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Chapter

Improving Feature Map Quality of
SOM Based on Adjusting the
Neighborhood Function
Le Anh Tu

Abstract

This chapter presents a study on improving the quality of the self-organizing
map (SOM). We have synthesized the relevant research on assessing and improving
the quality of SOM in recent years, and then proposed a solution to improve the
quality of the feature map by adjusting parameters of the Gaussian neighborhood
function. We have used quantization error and topographical error to evaluate the
quality of the obtained feature map. The experiment was conducted on 12 published
datasets and compared the obtained results with some other improving neighbor-
hood function methods. The proposed method received the feature map with better
quality than other solutions.

Keywords: quantization error, topographical error, self-organizing map,
feature map, projection quality, learning quality

1. Introduction

SOM is a very useful neural network for visualization and data analysis. Among
SOM’s application areas, urban design is a potential area. Many of SOM’s applica-
tions can be included in urban design such as: analysis of growth factors in urban
design proposal [1], consider urban spatial structure [2], analysis of city systems
[3], city data mining [4], predicting accessibility demand for healthcare infrastruc-
ture) [5], etc. However, for SOM’s calculation results to be more accurate,
improving the quality of feature map is a problem to solve.

SOM creates a map of the input data in the multi-dimensional space to the less
dimensional space that is usually two-dimensional space called by the feature map
of the data. To evaluate the quality of feature map, people mainly use two indica-
tors: learning quality and projection quality [6–9]. The learning quality indicator is
determined through measurement of quantization error (QE) [10, 11]. The projec-
tion quality indicator is determined through measurement of topographical error
(TE) [12–14]. If the values of the QE and TE are small, feature map will be assessed
with good quality.

Many studies have shown that the quality of feature map is affected greatly by
the initial parameters of the network, including map size, numbers of training and
neighborhood radius [11, 15–18]. Beside that, a feature map achieving with a set of
fit parameters is not considered as the best quality map. Therefore, improving the
feature map quality of SOM is concerned by many researchers.
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To achieve good quality map for each dataset in traditional method is “trying
error” with different parameters of the network. These parameters, creating a map
with the smallest error measurement are suitable for the dataset [11]. According to
Chattopadhyay et al. [19], with a specific dataset, the size of the map is selected by
“trying error” until reaching value of QE, TE small enough. Polzlbauer [20] indi-
cates the technical correlation between QE and TE, which TE often arises when QE
reduces. In case of increasing the size of Kohonen layer, QE may reduce but TE
increases (i.e., the large size of the Kohonen layer can distort the shape of the map),
and vice versa when the size of Kohonen layer is too small, TE is not trust. The use
of a small neighborhood radius leads to reduced QE. If the neighborhood radius is
the smallest value, QE will reach a minimum value [21].

Besides the method of “trying error” to determine a suitable network configura-
tion, the study on improving the algorithm of SOM to enhance the quality of feature
map is also interested by researchers. Germen [22, 23] optimized QE by integrating
“hit” parameter when updating the weight vector of the neurons, the term “hit”
means the number of excitation to a neuron (or BMU counter). The “hit” parameter
will determine adjusting weight vector of neuron, i.e., the neurons representing for
many samples are adjusted less (to ensure not lose information) than neurons
representing for less samples.

Neme [24, 25] proposed SOMSR model (SOM with selective refractoriness),
which allows reducing TE. In this model, the neighborhood radius of the BMU did
not reduce gradually in the learning process. In every training times, every neuron
in the neighborhood radius of the BMU will decide itself whether being affected by
the BMU or not in the next training.

Kamimura [26] has integrated the “firing” rate in the distance function to max-
imize information input. The “firing” rate identifies the important degree of each
feature comparing to the remaining features. This method can reduce both QE and
TE; however, with each dataset, it needs to “trying error” in several times to
determine the appropriate value of “firing.”

Lopez-Rubio [27] describes the topographical error of the map as a state of “self-
intersections.” If it detects a “self-intersections” state between neurons after each
learning times, it will redo that learning times. This solution can reduce the TE, but
increase QE.

