂r∂z

� �

¼ 0,

(6a)

kþ 1ð Þ
∂
2u

∂r∂z
þ
1

r

∂u

∂z
þ

∂
2w

∂z2

� �

� k� 1ð Þ
∂
2u

∂r∂z
�

∂
2w

∂r2

� �

�
k� 1ð Þ

r

∂u

∂z
�

∂w

∂r

� �

þ 3� kð Þα
∂u

∂r
þ
u

r

� �

þ kþ 1ð Þα
∂w

∂z
¼ 0

(6b)

where k ¼ 3� 4ν and ν is Poisson’s ratio.
In order to solve Eq. (6), we use the technique of Hankel integral transform.

The Hankel transform and its inversion are defined as

〈 ~ω s, zð Þ〉p ¼

ð

∞

0

ω s, zð ÞrJp srð Þdr, (7a)

ωp r, zð Þ ¼

ð

∞

0

〈 ~ω s, zð Þ〉psJp srð Þds (7b)

where the bar � indicates Hankel transform; 〈〉p is the pth-order Hankel

transform; and Jp is the pth-order Bessel function of the first kind.

By using the Hankel transform and definingD ¼ d=dz, Eq. (6) can be expressed as

k� 1ð ÞD2 þ α k� 1ð ÞD� kþ 1ð Þs2
� �

〈~u〉1 � 2sDþ αs k� 1ð Þf g〈 ~w〉0 ¼ 0, (8a)

Figure 1.
The linear mutli-layered model for the functionally graded coating (a) and the cylindrical coordinate
system (b).
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2sDþ α 3� kð Þsf g〈~u〉1 þ kþ 1ð ÞD2 þ α kþ 1ð ÞD� k� 1ð Þs2
� �

〈 ~w〉0 ¼ 0, (8b)

The solution of the differential Eqs. (8) is given by [7]

〈~u〉1 ¼ A3 sð Þem1z þ A4 sð Þem2z þ A5 sð Þem3z þ A6 sð Þem4z (9a)

〈 ~w〉0 ¼ A3 sð Þa1e
m1z þ A4 sð Þa2e

m2z þ A5 sð Þa3e
m3z þ A6 sð Þa4e

m4z (9b)

where

ai ¼ �
2smi þ sα 3� kð Þ

kþ 1ð Þmi
2 þ α kþ 1ð Þmi � k� 1ð Þs2

, i ¼ 1, ::…, 4ð Þ

and

m1 ¼ �
α

2
þ

1

2
α2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffi

3� k

kþ 1

r

αs

( )1=2

,

m2 ¼ �
α

2
�

1

2
α2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffi

3� k

kþ 1

r

αs

( )1=2

,

m3 ¼ �
α

2
þ

1

2
α2 þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffi

3� k

kþ 1

r

αs

( )1=2

,

m4 ¼ �
α

2
�

1

2
α2 þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffi

3� k

kþ 1

r

αs

( )1=2

:

According to Hooke’s law and strain-displacement relations, stress components
may be expressed as

κ � 1

μ zð Þ
〈~σzz〉0 ¼

X

4

i¼1

κ þ 1ð Þmiai þ 3� kð Þsf gAiþ2e
miz (10a)

1

μ zð Þ
〈~σrz〉1 ¼

X

4

i¼1

mi � aisf gAiþ2e
miz (10b)

For a homogeneous layer without the gradient, the gradient index α in Eqs. (9)
and (10) equals to 0.

3.2 Linear multi-layered model

Consider the linear multi-layered model shown in Figure 1. The shear modulus of
the functionally graded coating can be described by an arbitrary continuous func-
tion of z, μ zð Þ, with boundary values μ h0ð Þ ¼ μ0. Poisson’s ratio v is taken as 1/3. The
linear multilayered model divides functionally graded coating into N sub-layers.
The shear modulus μ zð Þ in each sub-layer is assumed to take the following form:

μ zð Þ≈ μ j zð Þ ¼ c j 1þ z=b j


 �

¼ c j
z ∗

b j

� �

, h j ≤ z≤ h j�1, j ¼ 1, 2…N (11)

where z ∗ ¼ zþ b and μ j is equal to the real value of the shear modulus at the

sub-interfaces, z ¼ h j, i.e., μ j h j


 �

¼ μ h j


 �

, which lead to
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b j ¼
μ j�1h j � μ jh j�1

μ j � μ j�1

, (12a)

c j ¼
μ j

1þ h j=b j
: (12b)

As in [12], introduces two potential functions to write the displacement compo-
nents u j and w j in each sub-layer:

u j ¼ zþ b j


 �

∂f j=∂rþ ∂ϕ j=∂r (13a)

w j ¼ zþ b j


 �

∂f j=∂z� f j þ ∂ϕ j=∂z, h j ≤ z≤ h j�1


 �

: (13b)

By making use of Eqs. (1), (2), and (13), the equilibrium equations (3) are
represented as [12].