Another approach is to adjust the scope and the learning rate of the neighbor-
hood neurons. Kohonen [11] homogenised learning rate of all the neurons in the
neighborhood radius to learning rate of the BMU by using the “bubbles” neighbor-
hood function. He concluded that the bubbles function is less effective than the
Gaussian function.

Aoki and Aoyagi [28] and Ota et al. [29] published an asymmetric neighborhood
function. The essence of this function is extending the neighborhood radius towards
one direction and shrinking the opposite one. Theoretically, this could “slide” down
the topographical error out of the map. However, his experiment has been limited
in the certain situations and not really convinced.

Lee and Verleysen [30] replaced the neighborhood function by “fisherman”
rule. “Fisherman” rule updates the neurons in neighborhood radius following the
recursive principle, which BMU is adjusted following input sample and the BMU-
adjacent neurons (adjacent level 1) is governed by the BMU (unadjusted by input
samples), moreover, each adjacent neuron in level 2 is adjusted by the previous
adjacent neuron in level 1. The remaining neurons in the neighborhood radius are
adjusted in the same rule. However, the way to determine the order of the adjacent
neurons when they are organized in a rectangular or a hexagonal grid is not shown
in his article. In addition, he concluded that the Gaussian function has better results
than the rule of “fisherman”.
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It can be recognized that achieving a feature map with good quality according to
many criterion is a difficult problem. So far, there has not any solution, reducing
simultaneously both QE and TE that is well-applied for every dataset.

In this chapter, we improved Gaussian neighborhood function by adding the
adjusting parameter in order to simultaneously reduce the QE, TE of the map. The
next contents of the chapter include: Section 2 presents an overview of SOM and
assessment measures of the quality of feature map; Section 3 presents our studying
on adjusting the parameter of the Gaussian neighborhood function; Section 4
indicates the empirical results and the conclusion of the proposed method.

2. Self-organizing map neural network

2.1 Structure and the algorithm

SOM includes input and output Kohonen layer. Kohonen layer is usually orga-
nized under the form of a two-dimensional matrix of neurons. Each unit i (neuron)
in the Kohonen layer having a weight vector wi = [wi,1, wi,2, …, wi,n], with n is the
size of the input vector; wi,j is the weight vector of neuron i going with input j
(Figure 1). SOM is trained by unsupervised algorithm. The process is repeated
many times, at time t doing three steps:

• Step 1. Finding BMU: randomly select sample x(t) from dataset (with t is
training times), search for a neuron c of the Kohonen matrix containing the
minimum dist distance (frequently use functions of Euclidean, Manhattan or
vector dot product). Neuron c is called by Best Matching Unit (BMU).

dist ¼ kx tð Þ �wck ¼ min
i

kx tð Þ � wijf g (1)

• Step 2. Calculating neighborhood radius of BMU: using the interpolation
function (reduce gradually following the times of iterations)

Nc tð Þ ¼ N0 exp �
t

λ

h i

(2)

where Nc tð Þ is the neighborhood radius in the t training time; N0 is initial
neighborhood radius; λ ¼ K

log N0ð Þ is time constant, with K is the total number of

iterations.

Figure 1.
Illustrates the structure of SOM.
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• Step 3. Updates weight vector of neurons in the neighborhood radius of BMU
towards being near to sample x(t):

wi tþ 1ð Þ ¼ wi tð Þ þ L tð Þhci tð Þ x tð Þ � wi tð Þ½ � (3)

where L tð Þ is the learning rate at the iteration t, (the learning rate is reduced
simply along with time similar to neighborhood radius, with 0<L tð Þ< 1). L tð Þ
could be a linear function, exponential function …; hci tð Þ is a neighborhood
function, showing the impact of distance on the learning process calculated by
the formula (4)

hci tð Þ ¼ exp �
rc � rik k2

2Nc
2 tð Þ

" #

(4)

where rc and ri are the positions of neuron c and neuron i in Kohonen matrix.

2.2 The quality of feature map

Quantization error and topographical error are main measurements to assess the
quality of SOM. Quantization error is the average difference of the input samples
compared to its corresponding winning neurons (BMU). It assesses the accuracy of
the represented data, therefore, it is better when the value is smaller [11].