∇
2ϕ j þ

1

z ∗
∂ϕ j=∂z ∗ ¼ 0, (14a)

∇
2f j þ

1

z ∗
∂f j=∂z ∗ ¼

1

2z ∗ 2
∂ϕ j=∂z: (14b)

where

∇
2 ¼

1

r
∂ r∂=∂rð Þ=∂rþ ∂

2=∂z ∗ 2:

Then the displacement and stress components given by Eqs. (13) and (2) are
given by

u j ¼ z ∗ ∂f j=∂rþ ∂ϕ j=∂r, h j ≤ z≤ h j�1


 �

(15a)

w j ¼ z ∗ ∂f j=∂z ∗ � f j þ ∂ϕ j=∂z ∗ , h j ≤ z≤ h j�1


 �

(15b)

σrrj ¼ 2c j
z ∗

b j

� �

z ∗ ∂2f j=∂r
2 þ ∂

2ϕ j=∂r
2 � ∂f j=∂z ∗ �

1

2z ∗
∂ϕ j=∂z ∗

� �

, (16a)

σθθj ¼ 2c j
z ∗

b j

� �

z ∗
1

r
∂f j=∂rþ

1

r
∂ϕ j=∂r� ∂f j=∂z ∗ �

1

2z ∗
∂ϕ j=∂z ∗

� �

, (16b)

σzzj ¼ 2c j
z ∗

b j

� �

z ∗ ∂2f j=∂r
2 þ ∂

2ϕ j=∂z ∗
2 � ∂f j=∂z ∗ �

1

2z ∗
∂ϕ j=∂z ∗

� �

, (16c)

σrzj ¼ 2c j
z ∗

b j

� �

z ∗ ∂2f j=∂r∂z ∗ þ ∂
2ϕ j=∂r∂z ∗

� �

: (16d)

Applying Hankel transformation Eqs. (7a)–(14), we obtain the solutions for
displacement functions ϕ j and f j in each sub-layer:

〈 ~ϕ j〉0 ¼ A j1 sð ÞI0 sz ∗ð Þ þ A j2 sð ÞK0 sz ∗ð Þ, (17a)

〈 ~f j〉0 ¼ A j3 sð ÞI0 sz ∗ð Þ þ A j4 sð ÞK0 sz ∗ð Þ þ
s

2
A j1 sð ÞI1 sz ∗ð Þ � A j2 sð ÞK1 sz ∗ð Þ

� �

(17b)

where I0, I1, K0, and K1 are modified Bessel functions of the 0th and 1th order.
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Applying Hankel transform to Eqs. (15) and (16), we get

〈~urj〉1 ¼ �sz ∗ 〈 ~f j〉0 � s〈~ϕ j〉0

¼ �
s2

2
z ∗ I1 sz ∗ð Þ � sI0 sz ∗ð Þ

� �

A j1 sð Þ þ
s2

2
z ∗K1 sz ∗ð Þ � sK0 sz ∗ð Þ

� �

A j2 sð Þ

�sz ∗ I0 sz ∗ð ÞA j3 sð Þ � sz ∗K0 sz ∗ð ÞA j4 sð Þ

(18a)

〈 ~w j〉0 ¼ z ∗ d〈 ~f j〉0=dz ∗ � 〈 ~f j〉0 þ d〈~ϕ j〉0=dz ∗

¼
s2

2
z ∗ I0 sz ∗ð ÞA j1 sð Þ þ

s2

2
z ∗K0 sz ∗ð ÞA j2 sð Þ þ z ∗ sI1 sz ∗ð Þ � I0 sz ∗ð Þf gA j3 sð Þ

þ �z ∗ sK1 sz ∗ð Þ � K0 sz ∗ð Þf gA j4 sð Þ

(18b)

〈~σzzj〉0 ¼ 2c j
z ∗

b j

� �

f
s3

2
z ∗ I1 sz ∗ð ÞA j1 sð Þ �

s3

2
z ∗K1 sz ∗ð ÞA j2 sð Þ

þ z ∗ s2I0 sz ∗ð Þ � 2sI1 sz ∗ð Þ

 �

A j3 sð Þ þ z ∗ s2K0 sz ∗ð Þ þ 2sK1 sz ∗ð Þ

 �

A j4 sð Þg

(18c)

〈~σrzj〉1 ¼ 2c j
z ∗

b j

� �

f �
s3

2
z ∗ I0 sz ∗ð Þ �

s2

2
I1 sz ∗ð Þ

� �

A j1 sð Þ

þ �
s3

2
z ∗K0 sz ∗ð Þ þ

s2

2
K1 sz ∗ð Þ

� �

A j2 sð Þ � s2z ∗ I1 sz ∗ð ÞA j3 sð Þ þ s2z ∗K1 sz ∗ð ÞA j4 sð Þg

(18d)

3.3 Piece wise exponential multi-layered model

Piece wise exponential multi-layered model divides functionally graded coatings
into N sub-layers as shown in Figure 2. The shear modulus μ zð Þ in each sub-layer is
assumed to vary as an exponential function form:

μ zð Þ≈ μ j zð Þ ¼ a je
b jz, h j ≤ z≤ h j�1, j ¼ 1, 2,……N (19a)

μ h j


 �

¼ μ j h j


 �

, (19b)

Figure 2.
Piece wise exponential multi-layered model for the graded coating.
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in which:

a j ¼ μ h j


 �

e� ln μ h jþ1ð Þ=μ h jð Þ½ �h j= h jþ1�h jð Þ, b j ¼ ln μ h jþ1


 �

=μ h j


 �
 �

= h jþ1 � h j


 �

and h j is the z coordinate at the end of layer j. Poisson’s ratio in each sub-layer is
assumed to be a constant v j.

In each sub-layer ( j ¼ 1, 2,……N), the equilibrium equations are represented
as [14]

k j þ 1

 � ∂

2u j

∂r2
þ
1

r

∂u j

∂r
�

1

r2
u j þ

∂
2w j

∂r∂z

� �

þ k j � 1

 �

b j
∂u j

∂z
þ

∂w j

∂r

� �

þ k j � 1

 � ∂

2u j

∂z2
�

∂
2w j

∂r∂z

� �

¼ 0, (20a)

k j þ 1

 � ∂

2u j

∂r∂z
þ
1

r

∂u j

∂z
þ

∂
2w j

∂z2

� �

� k j � 1

 �

b j
∂
2u j

∂r∂z
�

∂
2w j

∂r2

� �

�
k j � 1

 �

r

∂u j

∂z
�

∂w j

∂r

� �

þ 3� kð Þb j
∂u j

∂r
þ
u j

r

� �

þ k j þ 1

 �

b j
∂w j

∂z
¼ 0

(20b)

where u j and w j are the displacement components in the radial and z axial
directions in layer j and k j ¼ 3� 4v j.

The solution of differential equations (20) may be expressed as [7]

〈~u j s, zð Þ〉1 ¼ A j1 sð Þem j1z þ A j2 sð Þem j2z þ A j3 sð Þem j3z þ A j4 sð Þem j4z (21a)

〈 ~w j s, zð Þ〉0 ¼ A j1 sð Þc j1e
m j1z þ A j2 sð Þc j2e

m j2z þ A j3 sð Þc j3e
m j3z þ A j4 sð Þc j4e

m j4z (21b)

where A j1–A j4 are unknown constants to be solved in layer j.

cji ¼ �
2smji þ sb j 3� k j


 �

k j þ 1

 �

mji
2 þ b j kþ 1ð Þmji � k j � 1


 �

s2
, i ¼ 1, 2, 3, 4ð Þ

m j1 ¼ �
b j

2
þ

1

2
b j

2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3� k j

k j þ 1

s

b js

( )1=2

,

m j2 ¼ �
b j

2
�

1

2
b j

2 þ 4s2 þ i4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3� k j

k j þ 1

s

b js

( )1=2

,

m j3 ¼ �
b j

2
þ

1

2
b2j þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3� k j

k j þ 1

s

b js

( )1=2

,

m j4 ¼ �
b j

2
�

1

2
b2j þ 4s2 � i4

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3� k j

k j þ 1

s

b js

( )1=2

:

According to Hooke’s law and strain-displacement relations, stress components
may be expressed as

k j � 1

μ j zð Þ
〈~σzzj s, zð Þ〉0 ¼

X

4

i¼1

k j þ 1

 �

mjicji þ 3� kð Þs
� �

Ajie
mjiz (22a)
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1

μ j zð Þ
〈~σrzj s, zð Þ〉1 ¼

X

4

i¼1

mji � cjis
� �

Ajie
mjiz (22b)

4. Solution for the axisymmetric frictionless and partial slip contact
problem

In this section, we will solve axisymmetric contact and fretting problem for the
functionally graded coating bonded to the homogeneous half-space under the
spherical indenter. A functionally graded coated half-space subjected to normal and
radical distributed external loads is shown in Figure 3. The stresses and displace-
ments are continuous at the interfaces, z ¼ 0, which state.

u2 r, 0ð Þ � u1 r, 0ð Þ ¼ 0, (23a)

w2 r, 0ð Þ �w1 r, 0ð Þ ¼ 0, (23b)

σ2zz r, 0ð Þ � σ1zz r, 0ð Þ ¼ 0, (23c)

σ2rz r, 0ð Þ � σ1rz r, 0ð Þ ¼ 0: (23d)

And along the coating surface, z ¼ h0, we have

σ1zz r, h0ð Þ ¼ p rð Þ 0≤ r≤ að Þ, (24a)

σ1zz r, h0ð Þ ¼ 0 a< r<∞ð Þ, (24b)

σ1rz r, h0ð Þ ¼ q rð Þ 0≤ r≤ að Þ, (24c)

σ1rz r, h0ð Þ ¼ 0 a< r<∞ð Þ (24d)

in which i ¼ 1 refers to the graded coating and i ¼ 2 refers to the homogeneous
half-space. p rð Þ and q rð Þ are normal contact tractions and shear stress, respectively.

By using the Hankel integral transform technique and transfer matrix method,
the surface displacement components can be expressed as

Figure 3.
A functionally graded coated half-space subjected to normal and radical distributed external loads.
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w0 rð Þ ¼

ð

a

0

p tð Þt

ð

∞

0

sM11 s, h0ð ÞJ0 stð ÞJ0 srð Þdsdtþ

ð

a

0

q tð Þt

ð

∞

0

sM12 s, h0ð ÞJ1 stð ÞJ0 srð Þdsdt

(25a)

u0 rð Þ ¼

ð

a

0

p tð Þt

ð

∞

0

sM21 s, h0ð ÞJ0 stð ÞJ1 srð Þdsdtþ

ð

a

0

q tð Þt

ð

∞

0

sM22 s, h0ð ÞJ1 stð ÞJ1 srð Þdsdt

(25b)

where J0 :ð Þ and J1 :ð Þ are Bessel functions and

M11 s, h0ð Þ M12 s, h0ð Þ

M21 s, h0ð Þ M22 s, h0ð Þ

" #

¼
1

2μ0
B3M,

M ¼ T1 h0 þ b1ð Þ½ � V1


 �

B½ � T1 h0 þ b1ð Þ½ � V1


 �� ��1
,

B3 ¼
0 1 0 0

1 0 0 0

� �

,C ¼
1 0

0 1

� �

:

where Mij s, h0ð Þ is the kernel function (see Ref. [13]).
Considering the asymptotic behavior of Bessel functions for large arguments

[13], one may prove

lim
s!∞

sM11 s, h0ð Þ sM12 s, h0ð Þ

sM21 s, h0ð Þ sM22 s, h0ð Þ

� �

¼
α11 α12

α21 α22

� �

¼

1� v

μ0

1� 2v

2μ0
1� 2v

2μ0

1� v

μ0

2

6

6

4

3

7

7

5

: (26)

Differentiation of Eq. (5) with respect to r and extension of the definition of the
unknown functions, p rð Þ and q rð Þ, into the range �a≤ r≤ 0 yields.