QE ¼
1

T

X

T

t¼1

x tð Þ �wc tð Þk k (5)

where x(t) is the input sample at the training t; wc(t) is the BMU’s weight vector
of sample x(t); T is total of training times.

Topographical error assesses the topology preservation [13, 14]. It indicates the
number of the data samples having the first best matching unit (BMU1) and the
second best matching unit (BMU2) being not adjacent. Therefore, the smaller value
is better.

TE ¼
1

T

X

T

t¼1

d x tð Þð Þ (6)

where x(t) is the input sample at training times t; d(x(t)) = 1 if BMU1 and BMU2

of x(t) not adjacent, vice versa, d(x(t)) = 0; T is total of training times.

3. Adding adjust parameter for Gaussian neighborhood function

Formula 3 shows the learning ability of SOM depends on two components:
learning rate L tð Þ and neighborhood function hci tð Þ.

Because the learning rate decreases simply over time, it should define the gen-
eral learning rate of SOM over the training time. Therefore, the quality of feature
map will be influenced mainly by neighborhood function hci tð Þ. The adjustment of
the neighborhood function will affect directly to the learning process and the
quality of the feature map of SOM.

Neighborhood function hci tð Þ defines the influence level of input sample on
neurons in the neighborhood radius Nc tð Þ of BMU (Figure 2).
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The formula (4) is rewritten in the following general form:

hci tð Þ ¼ exp �q
rc � rik kp

Nc
p tð Þ

� �

(7)

where q and p are two adjustable parameters, with q ≥ 0 và p ≥ 0.
It shows that the value of hci tð Þ depending on the distance from the position of

the being assessed neuron (ri) (neuron i) to the position of BMU (rc) and parame-
ters q, p, specifically:

• If rc � rik k ¼ 0 (BMU is neuron being assessed), hci tð Þ ¼ 1.

• If rc � rik k ¼ Nc tð Þ (the being assessed neuron in the farthest position in
neighborhood radius Nc tð Þ), the value of the neighborhood function depends
on parameter q, with:

hci tð Þ ¼ exp �q½ � (8)

The formula (8) shows the minimum value of function hci tð Þ depends on
parameter q.

Figure 3 illustrates the neighborhood function hci tð Þ in case of the neighborhood
radius Nc tð Þ ¼ 10, where p = 2 and q = 0.5, 1, 2, 4, 8, 12.

3.1 Parameter q

In principle, the bigger adjusting level of neurons’s weight vector in the current
learning times, the higher their difference with other input patterns in other learn-
ing times is. This is the cause of increasing the quantization error. Therefore, to

Figure 2.
Illustrates the influencing of input sample on the neurons in the neighborhood radius at training times t.

Figure 3.
Illustrates function hci tð Þ after changing the value of q.

5

Improving Feature Map Quality of SOM Based on Adjusting the Neighborhood Function
DOI: http://dx.doi.org/10.5772/intechopen.89233



reduce the QE, we must reduce the level and scope of the influencing of input
sample, i.e., the increase of the value of q will reduce QE.

However, if q is too large, the learning ability of the map is restricted, i.e., the
topography of map changes less, and partly depends on the initialization of the
neural’s weight vector. On the other hand, neighborhood radius Nc tð Þ can be
shrunk, due to hci tð Þ≈0 with neurons in remote positions of neighborhood radius
(i.e., neurons in remote positions in the neighborhood radius are not adjusted or
adjusted negligibly by input sample). Therefore, to ensure that all the neurons in the
neighborhood radius Nc tð Þ are adjusted by the input sample, the parameter q is not
allowed to be too large. For example, the case of q = 8 and 12, function hci tð Þ≈0
when the value of rc � rik k reaching to Nc tð Þ.

In case of q ≈ 0, Gaussian function has the same result as bubble function, i.e.,
hci tð Þ≈1 with all neurons in the neighborhood radius Nc tð Þ. As a result, if the
neighborhood radius Nc tð Þ is bigger, the feature map will be more likely to change
locally following input sample x(t). This reduces the remember ability the previous
learning times of the network.