m1 rð Þ ¼
1

2

ð

a

�a

p tð Þ tj jI11 r, tð Þ þ q tð Þ tj jI12 r, tð Þf gdtþ
α1

π

ð

a

�a

p tð Þ

t� r
dtþ

α1

π

ð

a

�a

p tð ÞH1 r, tð Þdt

� α2q rð Þ

(27a)

m2 rð Þ ¼
1

2

ð

a

�a

q tð Þ tj jI22 r, tð Þ þ p tð Þ tj jI21 r, tð Þf gdtþ
α1

π

ð

a

�a

q tð Þ

t� r
dtþ

α1

π

ð

a

�a

q tð ÞH2 r, tð Þdt

þ α2p rð Þ

(27b)

where

m1 rð Þ ¼
∂uz0 r, h0ð Þ

∂r
,m2 rð Þ ¼

1

r

∂rur0 r, h0ð Þ

∂r
,Hi r, tð Þ ¼ hi r, tð Þ � 1ð Þ= t� rð Þ,
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Iij r, tð Þ ¼ �1ð Þi
ð

∞

0

sMij s, h0ð Þ � αij

 �

sJ2�i srð ÞJ j�1 stð Þds, i ¼ 1, 2, j ¼ 1, 2ð Þ,

h1 r, tð Þ ¼
t=rj jE t=rð Þ, ð tj j< rj jÞ

t2=r2ð ÞE r=tð Þ � t2 � r2ð Þ=r2
� �

K r=tð Þ, tj j> rj jð Þ

�

,

h2 r, tð Þ ¼
t2 � r2ð Þ= trj j

� �

K t=rð Þ þ r=tð ÞE t=rð Þ, tj j< rj jð Þ

E r=tð Þ, tj j> rj jð Þ

�

,

with K :ð Þ and E :ð Þ being, respectively, the complete elliptic integrals of the first
and second kinds.

The system of the singular integrals, Eqs. (27a) and (27b), must be solved
subjected to the following condition:

P ¼ π

ð

a

�a

p tð Þtdt (28)

4.1 Frictionless contact problem of FGM coating

In this section, the axisymmetric frictionless contact problem between FGM
coatings and a rigid spherical punch is studied. As shown in Figure 4, an applied
force P is acted on the rigid spherical punch along the z-direction to form an indent
depth δ0 and a circular contact region with a radius a. The displacement boundary
condition in the contact region is expressed as

w r, h0ð Þ ¼ δ0 � r2=2R 0≤ r≤ að Þ (29)

Because the frictionless contact is considered, the shear traction q rð Þ is zero, and
the controlling equation is

m1 rð Þ ¼
1

2

ð

a

�a

p tð Þ tj jI11 r, tð Þdtþ
α1

π

ð

a

�a

p tð Þ

t� r
dtþ

α1

π

ð

a

�a

p tð ÞH1 r, tð Þdt (30)

Figure 4.
FGM coating indented by a spherical indenter.
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The Gauss-Chebyshev integration formula [24] is applied to solve Eqs. (28) and
(30) with the consideration of Eq. (29).

4.2 Partial slip contact problem with finite friction for FGM coating

Consider the axisymmetric partial slip contact problem as shown in Figure 5.
The normal surface displacement, uz0, along the coating interface, z = h0, is given by

uz0 rð Þ ¼ δ0 � r2=2R (31)

The inner stick region, r≤ b, and outer slip annulus, b≤ r≤ a, are shown in
Figure 5. According to Spence’s work [18], the radial displacement along the coating
interface in the stick region may be expressed as

ur0 rð Þ ¼ Cr2, r≤ bð Þ (32)

where C denotes the slop of the relative radial displacement gradient and is an
unknown constant. The Coulomb friction law is applied to describe the slip behav-
ior in the slip region. Then, the radial shear traction in the contact region is
represented as

q rð Þ ¼ q ∗ rð Þ � fp bð Þ
r

b
, r≤ bð Þ, (33a)

q rð Þ ¼ �fp rð Þ, b≤ r≤ að Þ: (33b)

where f denotes the friction coefficient.
Finally, the partial slip contact problem with consideration of the boundary condi-

tions (31), (32), and (33) can be expressed according to the singular integral equations:

�α2q rð Þ þ
α1

π

ð

a

�a

p tð Þ

t� r
dtþ

α1

π

ð

a

�a

p tð ÞH1 r, tð Þdtþ
1

2

ð

a

�a

p tð Þ tj jI11 r, tð Þ þ q tð Þ tj jI12 r, tð Þf gdt

¼ �r=R,

(34a)