Therefore, TE may depends on initializing the weight vector of neurons if q is
too large or depends on the order of the input samples if q is too small. It is notable
that the initial weight vector of neurons and the order of the input sample are
selected randomly. Therefore, the topographic learning ability of network is best
when parameter q is not too small or too large.

3.2 Parameter p

When the parameter q is fixed, if the parameter p increases, the value of func-
tion hci tð Þ of the neurons that near the BMU will increase gradually to 1, i.e., the
number of neighbors around the BMU that are adjusted similar with BMU will
extend. This is the cause of QE increasingly. If the parameter p is too large, the
feature map tends to change locally according to the input sample from the closest
training times (similar to the case that parameter q is too small). However, TE may
vary slightly because TE is conducted by BMU1 and BMU2.

Figure 4 illustrates original neighborhood function hci tð Þ (with q = 0.5 and p = 2)
and adjusted neighborhood function hci tð Þ (with q = 4 and p = 1, 2, 3, 4, 5, 6) in case
of Nc tð Þ ¼ 10.

In case of p = 1, the graph hci tð Þ is similar to the case of q = 8, 12 in Figure 3, i.e.,
the smallest QE compared to the case of p > 1, but TE is unreliable due to depend on
initializing the weight vector of neurons.

Figure 4.
Illustrates function hci tð Þ after changing the value of p.
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Therefore, the adjustment of parameter p has no significant impact on improv-
ing the quality of the feature map of SOM, but the parameter q has positive signif-
icance in improving the quality of the feature map of SOM. The bigger the
parameter q is, the smaller QE is. However, q reaches the most appropriate value
when TE is the smallest. Therefore, we recommend the neighborhood function

h0ci tð Þ with an adjustable parameter as follows:

h0ci tð Þ ¼ exp �q
rc � rik k2

Nc
2 tð Þ

" #

(9)

with the parameter q can be adjusted depending on each the dataset to achieve
better quality of feature map.

4. Experiments

We have conducted experiments for 12 published datasets, including: XOR (data
samples are distributed within the XOR operation), Aggregation, Flame, Pathbased,

q 0.5 1 2 4 8 12

XOR 0.1890 0.1585 0.1299 0.1129 0.0902 0.0810

0.0318 0.0223 0.0273 0.0427 0.0705 0.0925

Aggregation 5.9702 5.0643 4.0276 2.9340 2.2819 1.8472

0.0549 0.0362 0.0294 0.0245 0.0424 0.0678

Flame 2.1839 1.9512 1.5194 1.1822 0.9129 0.8206

0.0700 0.0567 0.0407 0.0393 0.0479 0.0833

Pathbased 4.5859 4.0427 3.2618 2.4779 1.9392 1.7401

0.0561 0.0433 0.0373 0.0315 0.0434 0.0794

Spiral 4.7595 4.1719 3.4675 2.9239 2.2975 2.0085

0.0543 0.0404 0.0284 0.0364 0.0413 0.0564

Jain 5.2745 4.4829 3.5726 2.3559 1.6236 1.5234

0.0513 0.0395 0.0313 0.0269 0.0443 0.0637

Compound 4.4205 3.7595 3.1508 2.5672 1.8323 1.7744

0.0624 0.0299 0.0349 0.0400 0.0630 0.0690

R15 2.2226 2.0212 1.8005 1.4606 1.0730 0.9562

0.0722 0.0631 0.0368 0.0274 0.0613 0.1162

D31 4.7676 4.1204 3.3943 2.4569 2.0055 1.6793

0.0479 0.0352 0.0284 0.0207 0.0332 0.0394

Iris 0.7709 0.6430 0.5353 0.4403 0.3773 0.3494

0.0739 0.0548 0.0689 0.0940 0.1196 0.1566

Vowel 2.7459 2.5736 2.3755 2.2005 1.9150 1.7468

0.0537 0.0436 0.0412 0.0448 0.0494 0.0497

Zoo 1.5841 1.4421 1.2468 1.0912 0.9790 0.9156

0.0343 0.0254 0.0169 0.0104 0.0162 0.0208

Table 1.
Experiment results when fixed parameter p = 2, change parameter q.
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Spiral, Jain, Compound, R15, D31, Iris, Vowel and Zoo. The parameters were used
in the experiment as follows: network size: 10 � 10; initial neighborhood radius: 10;
initial learning rate: 1; number of training times: 20,000.