Figure 5.
A functionally graded coated half-space indented by a spherical indenter.
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α2p rð Þ þ
α1

π

ð

a

�a

q tð Þ

t� r
dtþ

α1

π

ð

a

�a

q tð ÞH2 r, tð Þdtþ
1

2

ð

a

�a

q tð Þ tj jI22 r, tð Þ þ p tð Þ tj jI21 r, tð Þf gdt

¼ 3C rj j

(34b)

The Goodman approximate method (uncoupled solution) [21] and the iteration
method (coupled solution) [13] are used to solve coupled singular integral
equation (34).

5. Indentation response of FGM coating under a spherical indenter

The indentation response of FGM coating under frictionless and frictional con-
dition will be presented in this section.

Firstly, the effects of the stiffness ratio μ0=μ ∗ on the distributions of the contact
pressure and the relation between indentation and applied force are investigated for
the frictionless contact problem. The exponential function model is applied to
obtain the results shown in Figures 6 and 7 [7]. The distribution of the dimension-
less contact pressure p rð Þ (a) and radial stress σrr rð Þ (b) on the surface of FGM
coating indented by a rigid spherical indenter for various stiffness ratio μ0=μ ∗
when R=h0 ¼ 10 and a=h0 ¼ 0:2 is shown in Figure 6. With the increase of μ0=μ ∗ ,
the contact pressure p rð Þ decreases. It can be observed that the tensile spike in the
distribution of σrr rð Þ as r ! a has clearly some implications regarding the initiation
and subcritical growth of surface cracks. Figure 7 presented the relation of P vs. a
and P vs. δ0. With the decrease of μ0=μ ∗ , the larger applied normal load is needed
to create the same contact region (a) and the same maximum indentation depth δ0
(b). The results give an indentation testing method to measure the stiffness of the
coating surface and the gradient of the coating.

Secondly, the linear multi-layered model is used to model the shear modulus of
the coating varying in the following power law form:

μ zð Þ ¼ μ ∗ þ μ0 � μ ∗ð Þ z=h0ð Þn, (35)

where n is a gradient index characterizing the gradual variation of the shear
modulus. In the following calculation, the LML model divided the FGM coating into

Figure 6.
Distribution of the dimensionless contact pressure p rð Þ (a) and radial stress σrr rð Þ (b) on the surface of the
graded coating loaded by a rigid spherical indenter for some selected values of the stiffness ratio μ0=μ ∗ with
R=h0 ¼ 10 and a=h0 ¼ 0:2.
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six sub-layers. The axisymmetric indentation response for the frictionless contact
under the spherical indenter is considered.

Figure 8 shows the distributions of the contact pressure for some selected values
of n with μ0=μ ∗ = 1/8 and a=h0 ¼ 0:1 [12]. With the increase of n, the contact
pressure obviously increases. This behavior shows that the contact traction can be
improved by adjusting the gradient of the coating when the stiffness of the coating
surface keeps unchanged. When the FGM coating is indented by a conical indenter,
the relations of P vs. a (a) and P vs. δ0 (b) for some selected values of n with
μ0=μ ∗ = 1/8 are shown in Figure 9 [12]. To create the same contact region and the

Figure 7.
Relations of P vs. a (a) and P vs. δ0 (b) for some selected values of the stiffness ratio μ0=μ ∗ with R=h0 ¼ 10.

Figure 8.
Distribution of the dimensionless contact pressure σzz rð Þ (a) and radial stress σrr rð Þ (b) for some selected values
n with a=h ¼ 0:1 and R=h0 ¼ 10.

Figure 9.
Relations of P vs. a (a) and P vs. δ0 (b) for selected values of n with R=h ¼ 10.
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same maximum indentation depth δ0 (b), the larger applied normal load is needed
for larger values of n.

Thirdly, the effect of the variation of Poisson’s ratio on the frictionless contact
problem is considered by using piece wise exponential multi-layered model.
The shear modulus of FGM coating varies as power law form according to Eq. (35).
Poisson’s ratio of FGM coating is assumed to vary as the linear function along the
thickness as follows

v j ¼ v1 þ
j� 1

N � 1
v ∗ � v1ð Þ, j ¼ 1, 2,……N (36)

where v1 and v ∗ are Poisson’s ratio for the first layer and homogeneous half-
space. v j denotes Poisson’s ratio in layer j. The contact pressure (a) and the relations
of P vs. a (b) for the different variation forms of Poisson’s ratio when v1 = 1/3 and
μ0=μ ∗ = 1/5 are given in Figure 10 [14]. It is assumed that Poisson’s ratio for the
FGM coating-substrate structure varies from 1/3 to 0.1 and varies from 1/3 to 0.5
according to Eq. (36). The results show that the variation of Poisson’s ratio along the
thickness has no significant impact on the contact pressure and the relation of force
contact region in axisymmetric contact problem when the Poisson’s ratio at the
upper surface of coating is fixed. Figure 11 presented the effect of value of Poisson’s
ratio on the contact pressure (a) and the relation of P vs. a (b) when Poisson’s ratio
in the coating-substrate structure is a constant (v j ¼ v) as shown in [14]. We can
observe that the value of Poisson’s ratio has a significant effect on the contact

Figure 10.
The contact pressure (a) and the relations of P vs. a (b) for the different variation form of the Poisson’s ratio
with v1 = 1/3 and μ0=μ ∗ = 1/5.

Figure 11.
The effect of the value of Poisson’s ratio on the contact pressure (a) and on the relation of P vs. a (b) with
μ0=μ ∗ = 1/5 while n = 0.2.
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pressure. While the values of v obviously increase, the contact pressure is observed.
The results also show that the larger applied normal load is needed to create the
same contact region and the same maximum indentation depth δ0 for larger values
of v.

Finally, the axisymmetric contact problem of a functionally graded coated half-
space is indented by a rigid spherical punch in the case of the partial slip. The linear
multi-layered model is used to solve the problem.

The normal contact traction and radial tangential traction for some selected

values of the shear modulus ratio μ0=μ ∗ with P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16 are
shown in Figure 12 [14]. The solid lines correspond to the uncoupled solution, and
the scatter symbols correspond to the coupled solution. We can observe that con-
sideration of the coupling between the normal and tangential tractions may result in
the increase of the peak contact tractions but slight decrease of the contact tractions
near the edges of the contact region for a given shear modulus ratio μ0=μ ∗ . With
the increase of μ0=μ ∗ , the peak normal and tangential contact tractions increase.
Figure 12b also shows that the stick region and the contact radius decrease with
the increase of μ0=μ ∗ . This behavior provides a way for us to change the
distribution of the contact pressure by adjusting the stiffness of the coating surface.
Figure 13 presents the effects of n on the contact traction distributions with

P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16 [14]. With the increase of n, the peak normal
traction (Figure 13a) increases, and the peak tangential traction (Figure 13b)
decreases. This behavior provides a way for us to change the distribution of the

Figure 12.
Contact traction distributions for selected values of the shear modulus ratio μ0=μ ∗ with P=μ ∗ h02 ¼ 4� 10�4

and f ¼ 0:16: (a) p rð Þ and (b) q rð Þ.

Figure 13.
Contact traction distributions for selected values of n with P=μ ∗ h02 ¼ 4� 10�4 and f ¼ 0:16: (a) p rð Þ and
(b) q rð Þ.
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contact traction by adjusting the gradient of the coating while remaining the shear
modulus of the coating surface unchanged.

6. Conclusions

In this chapter, we introduced the axisymmetric indentation response for FGM
coating under frictionless and partial slip condition by using the three types of
computational models. The exponential function model can solve the axisymmetric
contact problem for FGM coating whose elastic modulus continuously varies, but it
cannot simulate FGM with arbitrarily varying properties. The linear multi-layered
model allows arbitrarily the variation of the material properties of FGM, but it
requires Poisson’s ratio which is 1/3. The Piece wise exponential multi-layered
model can simulate functionally graded coating with arbitrarily varying material
modulus with no limit to Poisson’s ratio, but numbers of sub-layers are larger. In
practice, the computational model is chosen according to properties of the problem.
Hankel integral transformation technology and transfer matrix method are used to
solve the axisymmetric contact problem of FGM coating based on the cylindrical
coordinate system. The results show that the contact behavior can be improved by
adjusting the gradient of FGM coating. The present investigation will be expected to
provide a guidance for design considerations and applications of FGM coating.
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