The experiments were conducted in two cases: case 1—fixed parameter p,
changed parameter q; case 2—fixed parameter q, changed the parameter p.

Note: The results in Tables 1 and 2 are the average value of 10 experiment times.
The result of each dataset presented in two rows: the first row shows QE and the
second row displays TE.

Case 1: Parameter p is fixed, parameter q changed.
Table 1 shows the experimental results with parameter p = 2 and change the

value of parameter q = 0.5, 2, 4, 8, 12.
We can see that QE is in a reverse ratio to q, when q is bigger, QE is smaller,

while TE reaches the minimum value with q = 1, 2, 4. This is especially true with the
proposed analysis in Section 3.

The values in bold are the best results, in which: TE is the smallest, QE is also
smaller than the case of using the original neighborhood function (q = 0.5)
(column 2, Table 1).

p 1 2 3 4 5 6

XOR (q = 1) 0.1754 0.1587 0.1546 0.1518 0.1525 0.1513

0.0534 0.0203 0.0225 0.0244 0.0238 0.0255

Aggregation (q = 4) 2.7895 3.0003 3.2722 3.6436 3.6100 3.8718

0.0850 0.0300 0.0277 0.0273 0.0316 0.0282

Flame (q = 4) 1.1858 1.2105 1.2306 1.3158 1.4010 1.4209

0.1438 0.0405 0.0284 0.0304 0.0331 0.0330

Pathbased (q = 4) 2.5458 2.4759 2.7586 2.8462 2.9400 2.9928

0.1300 0.0313 0.0363 0.0351 0.0349 0.0304

Spiral (q = 2) 3.5976 3.4319 3.4334 3.4603 3.4926 3.5797

0.0690 0.0290 0.0265 0.0290 0.0261 0.0264

Jain (q = 4) 2.3664 2.3519 2.7136 2.9018 3.1494 3.3035

0.0896 0.0263 0.0270 0.0306 0.0402 0.0403

Compound (q = 1) 4.2063 3.7575 3.6224 3.4969 3.5082 3.4913

0.0666 0.0291 0.0337 0.0340 0.0373 0.0398

R15 (q = 4) 1.3161 1.4406 1.5544 1.6498 1.6972 1.7376

0.1055 0.0294 0.0367 0.0390 0.0454 0.0548

D31 (q = 4) 2.3832 2.4769 2.8137 2.9886 3.0686 3.1960

0.0803 0.0199 0.0227 0.0238 0.0259 0.0284

Iris (q = 1) 0.7140 0.6382 0.6166 0.6002 0.5880 0.5849

0.0665 0.0518 0.0555 0.0560 0.0572 0.0598

Vowel (q = 2) 2.3938 2.3715 2.4186 2.4310 2.4529 2.4627

0.0635 0.0410 0.0416 0.0414 0.0429 0.0455

Zoo (q = 4) 1.1817 1.0912 1.1780 1.1954 1.2015 1.2131

0.0366 0.0104 0.0182 0.0188 0.0176 0.0180

Table 2.
Experiment results when change parameter p, fixed parameter q.
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Case 2: Parameter q is fixed, parameter p changes.
Table 2 shows the experimental results when fixes parameter q of each dataset

corresponding to the best value of TE in Table 1 and respectively change the value
of p = 1, 2, 3, 4, 5, 6.

When p = 1: both QE and TE increase high.
When p ≥ 2: TE tends to be stable or increase slightly when p rises. This shows

that the parameter p is negligibly significance in improving the topographical qual-
ity when identifying suitable parameter q; QE tends to increase with the majority of
datasets while increasing p (excepting for the dataset XOR, Compound and Iris, QE
tends to decrease, but TE tends to increase). This suggests that, p = 2 is the best
value.

From Figures 5 to 16 are charts comparing the values of QE,TE when changing
the parameters q and p, in which: figures on the left (a) are the results when fixing
p = 2 and changing q; figures on the right (b) are the results when fixing q and
changing p. Parameter q is selected by the corresponding value to achieve the
smallest value of TE in figure (a).

Figure 5.
XOR dataset. (a) p = 2 and q changes and (b) q = 1 and p changes.

Figure 6.
Aggregation dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.
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Figure 7.
Flame dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.

Figure 8.
Pathbased dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.

Figure 9.
Spiral dataset. (a) p = 2 and q changes and b) q = 2 and p changes.
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Figure 10.
Jain dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.

Figure 12.
R15 dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.

Figure 11.
Compound dataset. (a) p = 2 and q changes and (b) q = 1 and p changes.
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When putting parameter p = 2 and changing parameter q, we see that the charts
are similar (figure (a)—on the left), with QE is reduced gradually,TE reduced at
first, then increased inversely with QE when parameter q increased gradually. TE
reaches the lowest value when q∈ [10, 28].

When fixing parameter q and changing the parameter p, the charts also have
similarities (figure (b)—on the right), including: TE is highest when p = 1; both
graphs of QE and TE tend to stabilize or increase gradually with p ≥ 2.

Conclusion:With p = 2 (default value), the adjustment of the parameter q has
significantly impacted on the quality of the feature map. If q is bigger, the QE is
smaller. However,TE is lowest when q is not too small or too large. Therefore, with
p = 2, parameter q is the most suitable when its value is large enough to achieve the
lowest value of TE. Conversely, if we have identified the most appropriate value of

Figure 13.
D31 dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.

Figure 14.
Iris dataset. (a) p = 2 and q changes and (b) q = 1 and p changes.
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the parameter q, the parameter p has little significant impact on improving the
quality of the feature map.

Table 3 shows the results of QE,TE when using neighborhood function h0ci tð Þ
(with parameter p = 2 and q is determined for each dataset shown in Table 2) and
some other neighborhood functions. Results show that the neighborhood function

h0ci tð Þ achieved QE,TE smaller than the original Gaussian function, Bubbles function
and asymmetric neighborhood function.

Note: The results in Table 3 are the average value of 10 experiment times. The
result of each dataset present in two rows: the first row shows QE and the second
row displays TE.

Figure 15.
Vowel dataset. (a) p = 2 and q changes and (b) q = 2 and p changes.

Figure 16.
Zoo dataset. (a) p = 2 and q changes and (b) q = 4 and p changes.
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5. Conclusion

This chapter proposes the parameter for adjustment of the Gaussian symmetric
neighborhood function. Our parameter adjusting method can reduce both QE and
TE of the feature map. However, the value of parameter must be determined
individually for each specific dataset. The improved Gaussian function is better
than the original Gaussian function and some other neighborhood functions like
Bubble function, asymmetric neighborhood function.

Dataset hci(t) h0ci(t) Bubble function Asymmetric neighborhood function

XOR 0.1890 0.1585 0.2572 0.1808

0.0318 0.0223 0.2708 0.4635

Aggregation 5.9702 2.9340 7.3092 4.9466

0.0549 0.0245 0.1794 0.4476

Flame 2.1839 1.1822 2.6352 2.1916

0.0700 0.0393 0.1642 0.6828

Pathbased 4.5859 2.4779 5.524 5.3888

0.0561 0.0315 0.1981 0.2715

Spiral 4.7595 3.4675 5.6515 4.3775

0.0543 0.0284 0.1502 0.6306

Jain 5.2745 2.3559 6.3026 5.4962

0.0513 0.0269 0.2024 0.3172

Compound 4.4205 3.7595 5.5663 3.5529

0.0624 0.0299 0.2199 0.4349

R15 2.2226 1.4606 2.5017 1.8911

0.0722 0.0274 0.1384 0.6337

D31 4.7676 2.4569 5.6095 5.958

0.0479 0.0207 0.2054 0.3506

Iris 0.7709 0.6430 1.001 0.9284

0.0739 0.0548 0.2312 0.2610

Vowel 2.7459 2.3755 3.1022 2.8808

0.0537 0.0412 0.1872 0.3965

Zoo 1.5841 1.0912 1.7182 1.7179

0.0343 0.0104 0.2182 0.2210

Table 3.
Compares measures QE, TE of some neighborhood functions.
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